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Nonlinear surface impurity in a semi-infinite lattice
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We examine the formation of bound states on a generalized nonlinear impurity located at or near the
beginning(surface of a linear, tight-binding semi-infinite lattice. Using the formalism of lattice Green func-
tions, we obtain in closed form the number of bound states as well as their energies and probability profiles, for
different nonlinearity parameter values and nonlinearity exponents, at different distances from the surface. It is
shown that close to the surface, the amount of nonlinearity needed to create a bound state or to effect
dynamical self-trapping, increasédecreasgsdepending on whether the exponent is smallargen than,
approximately, 2.
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The interplay of nonlinearity and discreteness has reof the lattice spacing, one might surmise that, by placing the
ceived considerable attention recehthecause it plays a vi- nonlinear impurity at or near the surface of a semi-infinite
tal role in the emergence of a different kind of excitation in lattice, the nonlinearity strength needed to affect localization
extended, nonlinear systems with discrete translational inwould decrease, facilitating in this way its creation and ex-
variance, known as intrinsic localized modésM ). These  perimental observation. As a step in that direction, in this
ILMs are generic to physical systems of interest, such asvork we examine a simple model consisting of an electron
arrays of nonlinear optical waveguidemolecular crystald, (or excitation propagating in a semi-infinite, linear chain,
biopolymers? arrays of Josephson junctionsand even which contains a single nonlinear impurity at a distagce
Bose-Einstein condensates in magneto-optical ttaps. from the beginning“surface” of a semi-infinite chair{Fig.

Given the strictly local manner in which nonlinearity en- 1), we examine the conditions for the existence of bound
ters into the effective evolution equations in all these casestatgs) and the dynamical self-trapping properties, and we
(see below, one is led to the idea that in the limit of strong compare them to the results obtained for the infinite cAain.
nonlinearity, one could approximate a typical nonlinear sys-
tem by a linear one containing a small cluster of nonlinear |. BOUND STATES
sites or even a single nonlinear impurity. The system, thus
simplified, is amenable to exact mathematical treatment, and We consider Eq.(1) for a semi-infinite lattice (n
the influence of other potentially competing effects, such as0,1,..) and normalize all energies to the half bandwidth
dimensionality, boundary effects, noise, etc., can be moref the infinite chain case. The Hamiltonian is given by
easily studied without losing the essential physics. L

For a one-dimensional discrete system in the presence of _= B
a single nonlinear impurity, located atd, the dynamics is H= 2E (Im}n+ 2+ n+ 1¢n) + %Cdldxd],  (2)

given by the well-known discrete nonlinear Schrodinger ) )
(DNLS) equation where{|n)} are Wannier states ang= x/(2V). The dimen-

sionless Green functio®=1/(z—H) can be formally ex-
panded a¢ G=G?+GOH,G?+GOH,GOH,GO+.-.,
where G© is the unperturbedy=0) Green function and
H,=7|Cyl#|d)(d|. The series can be resumed to all orders to
whereC, is the probability amplitude for finding the excita- yield
tion on siten, V is the nearest-neighbor transfer matrix ele- CIAGOGO
ment, y is the nonlinearity parameter, agitis the nonlinear- G. =GO 4+ m
ity exponent. Usually, but not alwaygg=2, which, in a (& e
condensed-mater context, corresponds to an underlying har-

monic oscillator degree of freedom “enslaved” to the excita-Where Gn=(M/G|n). Now, we cannot use Eq3) directly

tion (electron at the impurity site. When this vibrational P&cause welfdo not kno, but \(/jve will (:]etermme It ';hrr?u%h g
impurity is anharmonic in nature, othgrvalues are possible, an exact seb -c_on(sjlstent prr]oce t’re' The e.”efgg 0 tl € boun
in principle, with 3< 2 corresponding to a “hard” vibrational Stat€s) is obtained from the poles dBy, i.e., by solving
impurity while 8> 2 corresponds to a “soft” cade.
Bound states for single nonlinear impurities embedded mOLOLO_._OLOLO_VO ..

infinite  lattices include chairs!® Cayley trees! q

; . . . : 0 1 2
triangular’® and cubié?13lattices. Now, since the creation of

a bound state, or the dynamical self traping at the impurity FIG. 1. A nonlinear impurity near the surface of a one-
site implies the localization of energy on a scale of the ordetimensional chain.

n=0

Lo

dt V(Chi1+Chop) — X|Cn|ﬁcn5n,d (=1, (1
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1=9|C4/fGJ(z,). On the other hand, the bound-state ampli- ~ 2° ' ' ' ' ' '
tudesC, are obtained from the residues @f,,, at z=z,. In 15l 2 bound states 2 bound states
particular at the impurity site,|Cy*=RegGyy(2)}=, '

:—fog (z,) /G’(O (z,). Inserting this back into the bound- 7 19
state energy equa‘uon leads to

(d=0)

0.5 _

1 G<O)5+1(Zb) 0 bound states 0 bound states

= —dd 1 1 1 1 1 1
== — ) 7L (4) 0.0
Y [ dd (Zb)] 20 T T T T T T
. e 2 bound states 2 bound states

The unperturbed Green l‘unctlotr':’nﬁfq):1 for the semi-infinite 15 1t -
lattice can be calculated by the method of mirror images.
Since there is no lattice to the left oF0, G(Ozlshould vanish 1 10 =2) 17 @=3

identically at n=-1. Thus, G(O)(z) G2 =G -n-2(2),
where G, (z) is the Green function for the infinite 0 bound states 0 bound states
lattice G;,.(2) = sgn(2)(1 /22— 1)[z- sgr(2)\ 22— 1]"™, where 0.0 ' . - - - -

sgn(z)=+1(-1) for z>0(<0). Therefore, o 1t 2z g3 401243 4

[Z Sgr(z)\22 1]\n m| FIG. 2. Phase diagram in-B space showing the number of
bound states for different distances impurity surféoeunits of the
lattice constant

GOz = sgr{z

1 —_—
— I |2 _ q7In+2+m|
sg12) VZ2 - 1[2 sgriznz - 1] - As to the stability of these bound states, it is easy to see

from a graphical analysis of the structure of KE4) that, as

From Eq.(5) we note the parity propert@ Z)=—Gé%)(2), nonlinearityy is increased, one of the bound states becomes
which |mpI|esG’(°( -z)= G’(O)(z) This means, according to more and more localized while the other becomes more and
Eqg.(4) that the change— -y reverses the sign a,. Onthe  more delocalized. Since, in the limit of high nonlinearity, the
other hand, from Eq(1), it is possible to deduce that the effective coupling among sites is negligible, one would ex-
changey— -y is equivalent to the changé,—(-1)" C,.  pect the bound state to become more and more localized.
Since we are interested in a localized state, witzrean be  Therefore, the state with the smaller localization length is
chosen as real, we conclude that a change in sign of thetable, the other unstable. This qualitative argument is con-
nonlinearity parameter reverses both the “staggered” charaémed by the more rigorous procedure of examining the
ter of the bound state and the sign of the localized statélamiltonian flow of the system around the two fixed points
energy. (bound states

After inserting Eq.(5) into (4), the general structure for Figure 3 shows the critical nonlinearity for the onset of a
the number of bound states emerges. For any finite disthncebound state, as a function of the distance from the impurity
from the surface and any positive value of the expongnt to the lattice “surfacen=0), for different nonlinearity ex-
there is a critical amount of nonlinearitybelow which there  ponents. Significant differences from the infinite lattice case
is no bound state and above which there are two boundre apparent. As the impurity is placed closer and closer to
states. FoiB exponents smaller than 2 andss increased, the surface, the critical nonlinearity to create a bound state
one of the bound states tends to merge with the band edge, Btcreases or decreases, depending on whether the nonlinear
that in the limit of a very deep impurity, there is only a single exponent is below or above 2. In particular, for the all-
localized bound state. F@> 2, however, agl is increased, important standard DNLS cagg=2, the presence of a sur-
both bound states remain localized. In the special case of face increases the nonlinearity needed to create a bound
linear impurity (8=0), there is a single bound state provided state, which is contrary to popular belief that a surface would
y>1/(d+1). Thus, in the limitd— o these results are con- help localize the electron.
sistent with the case of a completely infinite lattfca:single
bound state foB< 2, and for>2, a critical curve in non-
linearity strength and nonlinearity exponent space, separating
a region with no bound states from a region with two bound
states. At the surfac@=0), the critical curve is given by

(1 +:8)(1+B)/2
2ﬁﬁ/2

g
=

B4

—
h

B-3

. \‘—ﬂ—g B=2

\\\\ﬁi«
=0

10

Critical nonlinearity
() —_
o

Ye= (6)

In particular, for the DNLS case,=3%%/4~1.3, larger than

the value for the infinite chaify,=1). Figure 2 shows phase
diag_rams in?’jﬁ space showing the numbgr of bound states FIG. 3. Scaled critical nonlinearity for onset of a bound state as
at different distances between the impurity and the “sur- a function of the distance from the nonlinear impurity to the “sur-

face” of the system. face” of the chain.

Distance from surface
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FIG. 4. Probability profile for the stable bound state at different  FIG. 6. Nonlinear impurity bound-state energy as a function of

impurity positions(8=2, y=1.305. distance impurity surface fog=2 and y=2 (uppep and y=-2
(lower).

For a given value of exponem and any inclusion dis-
tanced, the bound state probabilitY profil€,|? is given in  state(Fig. 3). In both cases, for a fixed distance, an increase
closed form by |C,|2=A[Q"d-Q™d2] where Q=2z, of the nonlinear exponeng results in an increase of the
_\;'Zg_l,AE(Zb_Q)/{Zb+[Zb+2(1+d)\yz§_1]Q2(1+d)} andz, nonlinearity threshold for self-trapping. The same behavior
is the solution of Eq.(4). Simple analysis of this profile Was observed previously for an impurity in a completely
shows that/C,2 has always a single hump at=d. This infinite chain? This phenomenon is not hard to explain.
profile is shown in Fig. 4 for the standard DNI(B=2) and 5'n%e|(?n| <1, we see from Eq(1) that asp> 0 is increased,
a nonlinearity strengthy just above critical, at four different Cyl” will necessarily decrease, which implies that a larger
impurity locations under the surface. Its general features ar#ill be needgd to keep the value of tieéfectiveimpurity
shared by othe exponents. Below the surface, the prob- strengthy|C4/?. Thus, at a fixed impurity-surface distance, a

ability profile converges quickly to the infinite lattice case ashigher 8 implies a highery.. Another interesting behavior
d increases past 4. we observe from Figs. 5 and 3 is that for a fixed nonlinearity

exponent, the critical nonlinearity depends roughly on
whether the exponent is below or abov®. For <2, an
increase in the impurity-surface distandgesults on a de-

We numerically compute the long-time average probabil-crease ofy., while for >2, an increase il increasesy..
ity at the impurity sitePd:IimT%(llT)fgdﬂCd\zfor several Thg explanation of this ph_eno_menon seems to rest on the
distancesd from the surfacén=0). As the initial condition delicate balance between kinetic and potential energies. If we

we use a completely localized excitation on the impurity site?SSUme an electronic bound statewith localization length

_ : - A \, then on normalization grounds we hay@|?>~1/\.
Ch(0)= 68,4 Figure 5 shows the critical nonlinearity for self - L _ 9 5 .
trapping (P4>0) as a function of the distance between theThe kinetic energy content .'$K.~h /2m)\_ » While the
nonlinear impurity and the chain surface, for different non-2verage potential ‘energy is, in magnitude, equal to
o ' =  AV=[dx V)W () [2=1 dx Y P (x)|B | ¥ (x)|2~ yal NLHE2)]]
linearity exponent values. In general, the behavior is qualita- h is of the order of the latii ina. Th
tively similar to the one observed for the onset of a bound/"€rea 1S of the order ot the fatlice spacing. Thus,

II. DYNAMICAL SELF TRAPPING

AVIAK ~ y\TF2) (7)
225 / p=4 On the other hand, as the impurity is brought closer to the
g surface, the wave function becomes more “compressed”
éz.o —" p=3 (Fig. 4, i.e.,\ decreases abapproaches zero. This implies,
g from Eg. (7), that for 3>2, a decrease in increasesAV
Bk \_'—'_'—H_.—E:?‘. with respect toAK, which means that less nonlinearity is
E . 0\\“4 - needed to maintain a localized state. On the contrarg if
b R p-1 o <2, a decrease in decreasedV with respect toAK and
0 2 4 6 g8 10 now, more nonlinearity is needed to maintain the localized
Distance from surface state.

FIG. 5. Right: Scaled critical nonlinearity for dynamical self
trapping as a function of the distance from the impurity to the chain Ill. COMPLETELY NONLINEAR LATTICE
surface, for several nonlinearity exponents. The empty circles
shown forg=1 andd=4 throughd=10 indicate approximate values In the large nonlinearity limit wherey> vy,,, the single
since the self-trapping is not abrupt. nonlinear impurity results should approximate those corre-
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sponding to a whole nonlinear lattice. For the particular cas@arametery, the preferred position is the very surfate
examined in this work, the “extended” problem consists of=0), while for a negativey, the preferred position is one
the formation of an intrinsic localized modi&-M ) in a semi-  |ayer below the surfacé&l=1). These predictions are indeed
infinite nonlinear latice. Due to the presence of a surface, theonfirmed by direct numerical computations, where the
discrete translational invariance is broken and a natural questamiltonian corresponding to a semi-infinite nonlinear lat-
tion arises: where will the localized state be formed? Ougjce H=(1/2) 27 o(In)n+1]+[n+1)(n[) + y=7_o|Co|In)(n| is
single nonlinear impurity analog can provide an answer. Fogjiagonalized by an iterative procedure. For the particular ex-

each impurity positior, the bound-state energy can be COM-ample in Fig. 6, the error obtained for the ILM energy is
puted as a function ofl. The position corresponding to itS gpout 1%.

minimum value will correspond to the position of the ILM.

Also, the impurity energy and spatial probability profile ACKNOWLEDGMENTS

should approximate the ones corresponding to the ILM. Fig-
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