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We calculate the exact transmission coefficients of a quantum wire in the presence of a single point defect
at the wire’s cutoff frequencies. We show that at these frequencies while the conductance patternsi.e., the
scatteringd is strongly affected by the presence of the defect, the pattern is totallyindependentof the defect’s
characteristicssi.e., the defect that caused the scattering cannot be identified from that patternd. The change in
the conduction pattern can cause universal attraction and/or repulsion forces between two parallel conducting
wires.
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One of the most common ways to investigate the inner
structure of a system is to perform scattering studies. That is,
by looking at the scatteringpattern sthe way waves are dis-
tributed in spaced one can cull some notion about the scat-
terer that was the cause of the specific scattering pattern. Our
experience shows that every scatterer has a different scatter-
ing pattern. That explains the ubiquity of scattering tech-
niques in the diagnostic world: for crystallographic studies, x
rays are used; visible light is usually used to detect molecule
energy levels; ultrasound waves are commonly used for em-
bryo imaging, etc.

In this paper, we discuss a case of a narrow wire at
specific energies in which our experiencesthat every scat-
terer has a different scattering patternd fails. In this case, the
scatterer has a strong influence on the dynamics of the
system, both in terms of conductanceseither high or lowd
and on the conduction pattern. However, the conductance
and the scattering pattern aretotally independentof the scat-
terer. The scatterer’s elusive conduct can be phrased:One
can see the scatterer’s “footprints” (its strong influence), but
cannot see its “fingerprints” (anything that may assist to
characterize it).

When we think of a small and weak scatterer, the thing we
usually have in mind is a scatterer whose influence on scat-
tering is negligible. One of the reasons for this is that we are
accustomed to a 3D world. In this case, the cross section is
s,V2 ssee Ref. 1d, whereV is the scatterer strengthspoten-
tiald, i.e., it vanishes with scatterer potential. In 1D, however,
this is definitely not the case. It is well known that when the
incident particles’ energy is considerably lowerssee belowd
than the scatterer’s strengthsi.e., the scatterer’s potentiald,
most of the incident particles are reflected from the scatterer,
i.e., the scattering coefficient is large regardless of scatterer’s
weak potentialsso long, of course, as the particles’ energy is
lower than the scatterer’s potentiald. This behavior can be
presented easily in the case of a weak scatterer, in which the
reflection coefficient is related to the 1D scattering cross sec-
tion. By using the term “weak scatterer”sor “shallow scat-
terer”d we refer to the case in which its strengthsits
weak potentialDVd and its widthsLd satisfyÎDVL!1 swith
the units"=2m=1d. In this case, the reflection coefficient
maintains

R.
1

1 + 4v/sDVLd2 , s1d

where v is the energy of the incident particles. One can
easily be convinced, though quite surprisingly, that the ex-
treme case of theinfinitely shallowpotential barrier is actu-
ally the 1D delta function. That is, for the potential barrier
adsxd sor the limit of DV=a /L for L→0d, the reflection
coefficient reads

R=
1

1 + 4v/a2 s2d

snotice that now this is an equation and not merely an ap-
proximationd. Equationss1d ands2d, despite their simplicity,
hold some behaviors, which cannot be found in 3D scatter-
ing. These behaviors can be summarized in three points:

s1d The reflection coefficientincreaseswhen the energy
decreases.

s2d The scattering is strongshigh scattering coefficientd
despite the scatterer’s “weakness”sweak potentiald.

s3d The scattering forv→0 is independentof the scat-
terer sit does not depend onad.

The third point is probably the most peculiar, since it
contradicts our statement that each scatterer has a distinct
scattered wave function. However, in 1D this feature is
hardly interesting since it is valid only for zero incident par-
ticle energysv=0d. A particle with zero energy has little
chance of even reaching the scatterer. In quasi-1D systems,
the situation can be quite different.

In the case of the thin wire, for example, there are an
infinite number of thresholdscutoffd energies. When the in-
cident particles have exactly the cutoff energy of themth
mode, no energy is transferred to itsto themth moded, since
the momentumsor the k vectord of this mode in the propa-
gation direction is zero. Therefore, it makes sense to expect
to find all the peculiarities of the 1D case, even in a 2D wire,
near the threshold energies.

For such a systemspoint impurity in a quasi-1D wired the
2D Schrödinger equation is
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¹2c + sv − Vdc = − Dsr − r 0dc s3d

swhere we use the units"=2m=1d. V is the potential of the
wire walls sV=0 inside the wire andV=` outside itd, D is
the defect potential andr 0=«ŷ is the impurity locationssee
Fig. 1d. Since the defect has the properties of a pointlike
impurity, the right-hand term of the Schrödinger equation
can be writtenDsr −r 0dcsr 0d2, which allows for an exact
scattering solution.

Let us assume that we hit the impurity with the incident
wave cinc. Taking advantage of the pointlike nature of the
impurity, the scattered wave function due to the defect is3–5

csc= cinc −

cincsr 0d E dr 8Dsr 8 − r 0d

1 +E dr 8G+sr 8,r 0dDsr 8 − r 0d
G+sr ,r 0d, s4d

whereG+sr 8 ,r 9d is the “outgoing” 2D-Green function of the
geometrysthe wired. It should be noted that Eq.s4d is an
exact solution; however, if the impurity were not an ideal
point impurity, this equation would be a first-order approxi-
mation in the asymptotic solutionur →`u. The Green func-
tion for the given wire geometry takes the form

Gsr ,r 8d = io
n=1

`
sinsnpydsinsnpy8d

Îv − snpd2
expfiÎv − snpd2ux − x8ug

s5d

where r ;xx̂+yŷ and r 8;x8x̂+y8ŷ. Hereinafter, the length
parameters are normalized to the wire’s width.

Choosing the right potential for the impurity is a very
tricky business as can be understood from the literature.6–12

A simple 2D delta functions2DDFd, which is a natural can-
didate to represent a point impurityssuch as in 1Dd, i.e.,
dsxddsyd, does not scattersits cross section is zero, see the
discussion in Ref. 17 of Ref. 13d. Throughout this paper we
use the impurity D functionsIDFd that was first presented by
Azbel.2 However, since in our wire’s geometry the problem’s
symmetry is Cartesian rather than radial, we choose the fol-
lowing IDF sit should be stressed, however, that a qualita-
tively similar effect will appear even for a finite-size, but
small, scattererd:

Dsr d ; lim
r→0

2Îpdsxd
r lnsr/r0d

exps− y2/r2d. s6d

Unlike the 2DDF, this potential, which is infinitely shal-
lower than the 2DDF, does scatter.2 The de Broglie wave-
length of the impurity’s bound state islB=pr0expsg /2d /2
swhereg.0.577 is the Euler constantd. This is the only pa-
rameter that characterizes the impurity, and therefore Eq.s6d
can be used to mimic any impurity with the same de Broglie
wavelength, where its width is much smaller thanlB.

On the face of it, the solution is straightforward: simply
to substitute Eqs.s6d and s5d into Eq. s4d. The problem
is that the Green function has a logarithmic singularity at
ur −r 8u→0. Here is where the impurity’s widthr plays a
major part, and the limitr→0 should be taken with great
caution. Therefore, we first solve the integral for a finiter
and only then evaluate the limit.

Let us assume that the incident wave is thenth mode, and
that the incident energy is close to themth threshold energy
fi.e., v.smpd2g. Therefore,

cincsr d = sinsnpydexpfiÎv − snpd2xg. s7d

The probability density of Eq.s7d is presented in Fig. 2
for n=1 andm=2.

By using the following relation,

E
−`

`

dy sinsnpydexpf− sy − «d2/r2g = rÎpsinsnp«dexpf

− snpr/2d2g, s8d

we find the solutionsfor x.0d

cscsr d = o
l=1

`

sdnl − AnldsinslpydexpfiÎv − slpd2xg s9d

wherednl is the Kronecker delta and

Anl ;
sinsnp«dsinslp«d

iÎv − slpd2S lnsr0/r̄d
2p + o

n8øm

sin2sn8p«d

iÎv−sn8pd2D s10d

and r̄ is some length scale which depends on the impurity’s
location s«d, the incident energyv andm:

FIG. 1. A 2D wire with a single point defectsblack dotd.

FIG. 2. The probability density distribution in the wire for
n=1 andv=s2pd2 in the absence of the point defect.
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lnsr̄d ; lim
r→0
H ln r + 2p o

n8=m+1

`
sin2sn8p«d
Îsn8pd2 − v

e−sn8pr/2d2J .

s11d

In this paper we discuss the case wherev.smpd2 for
any integerm fthough the figures are focused on the case
v.s2pd2, i.e., m=2g. In this particular case only thenth
modesthe incident moded and themth one have a consider-
able influence on the scattering,

csc. cinc −
sinsnp«d
sinsmp«d

sinsmpydeiÎv−smpd2uxu

1 + iÎv − smpd2/Dm

, s12d

where

Dm
−1/2 ;

lnsr0/r̄d
2p sin2smp«d

− i o
n8,m

sin2sn8p«d
sin2smp«d

1

pÎm2 − n82
.

s13d

The scattered wave function, i.e., Eq.s12d, depends on the
scatterer’s parametersr0d only via Dm. Therefore, when

fv − smpd2g/Dm ! 1, s14d

one finds the following.
s1d When the energy is not close to the threshold energy,

the scattering is negligible; as we get closer to the threshold
energy, the scattering increases.

s2d The scattering coefficient is largescan haveany
valued regardless of the vanishing cross section of the scat-
terer.

s3d Near the threshold energies, the scattering isindepen-
dent of the scatterersit does not depend on the scatterer’s
parameterd.

Again, the most bizarre behavior is the third one, which is
manifested in the limitv→ smpd2 of Eq. s12d ssee Fig. 3d:

csc= cinc −
sinsnp«d
sinsmp«d

sinsmpyd. s15d

Equation s15d, which presents the scattering of thenth
mode, when its energy is equal to the threshold energy of the
mth one, can be generalized for a wire with an arbitrarysbut
uniformd cross section,

csc= xnsydeiÎvm−vnx −
xns«d
xms«d

xmsyd, s16d

wherexnsyd is the transversal eigenstates of the wire, with
the corresponding eigenenergiesvn.

While Eq. s12d is an approximation, Eqs.s15d and s16d
are totally accurate forany point impurity, and at any impu-
rity’s location.

In the case of a surface impurity, i.e.,«→0 sor «→1d, Eq.
s12d is reduced to an even simpler expression

csc. cinc 7 S n

m
DsinsmpydeiÎv−smpd2uxu

1 + iÎv − smpd2/Dm

, s17d

where

Dm
−1/2 .

lnsr0/C«d
2psmp«d2 s18d

and

C ; 4 expfg/2 − Cispdg . 5 s19d

is a numerical constantsCi is the cosine integrald. The upper
sign sminusd in Eq. s17d stands for impurity at the lower
boundary«!m−1 while the plus implies an upper boundary
impurity 1−«!m−1 fin this case the« should be replaced by
1−« in Eq. s18dg.

Thus, at the threshold energy, i.e.,v=smpd2,

csc= sinsmpydeipÎm2−n2x 7 S n

m
Dsinsmpyd. s20d

That is, in the case of asurface impurity then close
enough to the threshold energiesfi.e., when Eq.s20d holdsg,
the scattering is also independent of the impurity’slocation.
Any impurity’s characteristics have faded away near the
threshold energies. Equations20d does not reflect any feature
of the scatterer: it depends neither on its strength nor on its
location.

The most direct way to measure the effect is by an inter-
ference experiment as suggested in Ref. 4. However, in the
case of a conducting wire the effect is also accompanied by
electric forces. In the case presented in Fig. 4, for example,
two identical conducting wires are placed one next to the
other with a single impurity in both. When the incident par-

FIG. 3. The probability density distribution in the wire for
n=1 andv=s2pd2 when the point defect is present.

FIG. 4. The change in the scattering pattern can cause a net
attraction between two conducting wires.
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ticles’ energy is exactly at the second cutoff levelsi.e.,
m=2d, and the incoming function is equal to Eq.s7d with
n=1, the scattering pattern that appears reorganizes the
charge distribution along the wire, causing a net attraction
forces between the wires. Clearly, the attraction can easily be
flipped into repulsion by simply positioning one of the im-
purities at the opposite side of the wire. Due to the univer-
sality, the forces will depend on the impurities’ presence but
not on their characteristics.

The forces between the wires decay exponentially with
the distance between them, where the decay length is of the
order of the wavelength. When the incident particles’s energy
is lower than the second threshold energy the forces will
disappear.

It was shown in the literaturessee, for example, Ref. 6d
that at the threshold energies, the conductance is totally

quantized and is independent of the point defects; however,
here we show two additional results: the scattering coeffi-
cient is not a negligible quantity, it does not affect the con-
ductance but it does distort the conductionpattern si.e., it
changes the scattered wave functiond, and, at the same time,
that this severe distortion isindependent of the scatterer that
caused it.

It should be stressed that while the discussion was fo-
cused on quantum wire, this effect can occur in any wave-
guide with a single point scatterer: acoustical waveguide,
electromagnetic waveguide, optical waveguide, etc. More-
over, although for convenience we used an IDF as the defect
potential, the same analysis can easily be generalized to any
chosen point scatterer.

I am grateful to Mark Azbel for enlightening discussions.
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