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Five independent effective elastic moduli of a transversely isotropic multiwalled carbon nanotubesMWNTd
are studied by analyzing its deformations under four loading conditions, i.e., axial tension, torsional moment,
in-plane biaxial tension, and in-plane tension-compression stress. Two distributions of the tension loading on
the outermost tube and on all tubes are considered, which correspond to the tensile and compressive Young’s
moduli. The general relations between the interwall stresses and strains are linearized due to the small strain
condition, where the interwall stresses correspond to the variation of the interwall van der Waals forces. Three
interwall elastic constants are used to characterize the linear relations associated with three basic interwall
deformation modes, i.e., normal deformation in radial direction and two shear deformations in axial and
circumferential directions. By taking each tube as a single-walled carbon nanotube, the analytical expressions
for the interwall shear stress under the tensile loading on the outermost tube and five elastic moduli of a
double-walled carbon nanotube are first obtained. Then, a replacement method is proposed to derive the
corresponding expressions for the cases of more walls than two. These analytical expressions are plotted for the
case of MWNT’s composed of armchair tubes, where the interwall elastic constants are approximated as the
corresponding ones of the graphite. The effect of the wall number, diameter, chirality, and length of the MWNT
on the shear stress and five elastic moduli are displayed and discussed.
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I. INTRODUCTION

Experiments and theoretical predictions have shown that
carbon nanotubessCNT’sd can possess exceptional mechani-
cal properties.1–9 This has motivated extensive research for
the potential applications of CNT’s as the reinforcements of
a new generation of composites, including the theoretical
evaluations of the elastic properties of CNT’s, the improve-
ment of the wetting and adhesion between CNT’s and ma-
trix, the uniform dispersion of CNT’s within the matrix and
so on. It is noticed that many theoretical models were pro-
posed for the elastic moduli of single-walled carbon nano-
tubessSWNT’sd, such as the molecular dynamics and mo-
lecular mechanics based on empirical potentials,10–21 the
tight-binding-based approaches,22–26 the first principles of
quantum mechanics,27–29 the continuum mechanics
models,30,31 and the structure mechanics model.32–34 In con-
trast to the achievements for SWNT’s, there were only a few
numerical calculations for the selected elastic moduli of mul-
tiwalled carbon nanotubessMWNT’sd.14,35,36 Therefore, a
complete set of five independent elastic moduli of MWNT’s
are the focus in the study.

The axial Young’s modulus of MWNT’s was experimen-
tally measured. The reported values are 0.40–4.15 TPa with
an average of 1.8 TPasRef. 1d, 0.69–1.87 TPa with an aver-
age of 1.28 TPasRef. 2d, 1 TPasRef. 3d, 1.7–2.4 TPasRef.
4d, 0.22–0.68 TPasRef. 6d, and 270–950 GPasRef. 9d. The
various uncertainties involved in the experimental tests may
be responsible for the variations of the measured axial
Young’s modulus of MWNT’s. For example, the contribu-
tions of inner tubes were not well distinguished in these ex-
perimental measurements. In principle, the effective axial
Young’s modulus of MWNT’s must be larger than that of
SWNT’s. Furthermore, the technical difficulty makes the ex-

perimental determination of other elastic moduli, such as
Poisson’s ratio and bulk and shear moduli, a rather challeng-
ing task. Also, it is difficult to experimentally investigate the
effect of structural parameters of MWNT’s, such as chirality
on the elastic properties. For SWNT’s, the closed-form ex-
pressions for the five independent elastic moduli of SWNT’s
were obtained.21 However, only a few numerical simulations
were reported for some selected elastic moduli of MWNT’s
due to the increased complexity.14,35,36For example, the axial
Young’s and torsional shear moduli and major Poisson’s ratio
were numerically obtained as about 0.97 TPa, 0.45 TPa, and
0.28 using the empirical force-constant model, and it was
concluded that the wall numbers and interwall van der Waals
forces have a little or no significant effects on the elastic
moduli.14 The axial Young’s and torsional shear moduli were
simulated using the molecular structural mechanics method
and numerically obtained as 1.05 and 0.4 TPa.35 Also, it was
demonstrated that the inner tubes only have a little effect on
the moduli if the loadings are not directly exerted on inner
tubes. It is not clear how long MWNT’s were used in these
numerical simulations. In fact, a complete shear stress trans-
fer among tubes through van der Waals forces requires a
certain length, while the capillary force or retract force is
dominant for short tubes.37 So, if the MWNT length is not
enough long, the loadings exerted on the outermost tube can-
not be effectively transferred onto the inner tubes.

Motivated by the achievement of the closed-form expres-
sions of the five independent effective elastic moduli of
SWNT’s,21 the authors attempt to find the corresponding re-
sults for MWNT’s in the study. Compared with the SWNT’s,
the situation of MWNT’s further involves the analysis for the
van der Waals forces that transfer the stresses among tubes,
the different distributions of the tensile loading at the ends of
all tubes, and the dependence of the longitudinal Young’s and
shear moduli on the MWNT length. These troublesome prob-
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lems have not been well analyzed in the literature. Some
assumptions without a significant loss of accuracy are pro-
posed in order to get the analytical expressions of the five
independent elastic moduli of MWNT’s. Based on them, the
effects of the wall number, diameter, chirality, length of
MWNT’s, and the tension loading distributions are clearly
displayed and discussed.

II. ELASTIC MODULI OF A MWNT

When a MWNT withN walls is used as an entity, such as
the reinforcement of composites, the effective elastic proper-
ties of the MWNT need to be obtained first. Due to its struc-
tural features, its effective elastic properties are transversely
isotropic. Therefore, five independent elastic moduli are
needed to describe its transversely isotropic behavior com-
pletely.

In this study, five independent effective elastic moduli
such as the longitudinal Young’s modulus, major Poisson’s
ratio, longitudinal shear modulus and plane-strain bulk and
in-plane shear moduli, respectively, denoted asE11, n12, G12,
K23, andG23 are taken by assuming1 as the longitudinal or
axial direction along the tube. They are defined by visualiz-
ing the MWNT as a solid cylinder with the same radius.
Because an individual consideration for the interaction be-
tween the MWNT and matrix of composites is necessary, the
radius is determined from the tube center to the atoms of the
outermost tube.

The four loading conditions are chosen to determine the
five effective elastic moduli. They are the axial loadingF for
E11 and n12, torsional momentT for G12, in-plane biaxial
tension with magnitudesK for K23, and tension-compression
stressspure shear stressd with magnitudesG for G23, as
shown in Figs. 1sad–1sdd.

It is noticed that for the two cases of the axial loading,
i.e., the axial tensile and compressive loading, the contribu-
tions of the inner tubes to the elongation of MWNT’s are
different, resulting in different Young’s moduli. Correspond-
ingly, the terms tensile and compressive Young’s moduli are
named.

When the axial loading is tensile, the loading transferred
onto inner tubes comes from three contributions: the interac-
tion between caps, capillary force and interlayer shear stress.

The former two only work around the ends of MWNT’s,
while the latter one distributes along the tubes and depends
on the tube length. It can be imagined that the interaction
force between caps is very small due to the small contact
area at caps, and it will disappear due to a small elongation
difference between the outer and inner tubes at the caps.
Also, the capillary force is small, which can reach a constant
value, say about 1 nN for the pair ofs5,5d s10,10d tubes.37

So, in the initial stage of loading-displacement curve, say the
tensile loading varying from 0 to 2 nN, the two forces will
significantly increase the slope of the loading-displacement
curve. But after the initial stage, two forces will have no
effect on the loading-displacement curve because they do not
increase further. The experiment for the simple tension of
MWNT’s showed that before the outermost tube breaks, the
tensile loading can reach several hundreds of nN and the
loading-displacement curve approximately remains linear in
trends.9 So, when the axial Young’s modulus is used to char-
acterize the average slope of the loading-displacement curve
in a wide range, the small initial stage can be neglected for
the simplicity of theoretical analysis, i.e., MWNT’s are mod-
eled as concentric cylindrical shells without caps and the
interlayer shear stress is only considered for the loading
transfer from outer to inner tubes.

When the axial loading is compressive, the caps of outer
and inner tubes always join together, resulting in the same
axial displacements for all tubes. So, when the caps are ne-
glected, a uniform end displacement condition for all tubes
should be assumed, which approximately corresponds to a
uniform distribution of axial loading on all the ends of tubes.

Each tube within a MWNT is treated as a SWNT, which is
also transversely isotropic. For SWNT’s, three different defi-
nitions for Young’s modulus and torsionalsor longitudinald
shear modulus have been named for various purposes, which
are denoted asE11

s and G12
s , E11 and G12, andE11 and G12.

The surface Young’s and longitudinal shear moduli,E11
s and

G12
s do not involve the tube thickness.19,21 The conventional

moduli E11 andG12 are based on a tube thicknesst. And the
effective moduliE11 andG12 are based on the cross-sectional
area of tube.21 The elastic moduli based on the three defini-
tions are related to each other throughE11=E11

s / t and G12
=G12

s / t, andE11=E11
s / sR/2d andG12=G12

s / sR/2d, whereR is
the tube radius.

FIG. 1. Four types of loading
conditions: sad axial tension,sbd
torsional moment,scd in-plane bi-
axial tension, andsdd tension-
compression stress.
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The purpose to define the area-based moduli is for the
convenience of considering the stiffening effect of CNT’s on
composites. The other three moduli, i.e., the major Poisson’s
ratio, plane-strain bulk modulus, and in-plane shear modulus,
denoted asn12, K23, andG23 for SWNT’s do not involve the
tube thickness because they do not involve how to define the
average value of external loading over the cross-sectional
area of the tube.

The closed-form expressions for the five elastic moduli of
the mth SWNT, i.e.,E11,m

s , n12,m, G12,m
s , K23,m, andG23,m are

available,21 where the subscriptm is added to denote the
properties associated with themth tube counted from the
outermost one.

There are three basic interwall deformation modes, i.e.,
two shear deformations in axial and circumferential direc-
tions and one normal deformation in radial direction. A linear
elastic interwall stress-strain relation corresponding to each
deformation mode can be used due to small strain condition.

For the four loading conditions, i.e., axial loading, tor-
sional moment, in-plane biaxial tension, and tension-
compression stress, the four corresponding interwall defor-
mation modes of a MWNT are the combination of the axial
shear and radial normal strains, the circumferential shear
strain, the radial normal strain, and the combination of the
circumferential shear and radial normal strains, respectively.
The global deformations of the MWNT under each loading
can be obtained using elasticity theory. Then, the correspond-
ing elastic moduli can be extracted based on their traditional
definitions by visualizing the MWNT as a solid cylinder or a
hollow one.

A. Longitudinal Young’s modulus and major Poisson’s ratio

The axial tension loading shown in Fig. 1sad is used to
analyze the longitudinal Young’s modulus and major Pois-
son’s ratio of aN-walled MWNT with length of 2L. Figure 2
is a schematic diagram to show the analysis of deformations
and stresses in the axial direction for a small segment
PmQmPm+1Qm+1 from x to x+dx of the mth and sm+1dth
tubes, wherem is counted from the outermost tube. The
stressestm,isxd and tm,osxd, and sm,isxd and sm,osxd denote
the shear and normal stresses acting on the inner and outer
sides of themth tube due to the variation of the interwall van
der Waals forces. The symbolshm, gmsxd, and«msxd denote
themth interwall distance, themth interwall shear strain, and
normal strain, respectively.fmsxd and fu,msxd are the axial
and circumferential forces per unit length within themth tube
at the locationx[ f0,Lg, whereL is the half length of the
MWNT.

Let umsxd andvmsxd, and«11,msxd and«22,msxd be the axial
and radial displacements and strains of themth tube, andRm
denote the radius of themth tube. The controlling equations
of the stresses and deformations of the system are given as
follows.

1. The force balance equations

As shown in Fig. 2sad, the force balances of the outer and
inner tubes, i.e.,PmQm andPm+1Qm+1, and the two tubes, i.e.,
PmQmQm+1Pm+1 as an entity in the axial direction, can lead to

dfmsxd
dx

= tm,osxd − tm,isxd s1d

and

sm,isxdRm = sm+1,osxdRm+1. s2d

As shown in Fig. 2sbd, the force balances of the half ring of
outer and inner tubes, and the two half rings of tubes as an
entity in the vertical direction of the figure, can lead to

fu,msxd = Rfsm,osxd − sm,isxdg, s3d

tm,isxdRm = tm+1,osxdRm+1. s4d

The interwall stress variation from one side to the other of
the interwall region expressed by Eqs.s2d ands4d shows that
the interwall stresses are inversely proportional to the tube
radius. It is noted that a similar equation to Eq.s2d was
directly assumed without rigorous proof.38

2. The stress-strain relations

Taking themth tube as a SWNT and using its surface
longitudinal Young’s modulus, plane-strain bulk modulus,
and major Poisson’s ratio, i.e.,E11,m

s , K23,m and n12,m,21 the
stress-strain relations for the tube shell can be derived as
follows:

FIG. 2. Schematic diagrams for the stresses and deformations of
a small segment of two tubes with MWNT’s under tension loading
condition,sad for the axial analysis andsbd for the radial analysis.
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«11,msxd =
1

E11,m
s ffmsxd − n12,mfu,msxdg, s5d

«22,msxd =
1

E11,m
s flfu,msxd − n12,mfmsxdg, s6d

wherel=n12,m
2 +E11,m

s / s2RmK23,md.
The interwall normal and shear stresses caused by the

variation of the interwall van der Waals forces can be gener-
ally assumed to be a function of the interwall normal and
shear strains as follows:

smsxd = Fm„«msxd…, s7d

tmsxd = Cm„gmsxd…, s8d

wheresmsxd andtmsxd denote the average normal and shear
stresses within the interwall region with

smsxd =
2Rmsm,isxd
Rm + Rm+1

and

tmsxd =
2Rmtm,isxd
Rm + Rm+1

,

Fms«md andCmsgmd are nonlinear functions of the interwall
strains and they should be dependent on the curvatures of the
tubes and the commensuration between tubes. In principle,
they may be derived using the Lennard-Jones model.39

3. The geometry equations

The interwall normal and shear strains«msxd and gmsxd
and the tube strains«11,msxd and«22,msxd can be related to the
displacementsumsxd andvmsxd as follows:

«msxd = fvmsxd − vm+1sxdg/hm, s9d

gmsxd = fumsxd − um+1sxdg/hm, s10d

«11,msxd = dumsxd/dx, s11d

«22,msxd = vmsxd/Rm. s12d

4. The boundary conditions

The free stress condition on the outside of the outermost
tube and the inside of the innermost tube gives

s1,osxd = 0, t1,osxd = 0,

sN,isxd = 0, tN,isxd = 0. s13d

The end loading condition for the distribution on the outmost
tube is as follows:

f1sLd = F/s2pR1d, fmsLd = 0 s14d

The symmetric condition at the middle of the MWNT gives

ums0d = 0, udfmsxd/dxux=0 = 0. s15d

5. Solving the controlling equations of the system

As the small-strain condition is of concern for the elastic
properties, the nonlinear interwall stress-strain relationss7d
and s8d can be linearized by neglecting the higher orders of
terms in Taylor’s expansion of the functionsFms«md and
Cmsgmd as follows:

smsxd = Em«msxd, s16d

tmsxd = Gmgmsxd, s17d

where the constantEm andGm are referred to as the interwall
Young’s and shear moduli in the radial and axial directions,
which are dependent on the curvature of tubes and the com-
mensuration between the tubes. Especially, the commensura-
tion between tubes is more important for the magnitude of
the two constants.40,41

The axial and radial stresses and deformations are coupled
due to the coupled stress-strain relationss5d and s6d. How-
ever, the circumferential stressfu,msxd is much smaller than
the axial stressfmsxd, as it is caused by the difference of the
two weak interwall normal stresses. For simplicity,fu,msxd in
Eq. s5d is neglected so that the controlling equationss1d–s15d
of the system become uncoupled for the axial and radial
analyses.

For the axial analysis, Eqs.s1d, s4d, s5d, s10d, s11d, and
s17d consist of the controlling equations for the unknown
variables fmsxd, tm,isxd, tm,osxd, «11,msxd, gmsxd, and umsxd.
For the case of a double-walled carbon nanotubesDWNTd, a
second-order ordinary differential equation for the unknown
variable f1sxd can be derived from these equations through
the substituting and eliminating procedures. Then, based on
the boundary conditionss13d–s15d, the explicit solution of
f1sxd can be obtained. And then, other variables can be ob-
tained using the solution off1sxd. For example,t1sxd can be
obtained from Eq.s1d, while u1sxd is obtained from Eqs.s11d
and s5d with the boundary conditions15d.

For the radial analysis, Eqs.s2d, s3d, s6d, s9d, s12d, and
s16d with the boundary conditionss13d consist of a set of
linear equations for the unknown variablesfu,msxd, sm,isxd,
sm,osxd, «22,msxd, «msxd, and vmsxd, which can be easily
solved. It is noted thatfmsxd in Eq. s6d has been obtained
from the axial analysis.

For the case of DWNT, the analytical expression of the
interwall shear stresst1sxd, is given as

t1sxd =
2f1

ÎAR1/sR1 + R2d
1 + sE11,1

s R1d/sE11,2
s R2dS exÎA

e2LÎA + 1
−

e−xÎA

e−2LÎA + 1
D ,

s18d

with

A =
1

2
S1 +

R2

R1
DS 1

E11,1
s +

R1

R2

2

E11,2
s DG1

h1
. s19d

Using the solution of the end displacementu1sLd of the
outer tube and defining the effective longitudinal Young’s
modulus of the DWNT asE11=sF /pR1

2d / su1sLd /Ld by visu-
alizing it as a solid cylinder,E11 is obtained as
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E11 =
2E11,1

S

R1
F1 +

E11,2
S R2s1 − Bd

E11,1
S R1 + E11,2

S R2B
G , s20d

with

B =
1

LÎA

e2LÎA − 1

e2LÎA + 1
. s21d

Using the solution of the radial displacementv1sxd of the
outer tube and defining the effective major Poisson’s ratio
n12 as the average ratio of the radial and axial strains,n12 is
obtained as

n12 = n12,1s1 − hd, s22d

where

h =
f1 − sR2/R1dsn12,2/n12,1djgE1R1/sh1K23,1d
1 + R1/R2 + sR1/K23,1+ R2/K23,2dE1/h1

. s23d

and

j =
1

L
E

0

L
1 −

eÎAx

1 + e2LÎA
−

e−ÎAx

1 + e−2LÎA

1 +
E11,2

s R2

E11,1
s R1

S eÎAx

1 + e2LÎA
+

e−ÎAx

1 + e−2LÎAD
dx. s24d

For the two special cases ofL→0 andL→`, the parameter
B expressed in Eq.s21d becomes1 and0, while the param-
eterj in Eq. s24d becomes0 and1.

For the cases of MWNT’s, numerical methods are needed
to solve the set of controlling equations accurately. However,
based on the solution of DWNT’s, a replacement method can
be approximately used without significant loss of accuracy.
The replacement procedure is that the innermost two tubes
are analyzed based on the solution for DWNT’s first, then
using its elastic moduli to replace those of the inner tube in
the solution for DWNT’s and taking the elastic moduli of the
next tube as those of the outer tube, the elastic moduli of the
innermost three tubes is derived. The procedure can be done
until the outermost tube.

For the case of compressive loading, the boundary condi-
tions at the ends of tubes, i.e., Eq.s14d, should be changed to
a uniform end displacement condition. Due to the consistent
axial displacements for all tubes, the interwall shear defor-
mation and shear stress vanish, resulting in the constant axial
inner force from Eq.s1d. Therefore, the controlling equations
reduce to a set of linear equations, which can be easily
solved. It is obtained that the effective compressive longitu-
dinal Young’s modulus and major Poisson’s ratio are inde-
pendent of the MWNT length for this case, that is,

E11 =
2

R1
2o

i=1

N

RiE11,i
s , s25d

n12 =
sn12,1R1 − n12,2R2dE1/sh1K23,1d

1 + R1/R2 + sR1/K23,1+ R2/K23,2dE1/h1
. s26d

The expressions are consistent with those of the tensile load-
ing, i.e., Eqs.s20d ands22d in the limiting case ofL→`. It is

noticed that Eq.s26d accounts for the effect of interwall dis-
tance changes, which is derived using the same controlling
equations for the case of tensile loading, i.e., Eqs.s2d, s3d,
s6d, s9d, s12d, ands16d.

As an example of application, these expressions for
MWNT’s composed of armchair tubes are plotted with all
the interwall distanceshm being assumed as 0.34 nm. The
tubes within such MWNT’s are axially commensurate.42,43

But their commensuration in circumferential direction may
become loose as the tube curvature increase. It can be envi-
sioned that when the curvature of tubes approaches zero or
the tube diameter is sufficiently large, the interaction be-
tween two adjacent armchair tubes will reduce to that in
graphite. For simplicity, the curvature effect is neglected in
the preliminary study, andEm andGm are assumed to be the
same as those of graphite, i.e., the elastic modulic33 andc44
of graphite in normal and interlayer directions, which have
been extensively measured. The experimental values ofc33
from different researchers do not vary widely, which is taken
as c33=0.0365 TPa.44 But the values ofc44 vary in a large
range for different experimental tests, and it can increase
about 20 times after neutron irradiation. Here a relatively
large value ofc44=0.0039 TPa from Ref. 44 is used for the
plotting of the analytical expressions. It is noted that the
values may overestimate the two constants even for the com-
mensurate MWNT’s.40,41

The variations of the outermost interwall shear stress for
various wall numbers are plotted in Fig. 3. It is seen that a
complete stress transfer needs the MWNT length to be
greater than about 30 nm.

Figure 4sad shows the dependence of the tensile and com-
pressive longitudinal Young’s moduli on the MWNT length
for various wall numbers, in which the horizontal lines cor-
respond to the compressive Young’s modulus. It is seen that
when the length of MWNT is greater than 1000 nm, the
tensile Young’s modulus is close to its stable value or the
compressive Young’s modulus. Figure 4sbd shows the depen-
dence of the stable value of tensile Young’s modulus on the
wall number and diameter of MWNT’s.

The variations of the major Poisson’s ratio with MWNT
length for various wall numbers are plotted in Fig. 5sad. Fig-
ure 5sbd shows its dependence on the wall number and di-
ameter of MWNT’s with very long length. It is noted that the

FIG. 3. Variations of the outermost interwall shear stress for
various wall numbers.
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outermost tube is fixed as thes50,50d armchair tube for Figs.
3, 4sad, and 5sad when checking the MWNT length effect.

B. Longitudinal shear modulus

The longitudinal shear modulus of a solid cylinder with
transversely isotropic elastic properties is only relevant to the
torsional angle of the cylinder subjected to a torque. So the
longitudinal shear modulus of a MWNT can be extracted by
analyzing the torsional angle of the MWNT subjected to a
torqueT, as shown in Fig. 1sbd.

It is assumed that the torqueT is applied on the outermost
wall of the MWNT. The loading is transferred to the inner
tubes through the shear stress in the circumferential direction
caused by the variation of the interwall van der Waals forces
corresponding to the relative torsion among tubes.

Figure 6 is a schematic diagram to show the stresses and
deformations of two adjacent tubes. Based on the torque bal-
ances of the outer and inner tubes, and the two tubes as an
entity, the relation between the shear stresses at the two sides
of the interwall region can be obtained as

tm,isxdRm
2 = tm+1,osxdRm+1

2 . s27d

For the shear and normal deformation modes in the axial
and radial directions, Eqs.s2d and s4d show an inversely
linear variation of interwall shear and normal stresses with
the tube radius in the two sides of interwall region. However,
for the shear deformation mode in the circumferential direc-
tion, Eq. s27d shows an inverse variation of interwall shear
stress to the squared tube radius. In contrast, the squared
variation is not so intuitive.

The other controlling equations for a MWNT under the
torque are similar to those in the axial analysis ifE11,m

s , Gm,

FIG. 4. sad The dependence of the effective longitudinal tensile
Young’s modulus on the MWNT length for various wall numbers,
which is normalized by that of the outermost tube;sbd the depen-
dence of the stable value of the tensile Young’s modulus on the wall
number and diameter of MWNT’s.

FIG. 5. sad The dependence of the major Poisson’s ratio on the
MWNT length for various wall numbers;sbd the dependence of the
major Poisson’s ratio on the wall number and diameter of MWNT’s.

FIG. 6. A schematic diagram to show the stresses and deforma-
tions of two adjacent tubes under torsional moment loading.
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and f1sLd=F / s2pR1d are replaced byRmG12,m
s , RmGm, and

f1sLd=T/ s2pR1
2d andumsxd and fmsxd are understood as the

torsional angleumsxd and the shear forcefu,msxd per length
within the mth tube.

For the case of DWNT, using the solution of the torsional
angleu1sLd at the end of the outermost tube and defining the
effective longitudinal shear modulus as G12
=TL/ fpR1

4u1sLdg, G12 is similarly obtained as

G12 = G12,1F1 +
G12,2

S R2
3s1 − Bd

G12,1
S R1

3 + G12,2
S R2

3B
G , s28d

with

B =
1

LÎA

e2LÎA − 1

e2LÎA + 1
s29d

and

A =
1

4
S1 +

R2

R1
D2S 1

G12,1
s +

R1
3

R2
3

1

G12,2
s DG1

h1
, s30d

where G11,1
s and G11,2

s are the surface longitudinal shear
moduli of the outer and inner tubes, andG1 is the interwall
shear modulus in circumferential direction, which is also as-
sumed to be the same asc44 of graphite when plotting the
expressions28d.

For a MWNT, the replacement procedure is similarly used
to derive its G12 based on the solution of DWNT’s. The
dependence of the longitudinal shear modulus on the MWNT
length for various wall numbers is shown in Fig. 7sad where
the outermost tube is also fixed ass50,50d armchair tube. It is
seen that when the length of MWNT is greater than 1000 nm,
the longitudinal shear modulus is close to its stable value.
Due toB=0 whenL→`, the stable value of the longitudinal
shear modulus for a MWNT can be obtained as

G12 =
2

R1
4o

i=1

N

Ri
3G12,i

s . s31d

Figure 7sbd shows the dependence of the longitudinal shear
modulus on the wall number and diameter of MWNT’s.

C. Plane-strain bulk modulus

A DWNT subjected to the two-dimensional plane-strain
condition of biaxial tension stresses with magnitudesK is
analyzed to get its plane-strain bulk modulus, as shown in
Fig. 1scd. Based on the axisymmetric condition, the radial
displacementsv1 andv2 of the outer and inner tubes can be
used to characterize the deformation of the DWNT. The in-
terwall normal strain«1 is related to the displacementsv1 and
v2 as follows:

«1 = sn1 − n2d/h1. s32d

The outer tube is subjected to the biaxial stressessK in its
outside and the biaxial interwall stresss1 in its inside, while
the inner tube is subjected to the biaxial interwall stresss2 in
its outside. According to the deformation of each SWNT
under the biaxial stresses, the following two equations can be
obtained:

2n1/R1 = 2«22,1= ssK − s1d/K23,1 s33d

and

2n2/R2 = 2«22,2= s2/K23,2, s34d

where«22,1 and «22,2 are the radial strains of the outer and
inner tubes.

The radial strain«22,1 of the outer tube can be obtained
using Eqs.s32d–s34d together with Eqs.s2d and s16d. Then,
based on the definition of the effective plane-strain bulk
modulus, i.e.,K23=sK / s2«22,1d, K23 of the DWNT can be
obtained as

K23 = K23,1s1 + hKd, s35d

with

hK =
E1/K23,1

E1/K23,2+ 4h1/sR1 + R2d.
s36d

For a MWNT, the replacement procedure can be exactly
used to derive itsK23 based on the solution of DWNT’s. The
variation of the plane-strain bulk modulusK23 with the out-
ermost diameter of MWNT’s for various wall numbers is
plotted in Fig. 8.

FIG. 7. sad The dependence of the longitudinal shear modulus
on the MWNT length for various wall numbers,sbd the dependence
of the longitudinal shear modulus on the wall number and diameter
of MWNT’s.
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D. In-plane shear modulus

For a DWNT subjected to tension-compression loading,
as shown in Fig. 1sdd, it is assumed that the inner tube is also
subjected to a tension-compression loading, which is trans-
ferred through the van der Waals forces due to the interwall
distance changes. So, based on the analysis of each tube, its
outer and inner circular cross-sectional perimeters are as-
sumed to bend into elliptic ones, as shown in Fig. 9. The two
unknown strains«1 and «2 characterize the deformations
from the circles with radiiR1 and R2 to the ellipses with
longer and shorter half-axisR1s1+«1d and Rs1−«1d, and
R2s1+«2d andR2s1−«2d. Due to the symmetric condition, the
interwall shear strains at the longer and shorter axis are zero
and the normal strains are expressed ass«1R1−«2R2d /h1 and
s−«1R1+«2R2d /h1 Let s1 and s2 denote the magnitudes of
the interwall tension-compression stresses acting on the in-
side of the outer tube and the outside of the inner tube at the
locations of the longer and shorter axis. By analyzing the
interwall normal stresses and strains at these symmetric lo-
cations of the ellipses and referring to Eq.s16d, the relation
between the interwall stresses and strains can be obtained as
follows:

ss1 + s2d/2 = E1s«1R1 − «2R2d/h1. s37d

According to the in-plane relation between stress and
strain of each SWNT under a tension-compression loading,
the following two equations can be obtained:

2«1 = ssG − s1d/G23,1 2«2 = s2/G23,2, s38d

whereG23,1 andG23,2 denote the in-plane shear moduli of the
outer and inner tubes. Equationss37d, s38d, s2d, and s16d
together with the definition of the in-plane shear modulus,
i.e., G23=sG/ s2«1d can lead to

G23 = G23,1+
E1G23,2sR1 + R2d

E1sR1 + R2d + 4G23,2h1
. s39d

For a MWNT with more walls, the replacement procedure
can be approximately used to derive itsG23 based on the
solution of DWNT’s. The variation of the in-plane shear
modulusG23 with the outermost diameter of MWNT’s for
various wall numbers is plotted in Fig. 10.

III. DISCUSSION AND REMARKS

In this paper, the analytical expressions for five indepen-
dent effective elastic moduli of MWNT’s subjected to the
axial tension-compression stresses, torsional moment, in-
plane biaxial tension, and in-plane pure shear loadings at
small-strain conditions have been obtained. These expres-
sions involve the interwall elastic constants, i.e.,Em andGm,
which are used to describe the linear elastic relations be-
tween the interwall stresses and strains corresponding to the
three basic interwall deformation modes. The interwall
stresses are the average of van der Waals forces over a rep-
resentative area. The interwall elastic constants may vary
with the curvature of tubes and are dependent on the com-
mensuration between the tubes,40,41 and Gm may not equal
for the shear deformation modes in axial and circumferential
directions. So far these interwall constants have not been
given due to the complexity, even though they can be theo-
retically derived based on the Lennard-Jones model in
principle.39 For simplicity, the interwall values of single-
crystal graphite are approximately adopted in the present ex-
amples for MWNT composed of armchair tubes to display

FIG. 8. The dependence of the plane-strain bulk modulus on the
wall number and diameter of MWNT’s.

FIG. 9. A schematic diagram to show the shape changes from
circles to ellipse of the outer and inner tubes.

FIG. 10. The dependence of the in-plane shear modulus on the
wall number and diameter of MWNT’s.
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the stress transfer among tubes, the length dependence, and
the effect of the wall number and diameter. In order to check
the effect of the approximation, an increase of the elastic
constants, i.e.,Em andGm on the effective moduli has been
checked, in which the interwall moduli increases 20% to 2%
corresponding to the interwall betweens5,5d and s10,10d
tubes to the interwall betweens45,45d ands50,50d tubes. It is
found that the effects of such an increase on the effective
moduli are less than 3% for the effective plane-strain bulk
modulus and major Poisson’s ratio, and less than 10% for the
effective in-plane shear modulus. Moreover, the interwall
elastic constants do not have effect on the effective longitu-
dinal Young’s and shear moduli for the two special cases of
MWNT length, i.e.,L→0 andL→`, but they do have an
effect on the required length, at which the longitudinal
Young’s and shear moduli reach their asymptotic values.

It is seen from Fig. 3 that the interwall shear stress decays
away from the end of MWNT’s and approaches to zero after
about 30 nm, at which the stress transfer from the outer to
inner tubes has finished and the deformations of all tubes
have become consistent, like the situation under the tension
loading associated with a uniform end displacement. As the
effective longitudinal Young’s modulus, major Poisson’s ra-
tio, and effective longitudinal shear modulus, i.e.,E11, n12,
and G12 are defined based on the average values over the
whole length of MWNT, they are dependent on the MWNT
length and may approach to their stable values when the
length is greater than about several hundreds of nanometers,
depending on the wall numbers, as shown in Figs. 4sad–7sad.
Basically, the length of 1000 nm has been enough for these
moduli to be very close to their stable values. For the axial
loading corresponding to a uniform end displacement for all
tubes, the compressive Young’s modulus is obtained, which
is independent of the MWNT length, and consistent with the
stable value of the tensile Young’s modulus. For vary short
MWNT’s, the tensile Young’s modulus is close to the value
of the outermost tube as the loading is mainly carried by the
outermost tube. The effective plane-strain bulk and in-plane
shear moduli, i.e.,K23 and G23 are independent of the
MWNT length.

Also, it is seen from Figs. 4sbd–7sbd, 8, and 10 and that
the inner tubes may significantly increase the four effective

elastic moduli, i.e.,E11, G12, K23, andG23, but they decrease
the major Poisson’s ratio from 0.16 to 0.14. Table I lists the
comparison between the effective moduli ofs5n,5nd arm-
chair SWNT’s and MWNT’s with enough long length, say
1000 nm, from which the effect of inner tubes can be easily
observed. It is noted that those MWNT’s are composed of
the series ofs5n,5nd armchair SWNT’s, and their insides are
fully occupied, i.e., the innermost tube is thes5,5d one. The
MWNT’s are called solid MWNT’s here. It is seen from
Table I and Fig. 10 that the in-plane shear modulus of the
solid MWNT’s are around 5–10 GPa, but those of the hollow
ones are much lower. The radial deformation may promi-
nently affect the electrical properties of CNT’s.45,46 The ra-
dial deformation and collapse of MWNT’s were also ob-
served with tapping-mode atomic force microscopy.47 One
observes from Fig. 10 that if MWNT’s are not solid ones,
their in-plane shear moduli are very low. This may be re-
sponsible for the collapse of MWNT’s under in-plane load-
ings. The analytical expressions of the effective plane-strain
bulk and in-plane shear moduli will be helpful for the analy-
sis of the radial deformation and collapse of MWNT’s with
various inner and outer diameters.

One issue that needs to be emphasized is that the five
effective elastic moduli are derived at small strain condition.
This requires that when using them to describe the stress-
strain relations of MWNT’s, the magnitude of the loadings
should not exceed certain critical values. However, for the
tension and torsional moment loadings, the critical values
that initiate the sliding deformation among tubes may be
small due to the low interwall shear strength, say 0.48 MPa
for the interlayer shear strength of graphite,48 as well as the
shear stress concentration at the end of MWNT’s, as shown
in Fig. 3. Furthermore, if the tubes are incommensurate, the
interlayer shear strength and stiffness may be much lower
than that of graphite.40,41 Once the interwall sliding takes
place, the further loadings are only exerted on the outermost
tube. So, if the applied tension and torsional moment load-
ings significantly exceed its critical value, the effective lon-
gitudinal Young’s and shear moduli will become close to
those of the outermost tube.

Another issue is that when the interwall interaction is im-
proved by defects that bridge graphitic shells in MWNT’s,

TABLE I. Comparison between the five effective moduli ofsn,nd SWNT’s and those of MWNT composed ofsn,nd SWNT’s, in which
the innermost tube is as5,5d one, and the outermost tube’s diameter is 2R.

n
2R

snmd

E11 sTpad n12 G12 sTpad K23 sTpad G23 sGpad

S M S M S M S M S M

10 1.36 1.06 1.58 0.162 0.156 0.442 0.493 0.271 0.298 1.669 10.57

15 2.04 0.707 1.41 0.161 0.150 0.301 0.398 0.181 0.221 0.496 9.073

20 2.71 0.531 1.32 0.160 0.147 0.227 0.353 0.136 0.186 0.209 8.151

25 3.39 0.425 1.27 0.160 0.145 0.182 0.327 0.109 0.166 0.107 7.520

30 4.07 0.354 1.24 0.159 0.143 0.152 0.310 0.091 0.153 0.062 7.057

35 4.75 0.304 1.21 0.159 0.142 0.131 0.298 0.078 0.145 0.039 6.699

40 5.42 0.266 1.19 0.159 0.141 0.114 0.289 0.068 0.138 0.026 6.411

45 6.10 0.236 1.18 0.159 0.140 0.102 0.282 0.061 0.134 0.018 6.175

50 6.78 0.213 1.17 0.159 0.139 0.092 0.277 0.055 0.130 0.013 5.975
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say chemical bonds created by electron and ion
irradiation,49–51the interwall elastic constantsEm andGm and
shear strength may be increased significantly. For example, a
small amount of defects can increase the interwall shear
strength by several orders of magnitude.37 For the situation,
the present analytical expressions for the effective elastic
moduli are still valid, but the values of the elastic constant
Em andGm need to be determined based on the specific in-
formation of the defects. Also, due to the improved interwall

shear strength, the elastic range of MWNT’s will increase
significantly. These problems remain to be studied.
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