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Transmission coefficient for a point scatterer at specific energies is affected by the presence
of the scatterer but independent of the scatterer’s characteristics
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We calculate the exact transmission coefficients of a quantum wire in the presence of a single point defect
at the wire’s cutoff frequencies. We show that at these frequencies while the conductance (peteitme
scattering is strongly affected by the presence of the defect, the pattern is tatdiypendenof the defect’s
characteristicgi.e., the defect that caused the scattering cannot be identified from that paktesrchange in
the conduction pattern can cause universal attraction and/or repulsion forces between two parallel conducting

wires.
DOI: 10.1103/PhysRevB.71.035407 PACS nunt®er61.72.Dd, 72.10.Fk, 03.65.Nk
One of the most common ways to investigate the inner R 1 @
structure of a system is to perform scattering studies. That is, ~ 1+ 4wl(AVL)?’

by looking at the scatteringattern (the way waves are dis-

tributed in spaceone can cull some notion about the scat-

terer that was the cause of the specific scattering pattern. Owhere o is the energy of the incident particles. One can
experience shows that every scatterer has a different scattegasily be convinced, though quite surprisingly, that the ex-
ing pattern. That explains the ubiquity of scattering tech-treme case of th@finitely shallowpotential barrier is actu-
niques in the diagnostic world: for crystallographic studies, xally the 1D delta function. That is, for the potential barrier
rays are used; visible light is usually used to detect moleculexd(x) (or the limit of AV=a/L for L—0), the reflection
energy levels; ultrasound waves are commonly used for engoefficient reads

bryo imaging, etc.

In this paper, we discuss a case of a narrow wire at 1
specific energies in which our experieng@bat every scat- R=———
terer has a different scattering pattefails. In this case, the 1+ 4ol
scatterer has a strong influence on the dynamics of the
system, both in terms of conductanggither high or loww  (notice that now this is an equation and not merely an ap-
and on the conduction pattern. However, the conductancproximation. Equationg(1) and(2), despite their simplicity,
and the scattering pattern awtally independenof the scat- hold some behaviors, which cannot be found in 3D scatter-
terer. The scatterer’s elusive conduct can be phra®ed ing. These behaviors can be summarized in three points:
can see the scatterer’s “footprints” (its strong influence), but (1) The reflection coefficienincreaseswhen the energy
cannot see its “fingerprints” (anything that may assist to decreases.
characterize it) (2) The scattering is stron¢high scattering coefficient

When we think of a small and weak scatterer, the thing wedespite the scatterer’s “weaknegg/eak potential
usually have in mind is a scatterer whose influence on scat- (3) The scattering forw— 0 is independenbf the scat-
tering is negligible. One of the reasons for this is that we arderer (it does not depend oa).
accustomed to a 3D world. In this case, the cross section is The third point is probably the most peculiar, since it
o~V? (see Ref. 1, whereV is the scatterer strengtpoten-  contradicts our statement that each scatterer has a distinct
tial), i.e., it vanishes with scatterer potential. In 1D, however,scattered wave function. However, in 1D this feature is
this is definitely not the case. It is well known that when thehardly interesting since it is valid only for zero incident par-
incident particles’ energy is considerably low@ee beloyw ticle energy(w=0). A particle with zero energy has little
than the scatterer’s strengthe., the scatterer’s potentjal chance of even reaching the scatterer. In quasi-1D systems,
most of the incident particles are reflected from the scatterethe situation can be quite different.

i.e., the scattering coefficient is large regardless of scatterer’'s In the case of the thin wire, for example, there are an
weak potentialso long, of course, as the particles’ energy isinfinite number of thresholdcutoff) energies. When the in-
lower than the scatterer’s potenjiallhis behavior can be cident particles have exactly the cutoff energy of thth
presented easily in the case of a weak scatterer, in which th@ode, no energy is transferred tdtio themth mods, since
reflection coefficient is related to the 1D scattering cross secthe momentun{or thek vectop of this mode in the propa-
tion. By using the term “weak scatteref®dr “shallow scat- gation direction is zero. Therefore, it makes sense to expect
terer’) we refer to the case in which its strengtits to find all the peculiarities of the 1D case, even in a 2D wire,
weak potentiah\V) and its width(L) satisfy VAVL<1 (with near the threshold energies.

the unitsh=2m=1). In this case, the reflection coefficient  For such a systertpoint impurity in a quasi-1D wirgthe
maintains 2D Schrodinger equation is

(2)
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FIG. 1. A 2D wire with a single point defe¢black do}.
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FIG. 2. The probability density distribution in the wire for
(where we use the units=2m=1). V is the potential of the n=1 andw=(2m)? in the absence of the point defect.
wire walls (V=0 inside the wire and/=« outside i}, D is
the defect potential andy=ey is the impurity location(see Unlike the 2DDF, this potential, which is infinitely shal-
Fig. 1). Since the defect has the properties of a pointlikelower than the 2DDF, does scatfefhe de Broglie wave-
impurity, the right-hand term of the Schrodinger equationjength of the impurity’s bound state ¥g=mpoexp(y/2)/2
can be writtenD(r —ro)y(ro)?, which allows for an exact (wherey=0.577 is the Euler constantThis is the only pa-
scattering solution. rameter that characterizes the impurity, and therefore(@q.
Let us assume that we hit the impurity with the incidentcan be used to mimic any impurity with the same de Broglie
wave .. Taking advantage of the pointlike nature of the wavelength, where its width is much smaller then
impurity, the scattered wave function due to the defetPis On the face of it, the solution is straightforward: simply
to substitute Eqs(6) and (5) into Eq. (4). The problem

_ "Ny is that the Green function has a logarithmic singularity at

~ dl‘”C(rO)fdr D(r’ =10 . Ir=r’|—0. Here is where the impurity’s width plays a

¥se= Yinc ~ G'(r.ro), (49 major part, and the limip— 0 should be taken with great
1 +f dr’'G*(r',rg)D(r’ =ry) caution. Therefore, we first solve the integral for a finite

and only then evaluate the limit.

Let us assume that the incident wave is title mode, and
that the incident energy is close to thh threshold energy
[i.e., w=(mm)?]. Therefore,

whereG*(r’,r") is the “outgoing” 2D-Green function of the
geometry(the wire. It should be noted that Ed4) is an
exact solution; however, if the impurity were not an ideal
point impurity, this equation would be a first-order approxi- )  —
mation in the asymptotic solutiom —|. The Green func- Yinc(r) = sinnmy)exdive = (n7)X]. )

tion for the given wire geometry takes the form The probability density of Eq(7) is presented in Fig. 2

for n=1 andm=2.
By using the following relation,

i sin(nzry)sin(nary’)

: ——exgivo - (nm)?x=x'[]
=1 No-—(nm)

G(r,r’) =i

(5) fe dy sin(nmy)exp - (y — £)%/p?] = p\msin(nare)exd

wherer =xx+yy andr’ =x'X+y’y. Hereinafter, the length
parameters are normalized to the wire’s width.

Choosing the right potential for the impurity is a very , i
tricky business as can be understood from the literdtdfe. We find the solutior(for x>0)
A simple 2D delta functio2DDF), which is a natural can-
didate to represent a point impurifguch as in 1D i.e., - ) —
d8(x)8(y), does not scatte(its cross section is zero, see the Yed1) = 2 (8 = Awsin( my)exdive = (1m)>]  (9)
discussion in Ref. 17 of Ref. 13Throughout this paper we =1
use the impurity D functioflDF) that was first presented by
Azbel? However, since in our wire’s geometry the problem’s
symmetry is Cartesian rather than radial, we choose the fol- ) i
lowing IDF (it should be stressed, however, that a qualita- A, sin(nmre)sin(l z) (10)
tively similar effect will appear even for a finite-size, but " Wm(@ + > sirf(n m))

- (nmpl2)?], (8)

where &, is the Kronecker delta and

small, scatterer Ve iNo=(n"m)
D(r) = ”mMexp(_ y2p?). (6) andp is some length scale which depends on the impurity’s
p—0p In(p/po) location (g), the incident energw andm:
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FIG. 4. The change in the scattering pattern can cause a net

FIG. 3. The probability density distribution in the wire for ! ) )
attraction between two conducting wires.

n=1 andw=(27)? when the point defect is present.

2 s _ ook _ Xn(&)
In(e) = im 3 Inp+27 3 f—m%e—m'w . Vo= Xa(V)E () XY (16)
= n’=m+1 -

where x,(y) is the transversal eigenstates of the wire, with
(11) the corresponding eigenenergies
In this paper we discuss the case where(mm)? for While Eq.(12) is an approximation, Eqs15) and (16)
any integerm [though the figures are focused on the casé*'® totally accurate foany point impurity and at any impu-
w=(2m?, i.e., m=2]. In this particular case only thath  ity’S location.

mode(the incident modeand themth one have a consider- _ I the case of a surface impurity, i.e+ 0 (or e — 1), Eq.
able influence on the scattering, (12) is reduced to an even simpler expression

sin(nare) sin(may)e Yo (mm?2ix _ _ ([ n\sin(mmy)e" x|
Wse = Yinc — n( me) ( Ty) ; (12 se= thnc + m T 2 (17)
sinimze) 1 +iVow - (mm)/A, 1+iVo— (mm)IAy,
where where
AV2 In(po/p) iy sin(n’ mre) 1 . Ar_nllz =~ M(LCS)Z (18)
" 2msif(mme) 7 sit(mae) gymP-n'2 2m(mre)
(13) and
The scattered wave function, i.e., E42), depends on the C=4exiy2-Cim]=5 (19
scatterer’s parametépo) only via Ap,. Therefore, when is a numerical constari€i is the cosine integral The upper
_ 2 _ sign (minug in Eq. (17) stands for impurity at the lower
L= (mm)YAm <1, (14) boundarye <m™ while the plus implies an upper boundary
one finds the following. impurity 1-s<m* [in this case the should be replaced by
(1) When the energy is not close to the threshold energyl -« in Eq. (18)].
the scattering is negligible; as we get closer to the threshold Thus, at the threshold energy, i.e=(mm)?,
energy, the scattering increases. ‘
(2) The scattering coefficient is largécan haveany o= Sin(mmy)e ™M <E>sin(mq-ry). (20)
valug regardless of the vanishing cross section of the scat- s m
terer.

That is, in the case of &urface impurity then close
. ,_enough to the threshold energie€., when Eq(20) holds],
dent of the scatterefit does not depend on the scatterers,the scattering is also independent of the impuritgisation

parameter. ) S e
Again, the most bizarre behavior is the third one, which isAny impurity's characteristics have faded away near the

: . S . threshold energies. Equati¢®0) does not reflect any feature
2
manifested in the limits— (mm)“ of Eq. (12) (see Fig. X of the scatterer: it depends neither on its strength nor on its

sin(nme) . location.
Ysc= Yinc ~ msm(mwy). (15 The most direct way to measure the effect is by an inter-
ference experiment as suggested in Ref. 4. However, in the
Equation (15), which presents the scattering of théh  case of a conducting wire the effect is also accompanied by
mode, when its energy is equal to the threshold energy of thelectric forces. In the case presented in Fig. 4, for example,
mth one, can be generalized for a wire with an arbitidmyt ~ two identical conducting wires are placed one next to the
uniform) cross section, other with a single impurity in both. When the incident par-

(3) Near the threshold energies, the scatteringdgpen-
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ticles’ energy is exactly at the second cutoff leygke., quantized and is independent of the point defects; however,
m=2), and the incoming function is equal to E() with here we show two additional results: the scattering coeffi-
n=1, the scattering pattern that appears reorganizes thgent is not a negligible quantity, it does not affect the con-
charge distribution along the wire, causing a net attractiojuctance but it does distort the conductipattern (i.e., it
forces between the wires. Clearly, the attraction can easily b@hanges the scattered wave funcljceand, at the same time,
flipped into repulsion by simply positioning one of the im- that this severe distortion independent of the scatterer that
purities at the opposite side of the wire. Due to the universysed it
sality, the forces will depend on the impurities’ presence but |t should be stressed that while the discussion was fo-
not on their characteristics. , __cused on quantum wire, this effect can occur in any wave-
The forces between the wires decay exponentially withyige with a single point scatterer: acoustical waveguide,
the distance between them, where the decay length is of tr@ectromagnetic waveguide, optical waveguide, etc. More-
order of the wavelength. When the incident particles’s energ¥er, aithough for convenience we used an IDF as the defect
is lower than the second threshold energy the forces willgtential, the same analysis can easily be generalized to any

disappear. _ , chosen point scatterer.
It was shown in the literaturésee, for example, Ref.)6

that at the threshold energies, the conductance is totally | am grateful to Mark Azbel for enlightening discussions.
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