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Quantized conductance through an asymmetric narrow constriction
in a three-dimensional electron gas
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The quantized ballistic transmission of a three-dimensional electron gas through a narrow constriction
modeled by an asymmetric hyperboloid is studied. The conductance as a function of voltage jumps by integer
multiples ofe?/ (w#) each time a new transition channel opens in the plane of narrowest restriction, which has
the shape of an ellipse. There are two different motfegispering gallery modes” and “bouncing ball
modes’) which lead to different conductance steps. The smoothing of the conductance steps is discussed in
terms of phase space tunneling through a dynamical barrier. A comprehensive interpretation of the quantum
mechanical results is obtained from relating them to the corresponding classical motions.
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I. INTRODUCTION develop a theory of nanocohesion in metallic wires. The con-

. . . striction (1) has a “bottleneck” in thex-y plane which is
Recent developments in experimental techniques have @ yp

; =22/ h2=1- i

opened the way to study ballistic electron transport in a larg@unded by the ellipsg’/c*+y?/b?=1; see Fig. 1. The mo-
number of so-callednesoscopic systerssch as, e.g., quan- tivation for choosing constrictions of the typ#) is that they
tum dots and quantum wires in semiconductor®® the most general type of three-dimensional constriction
heterostructures,metallic nanowireg3 carbon nanotubek, for which the transmission problem can be separated and in
quantum corral€,and even individual moleculésThese sys- this sense solved explicitly. This paper can thus be consid-
tems are typically on the fuzzy borderline between quantun?red as a generalization of the two-dimensional transmission
mechanics and classical mechanics, and therefore offer difoPlem through a hyperbolic constriction studied by Yosefin
ideal testing ground for semiclassical theories which, e. and Kaveht’ The three-dimensional constrictions considered

lead to the explanation of the universality of conductancd'e’e include, e.g., the special case of axially symmetric con-
fluctuations’.8 strictions studied by Torres, Pascual, and S&&ihe limit-
The geometry of the spatial confinement of the electror"d ¢@se of a cylindrical constriction with an elliptic cross

flow often involves one or several narrow constrictions orS€ction will be discussed below in more detail.
point contacts A point contacts forms, e.g., if the tip of a We assume that the electrons are incident from the bottom

scanning tunneling microscope is brought into contact with 42<~1) and want to compute the transmission to the (op
metal surfacé.Due to the strong spatial confinement, quan->1)- Following Landaue®*® and Biittikef! the conduc-

tum effects are particularly strong at such points and can leaince can be obtained from a scattering approach. For zero
to a quantization of the conductance. Quantized conductand@mperature the conductance for enefgys given by the
steps by integer multiples of the “elementary conductancet-andauer-Buttiker formula

€/ (wh) upon varying the applied voltage were first observed

in quantum point contacts fabricated in semiconductor het- _ € 5

erostructures by van Wees al1° and Wharanet al}* Mean- G(E) = EE [tar E)*, (2)

while they are a rather universal phenomenon, also observed n

in metal nanowires® and even liquid metals. Experiments b . . .
Rubio, Agrait, and Vieird?2 an(;] independentlyp by Stalde?l where|t,(E)|? is the transmission probability between the

and Drig!® showed that on the formation of a nanoscaleth incoming mode and theth outgoing mode for enerdy.
gold contact the conductance jumps are synchronized withO" @ Separable system there is no mode mixing, i.e.,
cohesive force oscillations of the order of nanonewtons.
In this paper we consider the transmission between two [tam(E)2 = To(E) Sum (3
three-dimensional electron reservoirs which are connected by
a lead of the asymmetric hyperboloidal shape where 8,,, is the Kronecker symbol.
It is convenient to scaléx,y,z) by the semimajor axig
¥y 7z ™ = of the bottleneck ellipse. Moreover, for an appropriate scal-
S+ -5=1 ©=b>03>0). 1 : pse. MO ’ ppropria
CC 2 @ ing of time and mass Planck’s constant has the valu@ 2.,
#=1) and the unit of energy becomég/(’m,) with m,
We employ a simple jellium model in which the electrons arebeing the(effective mass of the charge carriers. In order to
assumed to move freely and to be confined to the hyperbazompute the energy-dependent transmission probabilitjes
loidal lead by a hard-wall potential. Utilizing semiclassical we have to find solutions of the free Schrédinger or Helm-
ideas, this model has been used, e.g., by Stafibed'*~*6to  holtz equation
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Inverting Eq.(5) within the positive(x,y,z) octant gives

_&m¢

*=ap ©

_ & -2 - D)0 - )
y= bya? - b? ! "

V(& -a?)(a? - ) (- P
= 8
z aya?-b? ®

with

0s{<bsgp=<as*¢ (9

The remaining octants are obtained from appropriate reflec-
FIG. 1. Accessible region of a three-dimensional electron gagions. The(¢, n,{)-coordinate surfaces are shown in Fig. 2.
confined by the boundary hyperboloid). The boundary hyperboloi¢il) (in scaled coordinat¢soin-
cides with the coordinate surface=1, i.e., within the
boundary hyperboloid; is restricted tdb, 1]. The parameter
1/ £ P b determines the asymmetry of the cross section of the con-
- 5(—2 t—+ —>¢= Ey (4)  striction withb=0 leading to an axially symmetric constric-
X% oy 97 ; _
tion. The parametea determines how strong the narrowness
changes wittz: for a— o the constriction becomes cylindri-
which for z>1 are waves propagating in the positizeli-  cal with an elliptical cross section; far— 1 the constriction
rection and satisfy Dirichlet boundary conditions, i.e., Wwedegenerates to they plane with a hole having the shape of
require the restriction of to the hyperboloid1) to vanish.  an ellipse.
This defines a so-callequantum billiard which is open in Equality in one of the equations {9) gives the Cartesian
the sense that there are no constrictiong direction. coordinate planes{=0 gives they-z plane;/=b and »=b
give two surface patches which together coventtzplane;
n=a and&=a give two surface patches which together cover
Il. SEPARATION OF THE HELMHOLTZ EQUATION the x-y plane; see Fig. @). Considering only the region
enclosed by the boundary hyperbolait), the coordinate
lanesé=const=a are transverse to the direction. Note
at the singular coordinate pladea is a region in thex
-y plane which is enclosed by an ellipse which lies outside of
the hyperboloidal constriction; see FigbR The coordinate
¢ thus parametrizes the direction of transmissignand ¢
X2 y? 72 parametrize the two directions transverse to transmission.
2 2P a2 1, ) With the ansatzg(¢, 7,0)=y(&),(n)¢) the Helm-
holtz equation4) can be separated and turned into the set of
ordinary differential equations

The Helmholtz equation and, equally important, the
boundary conditions can be separated in elliptic coordinate,
(&,7,0).%22Each of them parametrizes a family of confocal
quadrics

wherese {&, 7,8, b2=1-b%/E?, anda?=1+32/C2. Fors=¢ 42

>a all terms in Eq.(5) are positive and the equation defines — (\(32 -ad)(s?- b2)—) P(s) = 2E(s* - 2kS + 1) (9),

a family of confocal ellipsoids. Their intersections with the ds

x-y plane, thex-z plane, and thg-z plane are planar ellipses (10)
with foci at (x,y)=(zb,0), (x,2)=(*a,0), and(y,z)=(x(a? ,

~b?)12,0), respectively. Fom>s=7>b the third term in where_SE {é, 7, andk andl are s_eparatlon constants. The
Eq. (5) becomes negative. Equati¢B) thus gives confocal €duations for, », and ¢ are identical, but they have to be

one sheeted hyperboloids. Their intersections with xthe considered on the different interva(®) and for different
plane are planar ellipses with fo6k,y)=(b,0); the inter- boundary conditions. In fact the equations have regular sin-

sections with thex-z plane and the/-z plane are planar hy- gular .poi'nt§2 at #a and ib All the regular 5‘99“"”“ ppints
perbolas with foci at (x,2)=(+a,0) and (y,2)=(+(a have indices 0 and 1/2, i.e., there are solutlcins, which near
-b)12,0), respectively. Forb>s=¢>0 the second and 9=*aor o=xb are of the formy(s)=(s-o)%(s) where
third terms in Eq.(5) are negative giving confocal two ¢(s) is analytic andy,=0 orq,=1/2. As theelliptic coordi-
sheeted hyperboloids. Their intersections with xhe plane  nates(&, ,¢) give for the regular singular pointsatand b

and thex-z plane are planar hyperbolas with foci @,y)  the Cartesiax-z plane andk-y plane, respectively, the indi-
=(b,0) and(x,2)=(za,0), respectively; they do not inter- ces determine the parities, and 7, of the total wave func-
sect they-z plane. tion (£, ,).?% In particular,g,=0 org,=1/2 correspond to
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FIG. 2. Coordinate surfaces=5 (top), »=1 (middle), and ¢
=1/2 (bottom. [(a%,b?)=(5,0.2.]

total wave functions which haver,=+ or m=-, respec-
tively.

To compute the transmission probabiliti€swe look for
solutions of the form

Yen( O Y MWD + Tathen O Uy Mibpn(D) (1)

at the bottom(z<-1) and

PHYSICAL REVIEW B 71, 035335(2005

FIG. 3. (a) Singular elliptic coordinate surfacegh) “Bottle-
neck” (shaded regionin the x-y plane bounded by the hyperboloi-
dal constriction whose intersection with thkey plane is the ellipse
x?/1+y?/(1-b%=1, and singular coordinate patchésa and 7
=a [inside and outside of the ellips&?/a2+y?/(a?-b?)=1,
respectively.

taen(O WM n(0) (12)

at the top(z>1). Such solutions can be computed from first
solving the wave equationd.0) for the transversal coordi-
nates» and ¢ and the corresponding boundary conditions
with E as a parameter. The boundary conditions ggrare
given by the paritym, which yields the index of, at n
=b and the Dirichlet boundary condition,(1)=0. The
boundary conditions foy, are determined by the parities,
and m,. 7, determines the index of, at {=b and m, deter-
mines whethenpé(O):O (m=+) or y(0)=0 (m=-). This
defines modes which we label by the Dirac “kets”
|n,7,n§,7rx,7ry> wheren, and n, are non-negative quantum
numbers which give the number of nodes/gfand, in the
open intervalsb< <1 and 0<{<b, respectively. The
modes for energyE determine the separation constants
(Kin_n ,n'x,ﬂ')(E)vl(n Vnpﬂxvﬁy)(E)). These are used in the equa-
tion for £ in (10) from which the transmission probabilities
To=[t,|% with n being the set of quantum numbersandn,,
and paritiesw, and m,, are then given in terms of the
asymptotic behavior of the resulting solutiogigin the limit
£— o (see, e.g., Ref. 24

For the interpretation of the results below it is useful to
remove the singularities i(L0). This can be achieved by the
transformation

b
,drmq’),;sr(v,q)),

(13

where sii¢,q), cn(¢,q), and dri¢,q) are Jacobi’s elliptic
functions with “angle”¢ and modulus).?® Here the modulus

is given by g=b/a. q'=(1-g®'? denotes the conjugate
modulus. This is the standard parametrization of elliptic co-
ordinates by elliptic function® To cover the positive
(x,y,2) octant(\,u,v) have to vary in the ranges

dn(,
(€0, (), {(v) = a( nx g)

cn(\,q)

OsAsw», Osps<K() Osvs=K(@Q, (14

whereK(qg) andK(q') are Legendre’s complete elliptic inte-
gral of first kind with modulusg and g’, respectively. The
boundary hyperboloidl) has

e =F((& - Vi@ -b)]"%q") (15

which is Legendre’s incomplete elliptic integral of the first
kind with argumenf(a?-1)/(a'-b?]*? and modulusy'.
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Ty ™ tions are found from a shooting method which is explained
in detail in Ref. 23.

'
i

N Ill. CLASSICAL BILLIARD

/ N For the calculation of the transmission probabiliti€s
and their interpretation it is useful to consider the corre-
sponding classical system. This is tlielassical billiard
which consists of a mass which moves freely inside of the
hyperboloidal boundaryl) and which becomes specularly
reflected when it encounters the boundary. Like the quantum
system the classical billiard can be separated in elliptic co-

/‘\ ordinates. The separated momenta conjugai& tg,{) can

v A, eff
v v, eff

be written as

T e T

-2k +1 (P-s)(S-h)
2 _ —.
e A e S
[ [
o, 0 K(q’)&K(q‘) 0 K@ K@ where (se{¢,7,8), and ss=k-(kK*-1)'? and s3=k+(k?

-1)Y2 are the squares of the turning points of the motion in
FIG. 4. Effective potentials and energies for constants of mothe respective coordinate direction. The analogous equations

tions (s2,52) [or equivalently(k,1)] in the regions BB, BB,, BB;,  for the coordinates\,u,v) are

WG;, WG,, and WG defined in Fig. 5 below. For the degree of

freedom the hatched regions mark the fo_rbidd_en redibnag] and p? - Us 2 (s 3 - 2ksz(s) +1), (19)

[2K(q") - ug,2K(g')] which are not contained in the boundary hy-

perboloid (1). [(a*,b%)=(3/2,1/2.] where Se{\,u,v} and s(§) e{&N),n(w),l(v)} are

again the functions defined {d3). The specular reflection at
the  hyperboloidal  boundary =1 or ju=ug
becomes  (£,7,{,Ps P, P) = (&, 7,0,=Ps P, P)  OF
& (N 2, v, Py P P = (N 4, v, =Py P P, respectively.
Szdfs(s) 0'5 2 [s(s)"' 2ks(9)?+1]ys(3), (16)  Note that(18) and(19) are the classical analogs of the sepa-
rated wave equationd0) and (16), respectively.

Expressing the separation constaktandl, or their en-
ergy scaled counterparts:=2Ek and L:=2El, in terms of
Cartesian coordinates and momenta gives

Transforming(10) to the coordinate$\ , u, v) leads to

wherese {\,u, v}, s(5) € {&\), n(u), £(v)} are the functions
from Eg. (13) and theoy are the signsr,=o,=+ and o,

=-. Each of these equations can be interpreted as a one
dimensional Schrodinger equation with a Hamiltonian of the
standard type “kinetic plus potential energy” with effective
energy and potential

K:§[|L|2+(az+ b?)pf + a’p’ + b?p], (20)

L =02 +a%.2+a%%p, (21)

E o E_,. .
Eserr= Ué?" Vaetl(S) = U§a2[34(s) %s'(®)]. (17) wherelL,, Ly, andL, denote the components of the angular

momentum about the origih =r Xp. The separatlon con-
The effective energies and potentials are shown for “represtants together with the total ener&yt(px+py+pz)/ 2 give
sentative” values of the separation constdwsid| in Fig. 4  three constants of motion. Hence, the classical system is in-
whereu and v vary in intervals of length R(g’) and Z(q) tegrable.
which are the periods of the effective potentials .« and The level set of each tripleéE, k, ) defines an invariant set
V, e respectively. What we mean by “representative” will in the classical phase space. The invariant &ggserically
be explained in the following section where we analyze thehave the topology of Cartesian products of a line and two-
corresponding classical system. The paritig@andm, at the  tori S' X S'=T2? which we refer to as “toroidal cylindergas
top of Fig. 4 show how they determine the symmetry of theopposed to “pure” tori, which one finds in bounded inte-
wave functionsy, and ¢, at the various symmetry lines grable systems Concerning the classical mechanics, the de-
which correspond to the Cartesian coordinate planes: Fqsendence orE can basically be ignored & appears as a
m,=+/- the wave functionsy;, and ¢, are symmetric/ simple scaling factor for the momenfaee Eqgs(18) and
asymmetric aboup=K(q') and v=K(q), respectively. The (19)]. The physical ranges fdc and| can be obtained from
wave function ¢, is symmetric/asymmetric aboutr  the disposition of the turning pointg ands, which is lim-
=0 mod X(q’) for m,=+/—. Though the algebraic equations ited by the requirement that they simultaneously must yield
(10) have(regula) singular points they are better suited for a real momenta in Eq(18). It turns out that there are six dif-
numerical procedure than the equations(16). The solu- ferent arrangements of the squared movable reptnd s;
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) — T Y — IV. QUANTIZED CONDUCTANCE
14 — F .
=k b ::: g As can be seen from the caustics in Fig. 6, the phases
- i Tt 1 BB, BB,, WG;, and WG are classically conducting; phases
1+ 12 (¢75 . . .
- 4 L A BB3; and WG are nonconducting. For constants of motion in
Nwi"s_' WG, | WGy | = [ WG, b phases BB and WG the motion cannot cross they plane
osr WG B WG, N due to the presence ofdynamical barrier This can be seen
04f- 1 ol BB, from t'he effective energy, o which fqr phases BB and_
02 BB, | BB, |BB; | [ BB B ] WG; lies below the energy of the maximum of the effective
N T NS PR N P PR B A T W potential V) .4 at N\=0; see the corresponding panels in
0 0204 0608 121.2 1416 18 2 0 02 04 06 k0.8 I 12 14 Flg 4 ’

S
2 Quantum mechanically it is possible to tunnel through this

FIG. 5. Bifurcation diagram in terms of the variabie$,s2) (a) dynamical barrier. The tunnel probability is described by the

and(k,l) (b). [(a?,b®)=(3/2,1/2.] tunnel integral

BBi
relative to the squared fixed roai$ andb?. The six arrange- \\z \ z /
ments correspond to different types of motionphiasesWe
label the phases BB BB,, BB;, WG,, WG,, and WG as / X&
shown in thebifurcation diagramin Fig. 5.

For fixed energyE a pair (s;,s;) [or the corresponding  gg,
pair (k,1)] in phase BB or BB, has as its level set a toroidal
cylinder R X T2 which we illustrate in terms of its caustic,

i.e., as the envelope of its projection to configuration space

in Fig. 6. It is unbound in the direction @fand the motion is
oscillatory in the transverse degrees of freedgrand . In

phase BB the motion oscillates with reflections at the BB;
boundary hyperboloid. In the elliptical cross section in the

x-y plane the caustic of BB which consists of two hyper-

bolas resulting fromzn=s,, is that of the “bouncing ball
modes” which one finds in the billiard in a planar ellig8e.

In contrast to that the motion in phase BBhough oscilla-

tory in » and {, does not touch the boundary hyperboloid, WG
i.e., the corresponding toroidal cylinders are foliated by

straight lines of free motions without reflections. A pair \\% //
($,s5) in phase BB represents motion which does not cross

the x-y plane. The corresponding level sets consist of two / /
toroidal “half cylinders”(0,%) X T? which are bounded away

from thex-y plane by the ellipsoid=s,. WG,
Pairs (s{,55) in phase WG or WG, involve motions ,

which are rotational in¢ (or, equivalently, inv), they repre- %(r

sent two toroidal cylinder® X T2 which differ by the sense

of rotation, see the corresponding panels in Fig 6. In the / \ %

elliptical cross section in thg-y plane the caustic of W&

which is the ellipse resulting from=s, is that of the “whis-  wG; >§§F

N
\‘/(
x|

RN

o

S PR P

IS,

O W E

pering gallery modes” which one finds in planar elliptic bil-
liards. As in the case of BB motions in phase W{do not

touch the hyperboloidal boundary. The corresponding toroi- >§L

W Y

Dy

dal cylinders are again foliated by lines of free motion with-
out reflections. Fots?,s3) in phase W@ the rotational mo-
tions are again bound away from they plane by the

ellipsoid £=s,. The corresponding level set consists of four i 6. caustics of the six types of classical motions, BBB,,
toroidal half cylinders which have>0 or z<0 combined g, WG,, WG,, and WG as their intersections with the Cartesian
with different senses of rotation. coordinate planes. The caustics delimit the regions of the corre-

The boundaries of the six phases correspond to criticadponding classical motions in configuration space which are shown
motions. The corresponding level sets typically correspongs the shaded regions. The bold lines mark the intersections of the
to lower dimensional toroidal cylinders which might be hyperboloidal boundary(1). The ranges forx, y, and z are [
stable or unstable. -3/2,3/2. [(a%,b®)=(3/2,1/2.]

Sl S o
(M

B
s
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At — (%2 54_2k(n n,,. w)(E)§2+|(n n,,m, w)(E)
0 E)=i d\ = 2iV2E \/ Yoy e [ 22
(0 ) (B) IL_ P\ " L (&-a)(&-b?) ¢ 22

For E, er<V, e(0)p, is imaginary along the integration in- “concentrated” on the projections of the corresponding toroi-
terval which is bounded by the real classical turning pointsdal cylinders to configuration space. As can be seen from
A and A,=-\_. This integral can be identified with two their caustics in Fig. 6, for the whispering gallery phases,
times the integral of, from a to the corresponding turning these projections become increasingly confined in the order
point s, which gives the second equality {@2). ForE, ot  WG;— WG,— WG;. For the bouncing ball phases the con-
>V, e(0) the classical turning points. become imaginary finement increases in the order BB BB,— BB;. Since
(with \_ complex conjugate ta,) whereasp, is real on the  high confinement in configuration space implies high kinetic
imaginary axis betweeR,. This corresponds te,<ainthe  energy via the Heisenberg uncertainty principle, the modes,
second integral ii22). The branch of the square root(®2)  \yhich classically correspond to the phases )W BB,

is chosen such that the tunnel integral is positive<fs, and  paye highest energy. In fact, for low energies all modes have
negative if s,<a. This leads to auniform transmission (K n (Bl (E)) in the classically noncon-
g Moy V= Ny ey

N
probability ducting phases Wgor BB5. Upon increasing the energy the
(k(nﬂ‘nwx‘,ry)(E),I(n ,n{,wx,wy)(E)) wander toward the conduct-
T (E) = 1 _ (23) ing modes WG or BB,, and for even higher energy to WG
(Mg e my) 1+exg204 n ) (E)] or BBy; see Fig. 5. Concerning the classical mechanics, the

) 7 e ) border between nonconductance and conductance is given by
The resulting conductance which, up to a prefactor, is the:g:az or 1=k2-(a2-k)2. This border is crossed for the
sum over thel(, - )(E) for all quantum numbers,, and modes|n, ,n,, m,, m,) for different energies. Upon crossing
n; and paritiesm, and my 1S shown in Fig. 7. Depending on  the horder the tunnel integral changes sign and the transmis-
the shape parametefa”,b®) for the boundary hyperboloid sjon probability changes from 0 to 1. The energy for which
the conductance shows more or less pronounced steps of thige tunnel integral of a mode is zero can be defined as the

size of integer multiples of?/ (7). energy at which the mode “opens” as a transmission channel.
A detailed analysis of the conductance curve can be obThese energies are marked on the energy axis in Fig. 7.
tained from relating the mod¢s, ,n;, m,, m) to the classical  Classically, the bordess=a? corresponds to the unstable

motions. For a given enerdy this relationship is established invariant motion in thex-y plane. This is the planar billiard
via the separation constantsin, n,x)(E).l(n n.m.x)(E) inthe bottleneck ellipse which is an invariant subsystem with
which determine the toroidal cylinders and ti1eir causticsone degree of freedom less than the full three-dimensional
The wave functions of the modés,,n;, 7, 7,) are mainly  billiard.

Due to the dynamical barrier the wave functions of the

»E | | . y T modes deep in the nonconducting phases;\&i@& BB; have
ol -6 7 ] negligible amplitudes in the-y plane. As the energy in-

I P @b =2502) 4] creases the increase of the amplitudes is indicated by the
18 - @) =602 , : 7] switching of the corresponding transmission probability

7 T(nn’np,,xmy) from O to 1, i.e., the “opening” of a new trans-

. mission channel. The wave functions of the transmission
- channels which lead to conductance step in Fig. 7 are shown
in Fig. 9 below as their intersection with tkxey plane.

The quantum mechanical manifestation of the two
senses of rotation in the whispering gallery phases is the
energetic quasidegeneracy of the corresponding modes
|n,7,n§,7rx,7ry>. The further the separation constants
(K n,m 7 )(E)ln n.m ay(E)) in the whispering gallery

7" ey o Ty .
phases lie away from the bordgr=b? to bouncing ball mo-

3

] | ] [l L} |- ] 11 [l
A MO An R N A Aan A AmmA SOAAAnm L 60
Poix ir i b oroiic BRI opavk ErE T tions, the higher the effective enerds, .« lies above the
< =) =S <= b Sor S S A Yo = Sdas =“=dn s ! Vreff
2 =1~ e = = £ 99 = = oPa -B_X-1~N.}

effective potentiaV,, o. In this limit the role of the potential

FIG. 7. Conductance as a function of enerfiy units of Pecomes negligible and the energy is essentially determined
%2/ (€my)] for different shape parameteta?,b?) of the hyperbo- DY the total number of nodes @f, along a completer loop
loidal constriction. The limit(a2,b?)=(=,0.2 corresponds to the Which is an ellipse in Fig. 9. The sum of the nodes in the four
conductance through a cylinder with an elliptical cross section. Thé@pen Cartesiai-y quadrants plus possible additional nodes
ticks on the energy axis mark the energies at which,(8;b?  onx=0 ory=0 depending on the parities, and m, gives the
=(5,0.2, the transition channels,,,n;, m,, m,) “open,” see text. total number ofiy, nodes
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3

{0,2,—,—> d2 ~ ~.
(b2 - d—pzlﬂp(p) =-2E(- 2kcostt p+ 1)y (p),  (27)
e ,
d ~ ~
) e - dfﬁz%(@ =2E(- 2kcos p+Dyy(¢), (29
10,1,4++>
00> where we used that, fora—, 5(p+K(q))=adn(p
a e +K(@'),q') —bcostp) and {($+K(q)=bsn(p+K()
i — b cos¢ which are the standard parametrizations of elliptic
1 Lo coordinates in the plane in terms @yperbolig trigonomet-
R0~ ric functions. For the constants of motidhandL in Egs.
o (200 and (21) one finds K:=K/a?— (pf+p)/2 and L
20 =L/a?—L2+b%p? i.e., K reduces to the kinetic energy of
0 the billiard in the planar ellipse ank - 2b?L becomesL§

-b?p?, which is the product of the angular momenta about
the focus pointdx,y)=(xb,0) and which gives the second
constant of the motion in the planar elliptic billiard.

The dynamical barrier due t¥, o becomes infinitely
broad asa— . This leads to a suppression of quantum me-
chanical tunneling as indicated by a tunnel integral which
changes rapidly fromee to o asE is varied. As a result the
transmission probabilitiesT,(E) become “classical,” i.e.,
they turn into step functions which change discontinuously
from O to 1 at the respective critical energy which is deter-
mined by the quantization of the transversal degrees of free-
dom. In the limit of a cylindrical constriction the conduc-
tance becomes thus proportional to the integrated density of
This leads to the energetic degeneracy of the two pairs otatesN(E) of an elliptic quantum billiard, i.e.,
modes

FIG. 8. The(k,l) spectra of the modes leading to the conduc-
tance jumps in Fig. 7 fofa?,b%=(5,0.2. For each shown mode
|n,7,ng,wx,wy) the energy E is varied from 2 [for which
(k(nn,npwxm)(E),I(n”,ng,wxmy)(E)) are in the nonconducting phases
BB; or V\/VGg beyond the right border of the shown regjao E
=100 for which(k(n”'ng‘wxmy)(E),I(n”'nmxmy)(E)) are in one of the
classically conducting phases BEBB,, WG,, or WG,. The bold
lines mark the classical bifurcation diagram.

no. of nodes ofy, = 4n,+ 2 - (m, + ). (24

e? e (E _ _
I, N +1,+, +) < n,n,—,-), (25) G(E)—%N(E)—%fo % JE-E)dE (29
|”n’”£’ +,-) e |n,7,n{,— , ). (26)  where theE, are the eigenenergies of an elliptic quantum

billiard. The resulting conductance curve which has sharp
conductance steps is also shown in Fig. 7. It is remarkable
and [0,0,~,-), [0,1~,+) and [0,1+,=), |02+,+) and  nat the energies of the conductance steps depend only very
|O,1_,—,—>, 0,2,+,-) and|Q,2,—,+>, 0,2,~,—) and 0,3:*-,_+>_ . weakly ona, i.e., on how the narrowness of the constriction
which, on the energy axis, become more and more indistinghanges along the direction of transmission. The deviation
guishable as energy increases, and this way effectively leaglyy the cylindrical constrictior(finite a) only results in a

to conductance steps 082 (mh). For the degeneraci€25  gmqothing of the conductance steps due to tunneling. Disre-
and (26) to occur both modes in each pair have to be ofyarding the tunneling, the conductance through the hyperbo-
whispering gallery type. From Fig. 8 and the wave functionsigiga| constriction is thus essentially determined solely by

in Fig. 9 we see that this is indeed the case for all pairs jusfne quantum spectrum of the planar billiard in the bottleneck
mentioned and thaR5) and(26) do notlead to degeneracies ellipse.

if one or both modes are of bouncing ball type.

In Fig. 7 this effect is seen for the pairs of modesl +,+)

V. THE LIMITING CASE OF A VI. CONCLUSIONS AND OUTLOOK
CYLINDRICAL CONSTRICTION . L . .
In this work we have studied in detail both classically and

In the limit a—o the hyperboloidal boundaryl) be-  guantum mechanically the three-dimensional ballistic elec-
comes a cylinder with an elliptical cross-section. The sepatron transport through an asymmetric hyperboloidal constric-
rated Helmholtz equations corresponding to the transversgon. Hyperboloidal constrictions give the most general class
degrees of freedom become the separated wave equationsdfl constrictions which allow for a separation of the Helm-

a planar elliptic quantum billiaré® This is most easily seen otz equatior(and the corresponding classical probjeand

from the wave equations ifl0). We therefore define new pence for an explicit solution of the transmission problem.
variablesp=n+K(q') and $=»+K(q) and new separation The asymmetry leads to the coexistence of two kinds of
constantk=k/a2 and|=I/a2. Then, in the limita—x, the  modes, “whispering gallery modes” and “bouncing ball
fourth-order term in(10) drops out and the equations far ~ modes.” The whispering gallery modes are quasidegenerate
and v become in the sense that they open as transition channels in pairs of
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FIG. 9. (Color onling Probability contours in the sectiarr0 of the wave functions of the modén%,ng,wx,wy) at the moment when
they “open” as transition channdlksee text. The wave functions are displayed in the order they contribute to the conductance in Fig. 7. Light
(blue) corresponds to low probability; dafked corresponds to high probability. The black lines mark the caustics of the classical motion.
Ellipses indicate whispering gallery modes; hyperbolas indicate bouncing ball modes.

approximately the same energy. This way whispering gallenconception in chemistry to compute reaction r&fekleas
modes effectively lead to conductance steps of se?é(z#) from transition state theory have been applied to a two-
whereas bouncing ball modes give conductance steps of sizBmensional electron flow across a potential saddle by
€?/(wrh). Bouncing ball modes are a phenomenon of asymEckhardt?® For a two degree-of-freedom system the classical
metric constrictions and do not appear in the case of axiallflux (which gives the conductancéor an energy above that
symmetric constrictions which have been discussed earliasf the potential saddle is given by the action of an unstable
by Torres, Pascual, and Sa€éfizin our study the axially periodic orbit of that energy; the Lyapunov periodic orbit
symmetric case is contained as the limiting case 0 [or  associated with the saddle. The quantized conductance steps
equwalentlyb—>c in the unscaled equation for the boundary can be described in terms of the EBK quantization of this
hyperboloid in Eq.(1)] which leads to a vanishing of the action. Recent developments in dynamical systems theory
bouncing ball phases; see the classical bifurcation diagram ishow how to generalize these ideas to an arbitfiany finite)
Fig. 5. In the axially symmetric limit the quasidegeneracy ofnumber of degrees of freedoth3 These results show that,
the whispering gallery modes becomes an exact degeneragy. the neighborhood of a saddle-centercenter equilibrium
For non-vanishing temperatufe the Landauer-Bittiker point, the dynamics igienerically integrable. The unstable
formula contains the Fermi-Dirac occupation probability. 'nper|od|c orbit generalizes to a so-calladrmally hyperbolic
this case Eq(2) has to be replaced by invariant manifold(NHIM) which, for an degree-of-freedom
&2 system, has the topology of @n-3)-dimensional sphere.
=—> J (— i) T (E)dE, (300  The NHIM is what in the chemistry literature is referred to as
z “activated complex;” an invariant system with one degree of
freedom less than the full system located between “reactants”
whereF(E)=1/{1+exd(E-E)/(ksT)]} and the derivative is and “products 32 The classical flux is given in terms of a
taken at the Fermi enerdg. If T goes to zero the derivative generalized action integral over the NHf¥IQuantum effect
turns into ad function and we recover the conductance for-on the flux can be described in terms of the EBK quantiza-
mula (2). A nonvanishing temperature thus leads to ation of the invariant tori which foliate the NHIN¢
smoothing of the conductance steps similar to the effect of As hard-wall constrictions are often good models in the
tunneling. study of mesoscopic systems it is desirable to transfer the
Depending on the experimental setup it might be a betteideas from transition state theory to billiard systems. For the
approximation to replace the hard-wall constriction consid-hyperboloidal constriction studied in this paper the NHIM
ered in this and many other worksee, e.g., Refs. 14 and)17 consists of the unstable invariant subsystem which is the
by a smooth potential. The analog of transmission through @lanar billiard in the bottleneck ellipse, which is located be-
narrow constriction in a smooth system can be considered tween “reactants” and “productsgthe electron reservoirs at
be the transport across a potential saddle or, more generally< 0 andz> 0, respectivelyand whose spectrum essentially
across a saddle-centéwo degrees of freedonor saddle- determines the conductivity. Due to the normal hyperbolicity
center-centefthree degrees of freedgraquilibrium point. A this invariant set persists under nonintegrable perturbations
saddle-center---center is an equilibrium point at which the (this can be made precise in terms of the billiard in&ut it
matrix of the diagonalization of the Hamiltonian vector field is unclear how to compute the NHIM for a generic, i.e.,
has one pair of real eigenvalues and otherwise imaginargionseparable, hard-wall constriction in a three-dimensional
eigenvalues. Transport across saddle-centarenters is the electron gas. The computation of the NHIM is important as
mechanism for “transformation” in a large and diverse num-certain homoclinic orbits to the NHIM give rise to the exis-
ber of applications. It can be studied within the powerfultence of a high dimensional chaotic saddle which should
framework oftransition state theoryhich has its origin of have strong consequences for the conducti¥ityloreover,
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heteroclinic connections between the NHIMs of a succession
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