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Transversely isotropic elastic properties of multiwalled carbon nanotubes
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Five independent effective elastic moduli of a transversely isotropic multiwalled carbon naGebeT )
are studied by analyzing its deformations under four loading conditions, i.e., axial tension, torsional moment,
in-plane biaxial tension, and in-plane tension-compression stress. Two distributions of the tension loading on
the outermost tube and on all tubes are considered, which correspond to the tensile and compressive Young’s
moduli. The general relations between the interwall stresses and strains are linearized due to the small strain
condition, where the interwall stresses correspond to the variation of the interwall van der Waals forces. Three
interwall elastic constants are used to characterize the linear relations associated with three basic interwall
deformation modes, i.e., normal deformation in radial direction and two shear deformations in axial and
circumferential directions. By taking each tube as a single-walled carbon nanotube, the analytical expressions
for the interwall shear stress under the tensile loading on the outermost tube and five elastic moduli of a
double-walled carbon nanotube are first obtained. Then, a replacement method is proposed to derive the
corresponding expressions for the cases of more walls than two. These analytical expressions are plotted for the
case of MWNT’s composed of armchair tubes, where the interwall elastic constants are approximated as the
corresponding ones of the graphite. The effect of the wall number, diameter, chirality, and length of the MWNT
on the shear stress and five elastic moduli are displayed and discussed.
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[. INTRODUCTION perimental determination of other elastic moduli, such as
Poisson'’s ratio and bulk and shear moduli, a rather challeng-
Experiments and theoretical predictions have shown thang task. Also, it is difficult to experimentally investigate the
carbon nanotubeCNT'’s) can possess exceptional mechani-€ffect of stru.ctural parameters of MWNT'’s, such as chirality
cal propertied=® This has motivated extensive research foron the elastic properties. For SWNT's, the closed-form ex-
the potential applications of CNT’s as the reinforcements ofPréssions for the five independent elastic moduli of SWNT'’s

a new generation of composites, including the theoreticalVe'® obtained: However, only a few numerical simulations

evaluations of the elastic properties of CNT's, the improve-Were reported for some selected elastic moduli of MWNT’s

H 5,36 i
ment of the wetting and adhesion between CNT’s and mag(ue to the increased complexity*>*°For example, the axial

trix, the uniform dispersion of CNT’s within the matrix and oung’s and torsional shear moduli and major Poisson’s ratio

. : : were numerically obtained as about 0.97 TPa, 0.45 TPa, and
sgsc;r:j. flér'Sthneogggt-f;hiﬁoﬂapyofthggr?é'.cagﬁggdsfmvgﬁriaprfgp-28 using the empirical force-constant model, and it was
P . : ull Inge-w h concluded that the wall numbers and interwall van der Waals
tubes(SWNT’s), such as the molecular dynamics and mo-

lecul hanics based irical et th forces have a little or no significant effects on the elastic
ecular mechanics based on empirical potentidis, the — ,4q)j14 The axial Young's and torsional shear moduli were

tight-binding-based _approach%zs?s the first principles of  gimylated using the molecular structural mechanics method
quantum mechanic¥7?* the continuum mechanics ang numerically obtained as 1.05 and 0.4 #PAlso, it was
models}®3'and the structure mechanics mo&ef*in con-  gemonstrated that the inner tubes only have a little effect on
trast to the achievements for SWNT's, there were only a fewhe moduli if the loadings are not directly exerted on inner
numerical calculations for the selected elastic moduli of multubes. It is not clear how long MWNT’s were used in these
tiwalled carbon nanotube@MWNT'’s).143536 Therefore, a numerical simulations. In fact, a complete shear stress trans-
complete set of five independent elastic moduli of MWNT’s fer among tubes through van der Waals forces requires a
are the focus in the study. certain length, while the capillary force or retract force is
The axial Young’s modulus of MWNT'’s was experimen- dominant for short tube¥. So, if the MWNT length is not
tally measured. The reported values are 0.40—4.15 TPa witbnough long, the loadings exerted on the outermost tube can-
an average of 1.8 TP@ef. 1), 0.69-1.87 TPa with an aver- not be effectively transferred onto the inner tubes.
age of 1.28 TP4&Ref. 2, 1 TPa(Ref. 3, 1.7-2.4 TP4Ref. Motivated by the achievement of the closed-form expres-
4), 0.22-0.68 TP4Ref. 6, and 270-950 GP&Ref. 9. The sions of the five independent effective elastic moduli of
various uncertainties involved in the experimental tests maWNT’s?! the authors attempt to find the corresponding re-
be responsible for the variations of the measured axiasults for MWNT's in the study. Compared with the SWNT'’s,
Young's modulus of MWNT's. For example, the contribu- the situation of MWNT's further involves the analysis for the
tions of inner tubes were not well distinguished in these exvan der Waals forces that transfer the stresses among tubes,
perimental measurements. In principle, the effective axiathe different distributions of the tensile loading at the ends of
Young’s modulus of MWNT’s must be larger than that of all tubes, and the dependence of the longitudinal Young’s and
SWNT’s. Furthermore, the technical difficulty makes the ex-shear moduli on the MWNT length. These troublesome prob-
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lems have not been well analyzed in the literature. Som&he former two only work around the ends of MWNT's,

assumptions without a significant loss of accuracy are prowhile the latter one distributes along the tubes and depends
posed in order to get the analytical expressions of the fiven the tube length. It can be imagined that the interaction
independent elastic moduli of MWNT’s. Based on them, theforce between caps is very small due to the small contact
effects of the wall number, diameter, chirality, length of area at caps, and it will disappear due to a small elongation

MWNT’s, and the tension loading distributions are clearly difference between the outer and inner tubes at the caps.
displayed and discussed. Also, the capillary force is small, which can reach a constant

value, say about 1 nN for the pair 65,5 (10,10 tubes®’
So, in the initial stage of loading-displacement curve, say the
tensile loading varying from 0 to 2 nN, the two forces will
When a MWNT withN walls is used as an entity, such as significantly increase the slope of the loading-displacement
the reinforcement of composites, the effective elastic propereurve. But after the initial stage, two forces will have no
ties of the MWNT need to be obtained first. Due to its struc-effect on the loading-displacement curve because they do not
tural features, its effective elastic properties are transverselycrease further. The experiment for the simple tension of
isotropic. Therefore, five independent elastic moduli areMWNT’s showed that before the outermost tube breaks, the
needed to describe its transversely isotropic behavior contensile loading can reach several hundreds of nN and the
pletely. loading-displacement curve approximately remains linear in
In this study, five independent effective elastic modulitrends? So, when the axial Young’s modulus is used to char-
such as the longitudinal Young’s modulus, major Poisson’sicterize the average slope of the loading-displacement curve
ratio, longitudinal shear modulus and plane-strain bulk andn a wide range, the small initial stage can be neglected for
in-plane shear moduli, respectively, denotedEas 7,5, G,  the simplicity of theoretical analysis, i.e., MWNT’s are mod-
K,s, andG,; are taken by assumintyas the longitudinal or eled as concentric cylindrical shells without caps and the
axial direction along the tube. They are defined by visualizinterlayer shear stress is only considered for the loading
ing the MWNT as a solid cylinder with the same radius. transfer from outer to inner tubes.
Because an individual consideration for the interaction be- When the axial loading is compressive, the caps of outer
tween the MWNT and matrix of composites is necessary, thend inner tubes always join together, resulting in the same
radius is determined from the tube center to the atoms of thexial displacements for all tubes. So, when the caps are ne-
outermost tube. glected, a uniform end displacement condition for all tubes
The four loading conditions are chosen to determine theshould be assumed, which approximately corresponds to a
five effective elastic moduli. They are the axial loadidor  uniform distribution of axial loading on all the ends of tubes.
Ei1 and vy, torsional momenfT for Gy,, in-plane biaxial Each tube within a MWNT is treated as a SWNT, which is
tension with magnitude for K, and tension-compression also transversely isotropic. For SWNT’s, three different defi-
stress(pure shear stresswith magnitudeog for G,; as  nitions for Young’s modulus and torsionédr longitudina)
shown in Figs. (a)-1(d). shear modulus have been named for various purposes, which
It is noticed that for the two cases of the axial loading,are denoted a&3, and Gj,, E;; and G;,, andE;; and Gy».
i.e., the axial tensile and compressive loading, the contribuThe surface Young's and longitudinal shear modifi, and
tions of the inner tubes to the elongation of MWNT’s are G3, do not involve the tube thickne$$?! The conventional
different, resulting in different Young’s moduli. Correspond- moduli E;; andG;, are based on a tube thickndgs#&nd the
ingly, the terms tensile and compressive Young's moduli areeffective moduliE;; andG,, are based on the cross-sectional
named. area of tubé&! The elastic moduli based on the three defini-
When the axial loading is tensile, the loading transferredions are related to each other through=Ej3;/t and G,
onto inner tubes comes from three contributions: the interac=Gj,/t, andEy;=E$,/(R/2) andG,,=Gj,/ (R/2), whereR is
tion between caps, capillary force and interlayer shear stresthe tube radius.

Il. ELASTIC MODULI OF A MWNT
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The purpose to define the area-based moduli is for the Snla+ds) !
convenience of considering the stiffening effect of CNT’s on T Srer(x+dy) !
composites. The other three moduli, i.e., the major Poisson’s O ha(1+E,) T !
ratio, plane-strain bulk modulus, and in-plane shear modulus, —t 1 [ O !
denoted ag,,, Kys, andG,; for SWNT's do not involve the st | L !
tube thickness because they do not involve how to define the ) | AP "“(;)ﬂ RS o O !
average value of external loading over the cross-sectional —’T gl«— " '"rmﬂ,o(xh Tmr14%) !
area of the tube. —1 ¢ J— md e I

The closed-form expressions for the five elastic moduli of P l\—ql = !
the mth SWNT, i.e.,ES; 1 ¥12m Giom Koam @Nd G,y are ! Pun !
available?! where the subscripin is added to denote the s l !
properties associated with theth tube counted from the Ju1®) I
outermost one.

There are three basic interwall deformation modes, i.e., (a)

two shear deformations in axial and circumferential direc-
tions and one normal deformation in radial direction. A linear
elastic interwall stress-strain relation corresponding to each N A o4 P
deformation mode can be used due to small strain condition.
For the four loading conditions, i.e., axial loading, tor-
sional moment, in-plane biaxial tension, and tension-
compression stress, the four corresponding interwall defor-
mation modes of a MWNT are the combination of the axial -
shear and radial normal strains, the circumferential shear <« o> -«
strain, the radial normal strain, and the combination of the l@lhm(lwm) l l
circumferential shear and radial normal strains, respectively.
The global deformations of the MWNT under each loading
can be obtained using elasticity theory. Then, the correspond-
ing elastic moduli can be extracted based on their traditional (b)
definitions by visualizing the MWNT as a solid cylinder or a
hollow one.

Jork%)  fom+1(x) Jom+1(X) fon(x)

FIG. 2. Schematic diagrams for the stresses and deformations of
a small segment of two tubes with MWNT’s under tension loading

condition, (a) for the axial analysis antb) for the radial analysis.
A. Longitudinal Young’s modulus and major Poisson’s ratio

The axial tension loading shown in Fig(al is used to dfn(x)
analyze the longitudinal Young's modulus and major Pois- Tdx Tmo(X) = Tmi(X) (1)
son’s ratio of a\-walled MWNT with length of 2. Figure 2
is a schematic diagram to show the analysis of deformationand
and stresses in the axial direction for a small segment
PrQumPmiiQmer from x to x+dx of the mth and (m+1)th Omi(X) R = 01, 0(X) R (2)

tubes, wherem is counted from the outermost tube. The rq shown in Fig. P), the force balances of the half ring of
stressesin(X) and 7m¢(X), and op,(X) and ome(x) denote 4 ter and inner tubes, and the two half rings of tubes as an

the shear and normal stresses acting on the inner and outgkiity in the vertical direction of the figure, can lead to
sides of themth tube due to the variation of the interwall van

der Waals forces. The symbdfs, (%), ande(x) denote fom(X) = Rlomo(X) — omi(X)], (3
the mth interwall distance, theth interwall shear strain, and
normal strain, respectively,(x) and f,,(x) are the axial T (OR = T o R s (4)

and circumferential forces per unit length within timéh tube

at the locationxe[0,L], whereL is the half length of the The interwall stress variation from one side to the other of

MWNT. the interwall region expressed by E@8) and(4) shows that
Let upn(X) andvy(X), andey; n(X) andey, (X) be the axial — the interwall stresses are inversely proportional to the tube

and radial displacements and strains of ithith tube, andR,, ~ radius. It is noted that a similar equation to E®) was

denote the radius of theth tube. The controlling equations directly assumed without rigorous protf.

of the stresses and deformations of the system are given as
follows. 2. The stress-strain relations

Taking themth tube as a SWNT and using its surface
longitudinal Young's modulus, plane-strain bulk modulus,

As shown in Fig. 2a), the force balances of the outer and and major Poisson’s ratio, i.eE3; , Kogm and vio 2! the
inner tubes, i.e P,Qm andP.1Qm:1, and the two tubes, i.e., stress-strain relations for the tube shell can be derived as
PrQmQm+1Pm+1 @S an entity in the axial direction, can lead to follows:

1. The force balance equations
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1 5. Solving the controlling equations of the system
X) = —[f(¥) - fom()1, 5 . e .
o1 Eilm[ mX) = P12l o)} ® As the small-strain condition is of concern for the elastic
properties, the nonlinear interwall stress-strain relatigfhs
1 and(8) can be linearized by neglecting the higher orders of
£20m(X) = =[N g m(X) = viomfm(¥) ], (6)  terms in Taylor’s expansion of the functiorB,(e,) and
11m V(v as follows:
wherex=12, +E5; ./ (2RKazm)- _
The interwall normal and shear stresses caused by the Im(X) = Emem(X), (16)
variation of the interwall van der Waals forces can be gener- _
ally assumed to be a function of the interwall normal and Tim(X) = GmYm(X), (17)
shear strains as follows: where the constari,,, andG,, are referred to as the interwall
o (%) = By (£(X), @) Young's and shear moduli in the radial and axial directions,

which are dependent on the curvature of tubes and the com-
mensuration between the tubes. Especially, the commensura-

Tn(X) = Wi Ym()). ®) tion between tubes is more important for the magnitude of
whereo,,(X) and 7.,(X) denote the average normal and shearthe two constanté24*
stresses within the interwall region with The axial and radial stresses and deformations are coupled
due to the coupled stress-strain relati¢fs and (6). How-
_ 2Rpomi(X) ever, the circumferential stre$s,(x) is much smaller than
Um(x) = . L ' .
Ry + Rt the axial stress,(x), as it is caused by the difference of the

two weak interwall normal stresses. For simplicity,,(x) in

and Eq. (5) is neglected so that the controlling equatidhs-(15)
2R 7mi(X) of the system become uncoupled for the axial and radial
X =5 analyses.
R+ Rt

For the axial analysis, Eq¢$l), (4), (5), (10), (11), and
d,(em) andW¥ () are nonlinear functions of the interwall (17) consist of the controlling equations for the unknown
strains and they should be dependent on the curvatures of thvariablesf (), 7,i(X), Tmo(X), €11m(X), Ym(X), and uy(x).
tubes and the commensuration between tubes. In principlésor the case of a double-walled carbon nanotii/NT), a
they may be derived using the Lennard-Jones métlel. second-order ordinary differential equation for the unknown
variable f;(x) can be derived from these equations through
the substituting and eliminating procedures. Then, based on

The interwall normal and shear straing(x) and y,(x)  the boundary condition§13)—(15), the explicit solution of
and the tube strains; ,,(X) ande,,(X) can be related to the f;(x) can be obtained. And then, other variables can be ob-

3. The geometry equations

displacementsi(x) andv(x) as follows: tained using the solution df(x). For example;;(x) can be
B obtained from Eq(1), while u;(x) is obtained from Eqq11)
em(X) = [vm(X) = vmea(X) i, 9 and(5) with the boundary conditiofil5).
For the radial analysis, Eg$2), (3), (6), (9), (12), and
Yml(X) = [Um(X) = U2 () )y, (100 (16) with the boundary conditionél3) consist of a set of
linear equations for the unknown variabl&g,(x), om;(x),
e11m(X) = dupn(x)/dx, (1) omoe®), e22m(X), en(X), and v,(x), which can be easily
solved. It is noted thaf,(x) in Eq. (6) has been obtained
€22 m(X) = Umn(X)/Ry,. (12)  from the axial analysis.
For the case of DWNT, the analytical expression of the
4. The boundary conditions interwall shear stress;(x), is given as
The free stress condition on the outside _of the outermost § 2fl\/ZRl/(Rl+ R,) ( A e /A )
T = N - N y
tube and the inside of the innermost tube gives 1 1+ (B ROIEL R\ Ar 1 e2hqg
010(X) =0, 7,(x)=0, (18)
oni(0=0, 70 =0. (13~ With
The end loading condition for the distribution on the outmost A= }(1 +&)< 1 R 216G (19
tube is as follows: 2 Ri/\ES;; ReEj;n/ hy
fi(L)=F/(27Ry), fn(L)=0 (14 Using the solution of the end displacemeantL) of the

outer tube and defining the effective longitudinal Young’s
modulus of the DWNT a&;,=(F/7RZ)/(uy(L)/L) by visu-
Un(0) =0, df(X)/dX|y=0=0. (150  alizing it as a solid cylinderE,; is obtained as

The symmetric condition at the middle of the MWNT gives
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E?l, (1 -B)
Ry Ery R+ ED RoB |

(20) 0.06

Wall number :

with
_ 1 R
LVA A+ 1

Using the solution of the radial displacementx) of the
outer tube and defining the effective major Poisson’s ratio
V1, as the average ratio of the radial and axial straingjs . . . .
obtained as 0 10 20 30 40 50

Distance away from the end (nm)
V=41 - 7), (22)

B (21)

Normalized shear stress

0.00

FIG. 3. Variations of the outermost interwall shear stress for

where various wall numbers.

- [11 +(: 2//;11(::’/im]igng/lEl/(SEK/zﬁ'l) . (23 noticed that Eq(26) accounts for the effect of interwall dis-
n vt e tance changes, which is derived using the same controlling
and equations for the case of tensile loading, i.e., HES. (3),
(6), (9), (12), and(16).

1- e A : g A As an example of application, these expressions for
1 (L 1+eA 1 4g2iA MWNT's composed of armchair tubes are plotted with all
§=—f S 3; = dx. (24)  the interwall distances,, being assumed as 0.34 nm. The
L E;, R aVAX VAX L , . 3
0 4 410272 _ 4 _ tubes within such MWNT'’s are axially commensurétés
ElRi\1+e2" 1+g2hA But their commensuration in circumferential direction may

become loose as the tube curvature increase. It can be envi-

! . sioned that when the curvature of tubes approaches zero or
B expfessed in E¢21) becomesl and0, while the param- the tube diameter is sufficiently large, the interaction be-
eter € in Eq. (24) becomed) and 1.

. tween two adjacent armchair tubes will reduce to that in
For the cases of MWNT's, numerical methods are needelgN )

; ve th Cof roll i telv. H raphite. For simplicity, the curvature effect is neglected in
0 solve the Set of controtiing equations accurately. HOWevely, . preliminary study, an#,,, andG,, are assumed to be the

based on the solution of DWNT's, a replacement method ca_ .« 4< those of graphite, i.e., the elastic moclandc
. . . g y 1LE., OE&Lj A4
be approximately used without significant loss of aceuracy graphite in normal and interlayer directions, which have

The replacement procedure is thf"‘t the innermost wo tube’r§een extensively measured. The experimental valuesof
are analyzed based on the solution for DWNT's first, thenfrom different researchers do not vary widely, which is taken

using its elastic moduli to replace those of the inner tube irh _ 4 ;
. ; ; . S c33=0.0365 TP&* But the values ofc,, vary in a large
the solution for DWNT’s and taking the elastic moduli of the ranégz for different experimental tests,4gnd )i/t can ingrease

next tube as those of the outer tube, the elastic moduli of they, i 5 times after neutron irradiation. Here a relatively
innermost three tubes is derived. The procedure can be dorllgrge value ofc,,=0.0039 TPa from Ref. 44 is used for the

until the outermost tube. lotting of the analytical expressions. It is noted that the

i For ;[rt'ﬁ cas(ejz of fc:)rlr;presswe lojdmr?' tlk(ljebbour?daryé:(t)nd values may overestimate the two constants even for the com-
ions at the ends of tubes, i.e., E&4), should be changed to mensurate MWNT'4041

a gniform end displacement condition._Due to the consistent The variations of the outermost interwall shear stress for
am?l d|splgciment? for all tgt;]es, thi.'m?rv‘t’ﬁ” sheatr dtefor.v rious wall numbers are plotted in Fig. 3. It is seen that a
mation and shear stress vanish, resufting In tne constant axig mplete stress transfer needs the MWNT length to be
inner force from Eq(1). Therefore, the controlling equations

d ¢ t of i i hich b i reater than about 30 nm.
reduce 10 a set of linear equations, which can be easi Figure 4a) shows the dependence of the tensile and com-
solved. It is obtained that the effective compressive longitu

dinal i , dul d maior Poi 'S rafi ind pressive longitudinal Young’s moduli on the MWNT length
Ina‘ Young's moaulus and major FoISson's ratio are A€y, arjoyus wall numbers, in which the horizontal lines cor-
pendent of the MWNT length for this case, that is,

respond to the compressive Young’s modulus. It is seen that

_ 2 N when the length of MWNT is greater than 1000 nm, the
Ein=—=> RES,, (25)  tensile Young's modulus is close to its stable value or the

Rii-l ' compressive Young's modulus. Figuréb¥shows the depen-
dence of the stable value of tensile Young’s modulus on the
_ (v12.1Ry = V12 R Ea/(h1 K3 1) (26 wall number and diameter of MWNT’s.
V12= : The variations of the major Poisson’s ratio with MWNT
1 +Ry/Ry + (RKzs 1+ RolKaz JBy/y length for various wall numbers are plotted in Figa)s Fig-

The expressions are consistent with those of the tensile loadire 5b) shows its dependence on the wall number and di-

ing, i.e., Eqs(20) and(22) in the limiting case of. —x. Itis ameter of MWNT's with very long length. It is noted that the

For the two special cases bf—0 andL — «, the parameter
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FIG. 4. (a) The dependence of the effective longitudinal tensile
Young's modulus on the MWNT length for various wall numbers
which is normalized by that of the outermost tulfle) the depen-
dence of the stable value of the tensile Young’s modulus on the wa

number and diameter of MWNT's. For the shear and normal deformation modes in the axial
and radial directions, Eqg2) and (4) show an inversely
outermost tube is fixed as ttt80,50 armchair tube for Figs. linear variation of interwall shear and normal stresses with
3, 4a), and a) when checking the MWNT length effect. ~ the tube radius in the two sides of interwall region. However,
for the shear deformation mode in the circumferential direc-
B. Longitudinal shear modulus tion, Eqg. (27) shows an inverse variation of interwall shear

The longitudinal shear modulus of a solid cylinder with SIréss to the squared tube radius. In contrast, the squared
transversely isotropic elastic properties is only relevant to th&/arnation is not so intuitive.
torsional angle of the cylinder subjected to a torque. So the '€ other controlling equations for a MWNT under the
longitudinal shear modulus of a MWNT can be extracted byfordue are similar to those in the axial analysi&ff ,, G,
analyzing the torsional angle of the MWNT subjected to a
torqueT, as shown in Fig. (b).

It is assumed that the torqUeis applied on the outermost
wall of the MWNT. The loading is transferred to the inner
tubes through the shear stress in the circumferential direction
caused by the variation of the interwall van der Waals forces
corresponding to the relative torsion among tubes.

Figure 6 is a schematic diagram to show the stresses and
deformations of two adjacent tubes. Based on the torque bal-
ances of the outer and inner tubes, and the two tubes as an
entity, the relation between the shear stresses at the two sides
of the interwall region can be obtained as

FIG. 5. (a) The dependence of the major Poisson’s ratio on the
" MWNT length for various wall numbergp) the dependence of the
Irlnajor Poisson’s ratio on the wall number and diameter of MWNT’s.

5 FIG. 6. A schematic diagram to show the stresses and deforma-
Tm,i(X)RZm: T 1,00 R - (27) tions of two adjacent tubes under torsional moment loading.
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and f,(L)= F/(27-rR1) are replaced b)RmGlzm, R.Gm and
f,(L)=T/(27R3) andu,(x) and f,(x) are understood as the

Wall number :

wn 4
torsional angled,,(x) and the shear forcé,,(x) per length é
within the mth tube. g
For the case of DWNT, using the solution of the torsional _§ 3
angled,(L) at the end of the outermost tube and defining the 2 /
effective  longitudinal ~ shear  modulus  as Gy, E i
=TL/[#R!6,(L)], Gy, is similarly obtained as LE ; 2
Z
= = %(1-B) If
Gi2= G12,1{ 1+ 12 3 - (28)
12 lR +G ZR3 B Io 100 200 300 400 500 600 700 800 900 1000
with MWNT length (nm)
1 e2L\“K_1 (a)
== 29
ARl (29 0
and 03
1/, RV 1 R 1)\G
A:—<1+—2> (S—+ ) =, (30 06
4 Ry 12,1 Rz 122 hy é
where G35, ; and Gj, , are the surface longitudinal shear no4
1, 2 ar ) : [¢]
moduli of the outer and inner tubes, aGqd is the interwall
shear modulus in circumferential direction, which is also as- 02
sumed to be the same ag, of graphite when plotting the
expression28). 0.0

0 1 2 3 4 5 6 7 8 9

For a MWNT, the replacement procedure is similarly used i
- Outermost tube diameter (nm)

to derive itsG,, based on the solution of DWNT’s. The
dependence of the longitudinal shear modulus on the MWNT (b)

length for various wall numbers is shown in Figaywhere .

the outermost tube is also fixed @&9,50 armchair tube. It is FIG. 7. () The dependence of the longitudinal shear modulus
seen that when the length of MWNT is greater than 1000 nmon the MWNT length for various wall numbery) the dependence
the longitudinal shear modulus is close to its stable valueOf the longitudinal shear modulus on the wall number and diameter

Due toB=0 whenL — =, the stable value of the longitudinal Of MWNT'S.
shear modulus for a MWNT can be obtained as
2v1/Ry = 2895 1= (0 — 01)/K 31 (33
Gy,= E R’G3,;. (31) and
2V2/R2 = 2822'2= O'2/K23’2, (34)

Figure 7b) shows the dependence of the longitudinal shear
modulus on the wall number and diameter of MWNT’s.  wheree,,; and e,,, are the radial strains of the outer and
inner tubes.
The radial straire,, ; of the outer tube can be obtained
A DWNT subjected to the two-dimensional plane-strainusing Eqs.(32)—(34) together with Egs(2) and (16). Then,
condition of biaxial tension stresses with magnitugeis  based on the definition of the effective plane-strain bulk
analyzed to get its plane-strain bulk modulus, as shown imodulus, i.e.,Kys=0y/(2e5,1), K3 of the DWNT can be
Fig. 1(c). Based on the axisymmetric condition, the radial obtained as
displacements; andv, of the outer and inner tubes can be _
used to characterize the deformation of the DWNT. The in- Koz =Koz (1 + 74), (35
terwall normal strairz, is related to the displacementgand .
v, as follows: with

C. Plane-strain bulk modulus

&1 = (Vl - V2)/hl- (32) T = ; El“;2l3 1 (36)
E;/Ky3,+4h/(R; + R
The outer tube is subjected to the biaxial stresse its Kzs2% AN/ (Ry + Ry).

outside and the biaxial interwall stress in its inside, while For a MWNT,_the replacement procedure can be exactly
the inner tube is subjected to the biaxial interwall stiesi;n  used to derive it¥,; based on the solution of DWNT’s. The
its outside. According to the deformation of each SWNTvariation of the plane-strain bulk modulés; with the out-
under the biaxial stresses, the following two equations can bermost diameter of MWNT’s for various wall numbers is
obtained: plotted in Fig. 8.
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FIG. 8. The dependence of the plane-strain bulk modulus on the FIG. 10. The de_'pendence of the !n-plane shear modulus on the
. . wall number and diameter of MWNT’s.
wall number and diameter of MWNT's.

D. In-plane shear modulus (o1 + 0)/2 =E4(e1Ry — &5R)/hy . (37)

For a DWNT subjected to tension-compression loading, According to the in-plane relati_on between stress a_md
as shown in Fig. @), it is assumed that the inner tube is also Strain of each SWNT under a tension-compression loading,
subjected to a tension-compression loading, which is trandhe following two equations can be obtained:
ferred through the van der Waals forces due to the interwall - _ -
distance changes. So, based on the analysis of each tube, its 261 (06~ 01)/C31 28,= 02/Cos (38)
outer and inner circular cross-sectional perimeters are agvhereG,;;andG,;,denote the in-plane shear moduli of the
sumed to bend into elliptic ones, as shown in Fig. 9. The tweouter and inner tubes. Equatio37), (38), (2), and (16)
unknown strainss; and e, characterize the deformations together with the definition of the in-plane shear modulus,
from the circles with radiiR; and R, to the ellipses with i.e., Gy3=0g/(2¢;) can lead to
longer and shorter half-axi®;(1+e4) and R(1-¢;), and
Ry(1+¢,) andR,(1—-¢,). Due to the symmetric condition, the Gp3=Gya+ EiGos AR + Ry) _
interwall shear strains at the longer and shorter axis are zero T Ei(Ry+Ry) +4Gy3 0y

and the normal strains are expressedeaR; - &;R,)/h; and For a MWNT with more walls, the replacement procedure
(=&1Ri+&,Ry) /1y Let oy and o, denote the magnitudes of can pe approximately used to derive &3 based on the
the interwall tension-compression stresses acting on the insg|ution of DWNT's. The variation of the in-plane shear

side of the outer tube and the outside of the inner tube at thg,odulus G,; with the outermost diameter of MWNT'’s for
locations of the longer and shorter axis. By analyzing the,arious wall numbers is plotted in Fig. 10.

interwall normal stresses and strains at these symmetric lo-
cations of the ellipses and referring to Ed6), the relation
between the interwall stresses and strains can be obtained as

follows: In this paper, the analytical expressions for five indepen-
dent effective elastic moduli of MWNT’s subjected to the

axial tension-compression stresses, torsional moment, in-
plane biaxial tension, and in-plane pure shear loadings at
small-strain conditions have been obtained. These expres-

(39)

[ll. DISCUSSION AND REMARKS

—_ sions involve the interwall elastic constants, i€, andG,
- which are used to describe the linear elastic relations be-
5 tween the interwall stresses and strains corresponding to the
y ] ; three basic interwall deformation modes. The interwall
(0)¢ & 15 Ter: > O stresses are the average of van der Waals forces over a rep-

resentative area. The interwall elastic constants may vary

e
with the curvature of tubes and are dependent on the com-
mensuration between the tuld€$! and G,, may not equal
for the shear deformation modes in axial and circumferential

directions. So far these interwall constants have not been
given due to the complexity, even though they can be theo-
retically derived based on the Lennard-Jones model in
principle3® For simplicity, the interwall values of single-
FIG. 9. A schematic diagram to show the shape changes fronerystal graphite are approximately adopted in the present ex-
circles to ellipse of the outer and inner tubes. amples for MWNT composed of armchair tubes to display
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TABLE |. Comparison between the five effective moduli(afn) SWNT'’s and those of MWNT composed @f,n) SWNT'’s, in which
the innermost tube is ,5 one, and the outermost tube’s diameter & 2

Ey; (Tpa) V1o Gy, (Tpa) Kas (Tpa) G,3 (Gpa
2R
n (nm) S M S M S M S M S M
10 1.36 1.06 1.58 0.162 0.156 0.442 0.493 0.271 0.298 1.669 10.57

15 2.04 0.707 141 0.161 0.150 0.301 0.398 0.181 0.221 0.496 9.073
20 2.71 0.531 1.32 0.160 0.147 0.227 0.353 0.136 0.186 0.209 8.151
25 3.39 0.425 1.27 0.160 0.145 0.182 0.327 0.109 0.166 0.107 7.520
30 4.07 0.354 1.24 0.159 0.143 0.152 0.310 0.091 0.153 0.062 7.057
35 4.75 0.304 121 0.159 0.142 0.131 0.298 0.078 0.145 0.039 6.699
40 5.42 0.266 1.19 0.159 0.141 0.114 0.289 0.068 0.138 0.026 6.411
45 6.10 0.236 1.18 0.159 0.140 0.102 0.282 0.061 0.134 0.018 6.175
50 6.78 0.213 1.17 0.159 0.139 0.092 0.277 0.055 0.130 0.013 5.975

the stress transfer among tubes, the length dependence, agldstic moduli, i.e.E;q, Gia, Ky3, andG,s, but they decrease
the effect of the wall number and diameter. In order to checkhe major Poisson’s ratio from 0.16 to 0.14. Table | lists the
the effect of the approximation, an increase of the elasticomparison between the effective moduli @n,5n) arm-
constants, i.e.lf,, and G, on the effective moduli has been chair SWNT's and MWNT’s with enough long length, say
checked, in which the interwall moduli increases 20% to 2%1000 nm, from which the effect of inner tubes can be easily
corresponding to the interwall betwedb,5 and (10,10 observed. It is noted that those MWNT's are composed of
tubes to the interwall betwedn5,45 and(50,50 tubes. Itis  the series of5n,5n) armchair SWNT's, and their insides are
found that the effects of such an increase on the effectiveully occupied, i.e., the innermost tube is tt&5) one. The
moduli are less than 3% for the effective plane-strain bulkMWNT’s are called solid MWNT’s here. It is seen from
modulus and major Poisson’s ratio, and less than 10% for thgable | and Fig. 10 that the in-plane shear modulus of the
effective in-plane shear modulus. Moreover, the interwallsolid MWNT'’s are around 5-10 GPa, but those of the hollow
elastic constants do not have effect on the effective longituenes are much lower. The radial deformation may promi-
dinal Young’s and shear moduli for the two special cases ohently affect the electrical properties of CNT%%¢ The ra-
MWNT length, i.e.,L—0 andL—c, but they do have an dial deformation and collapse of MWNT'’s were also ob-
effect on the required length, at which the longitudinalserved with tapping-mode atomic force microscéppne
Young’s and shear moduli reach their asymptotic values. observes from Fig. 10 that if MWNT’s are not solid ones,

Itis seen from Fig. 3 that the interwall shear stress decaygheir in-plane shear moduli are very low. This may be re-
away from the end of MWNT’s and approaches to zero aftesponsible for the collapse of MWNT’s under in-plane load-
about 30 nm, at which the stress transfer from the outer tings. The analytical expressions of the effective plane-strain
inner tubes has finished and the deformations of all tubebulk and in-plane shear moduli will be helpful for the analy-
have become consistent, like the situation under the tensiosis of the radial deformation and collapse of MWNT’s with
loading associated with a uniform end displacement. As th&arious inner and outer diameters.
effective longitudinal Young’s modulus, major Poisson’s ra- One issue that needs to be emphasized is that the five
tio, and effective longitudinal shear modulus, By, 74,  effective elastic moduli are derived at small strain condition.
and G,, are defined based on the average values over th&his requires that when using them to describe the stress-
whole length of MWNT, they are dependent on the MWNT strain relations of MWNT'’s, the magnitude of the loadings
length and may approach to their stable values when thehould not exceed certain critical values. However, for the
length is greater than about several hundreds of nanometeitension and torsional moment loadings, the critical values
depending on the wall numbers, as shown in Figa)-¥(a).  that initiate the sliding deformation among tubes may be
Basically, the length of 1000 nm has been enough for thesemall due to the low interwall shear strength, say 0.48 MPa
moduli to be very close to their stable values. For the axiafor the interlayer shear strength of graptfes well as the
loading corresponding to a uniform end displacement for alshear stress concentration at the end of MWNT'’s, as shown
tubes, the compressive Young's modulus is obtained, whicin Fig. 3. Furthermore, if the tubes are incommensurate, the
is independent of the MWNT length, and consistent with theinterlayer shear strength and stiffness may be much lower
stable value of the tensile Young’s modulus. For vary shorthan that of graphité®4! Once the interwall sliding takes
MWNT's, the tensile Young's modulus is close to the valueplace, the further loadings are only exerted on the outermost
of the outermost tube as the loading is mainly carried by théube. So, if the applied tension and torsional moment load-
outermost tube. The effective plane-strain bulk and in-planéngs significantly exceed its critical value, the effective lon-
shear moduli, i.e.Ky3 and G,; are independent of the gitudinal Young's and shear moduli will become close to
MWNT length. those of the outermost tube.

Also, it is seen from Figs. #)—7(b), 8, and 10 and that Another issue is that when the interwall interaction is im-
the inner tubes may significantly increase the four effectivgproved by defects that bridge graphitic shells in MWNT's,
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say chemical bonds created by electron and iorshear strength, the elastic range of MWNT’s will increase
irradiation#°->the interwall elastic constank, andG,,and  significantly. These problems remain to be studied.

shear strength may be increased significantly. For example, a

small amount of defects can increase the interwall shear

strength by several orders of magnitidé=or the situation, ACKNOWLEDGMENT
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