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The line shapes of the Raman excitation profiles for radial breathing modes in carbon nanotubes are shown
to be strongly affected by interference effects that arise whenever strong optical transitions are separated by a
small energy. This is the case in metallic zigzag and chiral tubes, where one-dimensional singularities in the
electronic joint density of states are split due to the trigonal warping of the electronic band structure of a
two-dimensional graphene. It is shown that the proper modeling of these interferences is crucial for the
identification of thesn,md indices using Raman spectroscopy.
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The spectroscopy of one-dimensional Van Hove singulari-
ties in the electronic density of states is critical for the char-
acterization of carbon nanotubes and for the understanding
of their electronic structure. Several techniques can be used
to study these singularities, including optical absorption,1–3

photoluminescence,4,5 photoluminescence excitation
spectroscopy,6 resonance Raman scatteringsRRSd,7–13 and
scanning tunneling spectroscopy.14–16 Unfortunately, the
nanotube speciessn,md fwe use the standard notation to
identify nanotubesssee Ref. 17dg present in a sample are
usually not knowna priori because no precise control over
the indicesn andm can be achieved with current fabrication
techniques. As a result of this limitation, the assignment of
the observed electronic transitions to specificsn,md struc-
tures is very challenging. Since electronic singularities de-
tected with RRS by the radial breathing modesRBMd can be
assigned to a specific nanotube diameter,7 RRS has become a
major tool for narrowing down the possiblesn,md choices
for a given set of experimental data. A fundamental implicit
assumption in these studies is the existence of a one-to-one
correspondence between maxima in the resonant excitation
profiles and singularities in the electronic joint density of
states. This is equivalent to neglecting the contribution to the
scattering amplitude of all but the electronic states closest to
the singularity in resonance, a reasonable expectation given
the divergent nature of one-dimensional critical points. In
fact, detailed calculations for armchairsn,nd tubes have fully
confirmed this picture.18 In this Rapid Communication, how-
ever, we show that for realistic electronic structure param-
eters, strong interferences are predicted between contribu-
tions from nearby singularities in metallic chiral and zigzag
tubes. These interferences distort the excitation profiles to
the extent that accurate critical point energies cannot be ex-
tracted from the experimental data without detailed model-
ing.

For the analysis of Raman scattering in a single carbon
nanotube, it is convenient to assume an infinite array of par-
allel tubes, separated by a distance such that the tube-tube
interactions are negligible. Let us consider incidentsscat-
teredd light with frequencyvLsvSd, wave vectorKLsKSd, and

polarizationhLshSd. The Raman scattering cross section is
given by

ds

dV
= S nL

vL
DSvSnS

c4 DS V

2p"
D2

uWfisvS,KS,hS;vL,KL,hLdu2,

s1d

whereV is the volume of the sample,c the speed of light in
vacuum,nsvLdfnsvSdg the index of refraction at frequency
vLfvSg, and Wfi , the quantum-mechanical transition matrix
element between the initial and final states. The collection
angle elementdV is in the direction ofKS. The measured
Raman cross section as a function of the laser photon fre-
quencyvL is the so-called Raman excitation profilesREPd.
Richter and Subbaswamy18 applied the conventional theory
of RRS in crystalline solids to the calculation ofWfi in car-
bon nanotubes. Analytical expressions were derived by
Canonicoet al. sRef. 13d, neglecting excitonic effects19,20

and exploiting the fact that the electronic energy bands near
a singularity have a parabolic dispersion. The results of Ref.
13 can be rewritten as

Wfi ~ o
t

CtF 1

s"vL − Et − iGtd1/2 −
1

s"vS− Et − iGtd1/2G ,

s2d

with

Ct = uPz
t u2smt

*d1/2dEt

dR
, s3d

wherePz
t is thez componentsz is taken along the nanotube

axisd of the momentum matrix element between the bands
involved in the optical transitiont ,mt

* is the reduced mass of
the virtually excited electron-hole pair, anddEt /dR is the
derivative of the singularity’s transition energy relative to the
radius of the nanotube.

When"vL approaches the energy of a transitionEjj in an
armchair tube with a diameter within the experimental range,
good agreement is obtained between the numerical calcula-
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tions of Richter and Subbaswamy18 and the results of Eq.s2d
with a singlet= j j term in the summation. This confirms that
REPs in these armchair tubes can be understood “one singu-
larity at a time.” The reason for this behavior is that inter-
band optical transitions in armchair tubes with realistic di-
ameters are well separated. On the other hand, if two or more
singularities are sufficiently close, their contributions to Eq.
s2d will produce noticeable interferences when Eq.s2d is in-
serted in Eq.s1d. Moreover, since the prefactorCt is different
for each singularity, the shape of REP will depend very sen-
sitively on the relative magnitudesand signsof these pref-
actors for each of the contributing transitions.

In order to investigate interference effects in real systems,
we consider metallic chiral and zigzag nanotubes. Due to the
increased screening, we expect excitonic effects to be of
lesser importance in these systems, so that a theory based on
free electron-hole pairs is more likely to be valid. More im-
portantly, metallic chiral and zigzag nanotubes are strong
candidates for interference effects due to the splitting of their
Van Hove singularities caused by trigonal warping in the
band structure of two-dimensional graphene.21 In Fig. 1, we
show the electronic band structure for as15,0d tube. The
bands were obtained from anab initio density-functional-
theorysDFTd calculation within the local density approxima-
tion sLDA d. We use norm-conserving pseudopotentials and a
plane-wave basis set22 with an energy cutoff at 50 Ry and 6k
points along the tube direction. A supercell with a 35-Å
width is used to mimic isolated tubes. Since we work within
a plane-wave formalism, it is straightforward to compute the
matrix elements of the momentum operator for each possible
interband optical transition.23 Based on this analysis we iden-
tify the lowest two strong nearby optical transitions, labeled
E11

− s=1.99 eVd and E11
+ s=1.62 eVd that are split by trigonal

warping. For the Raman cross section, we use Eq.s2d with
two terms, corresponding to transitionsE11

− andE11
+ , and in-

sert the resulting transition matrix element into Eq.s1d. For

the computation ofC11
− and C11

+ , we need the momentum
matrix elements for each transition,uPzs11−du2=0.32 Å−2

and uPzs11+du2=0.75 Å−2, and the reduced electron-hole
mass, which we obtain by fitting parabolic expressions to the
Eskd curves near the bottom of the bands. We find
m*s11−d=1.71me andm*s11+d=0.4me, whereme is the elec-
tron mass. The derivative of the transition energy relative to
the nanotube radius,dEt /dR, is obtained from separate DFT-
LDA calculations at different values of the tube radius, i.e.,
in a frozen description of the RBM. The results are shown in
the inset to Fig 1. We find thatdEt /dRhas a different sign for
the two transitions. In Fig. 2sad we show the predicted REP
for the s15,0d tube as a solid line. The dotted line shows the
same calculation with the sign ofC11

+ reversed. If there were
no interferences between the two transitions, the two curves
would be identical. This is clearly not the case, demonstrat-
ing that interference effects cannot be neglected. Moreover,
since the separation between the split singularities is maxi-
mum for zigzag tubes,21 we expectweakerinterferences in
such systems andstronger interferences in metallic chiral
tubes. This is schematically illustrated in Fig. 2sbd, where we
repeat the calculations with the separation betweenE11

− and
E11

+ artificially reduced to 50% of its value for thes15,0d
tube.

It is apparent from Fig. 2 and Eq.s3d that the relative sign
of dEt /dR for the two trigonal-warping split transitions has a
dramatic impact on the predicted REPs. We find that the

FIG. 1. Electronic band structure of a zigzags15,0d tube near the
Fermi level. The arrows indicate the two transitions,E11

− and E11
+ ,

that have a sizable oscillator strength. The inset shows the depen-
dence of the energy of these transitions on the radius of the nano-
tube, and the vertical dotted line indicates the reference radius.

FIG. 2. sad Solid line: predicted Raman excitation profile for the
RBM in a s15,0d zigzag nanotube using Eqs.s1d and s2d and elec-
tronic parameters as discussed in the text. In addition, we assumed
a phonon energy"svL−vSd=0.022 eV and a broadening of"G
=0.07 eV. Dotted line: the same calculation as in the case of the
solid line, but with the sign ofC11

− /C11
+ reversed. The vertical lines

indicate the energies of the two singularities.sbd The same assad
but with the energy separationE11

− −E11
+ artificially reduced to one-

half of its original value.
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opposite sign we obtain for thes15,0d tube is actually a com-
mon feature of all metallic chiral and zigzag nanotubes. This
can be understood in terms of the simple graphene model of
the electronic structure of carbon nanotubes. The electronic
bands along theG-K direction of the graphene Brillouin zone
are approximately given by«= ± st+2t cosxd, wherex is a
dimensionless wave vector such thatxK=2p /3, andt is the
nearest neighbor-hopping integral. Therefore, the energy of
the corresponding optical transitions isEsxd=2ut+2t cosxu.
For a metallicsn,0d zigzag tube, the transitionsEjj

+ and Ejj
−

correspond to graphene interband transitions atx=xK± jp /n.
Note that conduction and valence bands are exchanged in the
two cases. Since the dispersion curves are not symmetric
aroundxK=2p /3 strigonal warpingd, Ejj

− .Ejj
+ , i.e., the two

transitions are not degenerate. If the graphene sheet is dis-
torted following the displacement pattern for an RBM, the
bands becomeE= ± st2+2t1cosxd,24 wheret2= t and t1 oscil-
lates as a function of the instantaneousC-C separation. Let
us suppose for example thatt1 becomes slightly smaller than
t2. Then the band dispersion is reduced, so that one of the
bands moves toward +t2 while the other one moves toward
−t2. As a result of this flattening,Ejj

+ =2ut1+2t2cossxK

+ jp /ndu decreases andEjj
− =2ut1+2t2cossxK− jp /ndu increases

for j ,n/6. Incidentally, a tight-binding fit of the pseudopo-
tential results, assumingt1= tsd0/ddn, whered is the inter-
atomic separation andd0 its value for graphene, givesn
=3.85. It is interesting to note that this value is quite differ-
ent from the well-knownn=2 prescription from Harrison.25

An inverse-cube law has been proposed for carbon
systems.26

If the nanotube electronic structure could be calculated
from first principles with an accuracy of a few meV, a single
experimental transition energy would suffice for an unam-
biguous determination of the chiral indicessn,md. State-of-
the-art electronic structure methods are far from the required
accuracy, but this limitation can be overcome—at least
partially—by measuring and modeling more than one optical
transition in the same nanotube. In particular, the trigonal
warping splitting of singularities is very sensitive to chirality
because it ranges from zero for armchair tubes to a maximum
for zigzag tubes.21 Thus theseparationbetween energy lev-
els is crucial for structural assignments, and it is precisely the
experimental determination of this separation that is strongly
affected by the interference effects discussed above. In Fig. 3
we show a REP corresponding to a 188 cm−1 RBM, mea-
sured by Canonicoet al.13 This profile deviates from the
single-peak curve expected for armchair tubes, so it was as-
signed to a chiral or zigzag tube. From the relationship be-
tween tube diameter and RBM frequency, the possible can-
didates ares12,6d, s11,8d, s16,1d, s15,3d, s14,5d, and s13,7d
tubes. We first fit the REP as a superposition of two transi-
tions by adding two Lorentzian shapes, as frequently done in
the literature. We obtainE11

− =1.890 eV andE11
+ =1.795 eV.,

i.e., a separation of 95 meV. However, if we fit the same REP
using Eq.s2d and constraining the ratioC11

− /C11
+ to be nega-

tive, as indicated by theory, our best fit givesE11
−

=1.910 eV,E11
+ =1.790 eV. The separation between the two

levels is now 120 meV, a 25% increase. Furthermore, a fit of
comparable quality can be obtained by using Eq.s2d and

C11
− /C11

+ .0, but in this case we obtainE11
− =1.870 eV and

E11
+ = 1.799 eV, that is, the separation between the energy

levels is reduced to 71 meV.
We now show that the strong dependence of the fitted

energy separation on the REP profile assumption leads to
different sn,md assignments, underscoring the importance of
properly treating interference effects in structural determina-
tions based on Raman spectroscopy. We use the simple
nearest-neighbor tight-binding model introduced above, with
a single adjustable parametert. We adjust this parameter to
fit the one of the two experimental transition energies, for
exampleE11

+ , for the six candidate nanotubes. We obtain val-
ues betweent=2.735 and 3.02 eV, which are all within the
known uncertainty of this parameter. In other words, the cal-
culation of a single transition energy does not lead to a nar-
rowing of structural assignments for the REP in Fig. 3. How-
ever, once the parametert is fixed, the simple tight-binding
theory makes a prediction for the separation of the trigonal-
warping split levels. This prediction is sensitive to the tube’s
chirality. Moreover, since we are fitting one of the transitions
exactly sand we know that the tight-binding model repro-
duces quite well the general band-structure shaped we expect
the predictedE11

− −E11
+ separation to be more reliable than the

absolute value of the individual energies. The calculated val-
ues for E11

− −E11
+ are 110 meVs12,6d; 52 meV s11,8d; 210

meV s16,1d; 180 meVs15,3d; 140 meVs14,5d; and 92 meV
s13,7d. Therefore, the best assignment iss12,6d, if we use Eq.
s2d to model the REP line shape. Had we chosen the custom-
ary Lorentzian model, however,for Eq. s2d with C11

− /C11
+

.0g we might have concluded that the best assignment for
the 188 cm−1 REP is a s13,7d tube. Incidentally, for
C11

− /C11
+ ,0 the fit value forC11

− /C11
+ is −2.22, which is re-

markably close to the theoretical predictionC11
− /C11

+ =−1.86
for a s15,0d tube with a 5% smaller diameter.

In summary, we have shown that interferences between
different electronic transitions have a profound and unex-
pected effect on the Raman excitation profiles in carbon
nanotubes. Neglecting such interferences may lead to sys-
tematic errors in the estimates of optical transition energies
from Raman experiments. For the analysis of experimental
REPs, as well as for the use of Stokes/anti-Stokes ratios to
determine transition energies, it is crucial to use realistic the-

FIG. 3. Experimental REP for a 188 cm−1 RBM sfrom Ref. 13d
and a fitssolid lined using Eqs.s1d ands2d with the same broadening
parameter for the two transitions. The fit values areE11

− =1.910 eV,
E11

+ =1.790 eV,C11
− /C11

+ =−2.22, andG=0.045 eV.
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oretical models if one expects to obtain energies with the
required precision to discriminate between differentsn,md
values. The calculations and comparisons with experiment
presented here are limited to the RBM, but the effect might
be expected to be even more significant for the totally sym-
metric tangential modes, since the ratio between phonon en-
ergy and singularity splitting will be larger for these modes.
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