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On the basis of the viewpoint that a static wave function is formed as a result of self-interference of a
moving electron, we investigate the temporal behavior of an electronic wave function through a resonant
tunneling diode. In order to do it, we extend the WKB method by introducing a semiclassical orbital function
so that we can follow the motion of an incident electron within a semiclassical picture. Within this theory,
resonant tunneling is described as self-interference of amplitudes multiply reflected between potential barriers.
We show that the components of multiply reflected amplitudes arrive with time delay, and thus total transmis-
sion amplitude is built up with time. At the resonant condition, the transmission probability is unity, implying
that an electron behaves as if it senses beyond the barrier where the amplitude of a wave function is zero. This
paradoxical nonlocality is reasonably understood in terms of the temporal buildup of transmission amplitudes
due to multiple reflection.
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I. INTRODUCTION

The resonant tunneling diodesRTDd has been one of the
staples of physics and device technologies using semicon-
ductor nanostructures.

Figure 1 shows a schematic diagram of a RTD. The inset
shows static transmission and reflection probabilities plotted
as functions of electron energy, calculated by using the
method described later in this paper. As is well known, tun-
neling probability is unity at the resonant condition; an inci-
dent electron travels through the double-barrier structure
without decay when the electronic energy coincides with one
of the energies of the quasibound states in the quantum well
region. Of course, we cannot expect such a high transmission
rate in real systems. However, the perfect transmission at
resonance is a theoretical consequence in an ideal situation.

There are a large number of theoretical and experimental
studies on RTD’s in various conditions.1 The properties of
RTD’s have been well revealed owing to these studies. For
example, effects such as interface roughness scattering2 and
interaction between electrons3 in the tunneling current have

been studied. Not only conventional RTD’s, but the resonant
effect in Zener tunneling has also been observed.4–6

However, we may encounter an embarrassing situation.
Let us think that an incident electron is expressed as a local-
ized wave packet. If we have a naive interpretation of the
tunneling probability, the transmission rate of 100% at reso-
nancesaccordingly a zero reflection rated means that an elec-
tron arriving at the edge of the barrier keeps on moving as if
there is no barrier. However, such behavior of an electron is
quite mysterious; why does the electron know that there is a
quasibound state beyond the barrier? There is no amplitude
of the incident electron in the quantum well region before
penetration through the barrier occurs. This nonlocality con-
tradicts naive intuition.

In order to explain such nonlocal behavior of a tunneling
electron, a theoretical framework beyond conventional treat-
ments is necessary. As far as we know, no clear answer to the
question has been given, though there are many theoretical
studies on the temporal behavior of tunneling electrons.7–15

We will show in this paper that the nonlocality is reasonably

FIG. 1. Schematic diagram of a resonant tun-
neling diode. Quasibound states in the well re-
gion are shown by the dashed horizontal lines.
Inset: Transmission and reflection probabilities
calculated within the method described in Sec. II.
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understood by considering the temporal behavior and self-
interference of an electron.

There are various techniques to investigate the motion of
an electron.10,11,16 By using one of the techniques, we can
describe the time evolution of an electronic state through
potential barriers, solving the time-dependent Schrödinger
equation numerically. With numerical analysis, however, we
may miss physical insight as a price for accuracy. On the
other hand, the WKB method provides us a clear physical
picture of the resonant tunneling phenomenon,17 although
numerical errors are inevitable.

In this study, we apply the WKB method in order to grasp
the physics of the temporal behavior of tunneling electrons.
We develop a theory on the basis of the perspective that a
static wave function is formed due to self-interference of a
moving electron. In Sec. II, we extend the WKB approxima-
tion based on the path-integral theory, so that we can treat the
dynamics of a tunneling electron. Numerical results calcu-
lated based on the extended WKB approximation are shown
and discussed in Sec. III.

We note that temporal analysis of tunneling electrons is
also interesting from the viewpoint of device application. It
is necessary to evaluate the tunneling probability on a short
time scale, so as to investigate characteristics of RTD’s under
a high-frequency alternating voltage.18–21

II. ELECTRON DYNAMICS BASED ON
THE WKB METHOD

A. The WKB approximation within the path-integral theory

First in this section, we review the WKB approximation
which is often used for analysis of tunneling phenomena.17,22

Within the path-integral theory, the time evolution of an elec-
tron is given by

csx,td =E
−`

`

Ksx,t;x0,t0dcsx0,t0ddx0, s1d

wherecsx0,t0d is the wave function at an initial timet0, and
Ksx,t ;x0,t0d is a function called a Feynman kernel.23–25 In
the WKB approximation, the Feynman kernel is given by

Ksx,t;x0,t0d = o
a

Î i

2p"

]2Scl
a

]x ]x0
eiScl

a /"+iha
, s2d

whereScl
a is the action evaluated along a semiclassical path

sspecified with an indexad connecting the initial point
sx0,t0d and the final pointsx,td of electron’s motion. Some of
the possible paths for resonant tunneling are depicted in Fig.
2, wherer andt stand for reflection and transmission, respec-
tively. In Eq. s2d, ha denotes the change of phase factor
accompanied by singular points in the paths. For a double-
barrier structure, a jump of potential acts as a singularity. A
wave function thus undergoes a phase change when it passes
throughsor is reflected byd a potential step. Values ofha will
be discussed in the next section and the appendixes. If the
incident statecsx0,t0d has a well-defined position, we may
follow the motion of this state by using Eq.s1d.

We consider an incident electron with energyE. Here we
introduce a function defined by

xEsx,td =E
t0

t

eiEt/"csx,tddt. s3d

Mathematically, Eq.s3d can be regarded as a Fourier trans-
formation, changing the variable from time to energy. We
may, however, interpret it as the afterimage of a moving
electron; a coherent superposition of time-evolving wave
functions.26,27 In this sense, the functionxEsx,td has a mean-
ing as a time-integrated probability amplitude, i.e., the prob-
ability of finding an electron during the periodt0, t.28

The exponential function in Eq.s3d is necessary to have a
reasonable result. It cancels the time-dependent phase factor
of csx,td, which is e−iEt/". Such cancellation is necessary
from the viewpoint of gauge invariance ofxEsx,td. When we
consider a coherent superposition of wave functions belong-
ing to different times, an additional constant potential will
change the relative phase difference between the wave func-
tions. As a result, the superposed function becomes quite
different by the choice of origin of the energy axis. Such a
situation is irrational and undesirable. Thus, the time-
dependent phase factor of a moving state must be excluded
from the superposition as shown in Eq.s3d.

By inserting Eqs.s1d and s2d into Eq. s3d, we have

xEsx,td =E
−`

` FE
t0

t

eiEt/"Ksx,t;x0,t0ddtGcsx0,t0ddx0

= co
a
E

t0

t

dtÎ i

2p"

]2Scl
a

]x ]x0
eisEt+Scl

ad/"+iha
s4d

with c=s4p /ad1/4. To obtain the second expression, we set
the initial state localized as

csx0,t0d = S a

p
D1/4

e−ax2/2 . S4p

a
D1/4

dsx0d s5d

with sufficiently largea. We note that the function in the
square bracketf¯g in the first line of Eq.s4d corresponds to
energy representation of the Feynman kernel, which is de-
fined by

FIG. 2. Some of possible paths of an electron through a double-
barrier structure. The potential barriers are indicated by the gray
regions, and r and t stand for reflection and transmission,
respectively.
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KEsx,x0d = lim
t−t0→`

1

i"
E

t0

t

eiEt/"Ksx,t;x0,t0ddt. s6d

When the initial statecsx0,t0d is localized atx0 as shown in
Eq. s5d, xE and KE are essentially equivalent except for a
constant factor. Instead ofKE, however, we will use the func-
tion xE in the following formulation so as to stress that the
Fourier transformation by time is an expression of self-
interference of a moving electron.

We can evaluate the time integration of Eq.s4d by a
method called the stationary phase approximation. Since" is
a small quantity, the exponential function in Eq.s4d oscillates
quickly with time. Thus, we can expect that the time integra-
tion vanishes unless the argument of the exponential function
is extremum. This means that we can evaluate the time inte-
gration from the values at the extrema, which are called sta-
tionary points.

By utilizing this idea, we approximate the exponential
function in Eq. s4d by expandingScl

a around the stationary
point up to the second order as

eisEt+Scl
ad/" . expH i

"
FWasx,x0;Ed +

1

2

]2Scl
a

]t2 st − t̄d2GJ .

s7d

In this equation, the stationary pointt̄ is obtained from

E + U ]Scl
a

]t
U

t=t̄

= 0, s8d

and the functionWasx,x0;Ed is

Wasx,x0;Ed = Et̄ + Scl
a ut̄ =E

x0

x

Î2m* fE − Vsx8dgdx8 s9d

for a potentialVsxd. The integration in Eq.s9d is carried out
along a patha.

As an example of Eq.s8d, we show the case for a free
electron. The action due to free motion is

Scl
a =

m*

2

sx − x0d2

t
. s10d

Equations8d then results in the relation

xst̄d = x0 +Î 2E

m*
t̄, s11d

where Î2E/m* is velocity. Such a relation enables us to
define the path of an electron. Regarding the stationary point
t̄ as an independent time variable, Eq.s11d gives the elec-
tron’s position as a function of time,

By inserting Eq.s7d into Eq.s4d and extending the bounds
of integration to −̀ ,t,`, we have17,22

xEsxd = co
a

Î i

2p"

]2Scl
a

]x ]x0
eiWa/"+iha

3E
−`

`

expS i

"

1

2

]2Scl

]t2 st − t̄d2Ddt

= cÎ−
]2Scl

a/]x ]x0

]2Scl
a/]t2 eiWa/"+iha

= cU ]2Wa

]E ]x

]2Wa

]E ]x0
U1/2

eiWa/"+iha
= o

a

xE
asxd, s12d

with

xE
asxd = cU ]2Wa

]E ]x

]2Wa

]E ]x0
U1/2

eiWa/"+iha
. s13d

The functionxE
asxd is the electronic amplitude through a path

a. Hence, Eq.s12d means that the amplitude of an electron at
the point x is expressed as a superposition of amplitudes
from semiclassical paths. We note that a single electron trav-
els throughall the paths. Summation of amplitudes from all
the paths governs the electron’s behavior.

We also note that these results can be applied even for
EøVsxd where an electron is in a potential barrier.17,29 In
this case, electron velocity is given by

v =Î 2

m*
fVsxd − Eg, s14d

within the semiclassical picture.

B. Extension of the WKB method for electron dynamics

We can investigate the static properties of a tunneling
electron using Eqs.s12d and s13d, becausexEsxd is essen-
tially a static wave function.

We extend here the theory so as to describe the time evo-
lution of an electron. Remember that Eqs.s12d ands13d were
obtained by evaluating the time integration around a station-
ary point. In other words,xEsxd is a superposition of wave
functions of a moving electron. We also note that the station-
ary point gives the semiclassical path of electronic motion as
shown in Eq.s11d. These facts lead us to the idea that it will
be useful to introduce a wave function whose superposition
along a semiclassical path yieldsxE

asxd. Within the spirit of
the WKB method, which is often called a semiclassical ap-
proximation, such a wave function should have a definite
position, moving along a semiclassical path.

By considering these conditions, we define a function
fE

a(xastd) with an equation

cE
t0

t

eiEt/"fE
a
„xastd…dt = xE

asx,td, s15d

wherexastd is a semiclassical path.
When ]2Scl /]t2 in Eq. s7d is large, we have an approxi-

mate relation
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expS i

"

1

2

]2Scl

]t2 st − t̄d2D .Î 2pi"

]2Scl/]t2dst − t̄d. s16d

By inserting this equation into Eq.s7d, Eq. s4d becomes

xEsx,td = co
a
E

t0

t

dtÎ−
]2Scl

a/]x ]x0

]2Scl
a/]t2 eiWa/"+iha

dst − t̄d.

s17d

Therefore we have

fa
„xastd… = U ]2Wa

]E ]x

]2Wa

]E ]x0
U1/2

eisWa−Etd/"+iha
dst − t̄d,

s18d

from comparison between Eq.s17d and Eq.s15d.
The function fE

a(xastd) is a particlelike state moving
along a semiclassical path. This function, thus, is regarded as
a compromise between quantum and classical views.

We may estimate the spatial extension length offa(xastd)
with

Dx .Î 2E

m*
3Î"t̄

E
. s19d

In this equation, the first factor is the velocity and the second
factor is the temporal extent given by

1

Dt
2 .

1

2"
U ]2Scl

]t2 U
t̄

=
E

"t̄
, s20d

where Eq.s10d was used. By using typical valuest̄=10 fs
andm* =9.1310−31 kg, we haveDx.14 Å.

In the following calculations, however, we treatfa(xastd)
as a particlelike function, neglecting the spatial extent. This
approximation allows us to define unambiguous paths near
the potential steps.

III. TIME ANALYSIS OF AN ELECTRON THROUGH A
RESONANT TUNNELING DIODE

In Fig. 3, we show an example of behavior of a single
electron described by the theory shown in the previous sec-
tion. We carried out calculations for a double-barrier struc-
ture with structural parametersL=20 Å, W=60 Å, and V
=250 meV. Considering GaAs as a host material, the mass
of an electron is 0.068m0 with the electron rest massm0.

The upper panel shows the functionfE
a(xastd) moving

along the patht0, traveling through the potential barriers
without any reflection. The energy of the electron is 150
meV. We note that the functions at each time are plotted by
Gaussian curves instead of ad function for the purpose of
visualization. The electron initially located atx=−200 Å
moves toward the right with changing phase. Passing
through the potential barrierssdenoted by the gray zonesd
with decay of amplitude, it reaches the positionx=220 Å at
t=46 fs.

As for the phase change due to singularitiesha, we adopt

ha = n
p

4
+ n8p, s21d

where n sn8d is the number of times the electron passes
through sis reflected byd a potential step. As shown in Ap-
pendixes A and B, this treatment gives rise to resonant ener-
gies En=s"2/2m* dsnp /Wd2 with n=1,2,… as expected for
an ideal quantum well. In addition, unitarity for scattered
amplitudes is satisfied with these values of the phase change.
It is known that phase change due to a singular point isp /2
within the WKB method. However, it has been proven that
this value is unsuitable for an abrupt potential step.30 See
Appendixes A and B for the details about the effect of phase
change on resonant energies.

The lower panel of Fig. 3 shows the functionxE
t0sx,td

defined by Eq.s15d, corresponding to the motion shown in
the upper panel. We note that the plotted function has a value
only in the region where the electron passed through, be-
cause electron motion in a finite region is considered. This
function thus has a meaning similar to a scar. As we have
noted in the previous section, this function is essentially a
static wave function.

In Fig. 4, the functionseiEt/"fE
a(xastd) for the transmission

paths t0, t1, and t2 are plotted with offset. The function
xE

asx,td corresponding to each path is given as an envelope of
the moving wave functions. Since the total transmission am-
plitude is the summation of thexE

asx,td’s for all paths, a large
value of the transmission amplitude is realized when the
eiEt/"fE

a(xastd)’s are in phase. On the other hand, when the
phases of the components from the paths are different, the

FIG. 3. Upper panel: The Gaussian curves denote the function
fE

a(xastd) moving along the patht0 which directly tunnels through
the double-barrier structure. Electron energy and effective mass are
150 meV and 0.068m0, respectively. The electron atx=−200 Å at
t=0 reaches the position 220 Å at 46 fs. Lower panel: The function
xE

asx,td at t=46 fs is plotted. Note that this function has a value
only in the region where the electron passed through. In these fig-
ures, the solid and dashed curves are for the real and imaginary
parts, respectively, and the potential barriers are indicated by the
gray regions.
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amplitudes cancel with one another. As a result, in this case,
the total transmission amplitude becomes small.

A similar illustration for typical reflection paths is shown
in Fig. 5, where theeiEt/"fE

a(xastd)’s for reflection pathsr0

andr1 are plotted with offset. Based on the same argument as
shown above, the total reflection amplitude becomes large
ssmalld due to constructivesdestructived interference among
amplitudes from the paths.

An important consequence of the present theory is that the
amplitudes from multiply reflected paths arrive with time
delay. This is because an electron spends some time in the
quantum well region while it is multiply reflected. Owing to
such time delay of amplitudes, the total transmission and
reflection amplitudes are built up gradually with time.

In order to see the temporal behavior of a tunneling elec-
tron, we calculated time-dependent transmission coefficients
defined by

TEsx,td =
xE

stdsx,td
xE

sindsx0d
. s22d

In this equation,xE
stdsx,td denotes the amplitude of transmis-

sion given by

xE
stdsx,td = o

a

8 E
t̄

t

eiEt/"fE
a
„xastd…dt, s23d

wheret̄ is the time when the electron reaches the first barrier.
The summation overa is taken for the transmission paths.
The denominator

xE
sindsxd =E

t0

t̄

eiEt/"fE
a
„xastd…dt s24d

is the amplitude of the incident state.
Similarly, we define a time-dependent reflection coeffi-

cient as

REsx8,td =
xE

srdsx8,td
xE

sindsx0d
, s25d

with reflection amplitudexE
srdsx8 ,td defined in a similar way

to Eq. s23d.
In Fig. 6, we show the time-dependent transmission and

reflection probabilities by the solid and dotted curves, re-
spectively. In the calculations, we have evaluated the trans-
mission amplitude at the positionx=150 Å, and the reflec-
tion amplitude atx8=−50 Å. The electron energy 154 meV
corresponds to the resonant energy for the present double-
barrier structure. In this case, the transmission amplitude be-
comes larger bit by bit as other components from the multi-
ply reflected path arrive at the positionx. Finally it becomes
unity, corresponding to transmission without decay. Simulta-
neously with the behavior of the transmission amplitude, the
reflection amplitude becomes gradually smaller as a result of
the superposition of multiply reflected components. Although
the reflection amplitude has a large value at the early stage
because of the direct reflection component fromr0, it finally
becomes zero.

Such behavior of the reflection amplitude gives a clear
reasonable answer to the question of nonlocality we have
mentioned in the Introduction. Even though the reflection
probability is zero, it does not mean that an electron behaves
as if there is no barrier. An electron does not sense beyond
the barrier where its amplitude is zero. Even in the condition

FIG. 4. Motion of a localized wave function along some paths
for a double-barrier structure.t0 indicates a path that directly tun-
nels through the barriers.t1 and t2 are paths multiply reflected be-
tween the barriers.

FIG. 5. Motion of a wave packet along some paths.r0sr1d indi-
cates a path reflected by the firstssecondd barrier.

FIG. 6. Time dependence of probability amplitude for transmis-
sion and reflection. Electron energy is 154 meV, which is the reso-
nant energy for the present double-barrier structure.
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of perfect resonance where the reflection probability is zero,
the electron is reflected by the potential barrier. Multiply
reflected components cancel out the total reflection ampli-
tude with time until it becomes zero.

In Fig. 7, we show transmission and reflection amplitudes
calculated for an off-resonant energyE=140 meV. In this
case, the superposition of multiply reflected amplitudes gives
rise to oscillation of the transmission and reflection prob-
abilities until they reach steady values. The transmission and
reflection probabilities shown in the inset of Fig. 1 are such
steady values plotted as functions of energy. We note that
unitarity is not satisfied in transitive time, though it is satis-
fied in the long time limit.

It is known that the charge of resonant tunneling electrons
stays in the quantum well region for a considerably long
time.12,13The charge in the well decreases slowly with time.
This fact corresponds to the present result that the transmis-
sion and reflection amplitudes approach steady values with
time.

Recently, the time-dependent current through a double-
barrier structure has been calculated by using Green’s
functions.15 The calculated current shows temporal oscilla-
tion, which is similar to the behavior of the transmission
amplitude shown in Fig. 7.

In many quantum mechanical calculations, electronic
properties are investigated by solving a static Schrödinger
equation. Resonant tunneling is also often analyzed with
steady-state wave functions. However, the present results
show that electron dynamics is necessary to understand the
essence of a phenomenon such as resonant tunneling.

As shown in this paper, the resonant tunneling is a quan-
tum mechanical phenomenon which arises from interference
of amplitudes from various paths. The present theory well
describes this aspect. However, as for the electron motion
along each path, the present method is based on the semi-
classical picture where an electron has definite position and
momentum. We have followed the motion of an electron
within the WKB method and stationary phase approximation.
With these methods, we have regarded an electron as a lo-
calized particlelike state. With a strict treatment of quantum
mechanics, however, a localized wave function becomes ex-
tended with time. We have to note that this effect is neglected

in the present theory. Therefore the behavior of the probabil-
ity amplitudes shown in Figs. 6 and 7 has to be somewhat
rectified if we consider the spatial extension of moving states
exactly.

IV. CONCLUSION

We investigated the temporal behavior of an electron
through a double-barrier structure by extending the WKB
method. Based on the viewpoint that a static wave function is
formed due to self-interference, a steady-state wave function
is expressed as a coherent superposition of wave functions of
a moving electron. The transmission and reflection ampli-
tudes are given by summations of amplitudes from semiclas-
sical paths corresponding to multiple reflection in the quan-
tum well region. Since multiply reflected components arrive
one by one with time delay, the total amplitudes for trans-
mission and reflection of an electron are built up with time.

This result provides us a reasonable interpretation for the
nonlocal character of tunneling electron noted in the Intro-
duction. Perfect transmissionsand zero reflectiond at reso-
nance does not mean that the electron is not scattered by the
barrier. The refection amplitude approaches zero with time as
a result of interference of multiply reflected components.
Zero reflection does not mean that an electron senses beyond
the barrier where its amplitude is zero.

We have to note that the calculated results in this theory
have some numerical deviation from exact values. The WKB
method which we employed is valid only for high-energy
electrons. It gives rise to numerical errors. As a result, the
method shown in this paper may be unsuitable for analysis of
real devices.

However, we can expect that gross features of the calcu-
lated time dependence of the amplitudes are qualitatively
reasonable, and that the present theory will be useful to de-
scribe physics of electron dynamics in nanostructures.

APPENDIX A: RESONANT ENERGY AND PHASE
CHANGE AT A POTENTIAL BARRIER

In this appendix, we show that the phase change of a
wave function at a potential barrier is closely related to the
resonant condition.

First, we consider transmission and reflection at a single
square barrier of widthL and heightV. We write the tunnel-
ing coefficient as

t = e−kL+iw, sA1d

with k=Î2m* sV−Ed /". The coefficient for reflection is then
given by

r = eiw8Î1 − utu2, sA2d

so thatutu2+ ur u2=1 is satisfied. In Eqs.sA1d andsA2d, w and
w8 are phase changes associated with tunneling and reflec-
tion, respectively.

Next, we consider double barriers separated byW. By
considering multiple reflection in the quantum well region,
the total transmission coefficient is given by a geometric
series as

FIG. 7. Time dependence of probability amplitude for transmis-
sion and reflection calculated for electron with energy 140 meV.
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ttotalsEd = t2eiu + t2r2e3iu + t2r4e5iu + ¯

=
t2eiu

1 − s1 − utu2de2iw8+2iu
, sA3d

where u=Î2mEW/" is the electron’s phase change across
the quantum well. The condition for resonant tunneling is
given by

u + w8 = np, sA4d

because this equation results inttotalsEd as

ttotalsEd =
t2eiu

utu2
= e2iw+iu, sA5d

giving uttotalsEdu2=1.
Within the WKB theory,p /2 of phase change due to re-

flection is often imposed. If we applyw8=p /2 for Eq. sA4d,
the resonant energy is obtained as

En =
"2

2m*
F sn − 1/2dp

W
G2

. sA6d

By usingw8=p instead ofp /2, we have

En =
"2

2m*
Snp

W
D2

, sA7d

which is a reasonable result.
By considering this result, in this paper we have adopted

the phase change at reflectionw8=p because Eq.sA6d has an
additional factor 1/2 for energy levels in the quantum well

region. On the other hand, Eq.sA7d gives a plausible value
for the energies of states in the quantum well. However, we
have to note that numerical solution of the Schrödinger equa-
tion is necessary to obtain exact resonant energies associated
with the exact phase change due to reflection.

APPENDIX B: CONDITION FOR UNITARITY

Similarly to Eq. sA3d, the total reflection amplitude is
given by

r totalsEd = r + rt2e2iu + t2r3e4iu + t2r5e6iu + ¯

= r +
rt2e2iu

1 − s1 − utu2de2iw8+2iu
. sB1d

At the resonance condition Eq.sA4d, r totalsEd is

r totalsEnd = r +
rt2e2iu

utu2
= rs1 + e2iw+2iud. sB2d

From the requirement of unitarity,uttotalu2+ ur totalu2=1 must
be satisfied. Thereforer totalsEnd=0 must be satisfied for the
resonant energiesEn. Thus, from Eqs.sA4d and sB2d, the
phase changes for transmission and reflection should satisfy
the relation

w − w8 = ± p/2. sB3d

This relation is satisfied by imposing a phase changep /4
when an electron passes through a potential step.
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