PHYSICAL REVIEW B 71, 035334(2005

Effect of self-interference of an electron in motion: Analysis of nonlocality of an electron through
a resonant tunneling diode
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On the basis of the viewpoint that a static wave function is formed as a result of self-interference of a
moving electron, we investigate the temporal behavior of an electronic wave function through a resonant
tunneling diode. In order to do it, we extend the WKB method by introducing a semiclassical orbital function
so that we can follow the motion of an incident electron within a semiclassical picture. Within this theory,
resonant tunneling is described as self-interference of amplitudes multiply reflected between potential barriers.
We show that the components of multiply reflected amplitudes arrive with time delay, and thus total transmis-
sion amplitude is built up with time. At the resonant condition, the transmission probability is unity, implying
that an electron behaves as if it senses beyond the barrier where the amplitude of a wave function is zero. This
paradoxical nonlocality is reasonably understood in terms of the temporal buildup of transmission amplitudes
due to multiple reflection.
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I. INTRODUCTION been studied. Not only conventional RTD’s, but the resonant

The resonant tunneling diod&TD) has been one of the €ffect in Zener tunneling has also been obsefvréd.
staples of physics and device technologies using semicon- HOWever, we may encounter an embarrassing situation.
ductor nanostructures. Let us think that an incident electron is expressed as a local-

Figure 1 shows a schematic diagram of a RTD. The inseized wave packet. If we have a naive interpretation of the
shows static transmission and reflection probabilities plottedunneling probability, the transmission rate of 100% at reso-
as functions of electron energy, calculated by using théhance(accordingly a zero reflection rateeans that an elec-
method described later in this paper. As is well known, tun-tron arriving at the edge of the barrier keeps on moving as if
neling probability is unity at the resonant condition; an inci- there is no barrier. However, such behavior of an electron is
dent electron travels through the double-barrier structurguite mysterious; why does the electron know that there is a
without decay when the electronic energy coincides with onguasibound state beyond the barrier? There is no amplitude
of the energies of the quasibound states in the quantum wedlf the incident electron in the quantum well region before
region. Of course, we cannot expect such a high transmissigpenetration through the barrier occurs. This nonlocality con-
rate in real systems. However, the perfect transmission dtadicts naive intuition.
resonance is a theoretical consequence in an ideal situation. In order to explain such nonlocal behavior of a tunneling

There are a large number of theoretical and experimentatlectron, a theoretical framework beyond conventional treat-
studies on RTD's in various conditioAsThe properties of ments is necessary. As far as we know, no clear answer to the
RTD’s have been well revealed owing to these studies. Foguestion has been given, though there are many theoretical
example, effects such as interface roughness scafteaimdy  studies on the temporal behavior of tunneling electrfohs.
interaction between electrohs the tunneling current have We will show in this paper that the nonlocality is reasonably
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FIG. 1. Schematic diagram of a resonant tun-
----- transmission neling diode. Quasibound states in the well re-
> V °o o 53 gion are shown by the dashed horizontal lines.
Energy [eV] Inset: Transmission and reflection probabilities
calculated within the method described in Sec. Il
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understood by considering the temporal behavior and self- %
interference of an electron. ,2

There are various techniques to investigate the motion of t,
an electrort®'116 By using one of the techniques, we can r
describe the time evolution of an electronic state through fy
potential barriers, solving the time-dependent Schrodinger Iy

equation numerically. With numerical analysis, however, we
may miss physical insight as a price for accuracy. On the
other hand, the WKB method provides us a clear physical
picture of the resonant tunneling phenomefbmjthough N
numerical errors are inevitable. X v X

In this study, we apply the WKB method in order to grasp
the physics of the temporal behavior of tunneling electrons. FIG. 2. Some of possible paths of an electron through a double-
We develop a theory on the basis of the perspective that barrier structure. The potential barriers are indicated by the gray
static wave function is formed due to self-interference of aregions, andr and t stand for reflection and transmission,
moving electron. In Sec. I, we extend the WKB approxima-respectively.
tion based on the path-integral theory, so that we can treat the
dynamics of a tunneling electron. Numerical results calcu- t
lated based on the extended WKB approximation are shown xe(x,t) :f eE7hy(x, Ddr. (3
and discussed in Sec. lll. to

We note that temporal analysis of tunneling electrons is
also interesting from the viewpoint of device application. It Mathematically, Eq(3) can be regarded as a Fourier trans-
is necessary to evaluate the tunneling probability on a shofermation, changing the variable from time to energy. We
time scale, so as to investigate characteristics of RTD’s undépay, however, interpret it as the afterimage of a moving

a high-frequency alternating voltad&2! electron; a coherent superposition of time-evolving wave
functions?627In this sense, the functioge(x,t) has a mean-
Il. ELECTRON DYNAMICS BASED ON ing as a time-integrated probability amplitude, i.e., the prob-
THE WKB METHOD ability of finding an electron during the peridg~t.28

The exponential function in Eq3) is necessary to have a

o ] . _~_ reasonable result. It cancels the time-dependent phase factor
First in this section, we review the WKB approximation of 4(x, 7), which is eE7%, Such cancellation is necessary

which is often used for analysis of tunneling phenom&/a.  fom the viewpoint of gauge invariance gf(x,t). When we
Withi_n th_e path-integral theory, the time evolution of an elec-,sider a coherent superposition of wave functions belong-
tron is given by ing to different times, an additional constant potential will
o change the relative phase difference between the wave func-
I,D(X,t):f K (X, t;Xo, to) (X0, o) dXo, (1)  tions. As a result, the superposed function becomes quite
- different by the choice of origin of the energy axis. Such a

where(xo, t,) is the wave function at an initial time, and situation is irrational and undesirable. Thus, the time-
K(x,t;%, 1) is a function called a Feynman kerrét? In dependent phase factor of a moving state must be excluded

o i from the superposition as shown in H).
he WKB he F k I . ' :
the approximation, the Feynman kernel is given by By inserting Eqgs(1) and (2) into Eq. (3), we have
P S

A. The WKB approximation within the path-integral theory

i
KXot = 2 \ 5 g ©) =Tt
a \2mh XM XeX D) = f { J e'ET’ﬁK<x,T;xo,to>dr} X0, 1) dx
where S} is the action evaluated along a semiclassical path ~L7%
(specified with an indexa) connecting the initial point t i P ety
(Xo.to) and the final pointx,t) of electron’s motion. Some of =cY ft dr P ﬁXOe'(ET" ol (4)
a 0

the possible paths for resonant tunneling are depicted in Fig.

2, wherer andt stand for reflection and transmission, respec. .. c=(4m/a)¥. To obtain the second expression, we set
tively. In Eq. (2), »* denotes the change of phase factor —\T ) P '

accompanied by singular points in the paths. For a doublet—he initial state localized as

barrier structure, a jump of potential acts as a singularity. A 14 14

wave function thus undergoes a phase change when it passes xorto) = (E) e %2 (4_77> 8(Xo) (5)
through(or is reflected bya potential step. Values af* will ™ a

be discussed in the next section and the appendixes. If the

incident statey(xg,to) has a well-defined position, we may with sufficiently largea. We note that the function in the

follow the motion of this state by using EL). square brackdt - -] in the first line of Eq.(4) corresponds to
We consider an incident electron with eneigyHere we  energy representation of the Feynman kernel, which is de-
introduce a function defined by fined by

035334-2
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t
eETMK (X, 7;X0, to) T (6)

0

1
Ke(X,%g) = lim —

t-tg—oe | t

When the initial state)(x,tp) is localized atx, as shown in
Eqg. (5), xg and K¢ are essentially equivalent except for a
constant factor. Instead &z, however, we will use the func-
tion yg in the following formulation so as to stress that the
Fourier transformation by time is an expression of self-
interference of a moving electron.

We can evaluate the time integration of Edg) by a
method called the stationary phase approximation. Sinse
a small quantity, the exponential function in £4) oscillates

quickly with time. Thus, we can expect that the time integra—With

tion vanishes unless the argument of the exponential function
is extremum. This means that we can evaluate the time inte-
gration from the values at the extrema, which are called sta-
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tionary points. o . _
By utilizing this idea, we approximate the exponential The functionyg(x) is the electronic amplitude through a path

function in Eq.(4) by expandingS, around the stationary - Hence, Eq(12) means that the amplitude of an electron at
point up to the second order as the pointx is expressed as a superposition of amplitudes

from semiclassical paths. We note that a single electron trav-
_ i 1P els throughall the paths Summation of amplitudes from all
dEMSh . oy —|:Wa(X,XO;E) + ——'(7-—7)2} ) the paths governs the electron’s behavior.
h 2 o We also note that these results can be applied even for
(7)  Es<V(x) where an electron is in a potential barriéf® In
this case, electron velocity is given by

In this equation, the stationary pointis obtained from

2
. U= F[V(X) -EJ, (14)

E+ — =0, (8)
o7 | =z within the semiclassical picture.
and the functionV*(x,xo; E) is B. Extension of the WKB method for electron dynamics
X We can investigate the static properties of a tunneling
We(X, %o E) = E7+ %|T=f v2m* [E-V(x")]dx (9)  electron using Eqgs(12) and (13), becauseyg(x) is essen-
%o tially a static wave function.

We extend here the theory so as to describe the time evo-
for a potentialV(x). The integration in Eq(9) is carried out lution of an electron. Remember that E¢k2) and(13) were
along a patho. obtained by evaluating the time integration around a station-

As an example of Eq(8), we show the case for a free ary point. In other wordsyg(x) is a superposition of wave
electron. The action due to free motion is functions of a moving electron. We also note that the station-
ary point gives the semiclassical path of electronic motion as
shown in Eq.(11). These facts lead us to the idea that it will
(10) be useful to introduce a wave function whose superposition
along a semiclassical path yielgg(x). Within the spirit of
the WKB method, which is often called a semiclassical ap-
proximation, such a wave function should have a definite
position, moving along a semiclassical path.
By considering these conditions, we define a function
PE(x*(7)) with an equation

_m* (X=Xo)?

%=

T

Equation(8) then results in the relation

2E__
X(7) =Xo + \/WT, (11

where v2E/m* is velocity. Such a relation enables us to
define the path of an electron. Regarding the stationary point
‘7 as an independent time variable, Efjl) gives the elec-
tron’s position as a function of time,

By inserting Eq(7) into Eq.(4) and extending the bounds
of integration to << 7<%, we havé’?2

t
Cf eiET/h¢g(Xa(T))dT: Xe(X,1), (15)
t

0

wherex“(7) is a semiclassical path.
When #S,/d7% in Eq. (7) is large, we have an approxi-
mate relation
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i1y 2)~ | 2mih
EXp<h2 52 )= azsc./afz‘s(T 7. (19

By inserting this equation into Eq7), Eq. (4) becomes

_ : [ FPSilIx 9% WY R+ Y &
xe(x,t) —C% ftodr —&2%/(%2 e 7 8r-1).

(17)
Therefore we have
P Pwe |12 .
afya — (VVO‘—ET)/ﬁ+I7]a5 _
$*(x*(7)) O % 7E o e (1= 1),
(18)

from comparison between E@L7) and Eq.(15).
The function ¢g(x*(7)) is a particlelike state moving
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FIG. 3. Upper panel: The Gaussian curves denote the function

along a semiclassical path. This function, thus, is regarded ag:(x*(t)) moving along the pathy which directly tunnels through

a compromise between quantum and classical views.
We may estimate the spatial extension lengtlep®ix*(7))

with
2E T
Ax=\|— X \/ﬁ—T.
m* E

(19

the double-barrier structure. Electron energy and effective mass are
150 meV and 0.088,, respectively. The electron at-200 A at

t=0 reaches the position 220 A at 46 fs. Lower panel: The function
Xe(x,t) at t=46 fs is plotted. Note that this function has a value
only in the region where the electron passed through. In these fig-
ures, the solid and dashed curves are for the real and imaginary
parts, respectively, and the potential barriers are indicated by the

In this equation, the first factor is the velocity and the second@ray regions.

factor is the temporal extent given by

1 175

A2 2 97

_E

=—, 20
- hT (20

where Eq.(10) was used. By using typical values-10 fs
andm*=9.1x 103! kg, we haveAx=14 A.
In the following calculations, however, we treat(x*(7))

(21

o — 7_T+/
7t=ng +n'm,

where n (n’) is the number of times the electron passes
through (is reflected by a potential step. As shown in Ap-
pendixes A and B, this treatment gives rise to resonant ener-

as a particlelike function, neglecting the spatial extent. Thigdies En=(#2/2m* )(nw/W)? with n=1,2,.. as expected for
approximation allows us to define unambiguous paths neén ideal quantum well. In add|t|0n, Un|tar|ty for scattered

the potential steps.

IIl. TIME ANALYSIS OF AN ELECTRON THROUGH A
RESONANT TUNNELING DIODE

amplitudes is satisfied with these values of the phase change.
It is known that phase change due to a singular point/ig
within the WKB method. However, it has been proven that
this value is unsuitable for an abrupt potential st¢gee
Appendixes A and B for the details about the effect of phase

In Fig. 3, we show an example of behavior of a singleCh@nge on resonant energies.

electron described by the theory shown in the previous sec-

The lower panel of Fig. 3 shows the functigff(x,t)

tion. We carried out calculations for a double-barrier struc-defined by Eq(15), corresponding to the motion shown in

ture with structural parameteis=20 A, W=60 A, andV

the upper panel. We note that the plotted function has a value

=250 meV. Considering GaAs as a host material, the mas@nly in the region where the electron passed through, be-

of an electron is 0.068y, with the electron rest mass,,.
The upper panel shows the functigpf(x“(t)) moving

cause electron motion in a finite region is considered. This
function thus has a meaning similar to a scar. As we have

along the patht,, traveling through the potential barriers Notéd in the previous section, this function is essentially a
without any reflection. The energy of the electron is 150Static wave function. o
meV. We note that the functions at each time are plotted by N Fig. 4, the function®="" ¢¢(x*(1)) for the transmission
Gaussian curves instead of&afunction for the purpose of Pathsto, t;, andt, are plotted with offset. The function

visualization. The electron initially located at=—200 A

Xe(x,t) corresponding to each path is given as an envelope of

moves toward the right with changing phase. Passinghe moving wave functions. Since the total transmission am-
through the potential barrier&lenoted by the gray zones Pplitude is the summation of thet(x,t)’s for all paths, a large

with decay of amplitude, it reaches the position220 A at
t=46 fs.
As for the phase change due to singularitigs we adopt

value of the transmission amplitude is realized when the
eEVh p2(x%(t))’s are in phase. On the other hand, when the
phases of the components from the paths are different, the
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FIG. 4. Motion of a localized wave function along some paths  F|G. 6. Time dependence of probability amplitude for transmis-
for a double-barrier structuré indicates a path that directly tun- sjon and reflection. Electron energy is 154 meV, which is the reso-

nels through the barrier, andt, are paths multiply reflected be- nant energy for the present double-barrier structure.
tween the barriers.

amplitudes cancel with one another. As a result, in this case, t _ ! Erlh raroa
the total transmission amplitude becomes small. XE(xt) = 2;4 fte' ¢e(x*(7))dr, (23
A similar illustration for typical reflection paths is shown .
in Fig. 5, where thed®"" ¢&(x(t))’s for reflection pathg,  wheret is the time when the electron reaches the first barrier.
andr, are plotted with offset. Based on the same argument ashe summation ovew is taken for the transmission paths.
shown above, the total reflection amplitude becomes largéhe denominator
(small) due to constructivédestructive interference among T
amplitudes from the paths. X(Em)(X): f Eh (x(7))dr (24)
An important consequence of the present theory is that the to
amplitudes from multiply reflected paths arrive with time .
delay. This is because an electron spends some time in th
quantum well region while it is multiply reflected. Owing to
such time delay of amplitudes, the total transmission an
reflection amplitudes are built up gradually with time. X(Er)(X',t)
In order to see the temporal behavior of a tunneling elec- Re(X',t) = 5~
tron, we calculated time-dependent transmission coefficients Xe (%)
defined by with reflection amplitudex!’’(x',t) defined in a similar way
)(g)(X,t) to Eq. (23).

IR (22) In Fig. 6, we show the time-dependent transmission and
Xe (%o) reflection probabilities by the solid and dotted curves, re-
spectively. In the calculations, we have evaluated the trans-
mission amplitude at the positior=150 A, and the reflec-
tion amplitude aix’ =-50 A. The electron energy 154 meV

%the amplitude of the incident state.
Similarly, we define a time-dependent reflection coeffi-
&ient as

(25

Te(x,t) =

In this equation,)((é)(x,t) denotes the amplitude of transmis-
sion given by

SRR LR I ™ corresponds to the resonant energy for the present double-
R barrier structure. In this case, the transmission amplitude be-
— ~ comes larger bit by bit as other components from the multi-
d:E - /\/\ AAA_:"J . ply reflected path' arrive at the 'po'sitian'FinaIIy it becomes
S e | % unity, corrt_aspondlng to transmission Wlt_hOl_Jt decay._ Simulta-
S o 1/ - neously with the behavior of the transmission amplitude, the
oo 1 reflection amplitude becomes gradually smaller as a result of
k=3 \/ the superposition of multiply reflected components. Although
> the reflection amplitude has a large value at the early stage
£ F . 7 because of the direct reflection component figmit finally
incident becomes zero.
T Such behavior of the reflection amplitude gives a clear
_200 ~100 0 100 reasonable answer to the question of nonlocality we have
XAl mentioned in the Introduction. Even though the reflection
probability is zero, it does not mean that an electron behaves
FIG. 5. Motion of a wave packet along some patfyst;) indi- as if there is no barrier. An electron does not sense beyond
cates a path reflected by the fifsecond barrier. the barrier where its amplitude is zero. Even in the condition
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A& El '140 nlnev ' in the present theory. Therefore the behavior of the probabil-

. ity amplitudes shown in Figs. 6 and 7 has to be somewhat
T reflection e . . . . .
e, rectified if we consider the spatial extension of moving states
i exactly.

|Re (', )2

IV. CONCLUSION

2
;

E,_.__:
We investigated the temporal behavior of an electron
o through a double-barrier structure by extending the WKB
transmission method. Based on the viewpoint that a static wave function is

formed due to self-interference, a steady-state wave function

N is expressed as a coherent superposition of wave functions of
0 200 400 600 800 a moving electron. The transmission and reflection ampli-
tudes are given by summations of amplitudes from semiclas-
_ o _ _sical paths corresponding to multiple reflection in the quan-
FIG. 7. Time dependence of probability amplitude for transmis-y , 1 well region. Since multiply reflected components arrive
sion and reflection calculated for electron with energy 140 meV. one by one with time delay, the total amplitudes for trans-

of perfect resonance where the reflection probability is zeror,n'ss'(.)n and reflec'tlon of an electron are built up V.V'th time.
This result provides us a reasonable interpretation for the

the electron is reflected by the potential barrier. MU|tipIy.nonI0caI character of tunneling electron noted in the Intro-

reflected components cancel out the total reflection ampli-, = . o _
tude with time until it becomes zero. duction. Perfect transmissiofand zero reflectionat reso-

In Fig. 7, we show transmission and reflection amplitudesggrr?:r d?ﬁs rrécf’;gt}gﬁnamafittl?gee;ecfggcﬁeg;r%amﬂegrfg ;Ze
calculated for an off-resonant ener@@=140 meV. In this ' P bp

case, the superposition of multiply reflected amplitudes give% result of_lnterference of multiply reflected components.
. S . . ero reflection does not mean that an electron senses beyond
rise to oscillation of the transmission and reflection prob-

abilities until they reach steady values. The transmission anWeV\k/):rl‘::\;ethe:litléstﬁ;TalfI]t(;j?:ZIICsulzai;% results in this theor
reflection probabilities shown in the inset of Fig. 1 are suc Y

steady values plotted as functions of energy. We note thamaevtﬁg’grcviigﬁmvséw:rlnd?g'aetéo?sfr\?;ﬂ de>éanc|:t Vfilrui?'r-,r. ZiZ\rIKB
unitarity is not satisfied in transitive time, though it is satis- ploy y 9 9y

o : . electrons. It gives rise to numerical errors. As a result, the
fied in the long time limit.

It is known that the charge of resonant tunneling electronsr,m"\thOd shown in this paper may be unsuitable for analysis of

, . : real devices.
stays In the quantum well region for a conS|derapIy .Iong However, we can expect that gross features of the calcu-
time 1213 The charge in the well decreases slowly with time. ’

This fact corresponds to the present result that the transmié"ft[Gd time dependence of the amplitudes are qualitatively

sion and reflection amplitudes approach steady values Withea_sonable,_ and that the present_the_ory will be useful to de-
ime. scribe physics of electron dynamics in nanostructures.

Recently, the time-dependent current through a double-
barrier structure has been calculated by using Green's

I Te ()]

Time [fsec]

APPENDIX A: RESONANT ENERGY AND PHASE

functions!® The calculated current shows temporal oscilla- CHANGE AT A POTENTIAL BARRIER
tion, which is similar to the behavior of the transmission |, this appendix, we show that the phase change of a
amplitude shown in Fig. 7. wave function at a potential barrier is closely related to the

In many quantum mechanical calculations, electroniGegonant condition.
properties are investigated by solving a static Schrodinger gjrst we consider transmission and reflection at a single

equation. Resonant tunneling is also often analyzed withygyare barrier of width and heightv. We write the tunnel-
steady-state wave functions. However, the present resul;ﬁg coefficient as

show that electron dynamics is necessary to understand the .
essence of a phenomenon such as resonant tunneling. t=g e, (A1)

As shown in this paper, the resonant tunneling is a quan- . I ~wewarwir= - .
tum mechanical phenomenon which arises from interferencgIth x=y2m* (V=E)/#. The coefficient for reflection is then
of amplitudes from various paths. The present theory welPIVen by
describes this aspect. However, as for the electron motion r=d¢ Tmz (A2)

) . \ )

along each path, the present method is based on the semi-
classical picture where an electron has definite position aneo that|t|>+|r|?=1 is satisfied. In EqgAl) and(A2), ¢ and
momentum. We have followed the motion of an electrong’ are phase changes associated with tunneling and reflec-
within the WKB method and stationary phase approximationtion, respectively.
With these methods, we have regarded an electron as a lo- Next, we consider double barriers separatedVidy By
calized particlelike state. With a strict treatment of quantumconsidering multiple reflection in the quantum well region,
mechanics, however, a localized wave function becomes exthe total transmission coefficient is given by a geometric
tended with time. We have to note that this effect is neglectederies as
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region. On the other hand, EGA7) gives a plausible value

28 for the energies of states in the quantum well. However, we

e have to note that numerical solution of the Schrodinger equa-
tion is necessary to obtain exact resonant energies associated

1-(1- [ 2
— . with the exact phase change due to reflection.
where 6=vy2mEW is the electron’s phase change across

the quantum well. The condition for resonant tunneling is

tioal(E) = t2€ 7+ t2r2%e¥ 0 + 2400 4 - ..

(A3)

given by
0+ ¢ =nm, (A4)
because this equation resultstjg,(E) as
el
tiotal( E) = W = e2lqo+l0, (A5)

giVing |ttotaI(E)|2:1-

Within the WKB theory, /2 of phase change due to re-
flection is often imposed. If we apply’ =#/2 for Eq. (A4),
the resonant energy is obtained as

2 2
o= [—(n _Vl\,/z)w} - (A6)
By using ¢’ = instead ofw/2, we have
£,= (”—”)2, (A7)
2m* \ W

which is a reasonable result.

By considering this result, in this paper we have adopted

the phase change at reflectiph= 7 because EqA6) has an

APPENDIX B: CONDITION FOR UNITARITY

Similarly to Eqg. (A3), the total reflection amplitude is
given by

Fotal( ) = 1 + 112620 + 12340 4+ 125810 4 ...

rt292i 0

=r+ — (B1)
1- (1 _ |t|2)e2I(p +2i60
At the resonance condition EGA4), ra(E) is
26210 o
Mota(En) =1 + 2 r(l +eZ|<p+2|9)_ (B2)

[t

From the requirement of unitaritf|®+ Il >=1 Must
be satisfied. Thereforgy,(E,) =0 must be satisfied for the
resonant energieg,. Thus, from Eqgs.(A4) and (B2), the

phase changes for transmission and reflection should satisfy

the relation
(B3)

This relation is satisfied by imposing a phase chamgé

o—¢' = xal2.

additional factor 1/2 for energy levels in the quantum wellwhen an electron passes through a potential step.
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