
Kondo effect in complex mesoscopic structures

O. Entin-Wohlman,1,2,3 A. Aharony,1,2 and Y. Meir1,4

1Department of Physics, Ben Gurion University, Beer Sheva 84105, Israel
2School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel

3Albert Einstein Minerva Center for Theoretical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
4The Ilse Katz Center for Meso- and Nano-Scale Science and Technology, Ben Gurion University, Beer Sheva 84105, Israel

sReceived 20 September 2004; revised manuscript received 19 November 2004; published 21 January 2005d

We study the Kondo effect of a quantum dot placed in a complex mesoscopic structure. Assuming that
electronic interactions are taking place solely on the dot, and focusing on the infinite Hubbard interaction limit,
we use a decoupling scheme to obtain an explicit analytic approximate expression for the dot Green function,
which satisfies certain Fermi-liquid relations at zero temperature. The details of the complex structure enter
into this expression only via the self-energy for the noninteracting case. The effectiveness of the expression is
demonstrated for the single-impurity Anderson model and for the T-shaped network.
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I. INTRODUCTION AND OUTLINE

The single-impurity Anderson modelsSIAMd has been a
paradigm of a strongly correlated electron system.1 This
seemingly simple model gives rise to dynamical screening of
the local spin by the electrons in the Fermi sea, leading to a
crossover from a weak coupling system at high temperatures
sTd to a strongly coupled one at lowT, with the relevant
temperature scale given by the Kondo temperatureTK. The
recent observation of the Kondo effect in quantum dots
sQD’sd, whose parameters can be tuned continuously, and
which allow probing of various properties,2 has yielded
strong theoretical efforts in this direction.3 Recent experi-
ments on a QD embedded on one branch of the Aharonov-
Bohm interferometer4 created additional interest in Kondo
effects incomplex networks.

While the high-T behavior of the SIAM can be adequately
described by perturbation theory or poor-man scaling,5 and
the low-T behavior is described by Fermi-liquid theory,6

there is no simple theory that describes the model’s dynami-
cal properties correctly in the whole temperature range, in-
cluding both the high- and the low-T limits. This crossover
has been described by the computationally demanding nu-
merical renormalization groupsNRGd approach.7 Other
methods to describe the crossover are the “conserving
T-matrix approximation”8 swhich overestimates the uni-
tarity sum ruled, or the more limited “noncrossing
approximation,”9 and to some extent, quantum Monte Carlo
calculations.10 Some of these methods have also been ap-
plied to the QD in the Aharonov-Bohm interferometer.11

However, none of these methods has the flexibility to follow
analytically the effects of various network parametersse.g., a
magnetic fluxd on experimentally measurable quantities, in
particular dynamical ones.

In this paper we discuss the SIAM for a QD which is
embedded in ageneral complex network. Many of the inter-
esting physical properties of the system can be expressed
explicitly in terms of the single-electronsretardedd Green
function sGFd on the dot,Gddssvd, for electrons with spin
components and energyv smeasured relative to the Fermi
energyd. Here,

GABssvd ; kkAs;Bs
†ll ; − iE

0

`

dt eisv+ihdtkfAsstd,Bs
†g+l.

s1d

sFor the dot GF,A=B=ds, where ds destroys an electron
with spin s on the dot.d One example concerns the local
density of statessLDOSd on the dot,

rdssvd = − ImfGddssvdg/p. s2d

Another example is the conductanceG between two leads
that are connected to sites on the network. For a general
mesoscopic structure, thisslinear responsed conductance has
the form12

G =
2e2

h
E dvS−

]f

]v
DG̃svd, s3d

where fsvd is the Fermi distribution functionswe set the
Fermi energy atv=0d,

fsvd =
1

ev/kT + 1
, s4d

and G̃svd is often given in terms of the retardedGdds, the
advancedGdds

* , and noninteracting parameters characterizing

the network. For the simple SIAMsdot and leadsd, G̃svd is
proportional tordssvd.13,14

Here we use the equations of motion method to derive a
simple analytic approximate expression forGdds, for a QD
on a general network. Our approximate formula exhibits the
correct behavior both at high and at very low temperatures.
For simplicity, we consider a QD with a single levelsof
energyedd. Electron-electron interactions are assumed to ex-
ist only on the QD, and we take their energyU to be infinite.
In our scheme, one first solves for the GF on the dot in the
absence of the electron-electron interactions, i.e.,U=0. This
sspin-independentd GF can be written in the form
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Gdd
0 svd =

1

v + ih − ed − S0svd
, s5d

with the energy-dependentscomplexd self-energysSEd

S0svd ; dedsvd − iDsvd. s6d

This is easily done exactly, for any finite network; it only
involves the solution of a finite set of linear equations. Our
approximate explicit expression forGddssvd is then given in
a single equationfsee Eq.s53d belowg. Somewhat surpris-
ingly, this equation depends on the network parameters only
via S0svd. Although approximate, this expression allows for
detailed systematic investigations of the Kondo effect as
function of the system parameters, on a variety of complex
networks. Even if sometimes only qualitatively correct, such
systematic studies help to investigate new physical phenom-
ena on a broad variety of mesoscopic systems. Furthermore,
the dynamical mean field theory15 swhich was developed to
address the physics of the periodic Anderson and Hubbard
modelsd iterates the local GF of the SIAM, which is calcu-
lated at each stage in terms of the effective SE created by the
rest of the lattice. Since our GF is easily calculated in terms
of S0, it is an ideal candidate for such calculations. We are
not aware of alternative simple analytic expressions that
obey the necessary requirements at both high and lowT.

In Sec. II we follow Refs. 16–19, and derive the equation
of motionsEOMd for the dot GF. Extending these references,
this EOM is derived here for a generalized case, in which the
dot “sits” within an arbitrary complex network. The EOM for
the dot GF involves higher-order GF’ssconsisting of more
operatorsd, whose EOM’s introduce in turn more GF’s. One
then terminates this hierarchy by decoupling out averages of
operators. The latter are then found using the fluctuation-
dissipation relationship, from the relevant GF’s. In this man-
ner, the treatment becomes self-consistent. The successful
decoupling must keep as much of the electronic correlation
as possible.17 For example, a widely used earlier
approximation14 neglected some dot-lead correlations and
therefore gave reasonable results only atT.TK. For this
reason, Gerlandet al.20 had to combine the EOM method at
high T with the NRG at lowT. After we correct these earlier
calculations, and include all the necessary correlations, we
obtain good results for allT. An earlier application of the
EOM method solved the integral equations numerically, on
the simplest interferometer geometry.21

The above decoupling scheme produces an integral equa-
tion for Gddssvd, which generalizes that found in Refs. 18
and 22. An approximate analytical solution for this equation
is found in Sec. III. The low-temperature limit, the Fermi-
liquid conditions, and the Kondo behavior are discussed in
Sec. IV. Unlike earlier paperssspanning over four decadesd,
our solution gives good qualitative results for thewhole pa-
rameter range: It has the correct high-T behavior and satis-
fies several low-T Fermi-liquid relations.

For the simplest SIAM, the “network” is represented by a
band with a density of statesNsvd. In the broadband limit,
the self-energy on the QD can be approximated by its value
at the Fermi energy,S0svd<−iDb=−ipV2Ns0d, andDb rep-
resents the width of the impurity state in the absence of in-

teractions sV represents the approximately energy-
independent dot-band couplingd. In this case, our equations
reduce to those discussed in the earlier literature. We empha-
size again that even the solution for this simple case is non-
trivial, since earlier work either did not have a close analyti-
cal formula or missed some correlations, leading to wrong
results at lowT.

As stated, our result forGddssvd depends on the details of
the general network only via the noninteracting self-energy
S0svd. To demonstrate the power of our result, we present
here a few simple examples. Section V contains explicit re-
sults for the simple case of the SIAM, when the QD is
coupled to two one-dimensional leads. For this case, we eas-
ily calculate various features of the Kondo behavior, includ-
ing the peak inrdds at the Fermi energy, the plateau in the
conductance in the so-called unitary limit, and the plateau in
the “transmission phase” atp /2.

A second example, of the so-called “T” network, is solved
in Sec. VI. In this case, one has interference between the
wave function on the dot and that on the intersection point.
Our simple approximate formula exhibits the Fano vanishing
of the transmission and the associated so-called anti-Kondo
effect, as seen experimentally.23 Here we also extend earlier
theoretical work, which used complicated techniques.24,25

Finally, Sec. VII contains our summary.

II. EQUATIONS OF MOTION

A. The Hamiltonian

Our Hamiltonian

H = Hdot + Hnet+ Hdot-net, s7d

contains the dot part

Hd = edo
s

nds + Und↑nd↓, s8d

with a single energy leveled and an electron-electron inter-
action U snds=ds

†dsd. All the other parts ofH can be arbi-
trary, but noninteracting:

Hnet= o
ns

enans
† ans − o

nms

Jnmans
† ams s9d

describes the network without the dot, and

Hdot-net= − o
ns

sJdnds
†ans + H.c.d s10d

describes the coupling of the dot to the network. Here,ans
†

creates an electron with spins and energyen on the siten of
the network. The coefficientsJnm and Jdn represent tight-
binding hopping matrix elements. In the absence of a mag-
netic flux, these coefficients can be chosen to be real. The
flux then turns them complex, with phases that relate to the
Aharonov-Bohm effect and withJnm=Jmn

* .11,21,26

The main part of this paper concerns the above general
Hamiltonian, which assumes no specific details on the struc-
ture of the network. However, for some specific applications,
it is convenient to attach a finite mesoscopic network to sev-
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eral semi-infinite leads, which connect to electron reservoirs.
We thus divideHnet into two parts,

Hnet= Hmeso+ Hleads, s11d

whereHmesohas the same form asHnet, except that the sum
is restricted to sites that belong to the finite mesoscopic part
of the netsexcluding the dot and the leadsd, and

Hleads= o
L
SHL − o

nL,r
sJnL,ranLs

† crs
sLd + H.c.dD ,

s12d
HL = − o

rs

Jrscrs
sLd†css

sLd + H.c.

HerenL are the indices of the points on the mesoscopic struc-
ture that are connected to lead numberL, while crs

sLd destroys
an electron of spins on the siter of the lead.

Usually, the leadL has a continuous spectrum, with eigen-
statesukl and eigenenergiesek, in a band of width 2D. Equa-
tion s12d can then be written as

Hleads= o
L
SHL − o

nL,k
sVnL

skdanLs
† cks

sLd + H.c.dD ,

s13d
HL = o

k

ekcks
sLd†cks

sLd,

and also

Hdot-net= − o
ns

Jdnds
†ans − o

L
o
ks

Vdskdds
†cks

sLd + H.c.,

s14d

with obvious definitions. When the network consists only of
the dot and the leadssi.e.,Hmeso=0d then this has exactly the
form of the standard SIAM model, discussed broadly in the
literature. If all the leads have similar bands, then the elec-
trons in the whole system also have a continuous spectrum in
the range −D,v,D. All integrals overv below will be
thus over this energy band, and it is due to resonances in
such integrals that we need to calculate the retarded GF at
v+ ih.

B. Derivation of S0„v…

From now on we return to the general Hamiltonian Eqs.
s7d–s10d. The EOM for the retarded GF on the QD reads

sv + ih − eddGdds = 1 −o
n

JdnGnds + UGs, s15d

where

Gs = kknd−sds;ds
†ll. s16d

From now on, we shall use the shorthandv for v+ ih, except
where it matters. Specifically,

sv − endGnds = − Jdn
* Gdds − o

m

JnmGmds. s17d

We next define the matrix

Msvdnm; knuv − Hnetuml ; Jnm+ dnmsv − end, s18d

which represents the system without the dot. In the follow-
ing, we shall need the inverse matrix

Fsvd ; fMsvdg−1, s19d

which is the Green function for the system without the dot.
With this definition one finds

Gmds = umsvdGdds, s20d

where

umsvd ; − o
n

FsvdmnJnd. s21d

We can now calculate the second term on the right-hand side
sRHSd of Eq. s15d, and show that

− o
n

JdnGnds = S0Gdds, s22d

with

S0svd ; − o
m

Jdmumsvd ; o
mn

JdmFsvdmnJnd. s23d

At U=0, Eq.s15d thus reduces to Eq.s5d. Clearly,S0 can be
calculated for the noninteracting case.

All the other GF’s can similarly be expressed in terms of
Gdds. For example,

Gdms = um
* sv * dGdds, s24d

wherev* ;v− ih. Another way to representum
* sv* d is to

start fromumsvd, and then take the complex conjugate only
of the hopping coefficientsJmn snamely, reverse all their
phasesd, without touchingv+ ih. Similarly,

G,ms = Fsvd,m + u,svdGdms. s25d

SinceM is an infinite matrix, its inversion may not be
trivial. Formally, we can denote the eigenenergies and eigen-
states ofHnet by ea and ual, and then write

Fsvdmn= o
a

kmual
1

v + ih − ea
kaunl. s26d

However, in the examples it is useful first to eliminate the
parts that involve the sites on the leads. Examples for this
procedure are presented in Appendix A.

C. EOM’s for higher-order GF’s

The EOM for Gs swith only on-site Hubbard interaction
on the dotd does not involve GF’s of more arguments:

sv − ed − UdGs = knd−sl + o
n

Jdn
* Gns

s3d − o
n

JdnsGns
s1d + Gns

s2dd,

s27d

with three new GF’s,

Gns
s1d = kknd−sans;ds

†ll,

KONDO EFFECT IN COMPLEX MESOSCOPIC STRUCTURES PHYSICAL REVIEW B71, 035333s2005d

035333-3



Gns
s2d = kkd−s

† an−sds;ds
†ll,

s28d

Gns
s3d = kkan−s

† d−sds;ds
†ll.

The inhomogeneous term in Eq.s27d, knd−sl, represents the
average number of electrons with spins on the dot. This
number needs to be determined self-consistently, via the
fluctuation-dissipation theorem:

kndsl =E dv fsvdrdssvd. s29d

We shall return to this condition below.
We now write the EOM’s for the new GF’s,Gns

sid , and use
several approximations for their solution. First, it is easy to
see from the EOM forGns

s3d that this GF is of order 1/U.
Therefore, it contributes toGs only at order 1/U2, and can be
ignored forU→` fwe needGs only to order 1/U; see Eq.
s15dg. Second, we introduce a decoupling scheme for the new
GF’s that appear in the EOM’s of theGns

sid ’s,

kkans1

† ams2
ds3

;ds
†ll . kans1

† ams1
lds1s2

kkds3
;ds

†ll

− kans1

† ds1
lds1s3

kkams2
;ds

†ll. s30d

We omit thermal averages of the formkansdsl, which include
two destructionsor creationd operators, andkans

† ams8l with
sÞs8, relevant only for states with a net magnetic moment.
The latter assumption means that we restrict the discussion
only to symmetric states, withGdd↑=Gdd↓.

Using these approximations, the EOM forGns
s1d becomes

sv − endGns
s1d = − Jdn

* Gs − o
m

JnmGms
s1d . s31d

The derivation of this equation also required an additional
term, −GndsfSmJdmkd−s

† am−sl−c.c.g. However, this term van-
ishes. Here and below, we calculate equilibrium thermal av-
erages by using the fluctuation-dissipation theorem,

kA†Bl =E S−
dv

2pi
D fsvdsGBA − GAB

* d. s32d

Equations31d is practically the same as Eq.s17d, which
was used to deriveS0 in terms of theJnm’s. Applying the
same algebra to Eq.s31d then yields the analog to Eq.s22d,

− o
n

JdnGns
s1d = S0Gs. s33d

Using the same approximations, the EOM ofGns
s2d is

sv − endGns
s2d = − Jdn

* Gs − o
m

JnmGms
s2d + kXnlGdds

+ kd−s
† an−sls1 + S0Gddsd, s34d

in which

kXnl = o
m

Jdm
* kam−s

† an−sl. s35d

Although the first two terms on the RHS of Eq.s34d are
similar to those in Eq.s31d, we now need to calculate the

other two terms. Since these terms require thermal averages,
which we express using the fluctuation-dissipation Eq.s32d,
they end up with integrals that involveGdd−s, leading finally
to our integral equation for the dot GF. The details of these
calculations are presented in Appendix B.

Inserting the results for the necessary thermal averages
into the RHS of Eq.s34d, the results are used in Eq.sB5d for
the combination −onJdnGns

s2d which is needed in the RHS of
Eq. s27d. Adding also the corresponding combination forGs1d

fEq. s33dg yields our final result forGs. It remains to insert it
back into the EOMs15d for the dot Green functionGdds.
This yields an integral equation for this function,

sv − ed − S0dGdds = 1 − knd−sl + GddsE S−
dv8

2pi
D

3
fsv8d

v − v8 + ih
fs1 + S08Gdd−s8 dsS08 − S0d

− sv8 → v8*dg

+ s1 + S0Gddsd E S−
dv8

2pi
D fsv8d

v − v8 + ih

3fGdd−s8 sS0 − S08d − sv8 → v8*dg,

h → 0+. s36d

Here and below,Gdds andS0 are understood to be functions
of v→v+ ih, and the primes denote a dependence onv8
→v8+ ih, with v8* →v8− ih. Two comments are in place
here. First, for the simplest SIAM, whenS0svd<−iDb is
independent ofv, we haveS0sv* d< iDb, so that only the
parts with v8* survive. Furthermore, in this case one can
factorizeDb out of the integrals. This reproduces the integral
equation of Lacroix,18

sv − ed + iDbdGdds = 1 − knd−sl − 2iDbFGddsE S−
dv8

2pi
D

3
fsv8d

v − v8 + ih
s1 + iDbfGdd−s8 g * d

− s1 − iDbGddsd

3E S−
dv8

2pi
D fsv8d

v − v8 + ih
fGdd−s8 g * G .

s37d

However, even for this simple case there has not been an
analytic solution that covers the whole parameter range. Sec-
ond, discarding14 correlations between the dot and other sites
on the net, e.g.,kds

†ansl, amounts to neglecting the terms
containingGdd8 in Eq. s36d. This ends up with a breakdown of
the Fermi-liquid conditions atT=0, and with a bad approxi-
mation forT,TK.

III. APPROXIMATE SOLUTION OF THE INTEGRAL
EQUATION

We now restrict the discussion to “nonmagnetic” states,
and replaceGdd↑=Gdd↓;Gdd. Equation s36d can then be
written as
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sv − ed − S0dGdd = dn + AGdd − Bs1 − iDGddd, s38d

where dn=1−knd↑l=1−knd↓l;1−kndl /2 and A and B are
functions ofv, given by

Asvd =E S−
dv8

2pi
D fsv8d

v − v8 + ih
3 fS08„1 + Gdd8 sS08 − S0d…

− sv8 + ih → v8 − ihdg,

Bsvd =E S−
dv8

2pi
D fsv8d

v − v8 + ih
3 fGdd8 sS08 − S0d

− sv8 + ih → v8 − ihdg. s39d

For reasons that will be explained later, it is now conve-
nient to replacefsv8d inside the integrals byffsv8d−1/2g
+1/2. Thepart related to the constant 1/2 can then be cal-
culated using the Kramers-Kronig relations,

E S−
dv8

2pi
D 1

v − v8 + ih
fFsv8d − Fsv8d * g ; Fsvd,

s40d

and thus we find

Asvd =
1

2
S0svd +E S−

dv8

2pi
D fsv8d − 1/2

v − v8 + ih

3 fS08„1 + Gdd8 sS08 − S0d… − sv8 + ih → v8 − ihdg,

Bsvd =E S−
dv8

2pi
D fsv8d − 1/2

v − v8 + ih
3 fGdd8 sS08 − S0d

− sv8 + ih → v8 − ihdg. s41d

We next follow Lacroix,18 and assume that the integrals are
dominated by the regionv8.v, namely, that

E dv8Fsv,v8d
fsv8d − 1/2

v − v8 + ih
. Fsv,vdXsvd, s42d

and thus

Bsvd < DsvdGdd
* svdXsvd, s43d

whereDsvd=−ImS0svd and22

Xsvd =E
−D

D dv8

p

fsv8d − 1/2

v − v8 + ih
=

1

p
F1

2
ln

b2sD2 − v2d
s2pd2

− CS1

2
+

bv

2pi
DG s44d

sC is the Digamma functiond. A similar procedure yields

Asvd < DsvdS−
i

2
+ Xsvdf1 + iDsvdGdd

* svdgD . s45d

The reason for using the above transformation is that
when one analyzes the equivalent equations for finiteU, then
one requires particle-hole symmetry, namely, the relation

G̃ddsvd = − Gdd
* s− vd, s46d

where the tilde denotes particle-hole transformed quantities.
In that case, this relation is equivalent to the relations

B̃svd = − B * s− vd,

Ãsvd = A * s− vd − S0
*s− vd. s47d

These relations should hold also for any approximate
solution.16 It is easy to check that these relations are obeyed
by our approximate expressionss43d ands45d, but would not
hold if we made the approximations42d on the original equa-
tions, before shiftingfsv8d by 1/2.16,18

Takingdn as a parameter, and defining the scaled variable

zsvd ;
v − ed − dedsvd

2Dsvd
, s48d

the solution of Eq.s38d can be written as

Gddsvd = gsvdfdn + iQsvd/X * svdg, s49d

with

g =
1

v − ed − ded + i3D/2
;

1

2Dsz+ 3i/4d
, s50d

Q = S− FS2 + uXu2S3

2
dn − dn2DG1/2

, s51d

S= z2 +
9

16
− zReX + Sdn −

3

4
DIm X, s52d

and we have omitted the explicit dependence onv for brev-
ity. For some purposes it is more convenient to write Eq.s49d
as

Gddsvd =

3

2

1 −Csvd
1

v − fed + dEdsvdg + i
3

2
Dsvd

, s53d

where the real functionsCsvd anddEdsvd, which result from
the strong interactions on the dot, depend onT and onS0svd
and are given by

dEdsvd = ded − 2DsReXdC/s1 −Cd,

Csvd =
1

2D2Qugsi + dnX* /Qdu2
;

2sz2 + 9/16d
Qui + dnX* /Qu2

.

s54d

Equations53d forms our general result. We emphasize again
that all we need to know is the noninteracting self-energy
S0svd.

As seen explicitly from the above equations, our analytic
expression forGdd depends on the parameterdn=1−kndl /2,
which needs to be determined self-consistently, via Eq.s29d.
We discuss this condition in a specific example below.
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IV. THE FERMI-LIQUID RELATIONS AND THE KONDO
TEMPERATURE

At T=0, one easily sees that

ReXsvd < lnuD/vu/p, s55d

diverging at the Fermi energyv→0. At T=v=0 we thus
haveC→0 andC ReX→uszd, with

uszd =
2sz2 + 9/16dfz+ Îz2 + dns1.5 −dndg

fz+ Îz2 + dns1.5 −dndg2 + dn2
, s56d

andz=zsv=0d=−fed+deds0dg / f2Ds0dg. Therefore,

Gdds0d =
1

Ds0dhs4/3dfz− uszdg + ij
. s57d

For a very deep level on the dot,z@1, uszd approachesz,
andGdd approaches −i /Ds0d, ending up with high plateaus in
the LDOS and in the phase of the complexGddsvd sticking
to p /2. All of these characteristics, which are hallmarks of
the Kondo behavior,20 are observed in the examples below.
As ed moves up from large negative values, Eq.s57d shows a
gradual crossover away from this “unitary” limit, andGdd
approaches the non-interactingGdd

0 asz→−`.
Equations57d also ensures that the GF obeys the Fermi-

liquid relations27 at T=0: sid The imaginary part of the SE on
the Fermi level is the same as in the absence of interactions,
i.e., −Ds0d, confirming the unitarity limit;28,13 sii d For ed!
−D, the LDOS therefi.e., rdsv=0d;rdss0dg approaches the
finite value 1/fpDs0dg. We emphasize that these results ap-
ply for any complex network; the only input isS0svd.

The Kondo effect concerns the behavior of the density of
states near the Fermi energy at low temperature. In that re-
gime,Gdd is dominated by its imaginary part, and thus

rd < 1/fpDsvds1 −Cdg. s58d

For ReXsvd.zsvd@1, one hasS<zsz−ReXd,0, Q<2S,
and the leadingv dependence ofC is

C ,
z

z− ReX
. s59d

We thus end up with a logarithmic cusp inrd at v=0. The
related narrow peak reaches one-half of its peak valuesequal
to 1/fpDs0dgd when C<−1. One definition of the Kondo
energyTK is to identify TK with the half-width of this peak.
Solving Csv= ±TKd=−1 and using Eq.s59d thus yields
ReX=2z, i.e.,

TKsedd = D expf− apued + deds0du/Ds0dg, s60d

with a=1. This result, which agrees with that of Lacroix,18 is
qualitatively similar but quantitatively different from the pre-
sumably exactTK as given by Haldane,29 which hasa=1/2.
However,TK only represents some crossover energy scale,
and we expect the above solution to follow the qualitative
variations ofTK with the system parameters, which are con-
tained in ded and in D. It should be emphasized thatTK
depends onboth D and ded ssome authors ignore the part
coming from the real part of the SE,dedd. For example, for

the Aharonov-Bohm interferometerTK oscillates with the
flux.30

At the Fermi energy,v=0, and for fixeded,0, one ex-
pects rds0d to decrease with increasingT. In this limit,
Xsv=0d=lnuAD/Tu /p, with A=e−Cs1/2d / s2pd<1.133 87. For
uedu@Ds0d we then find the asymptotic relation

rds0d <
1

pDs0ds1 −Cd
,

ReX − z

pDs0dReX

=
1

pDs0dS1 +
psed + dedd

2Ds0dlnsAD/TdD . s61d

This density of states decreases to one-half of its maximum
T=0 value at a temperatureATK, with TK given in Eq.s60d.
Although the results61d is qualitatively correct, and is also
consistent with ourTK, its explicit low-temperature depen-
dence disagrees with exact expectations: we obtain a loga-
rithmic behavior, whereas Fermi-liquid theory predicts aT2

dependence at lowT.6,7 This is an artifact of our approxima-
tion. However, at highT we do recover the usual logarithmic
variation.

In the opposite limit, of uzu@ReX,1, one finds that
uQ/Xu!1, and Eq. s49d implies that Gddsvd approaches
dn gsvd. The appearance ofdn in the numerator, in place of
1, results from the fact that some weight of the spectral func-
tion is pushed to infiniteU.14 Another interesting point con-
cerns the factor 3/2 in Eqs.s50d ands53d. This factor may be
explained heuristically31 by the fact that while both spin di-
rections are accessible for tunneling into the dot, only a
single one can tunnel out of it.

V. EXAMPLE 1: THE SIMPLE SIAM

In the following two examples, we assume simple semi-
infinite one-dimensional leads, with identical nearest-
neighbor hopping matrix elements −J, and with a lattice con-
stant a. The eigenenergies of eachHL are thereforeek=
−2J coska, with eigenfunctions knukl=sinnkaÎ2/V sV
→` is the length of the leadd, andD=2J. We also assume
that the leadsL and R are attached to the mesoscopic net-
work only at one site, with hopping matrix elementsJ, and
Jr. For the simple SIAM, when the two leads are directly
connected to the dot, we show in Appendix A that the leads
generate a self-energy

S0svd = − ei uquasuJ,u2 + uJru2d/J ; − ei uquaDb s62d

on the dot, withq determined byv=−2J cosqa and with

Db ; G, + Gr . s63d

Here we have used the notation

G,,r ; uJ,,ru2/J = pNs0duJ,,ru2, s64d

with Nsvd being the density of the band states. The width of
the noninteracting resonance ated is thus equal toDb sinqa.
In the figures presented below we use the symmetric case,
G,=Gr =Db/2. SubstitutingS0svd=dedsvd− iDsvd into Eqs.
s49d–s52d then yieldsGdd.

ENTIN-WOHLMAN, AHARONY, AND MEIR PHYSICAL REVIEW B 71, 035333s2005d

035333-6



We start by discussing the self-consistency condition for
kndl. Figure 1 shows an example of our self-consistent solu-
tions for kndl, at T=0: we start from an initial guess fordn,
then calculatekndl from Eq. s29d, and iterate; the procedure
converges after a few iterations. Also shown isñ, which
represents the total change in the electron occupation in the
system due to the dot, as determined from the Friedel phase,
defined via13,28,27

tanSp

2
s1 − ñdD ; RefGdds0dg/ImfGdds0dg. s65d

For ed!−Ds0d=−Db, ñ approaches 1, whilekndl remains
slightly smaller. This small difference could reflect an addi-
tional occupation of other sites in the leads. It could also
result from the inaccuracy of our approximation forGddsvd,
which becomes worse asv moves away from the Fermi
energy; the integral in Eq.s29d contains contributions from
all v. However, this small difference has only a small effect
on the other calculations presented below.

Although it is easy to solve forkndl for each set of pa-
rameters and use the resultingdn for other calculations, the
qualitative results are only weakly affected if one uses an
arbitrary smooth variation ofkndl from 0 to 1 ased varies
from +` to −`. In the calculations below, we used such a
smooth variation fordn, with a width of orderDb.

An alternative approximate expression fordn follows
from Eq. s49d. It turns out that for most of the integration
range in Eq.s29d, Gddsvd is dominated by the first term
there. Neglecting the second term, one has 1−dn=kndsl
<dn n0, with n0=−edv Imfgsvdg /p depending only on the
noninteracting parameters. Thus,dn<1/s1+n0d. For Db be-
tween 0.1 and 0.01 and fored, –Db, we find this estimate to
be within ,10% of the full self-consistent value.

Figure 2 presents the LDOSfEq. s2dg versusv, for the
simple SIAM, with the parameters as indicated. Our approxi-
mation reproduces the Kondo peak at lowT, in addition to
the much broader peak ated. Figure 3 showsrd at the Fermi
energysv=0d versused. Note the very slowslogarithmicd
increase of rds with decreasingT, in agreement with
Eq. s61d.

We now turn to the conductanceG. For the simple SIAM,
one has13,14

G̃svd = −
4G,Gr

G, + Gr
Im Gddsvd. s66d

Equations53d implies that

Im Gdd = − s1 −CdDbuGddu2. s67d

For T=0, whenC→0, we also haveG̃svd=4G,GruGddu2. At
finite temperatures, these two expressions for the conduc-
tance exhibit the same qualitative behavior asrd sFig. 3d.
The quantitative difference between the two expressions,
which increases withT and with large negativeed, represents
a breakdown of unitarity which may be an artifact of our
approximation.

FIG. 1. The self-consistent average occupation on the dot,kndl
sthick lined, and the Friedel added occupationñ at T=0, as function
of ed, for the simplest SIAM withDb/J=0.1. Results remain almost
unchanged up toT,Db.

FIG. 2. sColor onlined The LDOS on the dot, for the simple
SIAM, with ed=−0.3,Db=0.1, andT=0,0.01,0.05sall energies are
in units ofJd. The Kondo peak values nearv=0, shown with more
detail in the lower panel, decrease with increasingT.

FIG. 3. The LDOS at the Fermi energy,rds0d, versused, for
T=0, 10−30, 10−10, 10−3 andDb=0.1; rds0d increases with decreas-
ing T.
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At low T, s−]f /]vd is practically ad function, and Eq.s3d
yields G<s2e2/hdG̃s0d, exhibiting the qualitative behavior
shown in Fig. 3. At higherT, the peak inG slightly below
ed=0 becomes lower and broader than that ofrdsv=0d. At
fixed ed,0, increasingT results with a decreasingG, but
with an interesting superimposed peak atT=Osuedud swhen
the peak ated starts to contributed.

Some experiments4 place the QD on one branch of an
open Aharonov-Bohm interferometer, and attempt to extract
the transmission phasefor scattering through the dot. The
transmission phase is usually related to the phase ofGdd.

20

Without getting into the question of what is really measured
in the interferometer,32 it is still of interest to study the latter
phase. Figure 4 thus shows the “transmission,” represented
by Db

2uGddu2, and the “transmission phase,” represented by
fsee Eq.s65dg a=ps1−ñ/2d as a function ofed for several
temperatures. Interestingly, at highT this phase simply
grows smoothly from zero top through the resonance, simi-
larly to the noninteracting case or to the Coulomb blockade
case. However, asT decreases, the peak in the “transmis-
sion” broadens toward negativeed, eventually reaching a pla-
teau forT=0 ssee also Fig. 3d. At the same time, the phase
develops an intermediate plateau atp /2.20 This plateau be-
gins at an energyed which is roughly given byT,TKsedd, as
defined in Eq.s60d. Studying the energy where this phase
grows from zero top /2 thus suggests another way to define
the crossover temperatureTK.

VI. EXAMPLE 2: THE QD ON A “T” NETWORK

Our equations also become very simple for the “T” net-
work, when the dot sits on a side branch. Such a network has
recently attracted both theoretical24,25 and experimental23 in-
terest, as the simplest realization of the Fano-Kondo effect.
The mesoscopic network now consists of a single site “0.”
This site has one bond connected to the dot, with hoppingJx,
and two bonds connected to two leads, with hoppingJ, and
Jr. In this case, the matrixF11 in Appendix A is of order

131, and Eqs. sA3d and sA8d yield F00=1/fv−e0

+ei uquasuJ,u2+ uJru2d /Jg. Using Db from Eq. s63d, we have

S0svd =
uJxu2

v − e0 + ei uquaDb

; dedsvd − iDsvd. s68d

In this case,G̃ of Eq. s3d is given by25

G̃svd = −
4G,Gr

G, + Gr
Im G00svd. s69d

The calculation ofG00 follows directly from Eqs.s24d and
s25d,

G00 =
1 + S0Gdd

v − e0 + ei uquaDb

. s70d

Therefore, ImG00 is a linear combination of ReGdd and
Im Gdd, with coefficients that depend only on the noninter-
acting parameters.

These equations reproduce those found, e.g., in Refs. 24
and 25. However, at this point those authors use complicated
numerical schemes to obtainGdd, which do not allow for
systematic studies of the dependence on the various param-
eters. In contrast, we can easily obtain the approximateGdd
analytically, with the same ease as for the previous example.
All we need to do is to substitute Eq.s68d into Eqs.
s49d–s52d.

For the noninteracting case,Gdd is simply given by Eq.
s5d. Figure 5 then compares the results for the conductance
sin units of 2e2/hd, with and without interactions. Without
interactionssthin linesd, for e0=0 the upper panel in Fig. 5
shows a symmetric Fano vanishing of the conductance at

FIG. 4. “Transmission” and “transmission phase”sin units ofpd
for the simple SIAM, forDb=0.1 and forT=0, 10−10, 10−3.

FIG. 5. Conductance of the “T” network, withJx=0.2, Db=0.1
sall in units ofJd. Thin lines, without interactions. Thick lines, with
infinite interactions atT=0 sintermediate thickness lines,T=10−5d.
Upper panel,e0=0. Lower panel,e0=−.1.
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ed=0. As e0 becomes more negativeslower panel thered, the
conductance assumes a typical nonsymmetric Fano shape,
with smaller conductances at largeuedu. The interactions
sthick linesd have a negligible effect ated@0, when the dot is
not occupied. However, ated,0 andT=0 sthickest linesd the
interactions cause strong changes. Fore0=0 and large nega-
tive ed, the occupation on the dot causes the so-called anti-
Kondo effect,24 where the formation of the Kondo singlet
causes destructive interference which yields zero conduc-
tance. Fore0,0, the Fano zero is shifted to lowered, the
peak disappears, and the asymptotic conductance decreases.
As T increasessmedium thick linesd, the behavior at negative
ed gradually returns to that of the noninteracting case, and
the Fano zero disappears: the conductance is always nonzero.
Again, all of these phenomena are qualitatively similar to
those found in Refs. 23–25.

A slightly more complex “T” network is obtained by plac-
ing another noninteracting site, “1,” between the site 0 and
the dot, with energye1 and with hopping elementsJx to both
site 0 and the dot. Our mesoscopic system now contains two
sites, 0 and 1, and the methods of Appendix A yield

S0 =
Jx

2sv − e0 + ei uquaDbd
D

, s71d

G00 =
v − e1

D
+

Jx
4

D2Gdd, s72d

with

D = sv − e1dsv − e0 + ei uquaDbd − Jx
2. s73d

Figure 6 shows a few examples on how the interplay be-
tweene0 and e1 can change the dependence of the conduc-
tance oned for the fully interacting case atT=0. For e1
=e0=0, the graph looks exactly like that for the simple
SIAM, discussed in Sec. V. Clearly, the presence of the in-
termediate point turned the destructive interference into a
constructive one. Changinge0 to positive snegatived values
then simply shifts the whole curve to the leftsrightd. Chang-
ing e1 to nonzero values generates either a “Fano” zero in the
conductanceswhene0,0d, similar to the results in Fig. 5, or
a “Fano” resonanceswhen e0.0d. At e0=0 one observes a
change from a zero to a resonance ase1 changes from posi-
tive to negative values. All of these parameters can be easily
changed using the various gate voltages, e.g., in the setup of
Ref. 23. Without going into much further discussion, it is
clear that the intermediate point on the side branch is very
effective in changing the interference pattern between Fano-
Kondo resonances and antiresonances. Data from such ex-
periments can then be used to obtain information onGdd.

VII. DISCUSSION

We have derived an approximate analytic expression for a
complex mesoscopic network, which contains a quantum dot
with electron-electron interactions, and which may connect
to several leads. Our formulas correct and generalize earlier
expressions, and give a good qualitative interpolation be-
tween the Fermi-liquid behavior at very low temperatures
and the simpler high-temperature one.

Although our formulas reproduce many features required
by the Fermi-liquid theory, they are still approximate, and
should thus only be used for discussing the qualitative varia-
tion of various quantities with the parameters characterizing
the network. However, the simplicity of our expressions al-
lows for relatively easy comparisons with experiments and
with more complicated numerical work.

We have demonstrated the use of our formulas for the two
simple cases of a single quantum dot attached to two leads
and of the “T” network, where the dot is connected to an-
other site which couples to the two leads. Indeed, we have
reproduced and extended all the expected phenomena for
these two cases. In an upcoming publication30 we shall apply
this scheme to the interesting case of the Aharonov-Bohm
interferometer.
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FIG. 6. Conductance of the “T” network, with an extra site “1”
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e1=−0.5, 0, 0.5, with increasing thickness.
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APPENDIX A: CALCULATING F=M−1

We need to invert the matrixM=v+ ih−Hnet. We start
by dividing our Hilbert space into two parts, called “1” and
“2.” Then, we write

M = SM11 M12

M21 M22
D , sA1d

and the inverse matrixF as

F = SF11 F12

F21 F22
D . sA2d

It is now easy to obtain the Dyson-like equation

F11 = sM11 − M12fM22g−1M21d−1. sA3d

In our calculations we only needFmn for m, n within the
finite mesoscopic part of the networkspossibly including the
dotd. Identifying this part with the subspace “1” above, we
thus only need the matrix elements of the finite matrixF11.
To obtain these via Eq.sA3d, we need the Green function for
the leads,fM22g−1. For our Eq.s12d, the matrixM22 separates
for the different leads, and we end up with

F22 = FM22 − o
L

SsLdG−1
, sA4d

with the self-energy matrices

Smn
sLd = − o

rs

Jmrgrs
sLdJsm. sA5d

Here, the matricesM22 andSsLd are all of orderN3N, where
N is the number of sites in the mesoscopic part of the net-
work. Also,

grs
sLd = o

k

kr uklkkusl
v − ek

sA6d

is the Green function for the disconnected leadL.
For the one-dimensional leads, we use the identity

2

V
o
k

1

v + ih − ek
=

1

2iJ sinuqua
, sA7d

with v=−2J cosqa, to obtain the self-energy due to the lead
L, which is attached at the single pointnL,

SsLdsvdmn= − uJ,u2ei uquadm,nL
dn,nL

/J. sA8d

The same result also applies when the mesoscopic part is
empty, and the leads are connected directly to the dot.

APPENDIX B: DETAILS OF THE EOM FOR G„2…

Following the same logic that led to Eqs.s22d and s33d,
the formal solution to Eq.s34d gives

− o
n

JdnGns
s2d = S0Gs − o

mn

JdmFmnfkXnlGdds + kd−s
† an−sl

3s1 + S0Gddsdg. sB1d

Calculating the thermal averagekd−s
† an−sl via the

fluctuation-dissipation Eq.s32d, and using Eqs.s20d and
s24d, we end up with an integral which requires the sum

S1 = o
mn,

JdmFsvdm,Fsv8d,nJnd. sB2d

For this and for similar sums, it is helpful to use the identity

Fsv + ihdFsv8 ± ih8d =
Fsv8 ± ih8d − Fsv + ihd

v − v8 + ih
,

sB3d

which follows from Eq.s26d, together with a careful use of
1/sx+ ihd=Ps1/xd− ipdsxd. Using Eq.s23d, the sum in Eq.
sB2d then becomes

S1 =
1

v − v8 + ih
fS0sv8d − S0svdg. sB4d

Similar manipulations allow the calculation of the thermal
averageskXnl. Finally, we end up with

− o
n

JdnGns
s2d = S0Gs + GddsE S−

dv8

2pi
D fsv8d

v − v8 + ih

3fs1 + S08Gdd−s8 dsS0 − S08d − sv8 → v8*dg

− s1 + S0Gddsd E S−
dv8

2pi
D fsv8d

v − v8 + ih

3fGdd−s8 sS0 − S08d − sv8 → v8*dg. sB5d

As explained after Eq.s36d, Gdds and S0 are understood to
be functions ofv→v+ ih, and the primes denote a depen-
dence onv8→v8+ ih, with v8* →v8− ih.
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