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The quantized ballistic transmission of a three-dimensional electron gas through a narrow constriction
modeled by an asymmetric hyperboloid is studied. The conductance as a function of voltage jumps by integer
multiples ofe2/ sp"d each time a new transition channel opens in the plane of narrowest restriction, which has
the shape of an ellipse. There are two different modess“whispering gallery modes” and “bouncing ball
modes”d which lead to different conductance steps. The smoothing of the conductance steps is discussed in
terms of phase space tunneling through a dynamical barrier. A comprehensive interpretation of the quantum
mechanical results is obtained from relating them to the corresponding classical motions.
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I. INTRODUCTION

Recent developments in experimental techniques have
opened the way to study ballistic electron transport in a large
number of so-calledmesoscopic systemssuch as, e.g., quan-
tum dots and quantum wires in semiconductor
heterostructures,1 metallic nanowires,2,3 carbon nanotubes,4

quantum corrals,5 and even individual molecules.6 These sys-
tems are typically on the fuzzy borderline between quantum
mechanics and classical mechanics, and therefore offer an
ideal testing ground for semiclassical theories which, e.g.,
lead to the explanation of the universality of conductance
fluctuations.7,8

The geometry of the spatial confinement of the electron
flow often involves one or several narrow constrictions or
point contacts. A point contacts forms, e.g., if the tip of a
scanning tunneling microscope is brought into contact with a
metal surface.9 Due to the strong spatial confinement, quan-
tum effects are particularly strong at such points and can lead
to a quantization of the conductance. Quantized conductance
steps by integer multiples of the “elementary conductance”
e2/ sp"d upon varying the applied voltage were first observed
in quantum point contacts fabricated in semiconductor het-
erostructures by van Weeset al.10 and Wharamet al.11 Mean-
while they are a rather universal phenomenon, also observed
in metal nanowires2,3 and even liquid metals. Experiments by
Rubio, Agraït, and Vieira,12 and independently by Stalder
and Dürig,13 showed that on the formation of a nanoscale
gold contact the conductance jumps are synchronized with
cohesive force oscillations of the order of nanonewtons.

In this paper we consider the transmission between two
three-dimensional electron reservoirs which are connected by
a lead of the asymmetric hyperboloidal shape

x2

c̃2 +
y2

b̃2
−

z2

ã2 = 1 sc̃ ù b̃ . 0,ã . 0d. s1d

We employ a simple jellium model in which the electrons are
assumed to move freely and to be confined to the hyperbo-
loidal lead by a hard-wall potential. Utilizing semiclassical
ideas, this model has been used, e.g., by Staffordet al.14–16to

develop a theory of nanocohesion in metallic wires. The con-
striction s1d has a “bottleneck” in thex-y plane which is

bounded by the ellipsex2/ c̃2+y2/ b̃2=1; see Fig. 1. The mo-
tivation for choosing constrictions of the types1d is that they
are the most general type of three-dimensional constriction
for which the transmission problem can be separated and in
this sense solved explicitly. This paper can thus be consid-
ered as a generalization of the two-dimensional transmission
problem through a hyperbolic constriction studied by Yosefin
and Kaveh.17 The three-dimensional constrictions considered
here include, e.g., the special case of axially symmetric con-
strictions studied by Torres, Pascual, and Sáenz.18 The limit-
ing case of a cylindrical constriction with an elliptic cross
section will be discussed below in more detail.

We assume that the electrons are incident from the bottom
sz!−1d and want to compute the transmission to the topsz
@1d. Following Landauer19,20 and Büttiker21 the conduc-
tance can be obtained from a scattering approach. For zero
temperature the conductance for energyE is given by the
Landauer-Büttiker formula

GsEd =
e2

p"
o
n,m

utnmsEdu2, s2d

where utnmsEdu2 is the transmission probability between the
nth incoming mode and themth outgoing mode for energyE.
For a separable system there is no mode mixing, i.e.,

utnmsEdu2 = TnsEddnm, s3d

wherednm is the Kronecker symbol.
It is convenient to scalesx,y,zd by the semimajor axisc̃

of the bottleneck ellipse. Moreover, for an appropriate scal-
ing of time and mass Planck’s constant has the value 2p si.e.,
"=1d and the unit of energy becomes"2/ sc̃2med with me

being theseffectived mass of the charge carriers. In order to
compute the energy-dependent transmission probabilitiesTn
we have to find solutions of the free Schrödinger or Helm-
holtz equation
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which for z@1 are waves propagating in the positivez di-
rection and satisfy Dirichlet boundary conditions, i.e., we
require the restriction ofc to the hyperboloids1d to vanish.
This defines a so-calledquantum billiardwhich is open in
the sense that there are no constrictions inz direction.

II. SEPARATION OF THE HELMHOLTZ EQUATION

The Helmholtz equation and, equally important, the
boundary conditions can be separated in elliptic coordinates
sj ,h ,zd.22,23Each of them parametrizes a family of confocal
quadrics

x2

s2 +
y2

s2 − b2 +
z2

s2 − a2 = 1, s5d

wheresP hj ,h ,zj, b2=1−b̃2/ c̃2, anda2=1+ã2/ c̃2. For s=j
.a all terms in Eq.s5d are positive and the equation defines
a family of confocal ellipsoids. Their intersections with the
x-y plane, thex-z plane, and they-z plane are planar ellipses
with foci at sx,yd=s±b,0d, sx,zd=s±a,0d, and sy,zd=(±sa2

−b2d1/2,0), respectively. Fora.s=h.b the third term in
Eq. s5d becomes negative. Equations5d thus gives confocal
one sheeted hyperboloids. Their intersections with thex-y
plane are planar ellipses with focisx,yd=s±b,0d; the inter-
sections with thex-z plane and they-z plane are planar hy-
perbolas with foci at sx,zd=s±a,0d and sy,zd=(±sa2

−b2d1/2,0), respectively. Forb.s=z.0 the second and
third terms in Eq.s5d are negative giving confocal two
sheeted hyperboloids. Their intersections with thex-y plane
and thex-z plane are planar hyperbolas with foci atsx,yd
=s±b,0d and sx,zd=s±a,0d, respectively; they do not inter-
sect they-z plane.

Inverting Eq.s5d within the positivesx,y,zd octant gives

x =
jhz

ab
, s6d

y =
Îsj2 − b2dsh2 − b2dsb2 − z2d

bÎa2 − b2
, s7d

z=
Îsj2 − a2dsa2 − h2dsa2 − z2d

aÎa2 − b2
s8d

with

0 ø z ø b ø h ø a ø j. s9d

The remaining octants are obtained from appropriate reflec-
tions. Thesj ,h ,zd-coordinate surfaces are shown in Fig. 2.
The boundary hyperboloids1d sin scaled coordinatesd coin-
cides with the coordinate surfaceh=1, i.e., within the
boundary hyperboloidh is restricted tofb,1g. The parameter
b determines the asymmetry of the cross section of the con-
striction with b=0 leading to an axially symmetric constric-
tion. The parametera determines how strong the narrowness
changes withz: for a→` the constriction becomes cylindri-
cal with an elliptical cross section; fora→1 the constriction
degenerates to thex-y plane with a hole having the shape of
an ellipse.

Equality in one of the equations ins9d gives the Cartesian
coordinate planes:z=0 gives they-z plane;z=b and h=b
give two surface patches which together cover thex-z plane;
h=a andj=a give two surface patches which together cover
the x-y plane; see Fig. 3sad. Considering only the region
enclosed by the boundary hyperboloids1d, the coordinate
planesj=constùa are transverse to thez direction. Note
that the singular coordinate planej=a is a region in thex
-y plane which is enclosed by an ellipse which lies outside of
the hyperboloidal constriction; see Fig. 3sbd. The coordinate
j thus parametrizes the direction of transmission;h and z
parametrize the two directions transverse to transmission.

With the ansatzcsj ,h ,zd=cjsjdchshdczszd the Helm-
holtz equations4d can be separated and turned into the set of
ordinary differential equations

− SÎss2 − a2dss2 − b2d
d

ds
D2

csssd = 2Ess4 − 2ks2 + ldcsssd,

s10d

wheresP hj ,h ,zj andk and l are separation constants. The
equations forj, h, andz are identical, but they have to be
considered on the different intervalss9d and for different
boundary conditions. In fact the equations have regular sin-
gular points22 at ±a and ±b. All the regular singular points
have indices 0 and 1/2, i.e., there are solutions, which near

s= ±a or s= ±b are of the formcsssd=ss−sdqsc̃ssd where

c̃ssd is analytic andqs=0 or qs=1/2. As theelliptic coordi-
natessj ,h ,zd give for the regular singular points ±a and ±b
the Cartesianx-z plane andx-y plane, respectively, the indi-
ces determine the paritiespy andpz of the total wave func-
tion csj ,h ,zd.23 In particular,qb=0 orqb=1/2 correspond to

FIG. 1. Accessible region of a three-dimensional electron gas
confined by the boundary hyperboloids1d.
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total wave functions which havepy=+ or py=−, respec-
tively.

To compute the transmission probabilitiesTn we look for
solutions of the form

cj;nsjdch;nshdcz;nszd + rncj;n
* sjdch;nshdcz;nszd s11d

at the bottomsz!−1d and

tncj;n
* sjdch;nshdcz;nszd s12d

at the topsz@1d. Such solutions can be computed from first
solving the wave equationss10d for the transversal coordi-
natesh and z and the corresponding boundary conditions
with E as a parameter. The boundary conditions forch are
given by the paritypy which yields the index ofch at h
=b and the Dirichlet boundary conditionchs1d=0. The
boundary conditions forcz are determined by the paritiespy
andpx: py determines the index ofcz at z=b andpx deter-
mines whethercz8s0d=0 spx= +d or czs0d=0 spx=−d. This
defines modes which we label by the Dirac “kets”
unh ,nz ,px,pyl where nh and nz are non-negative quantum
numbers which give the number of nodes ofch andcz in the
open intervalsb,h,1 and 0,z,b, respectively. The
modes for energyE determine the separation constants
(ksnh,nz,px,pydsEd , l snh,nz,px,pydsEd). These are used in the equa-
tion for j in s10d from which the transmission probabilities
Tn= utnu2, with n being the set of quantum numbersnz andnh

and paritiespx and py, are then given in terms of the
asymptotic behavior of the resulting solutionscj in the limit
j→` ssee, e.g., Ref. 24d.

For the interpretation of the results below it is useful to
remove the singularities ins10d. This can be achieved by the
transformation

sjsld,hsmd,zsndd = aSdnsl,qd
cnsl,qd

,dnsm,q8d,
b

a
snsn,qdD ,

s13d

where snsf ,qd, cnsf ,qd, and dnsf ,qd are Jacobi’s elliptic
functions with “angle”f and modulusq.25 Here the modulus
is given by q=b/a. q8=s1−q2d1/2 denotes the conjugate
modulus. This is the standard parametrization of elliptic co-
ordinates by elliptic functions.22 To cover the positive
sx,y,zd octantsl ,m ,nd have to vary in the ranges

0 ø l ø `, 0 ø m ø Ksq8d, 0 ø n ø Ksqd, s14d

whereKsqd andKsq8d are Legendre’s complete elliptic inte-
gral of first kind with modulusq and q8, respectively. The
boundary hyperboloids1d has

mB = F„fsa2 − 1d/sa1 − b2dg1/2,q8… s15d

which is Legendre’s incomplete elliptic integral of the first
kind with argumentfsa2−1d / sa1−b2dg1/2 and modulusq8.

FIG. 2. Coordinate surfacesj=5 stopd, h=1 smiddled, and z
=1/2 sbottomd. fsa2,b2d=s5,0.2d.g

FIG. 3. sad Singular elliptic coordinate surfaces.sbd “Bottle-
neck” sshaded regiond in the x-y plane bounded by the hyperboloi-
dal constriction whose intersection with thex-y plane is the ellipse
x2/1+y2/ s1−b2d=1, and singular coordinate patchesj=a and h
=a finside and outside of the ellipsex2/a2+y2/ sa2−b2d=1,
respectivelyg.
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Transformings10d to the coordinatessl ,m ,nd leads to

−
d2

dŝ2cŝsŝd = sŝ
2E

a2 fssŝd4 − 2kssŝd2 + lgcŝsŝd, s16d

whereŝP hl ,m ,nj, ssŝdP hjsld ,hsmd ,zsndj are the functions
from Eq. s13d and thesŝ are the signssl=sn=+ and sm

=−. Each of these equations can be interpreted as a one-
dimensional Schrödinger equation with a Hamiltonian of the
standard type “kinetic plus potential energy” with effective
energy and potential

Eŝ,eff = sŝ
E

a2l, Vŝ,effsŝd = − sŝ
E

a2fs4sŝd − 2ks2sŝdg. s17d

The effective energies and potentials are shown for “repre-
sentative” values of the separation constantsk andl in Fig. 4
wherem andn vary in intervals of length 2Ksq8d and 2Ksqd
which are the periods of the effective potentialsVm,eff and
Vn,eff, respectively. What we mean by “representative” will
be explained in the following section where we analyze the
corresponding classical system. The paritiespx andpy at the
top of Fig. 4 show how they determine the symmetry of the
wave functionscm and cn at the various symmetry lines
which correspond to the Cartesian coordinate planes: For
py= + /− the wave functionscm and cn are symmetric/
asymmetric aboutm=Ksq8d and n=Ksqd, respectively. The
wave function cn is symmetric/asymmetric aboutn
=0 mod 2Ksq8d for px= + /−. Though the algebraic equations
s10d havesregulard singular points they are better suited for a
numerical procedure than the equations ins16d. The solu-

tions are found from a shooting method which is explained
in detail in Ref. 23.

III. CLASSICAL BILLIARD

For the calculation of the transmission probabilitiesTn
and their interpretation it is useful to consider the corre-
sponding classical system. This is thesclassicald billiard
which consists of a mass which moves freely inside of the
hyperboloidal boundarys1d and which becomes specularly
reflected when it encounters the boundary. Like the quantum
system the classical billiard can be separated in elliptic co-
ordinates. The separated momenta conjugate tosj ,h ,zd can
be written as

ps
2 = 2E

s4 − 2ks2 + l

ss2 − a2dss2 − b2d
¬ 2E

ss2 − s1
1dss2 − s2

2d
ss2 − a2dss2 − b2d

, s18d

where ssP hj ,h ,zjd, and s1
2=k−sk2− ld1/2 and s2

2=k+sk2

− ld1/2 are the squares of the turning points of the motion in
the respective coordinate direction. The analogous equations
for the coordinatessl ,m ,nd are

pŝ
2 = sŝ

2E

a2 ss4sŝd − 2ks2sŝd + ld, s19d

where ŝP hl ,m ,nj and ssŝdP hjsld ,hsmd ,zsndj are
again the functions defined ins13d. The specular reflection at
the hyperboloidal boundary h=1 or m=mB
becomes sj ,h ,z ,pj ,ph ,pzd° sj ,h ,z ,−pj ,ph ,pzd or
sl ,m ,n ,pl ,pm ,pnd° sl ,m ,n ,−pl ,pm ,pnd, respectively.
Note thats18d ands19d are the classical analogs of the sepa-
rated wave equationss10d and s16d, respectively.

Expressing the separation constantsk and l, or their en-
ergy scaled counterpartsKª2Ek and Lª2El, in terms of
Cartesian coordinates and momenta gives

K =
1

2
fuL u2 + sa2 + b2dpx

2 + a2py
2 + b2pz

2g, s20d

L = b2Ly
2 + a2Lz

2 + a2b2px
2, s21d

whereLx, Ly, andLz denote the components of the angular
momentum about the originL =r 3p. The separation con-
stants together with the total energyE=spx

2+py
2+pz

2d /2 give
three constants of motion. Hence, the classical system is in-
tegrable.

The level set of each triplesE,k, ld defines an invariant set
in the classical phase space. The invariant setssgenericallyd
have the topology of Cartesian products of a line and two-
tori S13S1=T2 which we refer to as “toroidal cylinders”sas
opposed to “pure” tori, which one finds in bounded inte-
grable systemsd. Concerning the classical mechanics, the de-
pendence onE can basically be ignored asE appears as a
simple scaling factor for the momentafsee Eqs.s18d and
s19dg. The physical ranges fork and l can be obtained from
the disposition of the turning pointss1 ands2 which is lim-
ited by the requirement that they simultaneously must yield
real momenta in Eq.s18d. It turns out that there are six dif-
ferent arrangements of the squared movable rootss1

2 and s2
2

FIG. 4. Effective potentials and energies for constants of mo-
tions ss1

2,s2
2d for equivalentlysk, ldg in the regions BB1, BB2, BB3,

WG1, WG2, and WG3 defined in Fig. 5 below. For them degree of
freedom the hatched regions mark the forbidden regionsf0,mBg and
f2Ksq8d−mB,2Ksq8dg which are not contained in the boundary hy-
perboloids1d. fsa2,b2d=s3/2,1/2d .g
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relative to the squared fixed rootsa2 andb2. The six arrange-
ments correspond to different types of motion orphases. We
label the phases BB1, BB2, BB3, WG1, WG2, and WG3 as
shown in thebifurcation diagramin Fig. 5.

For fixed energyE a pair ss1
2,s2

2d for the corresponding
pair sk, ldg in phase BB1 or BB2 has as its level set a toroidal
cylinder R3T2 which we illustrate in terms of its caustic,
i.e., as the envelope of its projection to configuration space,
in Fig. 6. It is unbound in the direction ofj and the motion is
oscillatory in the transverse degrees of freedomh andz. In
phase BB2 the motion oscillates with reflections at the
boundary hyperboloid. In the elliptical cross section in the
x-y plane the caustic of BB2, which consists of two hyper-
bolas resulting fromh=s1, is that of the “bouncing ball
modes” which one finds in the billiard in a planar ellipse.26

In contrast to that the motion in phase BB1, though oscilla-
tory in h and z, does not touch the boundary hyperboloid,
i.e., the corresponding toroidal cylinders are foliated by
straight lines of free motions without reflections. A pair
ss1

2,s2
2d in phase BB3 represents motion which does not cross

the x-y plane. The corresponding level sets consist of two
toroidal “half cylinders”s0,`d3T2 which are bounded away
from thex-y plane by the ellipsoidj=s2.

Pairs ss1
2,s2

2d in phase WG1 or WG2 involve motions
which are rotational inz sor, equivalently, innd, they repre-
sent two toroidal cylindersR3T2 which differ by the sense
of rotation, see the corresponding panels in Fig 6. In the
elliptical cross section in thex-y plane the caustic of WG2,
which is the ellipse resulting fromh=s1, is that of the “whis-
pering gallery modes” which one finds in planar elliptic bil-
liards. As in the case of BB1, motions in phase WG1 do not
touch the hyperboloidal boundary. The corresponding toroi-
dal cylinders are again foliated by lines of free motion with-
out reflections. Forss1

2,s2
2d in phase WG3 the rotational mo-

tions are again bound away from thex-y plane by the
ellipsoid j=s2. The corresponding level set consists of four
toroidal half cylinders which havez.0 or z,0 combined
with different senses of rotation.

The boundaries of the six phases correspond to critical
motions. The corresponding level sets typically correspond
to lower dimensional toroidal cylinders which might be
stable or unstable.

IV. QUANTIZED CONDUCTANCE

As can be seen from the caustics in Fig. 6, the phases
BB1, BB2, WG1, and WG2 are classically conducting; phases
BB3 and WG3 are nonconducting. For constants of motion in
phases BB3 and WG3 the motion cannot cross thex-y plane
due to the presence of adynamical barrier. This can be seen
from the effective energyEl,eff which for phases BB3 and
WG3 lies below the energy of the maximum of the effective
potential Vl,eff at l=0; see the corresponding panels in
Fig. 4.

Quantum mechanically it is possible to tunnel through this
dynamical barrier. The tunnel probability is described by the
tunnel integral

FIG. 5. Bifurcation diagram in terms of the variablesss1
2,s2

2d sad
and sk, ld sbd. fsa2,b2d=s3/2,1/2d .g

FIG. 6. Caustics of the six types of classical motions BB1, BB2,
BB3, WG1, WG2, and WG3 as their intersections with the Cartesian
coordinate planes. The caustics delimit the regions of the corre-
sponding classical motions in configuration space which are shown
as the shaded regions. The bold lines mark the intersections of the
hyperboloidal boundarys1d. The ranges forx, y, and z are f
−3/2,3/2g. fsa2,b2d=s3/2,1/2d .g
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Qsnh,nz,px,pydsEd = iE
l−

l+

pldl = 2iÎ2EE
a

s2Îj4 − 2ksnh,nz,px,pydsEdj2 + l snh,nz,px,pydsEd

sj2 − a2dsj2 − b2d
dj. s22d

For El,eff,Vl,effs0dpl is imaginary along the integration in-
terval which is bounded by the real classical turning points
l− and l+=−l−. This integral can be identified with two
times the integral ofpj from a to the corresponding turning
point s2 which gives the second equality ins22d. For El,eff
.Vl,effs0d the classical turning pointsl± become imaginary
swith l− complex conjugate tol+d whereaspl is real on the
imaginary axis betweenl±. This corresponds tos2,a in the
second integral ins22d. The branch of the square root ins22d
is chosen such that the tunnel integral is positive ifa,s2 and
negative if s2,a. This leads to auniform transmission
probability24

Tsnh,nz,px,pydsEd =
1

1 + expf2Qsnh,nz,px,pydsEdg
. s23d

The resulting conductance which, up to a prefactor, is the
sum over theTsnh,nz,px,pydsEd for all quantum numbersnh and
nz and paritiespx andpy is shown in Fig. 7. Depending on
the shape parameterssa2,b2d for the boundary hyperboloid
the conductance shows more or less pronounced steps of the
size of integer multiples ofe2/ sp"d.

A detailed analysis of the conductance curve can be ob-
tained from relating the modesunh ,nz ,px,pyl to the classical
motions. For a given energyE this relationship is established
via the separation constants(ksnh,nz,px,pydsEd , l snh,nz,px,pydsEd)
which determine the toroidal cylinders and their caustics.
The wave functions of the modesunh ,nz ,px,pyl are mainly

“concentrated” on the projections of the corresponding toroi-
dal cylinders to configuration space. As can be seen from
their caustics in Fig. 6, for the whispering gallery phases,
these projections become increasingly confined in the order
WG3→WG2→WG1. For the bouncing ball phases the con-
finement increases in the order BB3→BB2→BB1. Since
high confinement in configuration space implies high kinetic
energy via the Heisenberg uncertainty principle, the modes,
which classically correspond to the phases WG1 or BB1,
have highest energy. In fact, for low energies all modes have
(ksnh,nz,px,pydsEd , l snh,nz,px,pydsEd) in the classically noncon-
ducting phases WG3 or BB3. Upon increasing the energy the
(ksnh,nz,px,pydsEd , l snh,nz,px,pydsEd) wander toward the conduct-
ing modes WG2 or BB2, and for even higher energy to WG1
or BB1; see Fig. 5. Concerning the classical mechanics, the
border between nonconductance and conductance is given by
s2

2=a2 or l =k2−sa2−kd2. This border is crossed for the
modesunh ,nz ,px,pyl for different energies. Upon crossing
the border the tunnel integral changes sign and the transmis-
sion probability changes from 0 to 1. The energy for which
the tunnel integral of a mode is zero can be defined as the
energy at which the mode “opens” as a transmission channel.
These energies are marked on the energy axis in Fig. 7.

Classically, the borders2
2=a2 corresponds to the unstable

invariant motion in thex-y plane. This is the planar billiard
in the bottleneck ellipse which is an invariant subsystem with
one degree of freedom less than the full three-dimensional
billiard.

Due to the dynamical barrier the wave functions of the
modes deep in the nonconducting phases WG3 and BB3 have
negligible amplitudes in thex-y plane. As the energy in-
creases the increase of the amplitudes is indicated by the
switching of the corresponding transmission probability
Tsnh,nz,px,pyd from 0 to 1, i.e., the “opening” of a new trans-
mission channel. The wave functions of the transmission
channels which lead to conductance step in Fig. 7 are shown
in Fig. 9 below as their intersection with thex-y plane.

The quantum mechanical manifestation of the two
senses of rotation in the whispering gallery phases is the
energetic quasidegeneracy of the corresponding modes
unh ,nz ,px,pyl. The further the separation constants
(ksnh,nz,px,pydsEd , l snh,nz,px,pydsEd) in the whispering gallery
phases lie away from the borders1

2=b2 to bouncing ball mo-
tions, the higher the effective energyEn,eff lies above the
effective potentialVn,eff. In this limit the role of the potential
becomes negligible and the energy is essentially determined
by the total number of nodes ofcn along a completen loop
which is an ellipse in Fig. 9. The sum of the nodes in the four
open Cartesianx-y quadrants plus possible additional nodes
on x=0 ory=0 depending on the paritiespx andpy gives the
total number ofcn nodes

FIG. 7. Conductance as a function of energyfin units of
"2/ sc̃2medg for different shape parameterssa2,b2d of the hyperbo-
loidal constriction. The limitsa2,b2d=s` ,0.2d corresponds to the
conductance through a cylinder with an elliptical cross section. The
ticks on the energy axis mark the energies at which, forsa2,b2d
=s5,0.2d, the transition channelsunh ,nz ,px,pyl “open,” see text.
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no. of nodes ofcn = 4nz + 2 − spx + pyd. s24d

This leads to the energetic degeneracy of the two pairs of
modes

unh,nz + 1, + , +l ↔ unh,nz,− ,− l, s25d

unh,nz, + ,− l ↔ unh,nz,− , + l. s26d

In Fig. 7 this effect is seen for the pairs of modesu0,1,1,1l
and u0,0,2,2l, u0,1,2,1l and u0,1,1,2l, u0,2,1,1l and
u0,1,2,2l, u0,2,1,2l andu0,2,2,1l, u0,2,2,2l and 0,3,1,1l
which, on the energy axis, become more and more indistin-
guishable as energy increases, and this way effectively lead
to conductance steps of 2e2/ sp"d. For the degeneraciess25d
and s26d to occur both modes in each pair have to be of
whispering gallery type. From Fig. 8 and the wave functions
in Fig. 9 we see that this is indeed the case for all pairs just
mentioned and thats25d ands26d do not lead to degeneracies
if one or both modes are of bouncing ball type.

V. THE LIMITING CASE OF A
CYLINDRICAL CONSTRICTION

In the limit a→` the hyperboloidal boundarys1d be-
comes a cylinder with an elliptical cross-section. The sepa-
rated Helmholtz equations corresponding to the transverse
degrees of freedom become the separated wave equations in
a planar elliptic quantum billiard.26 This is most easily seen
from the wave equations ins10d. We therefore define new
variablesr=m+Ksq8d and f=n+Ksqd and new separation

constantsk̃=k/a2 and l̃ = l /a2. Then, in the limita→`, the
fourth-order term ins10d drops out and the equations form
andn become

−
d2

dr2crsrd = − 2Es− 2k̃ cosh2 r + l̃dcrsrd, s27d

−
d2

df2cfsfd = 2Es− 2k̃ cos2 f + l̃dcfsfd, s28d

where we used that, fora→`, h(r+Ksq8d)=a dn(r
+Ksq8d ,q8)→b coshsrd and z(f+Ksqd)=b sn(f+Ksqd)
→b cosf which are the standard parametrizations of elliptic
coordinates in the plane in terms ofshyperbolicd trigonomet-
ric functions. For the constants of motionK and L in Eqs.

s20d and s21d one finds K̃ªK /a2→ spx
2+py

2d /2 and L̃

ªL /a2→Lz
2+b2px

2, i.e., K̃ reduces to the kinetic energy of

the billiard in the planar ellipse andK̃−2b2L̃ becomesLz
2

−b2py
2, which is the product of the angular momenta about

the focus pointssx,yd=s±b,0d and which gives the second
constant of the motion in the planar elliptic billiard.

The dynamical barrier due toVl,eff becomes infinitely
broad asa→`. This leads to a suppression of quantum me-
chanical tunneling as indicated by a tunnel integral which
changes rapidly from −̀ to ` asE is varied. As a result the
transmission probabilitiesTnsEd become “classical,” i.e.,
they turn into step functions which change discontinuously
from 0 to 1 at the respective critical energy which is deter-
mined by the quantization of the transversal degrees of free-
dom. In the limit of a cylindrical constriction the conduc-
tance becomes thus proportional to the integrated density of
statesNsEd of an elliptic quantum billiard, i.e.,

GsEd =
e2

p"
NsEd =

e2

p"
E

0

E

o
n

dsẼ − EnddẼ s29d

where theEn are the eigenenergies of an elliptic quantum
billiard. The resulting conductance curve which has sharp
conductance steps is also shown in Fig. 7. It is remarkable
that the energies of the conductance steps depend only very
weakly ona, i.e., on how the narrowness of the constriction
changes along the direction of transmission. The deviation
from the cylindrical constrictionsfinite ad only results in a
smoothing of the conductance steps due to tunneling. Disre-
garding the tunneling, the conductance through the hyperbo-
loidal constriction is thus essentially determined solely by
the quantum spectrum of the planar billiard in the bottleneck
ellipse.

VI. CONCLUSIONS AND OUTLOOK

In this work we have studied in detail both classically and
quantum mechanically the three-dimensional ballistic elec-
tron transport through an asymmetric hyperboloidal constric-
tion. Hyperboloidal constrictions give the most general class
of constrictions which allow for a separation of the Helm-
holtz equationsand the corresponding classical problemd and
hence for an explicit solution of the transmission problem.
The asymmetry leads to the coexistence of two kinds of
modes, “whispering gallery modes” and “bouncing ball
modes.” The whispering gallery modes are quasidegenerate
in the sense that they open as transition channels in pairs of

FIG. 8. Thesk, ld spectra of the modes leading to the conduc-
tance jumps in Fig. 7 forsa2,b2d=s5,0.2d. For each shown mode
unh ,nz ,px,pyl the energy E is varied from 2 ffor which
(ksnh,nz,px,pydsEd , l snh,nz,px,pydsEd) are in the nonconducting phases
BB3 or WG3 beyond the right border of the shown regiong to E
=100 for which (ksnh,nz,px,pydsEd , l snh,nz,px,pydsEd) are in one of the
classically conducting phases BB1, BB2, WG1, or WG2. The bold
lines mark the classical bifurcation diagram.
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approximately the same energy. This way whispering gallery
modes effectively lead to conductance steps of size 2e2/ sp"d
whereas bouncing ball modes give conductance steps of size
e2/ sp"d. Bouncing ball modes are a phenomenon of asym-
metric constrictions and do not appear in the case of axially
symmetric constrictions which have been discussed earlier
by Torres, Pascual, and Sáenz.18 In our study the axially
symmetric case is contained as the limiting caseb→0 for

equivalentlyb̃→ c̃ in the unscaled equation for the boundary
hyperboloid in Eq.s1dg which leads to a vanishing of the
bouncing ball phases; see the classical bifurcation diagram in
Fig. 5. In the axially symmetric limit the quasidegeneracy of
the whispering gallery modes becomes an exact degeneracy.

For non-vanishing temperatureT the Landauer-Büttiker
formula contains the Fermi-Dirac occupation probability. In
this case Eq.s2d has to be replaced by

GsEd =
e2

p"
o
n
E S−

]F

]Ẽ
D

Ẽ=E

TnsẼddẼ, s30d

whereFsẼd=1/h1+expfsẼ−Ed / skBTdgj and the derivative is
taken at the Fermi energyE. If T goes to zero the derivative
turns into ad function and we recover the conductance for-
mula s2d. A nonvanishing temperature thus leads to a
smoothing of the conductance steps similar to the effect of
tunneling.

Depending on the experimental setup it might be a better
approximation to replace the hard-wall constriction consid-
ered in this and many other worksssee, e.g., Refs. 14 and 17d
by a smooth potential. The analog of transmission through a
narrow constriction in a smooth system can be considered to
be the transport across a potential saddle or, more generally,
across a saddle-centerstwo degrees of freedomd or saddle-
center-centersthree degrees of freedomd equilibrium point. A
saddle-center-̄ -center is an equilibrium point at which the
matrix of the diagonalization of the Hamiltonian vector field
has one pair of real eigenvalues and otherwise imaginary
eigenvalues. Transport across saddle-center-¯-centers is the
mechanism for “transformation” in a large and diverse num-
ber of applications. It can be studied within the powerful
framework oftransition state theorywhich has its origin of

conception in chemistry to compute reaction rates.27 Ideas
from transition state theory have been applied to a two-
dimensional electron flow across a potential saddle by
Eckhardt.28 For a two degree-of-freedom system the classical
flux swhich gives the conductanced for an energy above that
of the potential saddle is given by the action of an unstable
periodic orbit of that energy; the Lyapunov periodic orbit
associated with the saddle. The quantized conductance steps
can be described in terms of the EBK quantization of this
action. Recent developments in dynamical systems theory
show how to generalize these ideas to an arbitrarysbut finited
number of degrees of freedom.29,30 These results show that,
in the neighborhood of a saddle-center-¯-center equilibrium
point, the dynamics isgenerically integrable. The unstable
periodic orbit generalizes to a so-callednormally hyperbolic
invariant manifoldsNHIM d which, for an degree-of-freedom
system, has the topology of as2n−3d-dimensional sphere.
The NHIM is what in the chemistry literature is referred to as
“activated complex;” an invariant system with one degree of
freedom less than the full system located between “reactants”
and “products.”31,32 The classical flux is given in terms of a
generalized action integral over the NHIM.33 Quantum effect
on the flux can be described in terms of the EBK quantiza-
tion of the invariant tori which foliate the NHIM.34

As hard-wall constrictions are often good models in the
study of mesoscopic systems it is desirable to transfer the
ideas from transition state theory to billiard systems. For the
hyperboloidal constriction studied in this paper the NHIM
consists of the unstable invariant subsystem which is the
planar billiard in the bottleneck ellipse, which is located be-
tween “reactants” and “products”sthe electron reservoirs at
z,0 andz.0, respectivelyd and whose spectrum essentially
determines the conductivity. Due to the normal hyperbolicity
this invariant set persists under nonintegrable perturbations
sthis can be made precise in terms of the billiard mapd. But it
is unclear how to compute the NHIM for a generic, i.e.,
nonseparable, hard-wall constriction in a three-dimensional
electron gas. The computation of the NHIM is important as
certain homoclinic orbits to the NHIM give rise to the exis-
tence of a high dimensional chaotic saddle which should
have strong consequences for the conductivity.35 Moreover,

FIG. 9. sColor onlined Probability contours in the sectionz=0 of the wave functions of the modesunh ,nz ,px,pyl at the moment when
they “open” as transition channelsssee textd. The wave functions are displayed in the order they contribute to the conductance in Fig. 7. Light
sblued corresponds to low probability; darksredd corresponds to high probability. The black lines mark the caustics of the classical motion.
Ellipses indicate whispering gallery modes; hyperbolas indicate bouncing ball modes.
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heteroclinic connections between the NHIMs of a succession
of narrow constrictions should provide a framework to study
questions of additivity of resistance.36 This will be the sub-
ject of future studies.
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