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We analyze in detail the fluctuations and correlations of thesspatiald Fourier modes of nanoscale single-layer
islands ons111d fcc crystal surfaces. We analytically show that the Fourier modes of the fluctuations couple
due to the anisotropy of the crystal, changing the power spectrum of the fluctuations, and that the actual
eigenmodes of the fluctuations are the appropriate linear combinations of the Fourier modes. Using kinetic
Monte Carlo simulations with bond-counting parameters that best match realistic energy barriers for hopping
rates, we deduce absolute line tensions as a function of azimuthal orientation from the analyses of the fluc-
tuation of each individual mode. The autocorrelation functions of these modes give the scaling of the corre-
lation times with wavelength, providing us with the rate-limiting kinetics driving the fluctuations, here step-
edge diffusion. The results for the energetic parameters are in reasonable agreement with available
experimental data for Pbs111d surfaces, and we compare the correlation times of island-edge fluctuations to
relaxation times of quenched Pb crystallites.
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I. INTRODUCTION

Nanoscale islands consisting of 102–105 atoms have cap-
tured great interest over recent years for a variety of reasons.
From a practical standpoint, they provide a precursor to the
formation of quantum dots, which, if assembled in a con-
trolled way, can serve as the basic ingredients of nanoscale
electronic and mechanical devices. Many crystallites or na-
nomounds are best viewed as “wedding-cake”-like stacks of
such islands.1 They are the intermediary between a flat sur-
face and a small three-dimensional structure. In contrast to
steps, which require vicinal surfaces2 that often must be well
characterized over mesoscopic regions, islands can be stud-
ied in smaller-scale regions that are flat only locally.

Of particular interest to us are the shape and the fluctua-
tions of the perimeter of these islands. The shape provides
information about the line tension or step free energy per
length, from which one can compute the step stiffness that
describes the “inertial” properties of steps. The “dipole”
mode of these fluctuations are known to underlie the diffu-
sion of such islands, a concept now used routinely in
simulations.3,4 However, shorter-wavelength modes are also
of great interest, since they can be correlated with similar
fluctuations of steps and provide a way to assess, again, the
stiffness of the step and also the kinetic or atomistic diffusion
coefficient associated with the mechanism that dominates the
atomistic processes underlying the fluctuations. Until re-
cently, attention was limited to structures for which crystal
anisotropy could seemingly be ignored.

Here we pay particular attention to the role of the inevi-
table anisotropy of crystal surfaces, which around room tem-
perature or even above it is typically sufficiently strong that
it should apparently be taken into account in order to cor-
rectly characterize the morphology of the varioussneard
equilibrium structures appearing on surfaces and their dy-
namics. In this paper we focus on the line tension and stiff-
ness and their orientation dependence; we give an analytic
method to calculating these physical parameters from the
fluctuation of nanoscale islands.

The little experimental data on such systems involve runs
of worrisome duration or use probes that provide scanned
rather than instantaneous images. To generate fullycharacter-
ized data, we turned to kinetic Monte CarlosKMCd simula-
tions to mimic the equilibrium fluctuations of islands. These
simulations are the input of our analytic theory which, start-
ing from the excess free energy corresponding to the capil-
lary wave fluctuations of the island edge, provides the eigen-
modes of these fluctuations. Since the two-dimensionals2Dd
Wulff plot relating the equilibrium island shape and the line
tension in the azimuthal directions on the surface provides
only relative line tensions for various orientations, a key
problem is always the determination of the chemical poten-
tial l of the island edge, which then produces an absolute
relation. This potential can be determined with surprisingly
good s,10%d accuracy from the spectrum of the modes of
the system. We compare these eigenmodes and the simple
Fourier modes of the fluctuations and reach thesperhapsd
surprising conclusion that the anisotropy only affects the
longer wavelength modes.

Another aim of the paper is to examine the correlation
of the fluctuations of the Fourier modes and thereby to find
the rate-limiting process driving the fluctuations in a fairly
realistic model. For our KMC simulations we sought a sys-
tem for which one could compute hop rates with good accu-
racy and for which there was quantitative experimental data
with which to compare. Accordingly, we have chosen
Pbs111d so as to be able to compare with intriguing recent
experiments by Thürmeret al..5 This analysis gives the scal-
ing of the correlation time with the wavelength, that is the
dynamic exponentz, and provides us with characteristic
times measured not only in MC steps, but in real time. Thus,
we can compare directly with experiments and extrapolate to
different structures from the simple one considered here.
sSee Fig. 1.d

Utilizing direct surface imaging techniques, especially
scanning tunneling microscopysSTMd, several attempts have
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been made to measure and calculate step energies. From a
theoretical viewpoint the various methods that used the ex-
perimental data for calculations can be broken down into two
main groups. The first is based on a lattice model which
relates the island shapesradius and curvatured to the tem-
perature dependence of the free energy and stiffness of the
Ising model in the low-temperature expansion, usually in
high symmetry directions. By fitting the functional shape of
the free energy with varying temperature on the experimental
data determined by the equilibrium island shape6 gives the
Ising kink energy, which in turn provides the step energies
and stiffnesses. However, limitations of the Ising model to
describe surface structure have recently been noted.7

The other method is based on a step continuum model
which makes use of stochastic differential equations to de-
scribe the fluctuations of straight steps8 or island edges9,10

viewed as nearly circular closed-loop steps. Thus, the initial
calculations for island fluctuations assumed isotropy,11 the
power spectrum of the Fourier modes of the step fluctuations
were calculated and adapted with appropriate modifications
to nearly circular island shapes.12 If the anisotropy turns out
to be strong, it cannot be handled as a perturbation; a com-
plete anisotropic calculation without any such assumptions
becomes necessary.

This challenge was recently taken up by Khareet al.,13

who give an approximate form for the free energy functional
and calculate the chemical potential integrating all the Fou-
rier modes in the system by using the generalized equiparti-
tion theorem where the modes are buried in a sum. However,
these modes are coupled, so any one mode missingse.g., due
to lack of experimental resolutiond in the sum can contribute
to a deviation from the precise value of the chemical poten-
tial by itself and through its coupling to the other modes as
well. In contrast, our approach of analyzing individual
modes gives more insight into the extent to which this cou-
pling should be taken into account, and provides the chemi-
cal potential in asmathematicallyd controlled way.

The autocorrelation function of fluctuations of step edges
and correlation times have been analyzed theoretically in
Fourier space based on the Langevin formalism,11,14 and ex-
perimentally in the context of straight-step fluctuations on
Sis111d sRef. 15d and Sis001d sRef. 8d surfaces for relatively
long wavelengths. The rate-limiting kinetics driving these
fluctuations are determined by the dynamic exponent, which
also sets the universality class to which the system belongs.16

sThe roughness exponent is believed to be 1/2 in our cases.d
The correlation times are theoretically identical to the relax-
ation times sor, in some cases, decay timesd of surface
features,17,18 such as decay and near-equilibrium build-up of
bulges sof either signd along the step edge that also have
swavedlengthL. Three-dimensional features like mesoscopic
sor smallerd wires on surfaces as well as the surface corru-
gations in earlier studies by Mullins,19,20 are typically de-
scribed by 1+1 dimensional models but may involve differ-
ent, more complicated mechanisms driving their fluctuation
or decay. We will compare and discuss these various relax-
ation times in the paper.

The paper is organized as follows: In the next section we
give an analytic solution to the decoupling of the Fourier
modes of the system into the actual eigenmodes and recalcu-
late the free energy functional of the edge fluctuations. The
results and conclusions can be understood without the reader
going through this algebra; only the result expressed in Eq.
s10d is used later. In Sec. III we introduce the KMC simula-
tion and in Sec. IV use the results to calculate the chemical
potential and line tension. In Sec. V we calculate the corre-
lation functions of the Fourier modes and deduce the scaling
of the correlation time with length, the dynamic exponentz.
We compare with available experimental data for Pbs111d.
Section VI concludes the paper.

II. FOURIER MODES, EIGENMODES

The relationship between the equilibrium crystal shape
and the surface tension or, in our 2D case, between the equi-
librium island shape and the line tension of its edge can be
established by the minimization of the free energy functional
of the island edge. The orientation-dependent line tension
bsnd is defined as the work per unit length necessary to
create theds line element with normaln to the perimeter.
The free energy is the integral of this work along the whole
perimeter. The equilibrium island shape at a constant tem-
peratureT, number of particlesN, and areaS, is determined
by the minimization of the free energy functional with re-
spect to the shape with the constraint that the island area is
constant, typically using the method of Lagrange
multipliers,21

FfR,Ṙ,ug =R
Leq

bsndds− lE
S

ds

=E
0

2p

bscsuddsR2 + Ṙ2d1/2du − lE
0

2p R2

2
du.

s1d

Here the second line is in polar coordinates withu the polar
angle andRsud the radius of the equilibrium shape. The dot
denotes the differentiation with respect to the angle,l is the
Lagrange multiplierswhich actually turns out to be the
chemical potentiald, and c is the angle which characterizes
the vector normal to the shapessee Fig. 2d. dsandds are the
line element and surface element, respectively. Formally

minimizing theF=FfR,Ṙ,ug functional, the Euler-Lagrange
equation gives a relation between the equilibrium island

FIG. 1. sColor onlined Geometry of the MC simulation. The
approximate mean radiusR of the island and the radiusRc of the
container are illustrated.
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shapeRsud and the orientation dependent line tension,bscd,
and between the two angles involved,c which depends on
the polar angle and the equilibrium shape,13,22

dF

dR
= 0 ⇒

bscd = l
R2

sR2 + Ṙ2d1/2

c = u − arctan
Ṙ

R

. s2d

However, in this procedurel is a prefactor and cannot be
determined, leaving the relation relative. Equations2d is the
seminal Wulff construction in polar coordinates.

In order to determine the chemical potential, the thermal
fluctuations of the island edge can be utilized. In this case the
free energy of the island changes as its shape changes due to
the fluctuations, and the free energy is certainly not at its
minimum but depends on the island’s instantaneous shape.
Then the free energy of this instantaneous shape is the inte-
gral over the line elements of the shape with their corre-
sponding line tension, which changes with time as the orien-
tation of the shape element changes,

Ffr, ṙ,u;tg =R
L

bsndds

=E
0

2p

bscsuddssR+ rd2 + sṘ+ ṙd2d1/2 du. s3d

Here r and ṙ are time dependent and describe the deviation
of the instantaneous shape from the equilibrium one as
shown in Fig. 3. The anglec is also time dependent since

now it depends not only onR andṘ as in Eq.s2d, but also on
r and ṙ. Considering only small deformations from the equi-
librium shapesas it is usually assumed in the capillary wave
theoryd and also small slope deviations from the equilibrium

slopeṘ, so thatr, ṙ !R, the Taylor expansionsboth inb and
in the square rootd in these small parameters leads to the
functional

Ffr, ṙ,u;tg = lE
0

2p 1

2

sṘr − Rṙd2

R2 + 2Ṙ2 − RR̈
du. s4d

This functional contains three quadratic termsAsudr2,
Qsudrṙ , andBsudṙ2. The cross termQ drops out after taking
the ensemble average; both the two other terms are deter-
mined by properties of the equilibrium island shape,

Asud =
1

2

Ṙ2

R2 + 2Ṙ2 − RR̈
, s5d

Bsud =
1

2

R2

R2 + 2Ṙ2 − RR̈
, s6d

and provide the weightings of the fluctuations of the defor-
mations characterized byr2 and ṙ2, respectively. These de-
formations at the microscopic level are due to the thermal
movement of adatoms surrounding the island constantly at-
taching to its edge and coming off from it.

To diagonalize the free energy one rewrites the integrand
in Fourier form,

Ffhrnj;tg = 2plo
m,n

sAm−n + mnBm−ndrnstdrm
* std, s7d

where rk=e0
2prsudexpfikugdu and similarly for Ak and Bk.

The Fourier modes are coupled due to the anisotropy, which
is contained inA andB as we shall see shortly. Heren=0 is
the expansion-contraction mode;n=1, which we called the
dipole mode in the Introduction, is related to the Brownian,
diffusive motion of the island;n=2 is a quadrupolar distor-
tion, i.e., an elongated shape with two maxima and two
minima in perpendicular directions, and so on. The Fourier
components have Hermitian properties sinceAsud andBsud,
the factors associated with the equilibrium island shape, are
real functions; hence,A−i =Ai

* , B−i =Bi
* , andr−i =r i

* .
The free energy of Eq.s7d can readily be cast into matrix

form,

Ffr ;tg = 2plr †sA + MBN dr , s8d

wherer is a vector containing the Fourier components of the
instantaneous island shape,A andB are Hermitian matrices,
fAgm,n=Am−n, fBgm,n=Bm−n, andM =N are diagonal matrices
with the wave numbers along the diagonal.

As in practice there are only a finite number of atoms on
the edge of the island, we discretize the problem. If the num-
ber of atoms on the edge is 2N, there are as many modes
in the system; as we will see in Sec. IV, to analyze the
right number of modes is crucial to the problem. Now,
if r contains the rk Fourier components from −N+1

FIG. 2. sColor onlined Schematic showing variables used to ana-
lyze equilibrium island shape

FIG. 3. sColor onlined Extension of Fig. 2, showing instanta-
neous island shape, for analysis of fluctuations. For a particular
azimuthal direction,u, the deviation from the equilibrium island
shape,r, its derivative with respect tou, ṙ, the unit vector normal to
the instantaneous shape,n, and the corresponding angle,c, are all
time dependent.
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through N, the Fourier transform is discrete andrk
=o j=−N+1

N r j
u expfi k jp /Ng, wherer j

u is the deviation from the
equilibrium shape in theu= jp /N direction.

TheAk and theBk can be obtained similarly, andA andB
are finite cyclic Hermitian matrices, meaning that their diag-
onal elements are the same. They also reflect the symmetry
of the equilibrium shape as, e.g., in our case due to the six-
fold symmetry the principal diagonal is filled withA0, the
sixth to the right withA−6, etc. AsM and N are the same
diagonal matrices, theMBN product keeps the Hermitian
property.

In the isotropic caseswhen the equilibrium shape is cir-
culard, Asud=0 and Bsud=1/2 for all u. After the Fourier
transformation this givesA =0 szero matrixd and B=s1/2d1
sdiagonal matrixd. The anisotropy comes into play when the
equilibrium shape is not circular, so thatAsud and Bsud are
not constants and their higher order Fourier components fill
the soff-ddiagonals. These off-diagonals couple the Fourier
modes.

Due to Hermiticity the above matrix form is diagonaliz-
able,

Ffhhnj;tg = 2plo
n

Lnhnhn
* , s9d

and the eigenvaluesLn of the A +MBN matrix are all real.
As we see belowfin Eq. s10dg these eigenvalues are related
to the strengths of thehn eigenmodes, which at every time
instant are just the transforms of thernstd Fourier modes of
the instantaneous island shape. Again due to Hermiticity,
there is a unitary matrixU which transforms Eq.s8d into Eq.
s9d and gives the linear relationship betweenr and h, r
=Uh, where the vectorh contains thehn as its elements.

This decomposition of the free energy into eigenmodes in
Eq. s9d facilitates the calculation of the Lagrange multiplier
l. In equilibrium, according to the equipartition theorem, the
ensemble average of each mode, representing a degree of
freedom, must have the same Boltzmann energy,

s10d

Ln and can be determined from the equilibrium island shape
and the fluctuating island perimeter, respectively. HereEn
must be a constant inn, the modes, as the temperature and
the chemical potential,l, are fixed macroscopic parameters
of the island. From this equation one can determine the same
l, in principle, from any mode. Thus, either experimentally
observing island fluctuations or using Monte Carlo simula-
tions one can determineEn, which in turn providesl. This l
was the missing parameter to determine absolute line ten-
sions, and plugging it back into Eq.s2d, we get the line
tension in all azimuthal directions.

III. KINETIC MONTE CARLO

The scarcity of extensive experimental data leads us to
use Monte Carlo methods to simulate the behavior of the
system. However, use of numerical rather than experimental
data for testing of formal ideas has many advantages in any

case. Most obviously, in numerical experiments one can ob-
tain far greater control, with no worries about anomalous
behavior due to unsuspected stray contaminants. Typically
one can generate much more data. In the present experiment,
we do not need to worry about the scan rate of the probe; our
lattice configurations are instantaneous snapshots. Another
advantage of computer simulations will also become clear in
the next section: it allows us to analyze correlation times.

Since our original motivation was to simulate the relax-
ation of a Pb crystallite with as111d facet, we place a nanos-
cale island on a triangular lattice. We surround it by a non-
permeable circular container of radiusRc to let the system
reach its thermodynamic equilibrium, in order to measure its
equilibrium fluctuations.23,24 Thus, this geometry corre-
sponds to an island placed on top of a facet of a crystallite
swith an infinite Ehrlich-Schwoebel barrierd. Note that by
adjusting the permeability one can tune the overall decay rate
of the island, which in this paper we fix at zero.

Since the temperature of the systems of interest is low
compared to the energy barriers of adatomic hopping, we
have chosen to use the Bortz-Kalos-LebovitzsBKL d
continuous-time MC algorithm25 as it is best suited to low
temperature systems and as its rejection-free method allows
us to greatly improve the efficiency of the simulations com-
pared to traditional Metropolis algorithms. The typical tem-
peratures are aroundTc/4 or less for the two-dimensional
lattice gas of adatoms on the surface. Using then-fold way
method to keep track of the available MC moves, we could
improve the efficiency even further. Because of the small
number of energy barriers, then-fold way approachsfive-
foldd is superior to the binary tree implementation of the
BKL algorithm26 in this case.

Since we are not interested in all the details of this surface
in the simulations, but only try to capture the main mecha-
nisms, we do not take into account theABC stacking struc-
ture of the fcc lattice of Pbs111d. Hence, the top layer con-
stitutes a triangular lattice with perfect sixfold symmetry.
Furthermore, we assume that adatoms can only hop to
nearest-neighbor sites, and that the energy barrier the adatom
must overcome is determined by the occupation of the eight
sites surrounding, as nearest neighbors, the two sites in-
volved in the hopping process.

The energy barriers for hopping rates are mainly based on
the semiempirical embedded atom methodsSEAMd27 using
Ercolessi’s glue potentials28 for the Pbs111d surface to derive
the bond-counting energy barriers26 actually used in the
simulationsssee Table Id. We use variants of simple bond
counting. In what we term the break-three scheme, we count
only bonds that have been broken with the three sites “be-
hind” the move. If we also include bond breaking with the
two sites to the left and the right of the movesdenoted side
sitesd, we have a break-five scheme. The three sites in front
of the move do not affect the energy barrier in our simula-
tions. The break-three and break-five schemes both satisfy
detailed balance in a straightforward fashion. They both
should give the same results for static parameters, since they
are both nearest-neighbor schemes. Comparison runs using
this feature provided one testsamong manyd of our program.
However, the kinetics obviously differ because the energy
barriers tend to be higher for the break-five scheme, slowing
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the kinetics significantly. Since the energy barriers in the
break-three case are closer to the calculated barriers, we
choose to use this scheme in our simulations.

In Table I we list a few energy barriers calculated by the
above-mentioned SEAM and the corresponding break-three-
scheme barriers. Surface diffusion is when an adatom has no
other adatoms in the surrounding eight sites in SEAM calcu-
lations; in the break-three scheme this barrier also applies to
all cases in which any of the side sites or the sites in front are
occupied. This is the reason why the attachment barrier is the
same as the surface diffusion barrier. Edge diffusion is the
case in which a side site is occupied, as is its nearest neigh-
bor “behind.” The energy barrier associated with this process
is 237 meV whereas if there is a nearest in the front as well
so that the adatom rolls along three others on one side the
third in the front seems to assist the hop a great dealsat least
according to the SEAM datad as the barrier is 108 meV. The
break-three scheme has the same barrier for these two pro-
cesses and also for any other in which only one bond is
broken. The break-two-bonds barrier corresponds to a hop
with two occupied sites in the back, break-three bonds is
when all three sites are occupied in the back. The very high
“out” energy barrier assures that adatoms cannot escape the
container; i.e., the permeability is zero.

The basic parameters of the surface investigated and the
KMC simulations are the following: The nearest-neighbor
spacinga1 on the Pbs111d surface is 3.50 Å. The typical
island diameter 2R is 40a1 to 80a1, while the container di-
ameterRc ranges from 12.5% to 300% larger than the island.
We examined temperatures 250 K, 300 K, 350 K, and 400 K.
In each MC snapshot of the island, we measure the island
radius from the instantaneous center of mass inN “equian-
gular” directions whereN=360 if not indicated otherwise.

We start the simulations from a nearly circular shaped
configuration and let it relax to equilibrium, starting the MC
measurement of the fluctuation and shape after the longest
wavelength mode has passed its correlation time. Especially
at the lower temperatures, the typical equilibration times are

very long, consistent with other reports.29,30 Ensemble aver-
ages are taken from 100 to 3000 different runs starting from
the same initial configuration, but with different random-
number seeds. In each run, after equilibration, we get statis-
tically independent fluctuations at time intervals again deter-
mined by the relaxation time of the longest wavelength
mode. We take such independent “snapshots” of the islands 5
to 200 times in each run, so that we typically have 10 000 to
70 000 islands over which to average.

IV. CHEMICAL POTENTIAL, LINE TENSION, LINE
STIFFNESS

As described in detail in Sec. II, the energetic parameters
of the island edge are determined by the island shape and its
edge fluctuation. The Wulff construction provides the rela-
tionship between the relative line tension in the azimuthal
directions on the crystal surface and the equilibrium island
shape, and the information from the fluctuationskuhnu2l of
each mode in Eq.s10d gives the chemical potentiall that
makes the Wulff construction absolute in Eq.s2d.

From our KMC simulations we determineEn of Eq. s10d;
it is depicted in Fig. 4 forT=250 K andR=20a1 island
radius. Since the perimeter is about 120a1, we use 120 points
to describe the circumference out of the 360 available.

We calculateEn both using the transformation to the
eigenmodes taking into account the anisotropy, and also pre-
tending the islands were isotropic. In this latter case the
hn=rn are simply the Fourier modes, andLn=s1/2dn2.

The Fourier modes and the eigenmodes are nearly indis-
tinguishablescf. Fig. 4d except for long wavelengthsssmall
wave numbernd. The “fluctuations” in the Fourier modes for
longer wavelengths are the only signature of the anisotropy.
This effect is smoothed out by transforming to the eigen-
modes.sOnly the longestfn=2g wavelength mode seems to
stand out after the transformation. We are still puzzled that
the longest wavelength is so special and does not couple to
the shorter wavelength modes. We give a more detailed ac-
count of the analysis of the coupling elsewhere.40d The

TABLE I. Tabulation of some of the energy barriers used in
KMC simulations of Pbs111d. The energies in columns 2 and 3 were
computed by Haftel using SEAMsRef. 27d with glue potentials
sRef. 28d. In the last column are the energies used in the simula-
tions. fThe edge-diffusion energy barrier in the break-three scheme
is closer to the corner rounding barrier of SEAM than to the actual
straight-edge diffusion barrier of SEAMssee textd; the latter has a
much lower barrier: 108 meV; unfortunately, the bond-counting
method does not distinguish between these two.g

Process
Energy
smeVd

Energy
sKd

Break-three
energysKd

Surface diffusion 70 812 812

Edge diffusion 237 2749 2319

Break 1 bond 192 2227 2319

Break 2 bonds 359 4164 3826

Break 3 bonds 467 5417 5333

Attachment 812

Out 70000

FIG. 4. sColor onlined Eigenmodessopen squaresd and Fourier
modesssolid circlesd at T=250 K, R=20a1, Rc=40a1. En is mea-
sured in atomic spacing units.
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chemical potential can be determined from either the Fourier
modes or the eigenmodes using their plateau regionssbe-
tween n=4 and n=40d; however, since only the longest-
wavelength modessif anyd are measurable due to the poor
temporal resolution of present-day experimental apparatus
ssee the results for correlation times in the next sectiond, the
transformed modes serve better for determining chemical po-
tentials. FindingEn thus from these intermediate wave num-
bers, givesEn=0.275a1

2 and through Eq.s10d and Eq.s2d
b=34.1 meV/Å for the line tension for the high-symmetry
direction. This value reasonably approximates the experi-
mentally obtained ones for Pbs111d at T=393 K, b1A
=27.9 meV/Å andb1B=26.5 meV/Å for A- and B-type
steps, respectively, considering the crude approximation of
bond-counting mentioned earlier.31 In our simulations the
two directions corresponding to the two different types of
steps are intrinsically equivalent because we assume sixfold
symmetry as the available values for energy barriers that we
use in our KMC do not distinguish between theA and B
directions, as mentioned in Sec. III.

At higher temperatures the Fourier modes deviate less
from the eigenmodes for longer wavelengths, as expected
since the equilibrium shape is more nearly circular and less
affected by the underlying anisotropy.

In earlier work13,22 in which experimental data were used
as an input of similar calculations, there is a sum over the
modes, but because those modes are buried in a sum in the
generalized equipartition theorem, one cannot see whether
they are the modes which satisfy, at least to a certain extent,
the equipartition theorem. In those experimental data the cor-
relation times of the modes are not known and the effect of
the finite temporal resolution of the experiment may also
interfere with the fluctuations which should in principle be
determined from “snapshots,” i.e., fast scanned images—fast
at least compared to the correlation times of the modes used
in such calculations. We shall elaborate on this in the next
section.

For the same temperature we do the same measurement as
above, but monitoredN=180 points on the perimeter instead
of N=360. The Fourier modes are depicted in Fig. 5. There
are approximately 120 atoms on the perimeter, but since we
cannot divide the 180 perimeter points into 120 equiangular
ones to do a Fourier transform, we useN=90 or N=180
perimeter points as an approximation and observe how the
plateau changes from what we saw in Fig. 4. The comparison
of these two plots from MC simulations might help analyze
experimental data with limited spatial resolution as well, as it
shows how the Fourier modes behave in case of undersam-
pling sN=90d and oversamplingsN=180d. The under-
sampled modes give higher values forEn than expected for
modesunu.25, as if those modes took over the energy of the
modes that are missing from spectrumsnamely 45, unu
ø90d. In oversampling there is not enough energy for all
modes in the sampling, so they go below the expected value
of En. This is the simple reason for the peculiar shape of the
two curves in Fig. 5. The value ofEn can still be determined
quite accurately by using the value at which the two curves
start to separate atunu.10, providing basically the same re-
sult for En as before.

From the equilibrium island shape using the Wulff con-
struction, we have determined the relative line tensions and

stiffnesses in the azimuthal directions on thes111d surface
ssee Fig. 6d. The equilibrium shape is more and more “fac-
eted” in the six main directions as we can expect, the stiff-
ness is about 3 times bigger in the direction of the “facet”
than in the direction of the corner forT=350 K, whereas this
factor is about 20 forT=250 K, so that it spikes out much
more, but still has only a smaller effect on the spectrum as
shown before.

V. AUTOCORRELATIONS, CORRELATION TIMES,
KINETICS

Inspecting the autocorrelation functions in Fourier space,
we find that the longest wavelengths have surprisingly long

FIG. 5. Fourier modes forN=90 pointssopen squaresd and N
=180 pointsssolid circlesd on the perimeter atT=250 K, andR
=20a1, Rc=40a1. En is measured in atomic spacing units.

FIG. 6. sColor onlined Polar plot of the equilibrium island shape
Rsud souter dotsd, the relative line tensionbscd sinner dotsd and the

relative line stiffnessb̄scd sthe innermost curved in arbitrary units
at T=350 K, R=20a1, Rc=40a1. sNote the difference betweenu
andc.d
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correlation timessin CPU timed. Thus, for our fairly largesat
least for the computerd systems, it is hard to reach full equili-
bration needed to make the desired MC measurements. Most
surprising is that the relaxation time of the longest-
wavelength modes is 10 to 100 times longer than the relax-
ation time of the islands to their equilibrium shape. Hence,
estimating the thermalization time from just the shape relax-
ation may be very misleading, possibly giving problematic
results not characteristic of equilibrium. Such behavior may
include illusory strong-mode coupling, or stronger fluctua-
tions in autocorrelation functions even in case of good sta-
tistics.

The temporal correlations can be characterized by

Gstd = kfrst0d − rst0 + tdg2l ~ t2b. s11d

Since we measure correlations in equilibrium,t0 must be
greater than the thermalization time of the system. Hererstd
is the fluctuation from the equilibrium shape, as before, and
depends on the angle,u, and time. The growth exponent16 b
characterizes the temporal behavior of the fluctuations. The
average is taken over angles and an ensemble as well.

The typical behavior of the correlation function is that the
exponentb remains at 1 for very short times,29 typical of the
ballistic behavior of diffusion at very short times, and then
crosses over to a value which characterizes the rate-limiting
kinetics driving the fluctuations of the island edge; eventu-
ally it crosses over to zero as the correlation function satu-
rates due to the finite size of the system.

Pure rate-limiting kinetics have been thoroughly
investigated.11,14,32–34In these well-defined cases,b can take
the values 1/4 for attachment-detachment kinetics, 1/6 for
surface diffusion, and 1/8 for step-edge diffusion, where the
last mechanism gives a very “slow” dynamics. There can be
crossover regimes between these pure cases, leading to val-
ues ofb between the quoted values, and certain geometries
can also effect the value ofb. One should also see crossovers
as length scales vary.11,14,34

To investigate the length-scale dependence of the correla-
tion function, it is more appropriate to use the correlation
function in Fourier space,

Gnstd = kurnst0d − rnst0 + tdu2l s12d

=Cn„1 − exps− utu/tnd…, s13d

where theCn are two times the amplitudes of the fluctuations
of the modes analyzed in the preceding section, and thetn
are their correlation times. The wave-number dependence of
tn is known to have an intimate relationship with the expo-
nent inGstd, namely

tn , n−z, s14d

wherez is the dynamic exponent, and the scaling relationship
betweenz and b here isz=s1/2d /b.16 The correlation time
increases with increasing wavelength, with the scaling expo-
nent z. For larger exponentz, the correlation times grow
more rapidly, so that for longer wavelengths the correlations
and the dynamics in general can slow down very “quickly.”

Here we pay particular attention to the longest wavelength
and its corresponding correlation timet2, which makes the

largest contribution to the fluctuations and relaxes the most
slowly. From the wavelength dependence of the correlation
time, we also determine the dynamic exponent and the rate
limiting kinetics.

In the KMC simulations forT=400 K andR=20a1, the
longest-wavelength mode,n=2, is 120a1 or 420 Å long.
From Fig. 7, its relaxation time ist2=5.5Ã107 MCS sMonte
Carlo stepsd. To give a crude estimate fort2 in real time, we
consider the hopping rate

n = nD expf− bEbg s15d

to be the product of the attempt frequency, which we identify
with the Debye frequency of Pb:nD=1.8331012 Hz,35 and
the Boltzmann factor of the energy barrier of a particular
hop. Hence, a MCS in this Monte Carlo simulation is equiva-
lent to a 1/nD time increment in real time; thus, the relax-
ation time in this particular case ist2=0.030 ms.

As expected, these correlation times change dramatically
with temperature as the underlying physical phenomena are
activated. ForR=20a1 at T=350 K, t2=2.03108 MCS or
0.11 ms, which means four times longer relaxation compared
to 400 K, while for 300 Kt2=7.13108 MCS or 0.39 ms,
which represents slowing by another factor of 4.

We note here that we did two sets of KMC simulations.
The simulations described in this paper satisfy detailed bal-
ance and sample the canonical distribution, while in the other
set we choose the energy barriers to be those calculated by
SEAM, which explicitly violate detailed balance and energy
conservation. Interestingly, the latter simulations tend to give
closer agreement with experimentally measured correlation
time data. We do a comparison of the results of these two
sets of simulations40 and upcoming experimental data41 else-
where.

The scaling of the relaxation time withswavedlength can
be seen in Fig. 8. In the plotted wave-number range, overall,
tn basically behaves likez=4, suggesting that the mechanism
driving the fluctuations is step-edge diffusion which is in
agreement with previous observations.36,37

Comparison of these length scales and their correspond-
ing relaxation times with existing experimental observations
might give interesting physical insight. For example, in the

FIG. 7. sColor onlined Correlation functionGnstd of the Fourier
modes forn=2,3,…,10 from top to bottom.T=400 K, R=20a1,
Rc=40a1.

FLUCTUATIONS, LINE TENSIONS, AND… PHYSICAL REVIEW B 71, 035422s2005d

035422-7



experiment by Thürmeret al.,5 a small Pb crystallite, whose
top facet has a perimeter slightly larger than 1200 nm, re-
laxes at 383 K to its equilibriumsor at least metastabled
shape in 1–2 days after being quenched from a higher tem-
perature. Since the crystallite is 30 times larger than the
longest wavelengths in our KMC simulations, the relaxation
time trelax of the longest wavelength mode of the perimeter
of the topmost island on the crystallite is 8.13105 times
longer if the rate-limiting kinetics is step-edge diffusion
sthough, of course, attachment-detachment and terrace diffu-
sion could be present but not rate limitingd. Specifically, the
value of trelax is 24.3 s based on our KMC data atT
=400 K. From these data it seems that the island fluctuation
is much faster than the decay of the three-dimensionals3Dd
structure; thus there is no direct relationship between the
fluctuation and the decay.

The above arguments lead to a general view of the evo-
lution of surface structures. For Pb in the temperature range
350 K–400 K, one observes the slow development and re-
laxation of fluctuations at theµm scale in experiments. As-
suming that the rate-limiting kinetics retain the samez=4
range for even longer wavelengths, structures of 10µm
size—step edges, islands, etc.—take days to years to change
due to the large dynamic exponent,z, so in effect they look
frozen under laboratory conditions. This is the reason why
these monolayer structures do not show any large-scale
changes while on a shorter scale they can be very active. The
structural changes in the 3D crystallites are even slower, they
are even more stable.

Lowering the temperature makes the length scales—at
which evolution or relaxation can be observed—
exponentially shorter, which is readily understandable if one
looks at the converse of the above arguments. The length
scales with time likel ,t−1/4 sfor z=4d whereast scales like
1/n in Eq. s15d. Thus, the length scales with temperature like
l ,expfEb/4kBTg. This basically means that given the tem-
perature and the time scale of observation, one can calculate
an effective length scale,Leff on which the structures on a
surface are in equilibrium with their surroundings and ac-
tively changing on the time scale of, e.g., STM measure-

ments. HavingLeff and the energy barrierEb at a certain
temperature, one can also make at least rough estimates of
the effective lengths at other temperatures using this scaling
argument. This picture is certainly a result of simplification,
since there is a whole set of energy barriers in such a com-
plex physical system as a crystal surface, and the various
atomistic mechanisms governed by different barriers freeze
out or get activated at different temperatures, depending on
their corresponding energy barriers.38

Comparison or extrapolation to other materials is possible
if the energy-barrier set is similar to that of Pbs111d. Then
the Debye frequency sets the time scale while the energy
barriers set the temperature scale, as one can readily deduce
it from Eq. s15d. On the other hand, if the energy-barrier set
is completely different, as for example for Si,39 it gives rise
to a different rate-limiting mechanism namely attachment-
detachment for a wide range of temperatures, and such ex-
trapolation is not possible, but a whole set of simulations
should be done for the group of materials with this type of
barrier.

VI. CONCLUSIONS

In this paper we deduce energetic and kinetic parameters
of a particular metal surface below its roughening tempera-
ture. We use kinetic Monte Carlo simulations to mimic the
fluctuations of large nanoscale islands on these smooth sur-
faces in order to determine equilibrium island shapes, aniso-
tropic line tensions in the azimuthal directions of the surface,
and the correlation times of the Fourier modes of the fluc-
tuations.

We derive an analytic expression for the chemical poten-
tial of the island edge from the equilibrium island shape and
the associated capillary wave fluctuations around it. This
chemical potential sets the scale for the anisotropic line ten-
sion sthe azimuthal dependence ofd which is usually known
only up to a multiplicative constant. To account for the an-
isotropy of the line tension, this procedure contains a trans-
formation from the Fourier modes of the island edge fluctua-
tions to the true eigenmodes. However, detailed analysis of
the Fourier and eigenmodes of the fluctuations reveals that
the difference in their spectrumsFig. 4d is unexpectedly
small.

The obtained line tensions—one of the most important
physical parameters of steps on surfaces—are in the correct
range compared to known experimental results, even in this
simplistic model, with its rather small set of hopping-energy
barriers in the KMC simulation.

We have analyzed the effect of spatial sampling, which
shows that the long wavelength modes are hardly affected by
the undersamplingsoversamplingd—too low stoo highd reso-
lution of imaging, which means that there are fewersmored
sample points on the step edge in the image than actual at-
oms in the experiment—whereas moderately short and short
modes change significantly.

The analyses of the correlation times of the Fourier modes
show that nanoscale objects fluctuate on the ms toµs time
range at moderately high temperaturess400 Kd on Pb sur-
faces. Since the atomic processes are activated, this time
scale changes dramatically with temperature.

FIG. 8. sColor onlined Correlation timetn vs wave numbern on
a log-log scale. The MC datasblack circlesd showz=4 which cor-
responds to step-edge diffusion. The dashed lines representz=4, 3,
and 2 sfrom top to bottomd dynamic exponents.T=400 K, R
=20a1, Rc=40a1.
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In closing, we comment on the equilibration time of step
structures in Monte Carlo simulations. The full equilibration
of these structures is signalled by the correlation time of the
longest wavelength mode, which can be very largesin CPU
timed for the system sizes and temperatures studied in this
paper. To do correct MC measurements in equilibrium, one
must pass this time; otherwise, results for “equilibrium quan-
tities” can be very misleading, as is well known from non-
equilibrium statistical mechanics. If one does not look at
correlation times of Fourier modes, very careful analysis is
required to avoid such equilibration problems.29 Recently,
several papers have appeared concerning correlation func-
tions, persistence, etc., of steps much longer than ours,42 and
sometimes even several of themsin studies of the interaction
between themd. They might well suffer from these problems
since this equilibration time scales with system size as the
fourth power, meaning that a system that is two times as big
needs an order of magnitude longer CPU time to be equili-
brated.

We also point out that the measurement of these fluctua-
tions experimentally might be difficult because of the above-
mentioned time scale of the fluctuations. One must either use
techniques with which snapshots of the surface can be
taken,15 or, in direct visualization methodsslike STM mea-
surementsd, the scan rate of the equipment must be faster
than the fluctuations of a given wavelength of interest. Oth-
erwise one measures the two ends of a wavelength at such a
time separation that they are uncorrelated, leading to diffi-

culties of interpretation. The “speed” of the fluctuations can
be tuned by changing the temperature, but one also must take
into account that lowering the temperature decreases the size
of the fluctuations, rendering the measurement harder.

Finally, the extrapolation of our results for nano-objects to
mesoscale features makes possible comparisons of correla-
tion times of modes of certain wavelengths, as well as of
decay or of relaxation of larger structures to their equilibrium
forms. This comparison reveals that the relaxation of 3D
structures of the same lengths are slower than that of the
simple step or monatomic high islands, due to additional
mechanisms and phenomena like a possible Ehrlich-
Schwoebel barrier, very low detachment rate and perhaps
elasticity that affect the 3D structure.
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