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We study the Kondo effect of a quantum dot placed in a complex mesoscopic structure. Assuming that
electronic interactions are taking place solely on the dot, and focusing on the infinite Hubbard interaction limit,
we use a decoupling scheme to obtain an explicit analytic approximate expression for the dot Green function,
which satisfies certain Fermi-liquid relations at zero temperature. The details of the complex structure enter
into this expression only via the self-energy for the noninteracting case. The effectiveness of the expression is
demonstrated for the single-impurity Anderson model and for the T-shaped network.
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I. INTRODUCTION AND OUTLINE

The single-impurity Anderson modéBIAM) has been a
paradigm of a strongly correlated electron sysieffhis
seemingly simple model gives rise to dynamical screening of 1)
the local spin by the electrons in the Fermi sea, leading to a
crossover from a weak coupling system at high temperaturé§or the dot GFA=B=d,, whered, destroys an electron
(T) to a strongly coupled one at loW, with the relevant With spin o on the doti One example concerns the local
temperature scale given by the Kondo temperaligeThe  density of statesLDOS) on the dot,
recent observation of the Kondo effect in quantum dots
(QD’s), whose parameters can be tuned continuously, and pdo(@) = = IM[Gyg,(w) ]/ . (2
which allow probing of various propertiéshas yielded .
strong theoretical efforts in this directidnRecent experi- Another example is the conductangebetween two leads
ments on a QD embedded on one branch of the Aharono\;.hat are Connected to sites on the network. For a general
Bohm interferometércreated additional interest in Kondo Mesoscopic structure, thinear responseconductance has

Ghpo(®) = ((A;;BD) = - J ; dt &7 A1), Bl1.).

effects incomplex networks the formt?

While the highT behavior of the SIAM can be adequately
described by perturbation theory or poor-man scatiagd _2_62 dol - If \~ 3
the low-T behavior is described by Fermi-liquid thedry, 9= h @ Jw Glaw), 3

there is no simple theory that describes the model's dynami-

cal properties correctly in the whole temperature range, inwhere f(w) is the Fermi distribution functiorfwe set the
cluding both the high- and the low-limits. This crossover Fermi energy atv=0),

has been described by the computationally demanding nu-

merical renormalization grougNRG) approach. Other

methods to describe the crossover are the “conserving f(w) =
T-matrix approximation? (which overestimates the uni-
tarity sum rulg, or the more limited “noncrossin ~ . ) .
app)rloximation,9 and to some extent, quantum Monte Ca?lo and G(w) S often given in te”?“s of the retarddglg,, the_ .
calculations®® Some of these methods have also been ap@dvancedsyg,, and noninteracting parameters characterizing
plied to the QD in the Aharonov-Bohm interferometer. the network. For the simple SIANdot and leads G(w) is
However, none of these methods has the flexibility to followproportional topg,(w).1314

(4)

ew/kT+ 1’

analytically the effects of various network parameiers., a Here we use the equations of motion method to derive a
magnetic flux on experimentally measurable quantities, insimple analytic approximate expression f8jy,, for a QD
particular dynamical ones. on a general network. Our approximate formula exhibits the

In this paper we discuss the SIAM for a QD which is correct behavior both at high and at very low temperatures.
embedded in general complex networlMany of the inter-  For simplicity, we consider a QD with a single levédf
esting physical properties of the system can be expressazhergye,). Electron-electron interactions are assumed to ex-
explicitly in terms of the single-electrofretarded Green st only on the QD, and we take their energyto be infinite.
function (GF) on the dot,Gyq,(w), for electrons with spin In our scheme, one first solves for the GF on the dot in the
components and energyw (measured relative to the Fermi absence of the electron-electron interactions, Ue0. This
energy. Here, (spin-independentGF can be written in the form
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0 1 teractions (V represents the approximately energy-
Gg(w) = T ' ) independent dot-band couplingn this case, our equations
wt+1n— € 20((1)) . . . .
reduce to those discussed in the earlier literature. We empha-
with the energy-dependeftomplex self-energy(SE) size again that even the solution for this simple case is non-
_ ; trivial, since earlier work either did not have a close analyti-
So(w) = deg(w) —iA(w). (6)

cal formula or missed some correlations, leading to wrong
This is easily done exactly, for any finite network; it only results at lowT.
involves the solution of a finite set of linear equations. Our  As stated, our result fdByq,(w) depends on the details of
approximate explicit expression f@yq,(w) is then given in  the general network only via the noninteracting self-energy
a single equatiorisee Eq.(53) below]. Somewhat surpris- 2y(w). To demonstrate the power of our result, we present
ingly, this equation depends on the network parameters onliiere a few simple examples. Section V contains explicit re-
via 3(w). Although approximate, this expression allows for sults for the simple case of the SIAM, when the QD is
detailed systematic investigations of the Kondo effect asoupled to two one-dimensional leads. For this case, we eas-
function of the system parameters, on a variety of complexly calculate various features of the Kondo behavior, includ-
networks. Even if sometimes only qualitatively correct, suching the peak inpgq, at the Fermi energy, the plateau in the
systematic studies help to investigate new physical phenontonductance in the so-called unitary limit, and the plateau in
ena on a broad variety of mesoscopic systems. Furthermorthe “transmission phase” at/2.
the dynamical mean field thedfy(which was developed to A second example, of the so-called “T” network, is solved
address the physics of the periodic Anderson and Hubbarh Sec. VI. In this case, one has interference between the
models iterates the local GF of the SIAM, which is calcu- wave function on the dot and that on the intersection point.
lated at each stage in terms of the effective SE created by th@ur simple approximate formula exhibits the Fano vanishing
rest of the lattice. Since our GF is easily calculated in term®f the transmission and the associated so-called anti-Kondo
of 3, it is an ideal candidate for such calculations. We areeffect, as seen experimentatf/Here we also extend earlier
not aware of alternative simple analytic expressions thatheoretical work, which used complicated technigtfes.
obey the necessary requirements at both high andTiow Finally, Sec. VIl contains our summary.

In Sec. Il we follow Refs. 16—19, and derive the equation

of motion (EOM) for the dot GF. Extending these references,
this EOM is derived here for a generalized case, in which the Il. EQUATIONS OF MOTION
dot “sits” within an arbitrary complex network. The EOM for
the dot GF involves higher-order GFsonsisting of more
operatory whose EOM’s introduce in turn more GF’'s. One  Our Hamiltonian
then terminates this hierarchy by decoupling out averages of
operators. The latter are then found using the fluctuation- H =Haot+ Hnett Hdot-ne (7)
dissipation relationship, from the releva_nt GF’s. In this man-cntains the dot part
ner, the treatment becomes self-consistent. The successful
decouplln.g must keep as much of thg electronic correlquon Hy= €42 Ngy + Ung Ny, (8)
as possiblé’ For example, a widely used earlier o
approximatiof* neglected some dot-lead correlations and
therefore gave reasonable results onlyTat T¢. For this
reason, Gerlandt al?® had to combine the EOM method at
high T with the NRG at lowT. After we correct these earlier

A. The Hamiltonian

with a single energy leved; and an electron-electron inter-
actionU (ndgzdldg). All the other parts ofH can be arbi-
trary, but noninteracting:

calculations, and include all the necessary correlations, we _ + _ +
obtain good results for all. An earlier application of the H“et_% €nnoBng %’J””a””am" ©)
EOM method solved the integral equations numerically, on
the simplest interferometer geometty. describes the network without the dot, and
The above decoupling scheme produces an integral equa- t
tion for Gyg,(w), which generalizes that found in Refs. 18 Hotner= ~ 2 (Jardyans + H.C) (10

no

and 22. An approximate analytical solution for this equation
is found in Sec. Ill. The low-temperature limit, the Fermi- describes the coupling of the dot to the network. Hefg,
liguid conditions, and the Kondo behavior are discussed irtreates an electron with spinand energyg, on the siten of

Sec. IV. Unlike earlier paperspanning over four decades the network. The coefficientd,,, and Jy, represent tight-
our solution gives good qualitative results for tvbole pa-  binding hopping matrix elements. In the absence of a mag-
rameter rangelt has the correct higfi-behavior and satis- netic flux, these coefficients can be chosen to be real. The

fies several lowF Fermi-liquid relations. flux then turns them complex, with phases that relate to the
For the simplest SIAM, the “network” is represented by a Aharonov-Bohm effect and wit,,=Jy,,1+2+2°
band with a density of statd¥(w). In the broadband limit, The main part of this paper concerns the above general

the self-energy on the QD can be approximated by its valuélamiltonian, which assumes no specific details on the struc-
at the Fermi energy.o(w) =~—-iA,=—i7V?N(0), andA, rep-  ture of the network. However, for some specific applications,
resents the width of the impurity state in the absence of init is convenient to attach a finite mesoscopic network to sev-
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eral semi-infinite leads, which connect to electron reservoirs. M(0)gm= (N = HpelM = Jym+ S0 — €,), (18)

We thus divideH, into two parts, ) )
which represents the system without the dot. In the follow-

Hnet= Hmesot Hieads (11  ing, we shall need the inverse matrix
whereH esohas the same form dg,,., except that the sum Flow)=[M(w)]?, (19
is restricted to sites that belong to the finite mesoscopic part =~ ] ]
of the net(excluding the dot and the leagdsand which is the Green function for the system without the dot.
With this definition one finds
Hieads= 2 [ HL— 2 By, st Y +H.c)),
leads EL:( L %( nL,raner ro ) Gmd()':um(w)GddU'l (20)
(12)  where

ro

H o =- > dcTel) + Hec.
rs Un(®) = = X F(@)mudna- (21)
n

Heren, are the indices of the points on the mesoscopic struc-
ture that are connected to lead numbewhile ¢ destroys ~ We can now calculate the second term on the right-hand side

an electron of spinr on the siter of the lead. (RHS) of Eq. (15), and show that
Usually, the lead. has a continuous spectrum, with eigen-
stategk) and eigenenergies, in a band of width . Equa- = 2 J4:Gndo = 2oCudor (22
tion (12) can then be written as "
with
Hicass= (HL -3 (v, (a, ol + H.c.>) ,
. nuk So(@) = = 2 Jynbin(@) = 2 JgnF(@)madng: (23)
(13 m mn
HL =2 acky Cs At U=0, Eq.(15) thus reduces to Ed5). Clearly,S, can be
: calculated for the noninteracting case.

and also All the other GF’s can similarly be expressed in terms of

Gyqo- FOr example,
Haotner= = 2 Jandhan, = V4kdieM + H.c., \
dot-net % dndn % kz(r d( ) o ko de:um(w* )Gddo'! (24)
(14 where w* =w—i7. Another way to represent (o*) is to
start fromu,,(w), and then take the complex conjugate only
of the hopping coefficientd,,,, (namely, reverse all their
ephase}; without touchingw+i». Similarly,

with obvious definitions. When the network consists only of
the dot and the leadse., H s~ 0) then this has exactly the
form of the standard SIAM model, discussed broadly in th

literature. If all the leads have similar bands, then the elec- Grame = F(®) g+ Up(0) G- (25)
trons in the whole system also have a continuous spectrum in
the range B <w<D. All integrals overo below will be Since M is an infinite matrix, its inversion may not be

thus over this energy band, and it is due to resonances iffivial. Formally, we can denote the eigenenergies and eigen-
such integrals that we need to calculate the retarded GF atates ofH e by €, and|a), and then write

w+in. L
F@)pn=2 <m|a>ﬁ<a| n. (26)
B. Derivation of () a WL~ €
From now on we return to the general Hamiltonian Eqs.However, in the examples it is useful first to eliminate the

(7)<(10). The EOM for the retarded GF on the QD reads parts that involve the sites on the leads. Examples for this
procedure are presented in Appendix A.

(@+i7- €)Gogr =1~ 2 JgGnar + ULy, (15)
n C. EOM's for higher-order GF’s

where The EOM forT',, (with only on-site Hubbard interaction
on the dot does not involve GF's of more arguments:

Iy = (Ng-o0yidl)). (16)
— * 3 1 2
From now on, we shall use the shorthandor w+i7, except (0= €=Uy =(Ngo) + 2 Jgl e = 2 Jan(Th) + T2,
where it matters. Specifically, " "
(27)
(0= )Gnas =~ JnGoar = 2 ICrnar (1) it three new GF's,
We next define the matrix T = ((Ng-p@ne;dD)),
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r'2=«d" a, ,d,;dhy, other two terms. Since these terms require thermal averages,
which we express using the fluctuation-dissipation &),
(28 they end up with integrals that invol\@y4-,, leading finally
r'®=al  d_,d,;d. to our integral equation for the dot GF. The details of these
calculations are presented in Appendix B.
The inhomogeneous term in EQ7), (ny-,), represents the  Inserting the results for the necessary thermal averages

average number of electrons with spinon the dot. This into the RHS of Eq(34), the results are used in E@5) for
number needs to be determined self-consistently, via théhe combination = Jdnr which is needed in the RHS of

fluctuation-dissipation theorem: Eq.(27). Adding also the ‘corresponding combination FP
[Eq. (33)] yields our final result fol" .. It remains to insert it
<nda>:fdwf(w)pda(w)' (29)  back into the EOM(15) for the dot Green functiorGyg,.

This yields an integral equation for this function,

We shall return to this condition below.

d
We now write the EOM’s for the new GF i}ﬂ), anduse  (w-€3—20)Gygy =1 —{(Ny_,) + Gdd,,f < zw )
several approximations for their solution. First, it is easy to !

see from the EOM fol® that this GF is of order 1U. f(w') )
Therefore, it contributes tb, only at order 102, and can be o A 7][(1 +20Ggd-) (20~ 20)
ignored forU — o [we needF only to order 1U; see Eq. .
(15)]. Second, we introduce a decoupllng scheme for the new - (0 = "]
GF's that appear in the EOM'’s of tﬂem’ f(o')
. T ot +(1+EOGdd(r) NN
<<an(rlam02 o3 (r>> = <an(r am01> 60'102<<do'31 d(r>> 2’7T| w—w tin
- <an01d01> 103<<amtrz'df>>. (30) X[Ggg-o(Zo =) = (0" — w,*)]’
7— 0. (36)

We omit thermal averages of the foka,,d,), which include
two destruction(or creation operators, andam,am(,> with Here and belowG,,, and.,, are understood to be functions
o# o', relevant only for states with a net magnetic moment0f @— w+iz, and the prlmes denote a dependencewtn
The Iatter assumption means that we restrict the discussiorr @’ +i7, With »'" — w'~i7. Two comments are in place
only to symmetric states, Wn@ddT_GddL here. First, for the simplest SIAM, wheBy(w)=-iA is
Using these apprOX|mat|0ns the EOM f) becomes  independent ofv, we haveXq(w*)=iAp, so that only the
parts with ' survive. Furthermore, in this case one can
(RN VSRR ) Y A o (31)  factorizeA, out of the integrals. This reproduces the integral
m equation of Lacroi®®
The derivation of this equation also required an additional do’
term, —Gndg[Edem<deaw,,>—c.c.]. However, this term van- (o - e4+iA)Gggy = 1 —(Ngy) — 2iAb|:Gddaf ( )

ishes. Here and below, we calculate equilibrium thermal av- 2
erages by using the fluctuation-dissipation theorem, f(w’)
T dw . w-o'
(A'B) =f (— —.)f(w)(GBA—GAB)- (32)
2mi -(1- |AbGddo)
Equation(31) is practically the same as E(L7), which do’ flw') )
was used to deriv&, in terms of theJ,,'s. Applying the f T om m][Gdd—a]* :

same algebra to E¢31) then yields the analog to ER2),

(37)
-2 Jal =3l (33)

However, even for this simple case there has not been an
) o ¥ analytic solution that covers the whole parameter range. Sec-
Using the same approximations, the EOMIGf is ond, discardin#f correlations between the dot and other sites
<>_ * ) on the net, e.g.{d'a,,), amounts to neglecting the terms
w-e) 'y ==Jglv— 2. + (X)) Gddo o I oo . ;
(@ =€) dn % ol g + o) Gad containingG/, in Eq. (36). This ends up with a breakdown of

+ the Fermi-liquid conditions at =0, and with a bad approxi-
+(d- 8- )(1 +20Gydo) (34 mation forT<Ty.
in which IIl. APPROXIMATE SOLUTION OF THE INTEGRAL
X = 2 I B-oBn-o) - (35) EQUATION
m

We now restrict the discussion to “nonmagnetic” states,
Although the first two terms on the RHS of E(B4) are  and replaceGgyqy =Ggyqg =Gyq. Equation (36) can then be
similar to those in Eq(31), we now need to calculate the written as
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(a) — €4~ EO)Gdd =on+ AGdd - B(l - IAGdd)! (38) Fédd(w) - — G;d(_ w), (46)
where on=1—(ng;)=1-(ng)=1-(ny)/2 and A and B are  where the tilde denotes particle-hole transformed quantities.
functions ofw, given by In that case, this relation is equivalent to the relations

f(w) B =—R* (-
Alw) = f ( 2 ) X [Zo(1+Gyy(Z = Z0) Blw)=-B* (- w).
m)w-o +|
— (0 +ig— o —ip)], Alw) = A* (- 0) - So(- w). (47)
) ) These relations should hold also for any approximate
B(w) :f <_ di) f(w) X [G(S-30) solution?® It is easy to check that these relations are obeyed
27 ) w-o' +in ddi=0 =0 by our approximate expressiof#3) and(45), but would not

hold if we made the approximatidd?2) on the original equa-
tions, before shifting (') by 1/21618

For reasons that will be explained later, it is now conve- Taking én as a parameter, and defining the scaled variable
nient to replacef(w’) inside the integrals byf(w’)-1/2]

—(0"+in— o =in]. (39

+1/2. Thepart related to the constant 1/2 can then be cal- 2(w) = s I 56"(“’), (48)
culated using the Kramers-Kronig relations, 2A(w)
do’ 1 the solution of Eq(38) can be written as
f ('T>f[F<w’)—F(w'>*]z F(w), _ - ;
/o= iy Gyg(w) = g(w)[on +iQ(w)/X* (w)], (49
(400 with
and thus we find 1 1
g= . = —, (50)
f(w’)—1/2 w—Ed—5€d+|3A/2 2A(Z+ 3|/4)
Alw) = —20 )+ f —_—
2mi ) w- o' +i 7 12
— 2 2 2
X [$4(1+ GlSh—30) = (@ +ig— o' =in)], Q=s- {5 |X|< on - f’“)} * (5
f(w')-1/2 9 3)
= - _— G = —— - —
B(w) f( 2m)w—w iy X [Gig(20—20) S z2+16 zReX+<&1 2)m%, (52
— (0" +in— o -in)]. (41)  and we have omitted the explicit dependencewofor brev-
We next follow Lacroix!® and assume that the integrals are g); For some purposes itis more convenient to write @)
dominated by the region’ = w, namely, that
3
f(w")-1/2 =
[ a2 e xe), @ 2 1
w—-ow +i n Gdd(w) = 1 —C(a)) , (53)
and thus = [ed + 5Ed((1))] + |§A(w)
B(w) = A) Gy @) X(w), (43)  where the real function§(w) and SE4(w), which result from

the strong interactions on the dot, dependlaand onZq(w)

whereA(w)=-Im2q(w) and? and are given by

J do’ f(o')-1/2 1 |: 1. pAD*-o? SE4(w) = Seg— 2A(ReX)C/(1 -C),
X(w) n —
p T 0= +|7] | 2 (2m)
Clw) = 1 __2(Z+9/19
_\P@ ﬁ)] (44) ()= 207Q]g(i + anX*IQP ~ Qi + onx*IQP
77

(54)

Equation(53) forms our general result. We emphasize again
i . that all we need to know is the noninteracting self-energy
Alw) = A(w)(— 5t X(w)[1+ iA(w)Gdd(w)]) . (49 3y(w).
As seen explicitly from the above equations, our analytic
The reason for using the above transformation is thaexpression foiG,y depends on the parametém=1-(ny/2,
when one analyzes the equivalent equations for flditthen  which needs to be determined self-consistently, via(Z6).
one requires particle-hole symmetry, namely, the relation We discuss this condition in a specific example below.

(W is the Digamma function A similar procedure yields
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IV. THE FERMI-LIQUID RELATIONS AND THE KONDO
TEMPERATURE
At T=0, one easily sees that
ReX(w) = In|D/w|/, (55)

diverging at the Fermi energy —0. At T=w=0 we thus
haveC— 0 andC ReX— u(z), with

_2(Z+9/18[z+VZ2 + on(1.5-n)]

1 [z+VZ2+n(15-n+n? 50
andz=z(w=0)=—[ &4+ 5e4(0)]/[2A(0)]. Therefore,
Gad0) = : (57)

A0){(413)[z-u@)]+i}

For a very deep level on the dat> 1, u(z) approacheg,

andGgyg approachesi+A(0), ending up with high plateaus in

the LDOS and in the phase of the complBy,(w) sticking

to 7r/2. All of these characteristics, which are hallmarks of
the Kondo behaviot) are observed in the examples below.

As €4 moves up from large negative values, Egj7) shows a
gradual crossover away from this “unitary” limit, ar@ly
approaches the non-interacti®}, asz— —.

Equation(57) also ensures that the GF obeys the Fermi-
liquid relationg” at T=0: (i) The imaginary part of the SE on
the Fermi level is the same as in the absence of interaction

i.e., “A(0), confirming the unitarity limi#&123 (i) For e;<
-A, the LDOS therdi.e., pg(w=0) = py,(0)] approaches the

finite value 1[7A(0)]. We emphasize that these results ap-

ply for any complex network; the only input iEq(w).

PHYSICAL REVIEW B 71, 035333(2009

the Aharonov-Bohm interferometéF, oscillates with the
flux.30

At the Fermi energyw=0, and for fixede;<0, one ex-
pects py(0) to decrease with increasing. In this limit,
X(w=0)=In|AD/T|/ 7, with A=e"V*/2/(277)~1.133 87. For
|eql > A(0) we then find the asymptotic relation

1 _ ReX-z
7A0)(1-C) 7A(0)ReX

1 ( ey + Oey) >
~ mA(0) 2A(0)In(ADIT) )"

This density of states decreases to one-half of its maximum
T=0 value at a temperatuiTy, with T given in Eq.(60).
Although the resul{61) is qualitatively correct, and is also
consistent with ouiT, its explicit low-temperature depen-
dence disagrees with exact expectations: we obtain a loga-
rithmic behavior, whereas Fermi-liquid theory predict3?a
dependence at low.57 This is an artifact of our approxima-
tion. However, at higi we do recover the usual logarithmic
variation.

In the opposite limit, of|z>ReX~1, one finds that
|Q/X|<1, and Eq.(49) implies that Gy4w) approaches
on g(w). The appearance @h in the numerator, in place of
1, results from the fact that some weight of the spectral func-
tion is pushed to infinitéJ .24 Another interesting point con-
Berns the factor 3/2 in Eq50) and(53). This factor may be
explained heuristicalf} by the fact that while both spin di-
rections are accessible for tunneling into the dot, only a
single one can tunnel out of it.

pa(0) =

(61)

The Kondo effect concerns the behavior of the density of

states near the Fermi energy at low temperature. In that re-

gime, Gyq is dominated by its imaginary part, and thus
pa =~ U[7A(0)(1-C)]. (58)

For ReX(w)>2z(w)>1, one hasS= z(z—ReX) <0, Q= 2S5,
and the leadingy dependence of is

z
z- ReX’

(59

We thus end up with a logarithmic cusp g at w=0. The
related narrow peak reaches one-half of its peak védgaal
to 1/[7A(0)]) when C=-1. One definition of the Kondo
energyTy is to identify Tx with the half-width of this peak.

V. EXAMPLE 1: THE SIMPLE SIAM

In the following two examples, we assume simple semi-
infinite one-dimensional leads, with identical nearest-
neighbor hopping matrix elementsd,-and with a lattice con-
stanta. The eigenenergies of eadl, are thereforee =
—-2Jcoska, with eigenfunctions (n|k)=sin nkay2/Q (Q
— oo js the length of the leadandD=2J. We also assume
that the leadd. and R are attached to the mesoscopic net-
work only at one site, with hopping matrix elemeidisand
J.. For the simple SIAM, when the two leads are directly
connected to the dot, we show in Appendix A that the leads
generate a self-energy

Solving C(w=+Tx)=-1 and using Eq.(59) thus yields So(w) =—€l93(|3,2+]3,[9)13 = - gldaa, (62)

ReX=2z le. on the dot, withq determined byw=-2J cosga and with
T(€eg) =D exd — amley + 5e4(0)|/A(0)], (60) Ay=T,+T.. 63

with a=1. This result, which agrees with that of Lacréfxs H h dth tati

qualitatively similar but quantitatively different from the pre- ere we have use € notation

sumably exacTy as given by Haldan& which hasa=1/2. Ty, = [3¢,23=mNO0) |2, (64)

However, T only represents some crossover energy scale,

and we expect the above solution to follow the qualitativeWith V() being the density of the band states. The width of
variations ofTx with the system parameters, which are con-the noninteracting resonanceegtis thus equal ta\, singa
tained in de; and in A. It should be emphasized thai  In the figures presented below we use the symmetric case,
depends orboth A and ey (some authors ignore the part I'¢=I=Ap/2. SubstitutingX.o(w) = deg(w) —iA(w) into Egs.
coming from the real part of the SBe,). For example, for  (49—52) then yieldsGgg.
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ng P4
1
1
0.5
0.5
@
€4 -0.5 0.5 J
-1 1 J
Pa
FIG. 1. The self-consistent average occupation on the(dgt,
(thick line), and the Friedel added occupatiomt T=0, as function 1.5
of €4, for the simplest SIAM withA,/J=0.1. Results remain almost ’
unchanged up td ~ Ay,
1
We start by discussing the self-consistency condition for
(ng). Figure 1 shows an example of our self-consistent solu- 0.5
tions for({ny), at T=0: we start from an initial guess fain, @
then calculatgng) from Eq. (29), and iterate; the procedure -0.05 0.05 J
converges after a few iterations. Also showntiswhich FIG. 2. (Color onlind The LDOS on the dot, for the simple

represents the total change in the electron occupation in th&AM, with e4=-0.3,A,=0.1, andT=0,0.01,0.05all energies are
system due to the dot, as determined from the Friedel phasg, units ofJ). The Kondo peak values neai=0, shown with more
defined via32827 detail in the lower panel, decrease with increasing

T We now turn to the conductanck For the simple SIAM,
ta E(l -1) | = R Gyy(0) JIM[Gy4(0)]. (65  one hat*14

4T, T,
F( + I‘r

For eg<-A(0)=-A,, T approaches 1, whilény) remains Glw)=- Im Gyy(w). (66)
slightly smaller. This small difference could reflect an addi-
tional occupatiqn of other sites in the I_eads. It could alSOEquation(SB) implies that

result from the inaccuracy of our approximation fBj4(w),

which pecor_nes worse a® moves away fro_m t_he Fermi IM Ggg= = (1 =C)Ap|Gyql?. (67)
energy; the integral in Eq29) contains contributions from
all . However, this small difference has only a small effect

— (o) = 2
on the other calculations presented below. For T=0, whenC—0, we also havej(w) =4l I',|Gyq". At

o finite temperatures, these two expressions for the conduc-
Although it is easy to solve fofng) for each set of pa- e ' - : .
g y o) P tance exhibit the same qualitative behaviorgs(Fig. 3.

rameters and use the resultiag for other calculations, the o , .
S . The quantitative difference between the two expressions,
qualitative results are only weakly affected if one uses an , =~ " . . i
: - . which increases witli and with large negative,, represents
arbitrary smooth variation ofng) from 0 to 1 asey varies

! a breakdown of unitarity which may be an artifact of our
from 4+ to —». In the calculations below, we used such a y y

smooth variation foron, with a width of orderA,, approximation.
An alternative approximate expression fén follows
from Eg. (49). It turns out that for most of the integration
range in Eq.(29), Gy4(w) is dominated by the first term
there. Neglecting the second term, one haséi=(ny,)
=~ &n ny, with ng=—fdw IM[g(w)]/ 7= depending only on the
noninteracting parameters. Thus= 1/(1+ngy). For Ay, be-
tween 0.1 and 0.01 and feg < —A,, we find this estimate to
be within ~10% of the full self-consistent value.
Figure 2 presents the LDO[EQ. (2)] versusw, for the
simple SIAM, with the parameters as indicated. Our approxi-

mation reproduces the Kondo peak at l@win addition to Ed

the much broader peak g}. Figure 3 showgy at the Fermi J

energy (w=0) versuse;. Note the very slow(logarithmig FIG. 3. The LDOS at the Fermi energyy(0), versuseg, for
increase of pyg, with decreasingT, in agreement with T=0, 1030 101% 1073 andA,=0.1; p4(0) increases with decreas-

Eq. (61). ing T.
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transmission conductance
1 1
Ea
-2 -1 1 J
phase €4
1 -1 1 T
conductance
/5 1
Ea
-2 -1 1 J
045
FIG. 4. “Transmission” and “transmission phaggt units of )

for the simple SIAM, forA,=0.1 and forT=0, 1010, 1072,

At low T, (-df/dw) is practically as function, and Eq(3) T n er
yields G~ (2€?/h)G(0), exhibiting the qualitative behavior
shown in Fig. 3. At higheiT, the peak inG slightly below FIG. 5. Conductance of the “T" network, with=0.2,A,=0.1

€,=0 becomes lower and broader than thatpgfw=0). At (all in units ofJ). Thin lines, without interactions. Thick lines, with
fixed e;<0, increasingT results with a decreasing, but  infinite interactions aff =0 (intermediate thickness line$= 10),
with an interesting superimposed peakTatO(|ey) (when  Upper panelg=0. Lower panelg=-.1.
the peak ak, starts to contribute

Some experimentsplace the QD on one branch of an 1x1, and Egs. (A3) and (A8) vyield Fy=1/[w-¢€
open Aharonov-Bohm interferometer, and attempt to extract€92(|J,|2+|J,/2)/J]. Using A, from Eq. (63), we have
the transmission phaséor scattering through the dot. The 12
transmission phase is usually related to the phasggf° So(w) = 13 :
Without getting into the question of what is really measured o= e+ eliPA,
in the interferometet? it is still of interest to study the latter
phase. Figure 4 thus shows the “transmission,” represent
by AZGy? and the “transmission phase,” represented by ~ AT,
[see Eq.65)] a=m(1-1/2) as a function ofe, for several G(w) =~ T.+T Im Gog(w). (69)
temperatures. Interestingly, at high this phase simply e
grows smoothly from zero tar through the resonance, simi- The calculation 0fG, follows directly from Egs.(24) and
larly to the noninteracting case or to the Coulomb blockadd25),
case. However, a3 decreases, the peak in the “transmis- 1+3,Gyq
sion” broadens toward negatieg, eventually reaching a pla- Ggo=
teau forT=0 (see also Fig. B At the same time, the phase
develops an intermediate plateaur2?° This plateau be-  Therefore, MGy, is a linear combination of REy and
gins at an energy, which is roughly given byT ~Ty(eg), a5 |m G, with coefficients that depend only on the noninter-
defined in Eq.(60). Studying the energy where this phase acting parameters.

grows from zero tor/2 thus suggests another way to define  These equations reproduce those found, e.g., in Refs. 24

= Sef(w) - iA(w).  (68)

dg this caseg of Eq. (3) is given by®

w-en+eldap’ (70

the crossover temperatuiig. and 25. However, at this point those authors use complicated
numerical schemes to obtai@,y, which do not allow for
VI. EXAMPLE 2: THE QD ON A “T" NETWORK systematic studies of the dependence on the various param-

eters. In contrast, we can easily obtain the approxinGte

Our equations also become very simple for the “T” net-analytically, with the same ease as for the previous example.
work, when the dot sits on a side branch. Such a network haall we need to do is to substitute E(68) into Egs.
recently attracted both theoreti¢d#® and experimentatin-  (49—(52).
terest, as the simplest realization of the Fano-Kondo effect. For the noninteracting cas&gyy is simply given by Eq.
The mesoscopic network now consists of a single site “0.75). Figure 5 then compares the results for the conductance
This site has one bond connected to the dot, with hoping (in units of 2?/h), with and without interactions. Without
and two bonds connected to two leads, with hopplp@gnd  interactions(thin lines, for €,=0 the upper panel in Fig. 5
J;. In this case, the matri¥,; in Appendix A is of order shows a symmetric Fano vanishing of the conductance at
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€4=0. As ¢, becomes more negatiy®wer panel therg the conductance
conductance assumes a typical nonsymmetric Fano shape, t
with smaller conductances at lardey. The interactions
(thick lines have a negligible effect a;> 0, when the dot is

not occupied. However, & <0 andT=0 (thickest lineg the
interactions cause strong changes. Egr0 and large nega-
tive €4, the occupation on the dot causes the so-called anti-
Kondo effect?* where the formation of the Kondo singlet
causes destructive interference which yields zero conduc-
tance. Foreg<0, the Fano zero is shifted to lowey, the
peak disappears, and the asymptotic conductance decreases. -1 1 9
As T increasesmedium thick lineg, the behavior at negative conductance

€4 gradually returns to that of the noninteracting case, and
the Fano zero disappears: the conductance is always nonzero.
Again, all of these phenomena are qualitatively similar to
those found in Refs. 23-25.
A slightly more complex “T” network is obtained by plac- 0
ing another noninteracting site, “1,” between the site 0 and ’
the dot, with energy; and with hopping elements, to both
site 0 and the dot. Our mesoscopic system now contains two
sites, 0 and 1, and the methods of Appendix A yield €q
-1 1

R(w- e+ €27 J
Eo= x(w €0 b)’ (71)
D conductance

1
w-¢ I
Goo= o tr D_Xzedda (72)
with (1] I}
D=(w- e)(w— e+ €Ay - 32, (73
Figure 6 shows a few examples on how the interplay be- H AN €a
-1 1

tween g, and e; can change the dependence of the conduc- 5
tance oney for the fully interacting case at=0. For ¢
=¢=0, the graph looks exactly like that for the simple FIG. 6. Conductance of the “T” network, with an extra site “1”
SIAM, discussed in Sec. V. Clearly, the presence of the inbetween the dot and the “intersection” site “0.” Plots areUaroe,
termediate point turned the destructive interference into &=0, J,=0.2, A,=0.1 (all in units of J). From top to bottom g,
constructive one. Changing, to positive (negative values =0.3, 0, —0.3. For each value &, the figure contains graphs for
then simply shifts the whole curve to the Iéfight). Chang- €=-0.5, 0, 0.5, with increasing thickness.
ing €; to nonzero values generates either a “Fano” zero in the
conductancéwhen e, < 0), similar to the results in Fig. 5, or Although our formulas reproduce many features required
a “Fano” resonancéwhen €,>0). At €,=0 one observes a by the Fermi-liquid theory, they are still approximate, and
change from a zero to a resonancesgshanges from posi- should thus only be used for discussing the qualitative varia-
tive to negative values. All of these parameters can be easilyon of various quantities with the parameters characterizing
changed using the various gate voltages, e.g., in the setup tife network. However, the simplicity of our expressions al-
Ref. 23. Without going into much further discussion, it is lows for relatively easy comparisons with experiments and
clear that the intermediate point on the side branch is verwith more complicated numerical work.
effective in changing the interference pattern between Fano- We have demonstrated the use of our formulas for the two
Kondo resonances and antiresonances. Data from such egimple cases of a single quantum dot attached to two leads
periments can then be used to obtain informatiorGgp and of the “T” network, where the dot is connected to an-
other site which couples to the two leads. Indeed, we have
reproduced and extended all the expected phenomena for
We have derived an approximate analytic expression for ghese two cases. In an upcoming publicatfome shall apply
complex mesoscopic network, which contains a quantum ddhis scheme to the interesting case of the Aharonov-Bohm
with electron-electron interactions, and which may connecinterferometer.
to several leads. Our formulas correct and generalize earlier
expressions, and give a good qualitative interpolation be-
tween the Fermi-liquid behavior at very low temperatures We acknowledge helpful discussions with A. Schiller, and
and the simpler high-temperature one. support to Y.M. from the Israel Science Foundatid8F).

VII. DISCUSSION
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This project was carried out in a center of excellence sup- SO ()= - |J€|Zei‘Q\a5m’nL5n’nL/\]_ (A8)

ported by the ISKO.E. and A.A).
The same result also applies when the mesoscopic part is

APPENDIX A: CALCULATING  F=M"" empty, and the leads are connected directly to the dot.
We need to invert the matridM = w+in—H,e We start
by dividing our Hilbert space into two parts, called “1” and APPENDIX B: DETAILS OF THE EOM FOR T'®

“2.” Then, we write ) )
Following the same logic that led to EqR2) and (33),

M M . .
M = ( 11 12)1 (A1) the formal solution to Eq(34) gives

~\My My,
_ _ ! =2 Jal 12 =361y = 2 JgmFind (X Gaao + (AT 80
and the inverse matriff as n mn

X(1+3Gqa0)]- B1
F= <F11 F12>‘ (AZ) ( 0%-dd )] ( )
l:21 F22

Calculating the thermal averaged' a,,) via the
fluctuation-dissipation Eq(32), and using Egs(20) and
(24), we end up with an integral which requires the sum

S1= 2 JgnF(@)meF(@") gndn- (B2)
mné

It is now easy to obtain the Dyson-like equation
F11= (M11= M Mpp] M) 7 (A3)

In our calculations we only neefi,,, for m, n within the
finite mesoscopic part of the netwofjgossibly including the

dot). Identifying this part with the subspace “1” above, we For this and for similar sums, it is helpful to use the identity

thus only need the matrix elements of the finite makix. Flo' +ig) - Flo+iy
To obtain these via EGA3), we need the Green function for Flo+inFo' ting)= — ,
the leads[M,,]™*. For our Eq.(12), the matrixM,, separates w-o iy
for the different leads, and we end up with (B3)
Fooz | M= S 3L —1, Ad Which_follows from' Eq.(26), tpgether with a careful_use of
= [ = % (A4) 1/(x+in)=P(1/x)-iwdx). Using Eq.(23), the sum in Eq.

. i (B2) then becomes
with the self-energy matrices

1
s % Jne0he Joime (A5) S= @) o). (B4)

Similar manipulations allow the calculation of the thermal

i (L) X
Here, the matriceM,, andX " are all of ordeN X N, where averagegX,). Finally, we end up with

N is the number of sites in the mesoscopic part of the net
work. A|SO, f ( dw') f(w’)

-S> I @ =3, + Gy | (- o |2
2 dnt no ot o ddo 2 w—w’+i7]

(r|k)(kl|s)
= 3 (K (A6) " *
e X[(1+36Gly o) (So-30) - (o' — )]
is the Green function for the disconnected l¢ad do’ f(o')
For the one-dimensional leads, we use the identity -(1 +EOGdda)f (‘ %>m]
2 1 1 (A7) X[GloZo—20) — (0" — @] (B5)

(O w+i77—ek:2iJsin|q|a' .
As explained after Eq(36), Gq4, and 2, are understood to

with w=-2J cosga, to obtain the self-energy due to the lead be functions ofw— w+i#n, and the primes denote a depen-
L, which is attached at the single point, dence onw’ — o' +in, with ©'" — o’ —i7.
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