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We study two-dimensional interacting electrons in a weak perpendicular magnetic field with the filling factor
n@1 and in the presence of a quenched disorder. As it is known, the unidirectional charge density wave state
can exist near a half-filled high Landau level at low temperatures if disorder is weak enough. We show that the
existence of the unidirectional charge density wave state at temperatureT,Tc where Tc is the transition
temperature leads to the anisotropic conductivity tensor. We find that the anisotropic part of conductivity tensor
is proportional tosTc−Td /Tc below the transition. The order parameter fluctuations wash out the mean-field
cusp atT=Tc and the conductivity tensor becomes anisotropic even above the mean-field transition temperature
Tc.
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I. INTRODUCTION

A two-dimensional electron gass2DEGd in a perpendicu-
lar magnetic fieldsHd has remained a subject of intensive
studies, both theoretical and experimental, for several
decades.1 Recently the phenomenon of sharp anisotropy of
magnetoresistance near half-filled Landau levels with Lan-
dau level indexN=2,3,4 at low temperatures has been
discovered.2,3 Right away the magnetoresistance anisotropy
has been related with the possible existence of unidirectional
charge density wavesUCDWd state near half-filling of a high
Landau level theoretically predicted4–6 in the absence of dis-
order by the mean-field treatment in the limitN@1. How-
ever it is well-known that the UCDW statessmecticd is de-
stroyed by thermal fluctuations in two dimensions in the
absence of crystal field anisotropy.7 At zero temperature the
UCDW state can exist only on high Landau levels,N@1,
whereas at moderate values ofN a nematic phase should
appear.8 At nonzero temperaturessTd the nematic phase is
stable against fluctuations and the isotropic-to-nematic tran-
sition may lead to anisotropic magnetoresistance.9 This sce-
nario is supported by experimental measurements10 of mag-
netoresistance dependence on in-plane magnetic fields near
half-filled Landau levels with Landau level indexN=2,3,4.
However, in spite of enormous efforts,11 a microscopical
theory for the temperature dependence of magnetoresistance
on Landau levels with moderateN is absent so far.

In practice the UCDW state can exist on lengthsL smaller
than lengthscalesj' and ji at which translational order is
destroyed in directions perpendicular and parallel to a stripe,
respectively. The microscopic analysis of smectic state12

yields thatj',' increases as a power law with growing ofN
and the temperature. In the presence of disorder the UCDW
state is destroyed on a scale of the order of the Larkin
length13 that grows withN as a power law also.14 One can
therefore expect to find the UCDW state on high Landau
levels swith N@1d in samples of small size.

If a random potential created by impurities near 2DEG is
weakthen the Landau level broadening 1/t is much less than
the spacingvH between Landau levels, 1/t!vH. Here the

vH is cyclotron frequencyvH=eH/m with e andm being the
electron charge and band mass, respectivelyswe use the units
with "=1, c=1, andkB=1d. In the framework of Hartree-
Fock analysis one can show that there is mean-field
isotropic-to-UCDW transition at some temperatureTc
=Tcs1/td on a half-filled high Landau level.16 The disorder
decreases the transition temperature such that there is the
critical value of the Landau level broadening 1/tc=8T0/p
whereT0=Tcs1/t=0d at which the UCDW state disappears
ssee Fig. 1d. Surprisingly, the disorder does not affect the
period of the UCDW state that remains of the order of cy-
clotron radiusRc=Î2N+1lH wherelH=1/ÎmvH denotes the
magnetic field length.4–6 It has been shown16 that the correc-
tion due to Gaussian fluctuations of the UCDW order param-
etersweak crystallizationd to the mean-field value ofTc is of
the order ofdTc~TcN

−2/3!Tc. In accordance with general
expectations about the effect of disorder on ordering in two
dimensions, these fluctuations destroy the UCDW state on
the lengthscalej=Rcgs1/4pTtdN1/3 where gsxd monotoni-
cally increases from the value 0.55 atx=0 to infinity whenx
tends to infinity.17 Thus, the effect of Gaussian fluctuations

FIG. 1. Mean-field phase diagram for electrons on half-filled
high Landau levels,N@1.
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of the UCDW order parameter is qualitatively the same as in
more elaborate treatments.12,14 The fluctuations about the
mean-field UCDW state are negligible on high Landau lev-
els,N@1, for samples of sizeL!j.

The main objective of the paper is to present the analysis
of temperature dependence of the conductivity tensor on a
half-filled high Landau level near the isotropic-to-UCDW
transition suTc−Tu!Tcd where the expansion in the UCDW
order parameter is legitimate. The effect of the order param-
eter fluctuations that are enhanced near the phase transition
on the conductivity tensor both below and above the transi-
tion temperatureTc will be investigated also.

One of the main results of the paper is the fact that the
conductivity tensorsab swe measure conductivity in units of
e2/hd of two-dimensional electrons on a high Landau level in
the UCDW state acquires an anisotropic part proportional to
temperature deviation fromTc. Such temperature dependence
can be understood in the following way. Since the UCDW
state appears at nonzero wave vector the first nonvanishing
contribution to the conductivity tensor due to the UCDW
induced potential is of the second order in the UCDW order
parameter. It is proportional toÎsTc−Td /Tc in the Landau
theory. Hence the conductivity tensor in the UCDW state
should acquire corrections, isotropic as well as anisotropic,
proportional to sTc−Td /Tc. Other principal results of the
present paper is that in the vicinity of the isotropic-to-
UCDW transition in the presence of an anisotropy with typi-
cal energyEA there are additional anisotropic contributions
to the conductivity tensor proportional tosEA/TcdsuTc

−Tu /Tcd−3/2 that we shall refer to as fluctuational. In general,
in the presence of crystal field anisotropyEA the conductivity
tensor has an anisotropic part at all temperatures. Compared
to this background anisotropy of the conductivity tensor the
anisotropic correction due to fluctuations becomes anoma-
lously enhanced in the vicinity ofTc. We mention that it is
analogous to fluctuational contribution to the conductivity of
a normal metal due to superconducting paring above the
critical temperature.18

We start out with an introduction to the formalism that
mainly follows one introduced in the previous paper.16 In
order to consider the transport properties of electrons on the
Nth high Landau level we integrate electron degrees of free-
dom on all Landau levels except thesN−1dth, Nth, andsN
+1dth levelssSec. IId. Next we prove that scattering electrons
from theNth Landau level to thesN±1dth Landau levels by
the UCDW induced potential results in corrections of the
order of OsN−1d and, consequently, can be neglectedsSec.
II Fd. The conductivity tensor in the UCDW state is evalu-
ated in Sec. III. Effect of the UCDW order parameter fluc-
tuations on the conductivity tensor is investigated in Sec. IV.
In Sec. V the results obtained are discussed in relation with
recent experiments.2,3 We end the paper with Sec. VI.

Some of the results of the present paper have been pub-
lished in a brief form in Ref. 19.

II. FORMALISM

A. Introduction

To start out consider the system of two-dimensional inter-
acting electrons in the presence of a random potentialVdissr d

and a perpendicular magnetic fieldH. The conventional pa-
rameter that characterizes the strength of the Coulomb inter-
action isrs=Î2e2/«RcvH with the« being the dielectric con-
stant of a media. We assume that the Coulomb interaction
between the electrons is weak

rs ! 1, s1d

and the magnetic field obeys the condition

N @ rs
−1, s2d

where the Landau level indexN=fn /2g is the integer part of
half of filling factor n. In addition, we assume that the Lan-
dau level broadening 1/t is not too small,17 1/t
@vHN−1 ln Î2rsN. In this case it is possible to construct an
effective field theory for electrons on the highest partially
filled Landau level by integrating out all other degrees of
freedom.20,21

Also we consider the case when the Landau levels are
spin resolved that occurs according to Ref. 20 if 1 /t!Dex
=srsvH /pÎ2dln 2Î2/rs. Therefore, the Landau level broad-
ening should be restricted from below and from above as

vH

N
ln Î2rsN !

1

t
!

rsvH

pÎ2
ln

2Î2

rs
. s3d

Throughout the paper we characterize the UCDW state by
the order parameterDsQd. All calculations are performed
under the assumption

N @ rs
−2. s4d

In this case the Hartree-Fock approximation is
well-justified.6 As it was shown the corrections to the
Hartree-Fock approximation are controlled by the small pa-
rameteraB/ lH=1/Nrs

2!1, whereaB=« /me2 stands for the
Bohr radius.

Thermodynamic potential of the system in hand can be
written as

V = −
T

Nr
E Dfc̄,cg E DfVdisgPfVdisgexpSfc̄,c,Vdisg,

s5d

where actionSfc̄ ,c ,Vdisg is written in Matsubara represen-
tation

S =E dr o
a,vn,vm

cvn

a,ssr dhfivn + m − Vdissr dgdnm− Ĥj

3 cvm

a,ssr d −
T

2 o
vn,vm,nl

E drdr 8cvn

a,ssr dcvn−nl

a,s sr d

3 U0sr − r 8dcvm

a,s8sr dcvm+nl

a,s8 sr 8d. s6d

Here,cvn

a,ssr d andcvn

a,ssr d are annihilation and creation elec-
tron operators.T stands for temperature,m chemical poten-
tial, s and s8 spin indices, andvn=pTs2n+1d fermionic

frequency whereasnn=2pTn bosonic one. MatrixĤ is de-
fined as

I.S. BURMISTROV PHYSICAL REVIEW B71, 035331s2005d

035331-2



Ĥ = o
ann

HsnndIn
a, s7d

with matrices

sIn
adkl

bg = dabdagdk−l,n s8d

beingUs1d generators. One-particle hamiltonianH describes
a two-dimensional electron in constant perpendicular mag-
netic fieldH=eab]aAb and in time-dependent magnetic field
with vector-potentiala,

H =
1

2m
s− i ¹ − eA − ead2. s9d

As usual, we assume the white-noise distribution for the
random potential

PfVdissr dg =
1

Î2pg
expS−

1

2g
E drVdis

2 sr dD . s10d

In order to average over disorder we introduceNr replicated
copies of the system22 labeled by the replica indicesa
=1, . . . ,Nr.

It is convenient to rewrite one-particle Hamiltonians9d
with the help of covariant derivative

D = ¹ − ieA , s11d

in order to extract the time-dependent vector potentialasnnd

H = −
1

2m
D2 + Ksnnd, s12d

Ksnnd = −
e

m
asnndD +

e2

2m
o
nm

asnn−mdasnmd.

B. Effective action of “three-level” model

To investigate the thermodynamic properties of electrons
on theNth Landau level one can integrate out electrons on all
other Landau levels.20 However, to find conductivity tensor
projection on the singleNth Landau level is not appropriate
because of covariant derivativeD has nonzero matrix ele-
ments only for transitions between adjacent Landau levels. It
is necessary therefore to consider not only theNth Landau
level alone but two adjacent ones, thesN−1dth and sN
+1dth Landau levels.

Extending the projection to theNth Landau level only of
Refs. 20 and 21, we obtain effective action for electrons on
the sN−1dth, Nth, andsN+1dth Landau level as follows:

S =E dr o
a,vn,vm

cvn

a,ssr dhfivn + m − Vdissr dgdnm− Ĥj

3 cvm

a,ssr d −
T

2 o
vn,vm,nl

E drdr 8cvn

a,ssr dcvn−nl

a,s sr d

3 Uscrsr − r 8dcvm

a,s8sr dcvm+nl

a,s8 sr 8d. s13d

Herecvn

a,ssr d andcvn

a,ssr d are annihilation and creation opera-

tors of an electron on thesN−1dth, Nth, andsN+1dth Landau
levels

cvn

a,ssr d = o
p=N−1

N+1

cpvn

a,s sr d, cvn

a,ssr d = o
p=N−1

N+1

cpvn

a,s sr d. s14d

The screened electron-electron interactionUscrsr d has the fol-
lowing Fourier transform:

Uscrsqd =
2pe2

«q
F1 +

2

qaB
S1 −

p

6vHt
D

3 f1 −J0
2sqRcd − 2J1

2sqRcdgG−1

. s15d

It is different from one obtained in Refs. 21 and 23.
The reason for that is exclusion of contributions from the
sN−1dth and sN+1dth Landau level from the polarization
operator.

Effective action s13d was obtained under assumptions
s1d–s3d discussed above. Hereafter, for reasons to be ex-
plained shortly we neglect small correctionp / s6vHtd!1 in
the screened electron-electron interactions15d.

C. Hartree-Fock decoupling

Effective actions13d involves electron states with spin-up
and spin-down projections. Electron-electron interaction can
flip electron spin. Therefore, a charge density wavesCDWd
state is characterized by an order parameterDp1p2

s1s2sQd that is
matrix in the space of Landau level and spin indices. How-
ever, as it will be clear from discussion below, if the Landau
levels are spin resolved, i.e.,Dex@maxhT,t−1j, the charge
density wave state creates only on theNth Landau level with
certain spin projection. Then Landau levels with different
spin projection become completely separated and can be ig-
nored. Thus, we can consider the charge density wave order
parameter to be matrix only in the space of Landau level
indices. It is related with distortion of electron density on the
sN−1dth, Nth, andsN+1dth Landau levels as

krsqdl = SnL o
p1,p2=N−1

N+1

Dp1p2
sqdFp1p2

sqd, s16d

whereS stands for the area of two-dimensional electron gas
and form-factorFp1p2

sqd is defined as

Fp1p2
sqd = nL

−1o
k

fp1k
* s0dfp2ksqlH

2 dexpS i

2
qxqylH

2D . s17d

Here nL=1/2plH
2 and fpksr d are the eigenfunctions of the

free electron Hamiltonian withk being pseudomomentum.
After Hartree-Fock decoupling of interaction term in ef-

fective actions13d ssee Ref. 24d, we obtain
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S = −
NrVD

T
+E dr o

p1,p2

o
a,vn,vm

cp1vn

a sr d

3fsivn + m − Vdissr dddnm− Ĥ + lp1p2
sr dgcp2vm

a sr d,

s18d

where

VD =
nLS2

2 o
pi

E dq

s2pd2Up1p2p3p4
sqdDp1p4

sqdDp3p2
s− qd.

s19d

Potentiallp1p2
sr d in Eq. s18d appears as a consequence of

distortion of uniform electron density by the charge density
wave and is related with the order parameter as

lp1p2
sqd = So

p3p4

Up3p4p1p2
sqd

Fp1p2
s− qd

Dp3p4
sqd, s20d

whereUp1p2p3p4
sqd denotes the generalized Hartree-Fock po-

tential

Up1p2p3p4
sqd = − nLFUscrsqdFp1p2

sqdFp3p4
s− qd −E dp

s2pd2nL

3e−iqplH
2
UscrspdFp1p4

spdFp3p2
s− pdG . s21d

The Hartree-Fock approximation that we use is justified un-
der conditions4d as we have mentioned above.

D. Average over disorder

After standard average over the random potentialVdissr d
ssee Ref. 25d, effective actions18d becomes

S = −
NrVD

T
+E drc†sr dsiv + m − Ĥ + ľ + iQdcsr d

−
1

2g
E dr tr Q2sr d, s22d

where we introduce new fieldQsr d, that is unitary matrix in
Matsubara and replica spaces. For convenience we use the
following notation:

c†ľc = o
p1p2

o
a,vn

cp1vn

a sr dlp1p2
sr dcp2vn

a sr d. s23d

Let us recall that actions22d at zero temperature, i.e., for

vn→0, and in the absence of the induced potentialľsr d and
the time-dependent vector-potentiala has the following
saddle-point solution:

Qsp= V−1PspV, sPspdnm
ab = Psp

n dnmdab, s24d

whereV is arbitrary global unitary rotation andPsp
n obeys the

equation

Psp
n = igGvnsr ,r d, Gvnsr ,r 8d = o

p=N−1

N+1

Gp
vnsr ,r 8d. s25d

Here Green’s functionGp
vnsr ,r 8d is as follows:

Gp
nsr ,r 8d = o

k

fpk
* sr dGpsvndfpksr 8d, s26d

Gpsvnd = fivn + mN + eN − ep + iPsp
n g−1,

where chemical potentialmN is measured from theNth Lan-
dau level. Theep=vHsp+1/2d are the eigenvalues of the free
electron Hamiltonian. In the case of weak disordervHt@1,
the solution of Eq.s25d yields

Psp
n =

signvn

2t
,

1

2t
= ÎgnL. s27d

The fluctuations of theV field are responsible for the lo-
calization corrections to the conductivitysin the weak local-
ization regime they correspond to the maximally crossed dia-
gramsd. However, in the considered case, these corrections
are of the order of lnN/N!1 and, therefore, can be ne-
glected. For this reason we simply putV=1.

The presence of the induced potentialľsr d and the time-
dependent vector potentiala results in a shift of the saddle-
point values27d due to the coupling to the fluctuations of the
P field. The corresponding effective action for theP field
follows from Eq.s19d after integrating out fermions

S =E dr tr ln G−1 −
NrVD

T
−

1

2g
E dr trsPsp+ Pd2

+E dr tr lnf1 + siP + K̂ + ľdGg. s28d

Finally, the thermodynamic potential can be written as

V = −
T

Nr
ln E DfPgIfPgexpS, s29d

where following Ref. 26 the integration measureIfdPg is
given by

ln IfPg = −
1

sprd2 E o
nm

ab

f1 − QsnmdgPnn
aaPmm

bb , s30d

with r being the thermodynamic density of states andQsxd
the Heaviside step function.

The quadratic inP part of the actions28d together with
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the contributions30d from the integration measure deter-
mines the propagator of theP fields ssee Ref. 21 for detailsd

kPm1m2

ab sqdPm3m4

gd s− qdl =
gdm1m4

dm2m3
daddbgQsm1m3d

1 + gpvm1snm3−m1
,qd

−
2f1 − Qsm1m3dg

sprd2

gdm1m2
dab

1 + gpvm1s0,qd

3
gdm3m4

ddg

1 + gpvm3s0,qd
, s31d

where the bare polarization operatorpvmsnn,qd involves
Green’s functions for thesN−1dth, Nth, andsN+1dth Landau
levels only

pvmsnn,qd = o
p1p2

pp1p2

vm snn,qd = − nL o
p1p2

Gp2
svmd

3 Gp1
svm + nndFp1p2

sqdFp2p1
s− qd. s32d

E. Thermodynamic potential. Second order contribution

In the absence of the time-dependent vector potentiala
effective actions28d should contain onlyDNNsqd;Dsqd or-
der parameter in the limit maxhT,t−1j!Dex!vH. To dem-
onstrate it, we find the second order contribution to the ther-
modynamic potential fora=0.

Performing evaluation similar to one presented in Ref. 16,
we obtain

V = Vs0d + Vs2d + ¯ , s33d

where

Vs0dsmd =E dr tr ln G−1 −
1

2g
E dr tr Psp

2 s34d

is the thermodynamic potential of the isotropic state and

Vs2d =
nLS2

2T
o

p1¯p4

E dq

s2pd2FUp1p2p3p4
sqd

− To
vn

o
p5¯p8

Up1p2p5p6
sqd

Fp5p6
sqd

Up3p4p7p8
s− qd

Fp7p8
s− qd

3 Sdp5p8
dp6p7

−
gpp8p7

vn s0,qd

1 + gpvns0,qd
Dpp5p6

vn s0,qdG
3 Dp1p2

sqdDp3p4
s− qd s35d

is the contribution to the thermodynamic potential quadratic
in the order parameterDp1p2

sqd.
It is worthwhile to mention that polarization operators

pp1p2

vn snn,qd obey the following hierarchy with respect to
small parameter, maxhT,t−1j /vH!1:

pp1p2

vn ,5
Os1d, p1 = p2 = N,

OSmaxhT,t−1j
vH

D , p1 = N or p2 = N,

OSFmaxhT,t−1j
vH

G2D , p1 Þ N andp2 Þ N.6
s36d

According to the hierarchys36d we can write

pp1p2

vn s0,qd < p0
vns0,qddp1Ndp2N, s37d

where we introducep0
vns0,qd;pNN

vn s0,qd. Thus in the lead-
ing order in small parameter maxhT,t−1j /vH!1 we obtain
from Eq. s35d

Vs2d =
nLS2

2T
o

p1¯p4

E dq

s2pd2FUp1p2p3p4
sqd

+ To
vn

nLGN
2svnd

1 + gp0
vns0,qd

Up1p2NNsqdUp3p4NNs− qdG
3 Dp1p2

sqdDp3p4
s− qd. s38d

To find the possible nonzero order parametersDp1p2
sqd,

we should diagonalize the 939 matrix in Eq. s38d. Fortu-
nately, the nontrivial part of Eq.s38d can be written as

dVs2d =
nLS2

2T
E dq

s2pd2T0sqdSDsqd,
T1sqd
T0sqd

wsqdD
3 Sasqd asqd

asqd asqd + 2bsqd
D1 Ds− qd

T1sqd
T0sqd

ws− qd 2 . s39d

Herewsqd involves a linear combination of all order param-
etersDp1p2

sqd exceptDsqd. Characteristic energiesT0sqd and
T1sqd is related with Hartree-Fock potentials21d as follows

T0sqd =
UNNNNsqd

4
, T1sqd = eifUN,N±1,NNsqd

4
, s40d

wheref denotes angle of vectorq with respect to thex axis.
We emphasize that quantityT1sqd depends only on the abso-
lute valueq of vectorq. Matrix elementasqd is given by

asT,t−1,qd = 1 + 4To
vn

nLT0sqdGN
2svnd

1 + gpvns0,qd
, s41d

whereas functionbsqd is defined as

bsqd =
T0sqd
2T1sqd

−
1

2
. s42d

The eigenvalues of the 232 matrix in Eq. s39d can be
easily found

l±sqd = asqd + bsqd ± Îfasqdg2 + fbsqdg2 s43d

As one can check, the eigenvaluel+sqd has the same sign as
bsqd for all values of asqd whereas the eigenvaluel−sqd
changes its sign at pointasqd=0. Therefore, the instability
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appears at the same condition as if we consider only one
CDW order parameterDsqd as it has usually done.4–6,16Ac-
cording to the result derived in Appendix I, characteristic
energyT1sqd is of the order ofT0sqd /N!T0sqd. By using the
conditionbsqd@asqd, we find therefore

Vs2d =
nLS2

2T
E dq

s2pd2T0sqdFasqdS1 −
T1sqd
T0sqd

asqdD
3 D−sqdD−s− qd +

T1sqd
T0sqd

D+sqdD+s− qdG , s44d

where

D−sqd = Dsqd − ST1sqd
T0sqd

D2

asqdwsqd, s45d

D+sqd = wsqd + asqdDsqd.

Minimum of the free energy27 is reached atD+sqd=0. Ne-
glecting the difference of the order ofOsN−2d betweenD−sqd
andDsqd, we obtain finally

Vs2d =
nLS2

2T
E dq

s2pd2T0sqdasqdS1 −
T1sqd
T0sqd

asqdD
3 DsqdDs− qd. s46d

Thus, the fact that the order parametersDp1p2
sqd with p1 and

p2 different fromN can exist leads to correction of the order
of OsN−1d. Hereafter we write therefore that

Dp1p2
sqd = Dsqddp1Ndp2N s47d

and neglect the second term of the order ofOsN−1d in brack-
ets in Eq.s46d.

F. “Three-level” model

The results of the previous section allows us to establish
finally an effective action for the “three-level” model.

According to definitions20d, CDW on theNth Landau
level with the order parameterDsqd results in the induced
potentiallN,N±1sqd, scattering electrons from theNth Landau
level to the sN±1dth Landau level. However, the induced
potential is of the order ofT1sqd and, consequently, leads to
small corrections of the order ofOsN−1d. For the reasons to
be explained shortly, we write

lp1p2
sqd = SUsqdFN

−1sqdDsqddp1Ndp2N. s48d

Finally, the effective action for the “three-level” model
becomes

STLfPg =E dr tr ln G−1 −
NrVD

T
−

1

2g
E dr trsPsp+ Pd2

+E dr tr lnf1 + siP + K̂ + PNlPNdGg, s49d

where

PNsr 1,r 2d = o
k

fNk
* sr 2dfNksr 1d = nL expSi

sy1 − y2dsx1 + x2d
2lH

2 D
3 expS−

ur 1 − r 2u2

4lH
2 DLNS ur 1 − r 2u2

2lH
2 D s50d

is the projection operator on theNth Landau levelfLNsxd
denotes the Laguerre polynomialg and

VD =
nLS2

2
E dq

s2pd2UsqdDsqdDs− qd, s51d

Here, for a brevity we introduceUsqd;UNNNNsqd.

III. CONDUCTIVITY OF THE UCDW STATE AT Tc−T™Tc

A. UCDW state

Effective actions49d allows us to evaluate conductivity of
the system in the CDW state. As the most interesting case we
consider the half-filledNth Landau level where the UCDW
can exist. Let us recall that the UCDW order parameter is
written as24

Dsqd =
s2pd2

S
Dfdsq + Q0d + dsq − Q0dg, s52d

where vectorQ0 that determines period and direction of the
UCDW state can be oriented along spontaneously chosen
direction. Usually, its direction is fixed either by intrinsic
anisotropy of the system or by small magnetic field applied
parallel to 2DEG.28–32 We assume that the vectorQ0 is di-
rected at an anglef with respect to thex axis. The tempera-
ture of the isotropic-to-UCDW transitionTc=maxTsqd
where Tsqd is solution of equationafTsqd ,t−1,qg=0. The
absolute value of vectorQ0 equals the valueq=Q0 at which
the Tsqd reaches its maximum. It was shown in Ref. 16 that
Q0=r0/Rc with r0<2.4 being the first zero of the Bessel
functionJ0sxd and theTc is determined as the solution of the
following equationssee Fig. 1d

Tc

T0
=

2

p2zS2,
1

2
+

1

4pTct
D . s53d

Here zsk,zd denotes the generalized Riemann zeta function
and we have introducedT0=T0sQ0d for the brevity. It has
meaning of the transition temperature in clean caseT0
=Tcst−1=0d. According to Refs. 4 and 6,

T0 =
rsvH

4pÎ2
FlnS1 +

c

rs
D −

c
Î2 + rs

G,
1

N
! rs ! 1,

s54d

where c=1/sÎ2r0d<0.3. It is worthwhile to mention that
T0!Dex!vH and it is determined by the characteristic en-
ergy of the screened electron-electron interactions15d. Near
the transition temperature,Tc−T!Tc, the UCDW order pa-
rameter equals16

D = zS2,
1

2
+

1

4pTct
DÎGS 1

4pTct
DÎTc − T

Tc
. s55d
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Here the functionGszd is determined as

Gszd =

zS2,
1

2
+ zD − zzS3,

1

2
+ zD

− 3zS4,
1

2
+ zD + 4F0szd + 2F2szd

, s56d

where

Fnszd =

zS2,
1

2
+ zD

z2J0
2snr0d

−

Im cF1

2
+ z+ izJ0snr0dG

z3J0
3snr0d

. s57d

The cszd stands for the Euler di-gamma function.

B. Conductivity tensor sab„v…

To determine the conductivity tensorsabsvd;sabsv ,q
=0d we use the Matsubara technique. We compute conduc-
tivity sabsinnd on imaginary discrete frequenciesnn=2pTn
and then perform analytic continuation from upper half plane
snn.0d to real axis, inn→v. The conductivity tensor
sabsinnd can be found after integration overPsr d fields as the
second derivative of logarithm of the effective action with
respect to spatially constant time-dependent vector potential
asnnd,

sabsinnd =
pT

SNrnn

d2

daasnnddabs− nnd

3 Uln E DPIfPgexpSTLfPgU
a=0

. s58d

It is worthwhile to mention that Eq.s58d corresponds to
the termj snndas−nnd with j snnd being current density in the
effective action for the vector potentialasnnd. As one can
check by inspection, contribution to the conductivity tensor
of the first order in the order parameterDsqd vanishes. It
occurs because the UCDW state appears at nonzero vector
Q0. Thus, the first nonvanishing contribution to the conduc-
tivity tensor of the UCDW state is of the second order in the
order parameterD.

In order to find it, we expand the effective actionSTLfPg
to the second order in both the induced potentiallsr d and the
K̂. Then, we integrate overPsr d fields. We do not present the
explicit calculations here since they are similar to ones pre-
sented in Ref. 16. We mention that there are three contribu-
tions of different structure to the conductivity tensor of the
UCDW state. Diagrams for them are shown in Fig. 2.

The first and the second diagramsfFig. 2sadg correspond
to the following contribution:

sab
sadsinnd = −

8pvH

mnn
T0

2D2To
vn

GN
3svnd

1 + gp0
vns0,0d

3 o
p

DNp
a DpN

b Gpsvn + nnd
f1 + gp0

vns0,Q0dg2 . s59d

HereDNp
a denotes matrix element of the covariant derivative

DNp
a =E drfNk

* sr dDafpksr d = ÎnLfdp,N−1b
aÎN

+ dp,N+1g
aÎN + 1g, s60d

where

gx = i, gy = 1, bx = − i, by = 1. s61d

The third diagramfFig. 2sbdg is given by

sab
sbdsinnd =

8pvH

nnm
T0

2D2To
vn

o
pp8

GN
4svn + nnd

f1 + gp0
vns0,Q0dg2

3 DpN
a DNp8

b GpsvndGp8svndFINpp8NsQ0d

+
nLGNsvndGNsvn + nnd

1 + gp0
vnsnn,Q0d

3 INpNNsQ0dINNp8NsQ0dG . s62d

Symbol Ip1p2p3p4
sQd denotes the impurity ladder in the Lan-

dau level index representationssee Fig. 3d

FIG. 2. Diagrams for corrections to the con-
ductivity tensorsab. Solid line denotes Green’s
function, N/p/p8 Landau level indices, dashed
line the induced potentiallsrd, and shaded block
the impurity ladder.
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Ip1p2p3p4
sQd = gE

q

Fp1p2
sqdFp3p4

s− qdexps− iqQlH
2 d .

s63d

Evaluation ofIp1p2p3p4
sQ0d is given in Appendix II. For con-

venience we present the results for quantitiesIp1p2p3p4
sQ0d in

Table I. As one can see, theINNNpNsQ0d, INpNNNsQ0d, and
INpp8NsQ0d are proportional toJ0sr0d=0. Thus, the contribu-
tion s62d vanishes

sab
sbdsinnd = 0. s64d

The last diagramfFig. 2scdg can be written as

sab
scdsinnd =

8pvH

nnm
T0

2D2To
vn

o
pp8

GN
2svndGN

2svn + nnd
f1 + gp0

vns0,Q0dg

3
GpsvndGp8svn + nnd

s1 + gp0
vn+nns0,Q0dd

3
DpN

a Dp8N
b INpNp8sQ0d

1 + gp0
vnsnn,Q0d

. s65d

Although resultss59d ands65d allow us to compute the ac
conductivity tensorsabsvd from now onwards we limit our-
selves to the case of dc conductivity tensorsab;sabsv=0d.

C. DC conductivity tensor sab of the UCDW state

The conductivity tensor of the isotropic state is given as1

ŝs0d =
2N

p
ŝ0 − Niŝy, s66d

where ŝ0 denotes the unit matrix and matricesŝa with a
=x,y,z stand for the Pauli matrices.

Performing evaluation of frequency sums in Eqs.s59d and
s65d, we obtain the following result for the dc conductivity
tensor of the UCDW state:

ŝ = ŝs0d − 4pND2J1
2sr0dhS 1

4pTct
Dcos 2fŝz

− 4pND2hxxS 1

4pTct
Dŝ0− 4pND2F2p

Tc

vH
hxyS 1

4pTct
D

− J1
2sr0dhS 1

4pTct
Dsin 2fGiŝy. s67d

Equation s67d constitutes one of the main results of the
present paper. We remind that the results67d describes the dc
conductivity tensor near the isotropic-to-UCDW transition,
Tc−T!Tc.

In order to simplify the discussion we putf=0, i.e., chose
thex axis along the direction of the UCDW vectorQ0. Then
the term proportional toŝz corresponds to the anisotropic part
of the dc conductivity tensor, the term proportional toŝ0
corresponds to isotropic part and the term proportional toŝy
to Hall conductivity. We mention that anisotropic, isotropic,
and Hall conductivity corrections are of the order ofN as the
conductivity of the isotropic state is itselffsee Eq.s66dg. The
anisotropic, isotropic, and Hall conductivity corrections are
proportional tosTc−Td /Tc!1 and are much smaller there-
fore than the conductivity of isotropic states66d. We mention
that the Hall conductivity correction contains additional
small factor maxhTc,t−1j /vH compared to anisotropic and
isotropic ones. The presence of anisotropic part in the con-
ductivity tensor leads to the result that conductivity along the
electron density modulationssxxd is less than conductivity
across the modulationssyyd.

The dependence of corrections to the conductivity tensor
on the Landau level broadeningt−1 is encoded in functions
hszd, hxyszd, hxyszd as well as inD2 fsee Eq.s55dg. The aniso-
tropic part of the conductivity tensor involves the function
hszd that appears as a result of summation over Landau level
indices withp=p8=N±1 in Eq. s65d and is given by

hszd = 5z3

zS6,
1

2
+ zD

FzS2,
1

2
+ zDG2 =5

4p2

3
z3, z! 1,

1 −
3

z
, z@ 1.6 s68d

Thehszd increases monotonically from 0 to 1, as it is shown
in Fig. 4. The isotropic part of conductivity tensor is de-
scribed by the functionhxxszd that contains Eq.s59d and
terms withp=N±1 and p8=N71 in the sum over Landau
level indices in Eq.s65d,

FIG. 3. Impurity ladder. Frequencyvn+nn runs from right to
left, whereasvn runs from left to right.

TABLE I. Expressions for quantitiesIp1p2p3p4
sQ0d involved in Eqs.s59d, s62d, ands65d.

IN,N−1,N−1,N 5 gnLJ0
2sr0d IN,N+1,N+1,N 5 gnLJ0

2sr0d
IN,N−1,N,N+1 5 gnLJ1

2sr0d IN,N+1,N,N−1 5 gnLJ1
2sr0d

IN,N,N−1,N 5 gnLeifJ0sr0dJ1sr0d IN,N+1,N,N 5 gnLe−ifJ0sr0dJ1sr0d
IN,N−1,N,N 5 −gnLeifJ0sr0dJ1sr0d IN,N,N+1,N 5 −gnLe−ifJ0sr0dJ1sr0d

IN,N−1,N,N−1 5 gnLe2ifJ1
2sr0d IN,N+1,N,N+1 5 gnLe−2ifJ1

2sr0d
IN,N−1,N+1,N 5 gnLe2ifJ1sr0dJ0sr0d IN,N+1,N−1,N 5 gnLe−2ifJ1sr0dJ0sr0d
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hxxszd = J1
2sr0dhszd +

1

2zzS2,
1

2
+ zD

3 31 −

Rec8S1

2
+ s1 − idzD

zS2,
1

2
+ zD 4

=5
2

3
z, z! 1,

J1
2sr0d +

1

4
−

3J1
2sr0d −

1

4

z
,

z@ 1.6 s69d

The functionhxxszd increases monotonically from 0 to 0.52
ssee Fig. 4d. The Hall conductivity correction involves the
function hxyszd given by

hxyszd = FJ1
2sr0dF4z4zS5,

1

2
+ zD + z3zS4,

1

2
+ zDG − 2hxxszd

+ z Im c8S1

2
+ s1 − idzD

− Im cS1

2
+ s1 − idzDG 1

zFzS2,
1

2
+ zDG2

=5 2

p211 −

p2 − 2c9S1

2
D

p2 z2 ,
z! 1,

Sp

4
−

2J1
2sr0d
3

Dz, z@ 1.6 s70d

As one can see from Eq.s68d the absolute value of the
anisotropic part of the conductivity tensor increases mono-
tonically with growing of the Landau level broadeningt−1.
According to Eq.s69d, the isotropic part of the conductivity

tensor decreases as the disorder becomes stronger. The Hall
conductivity increases with growing of the Landau level
broadeningfsee Eq.s70dg. The enhancement of the aniso-
tropic and Hall conductivity by disorder is counterintuitive,
however, it is the effect of the magnetic field.1 Also we no-
tice that in the case of small Landau level broadeningt−1

!Tc, the correction to the isotropic part of the conductivity
tensor is much larger than the anisotropic part. In the oppo-
site limit of large Landau level broadeningt−1@Tc, they are
of the same order.

IV. EFFECT OF THE ORDER PARAMETER
FLUCTUATIONS ON THE CONDUCTIVITY TENSOR

A. Order parameter fluctuations

The order parameterDsr d has meaning of the saddle-point
solution for a plasmon field that appears in the Hubbard-
Stratonovich transformation33 of the screened electron-
electron interaction. The expansion of such physical quanti-
ties as free energy and linear response in the order parameter
series can be justified if fluctuations of the order parameter
can be neglected. As it was shown,16 fluctuations of the order
parameter results in the first order transition from the isotro-
pic state to the UCDW state at temperatureTc−dTc where
dTc/Tc~N−2/3!1. In the present section we investigate the
effect of the fluctuations on the conductivity tensor above
and below the mean-field transition.

In the previous section we assumed that the direction of
the CDW vectorQ0 is fixed by intrinsic anisotropy of crystal
or by applied parallel to 2DEG small magnetic field. How-
ever, the functional dependence of anisotropy term in the
hamiltonian was insignificant for mean-field results obtained
above. Now it should be concretized. Experimental research
of the anisotropy that determines the direction along which
the UCDW creates has been performed in a number of
papers.28–32The results obtained can be explained if one sug-
gests that the Hartree-Fock potentialUsQd involves terms
proportional to cos 2f and cos 4f. We mention that the term
cos 2f can be derived when small magnetic field parallel to
2DEG applied.34 However, without parallel magnetic field

FIG. 4. Functionshszd, hxxszd andhxyszd.
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the term cos 2f is restricted by the symmetry of bulk GaAs
crystal. To date its physical origin is unknown.30 As experi-
mentally proven,32 coefficient of the cos 2f term depends on
the densityn of electrons. Moreover, at some certain valuen*
of the electron density it vanishes and next term proportional
to cos 4f becomes important. Below we restrict our discus-
sion to the general casenÞn* . We note that the typical value
of the anisotropy energyEA is of the order of 1 mK per
electron as it is obtained from experiment.30 In order to take
into account the anisotropy quantitatively we perform the
following substitutionfsee Eq.s40dg

T0sQd → T0sQd + EA
1 − cos 2f

2
s71d

nearQ=Q0. We note that the expression above has minimum
at f=0.

At T.Tc the UCDW order parameter is zero in average
kDl=0 but the average of its square is nonzerokD2lÞ0. It
results in the additional contribution to the conductivity ten-
sor of the isotropic state. It is worthwhile to mention that the
contribution discussed above is analogous to one for normal
metal due to superconducting paring above critical
temperature.18

The additional contribution to the conductivity tensor due
to the order parameter fluctuations can be found with a help
of the substitutionkDsQdDs−Qdl for D2 in Eq. s67d and av-
eraging over all possible vectorsQ. The Green’s function of
the order parameter fluctuations is as followsssee Ref. 16d

kDsQdDs− Qdl =
Tc

4T0sQ0dnL
FT − Tc

Tc
+ gS 1

4pTct
D

3 sQ − Q0d2Rc
2 + h sin2 fG−1

, s72d

where dimensionless parameterh=EA/T0 and we have intro-
duced

gszd = b1 + J1
2sr0dz2

zS4,
1

2
+ zD

zS2,
1

2
+ zD . s73d

Hereb1=] ln T0/]r0<2.58. After integration over the abso-
lute value of vectorQ we find that in Eq.s67d the following
substitution should be used:

fsfdD2 → r0

4pN
zS2,

1

2
+

1

4pTct
DFgS 1

4pTct
DG−1/2

3Î Tc

T − Tc
E

0

2p df

2p

fsfd

Î1 +
hTc

T − Tc
sin2 f

.

s74d

It is worthwhile to mention that in order to obtain the result
for T,Tc from the known result forT.Tc we should sub-
stitute 2sTc−Td /Tc for sT−Tcd /Tc as usual. For convenience,
let us define therefore

t =5
T − Tc

Tc
T . Tc,

2
Tc − T

Tc
T , Tc.6 s75d

B. Fluctuational correction to the mean-field DC
conductivity tensor

Integrating over anglef in Eq. s74d, we obtain the fol-
lowing fluctuational corrections to the mean-field dc conduc-
tivity tensor discussed in the previous section:

dŝsflucd = −
r0

Ît
J1

2sr0dHS 1

4pTct
DFASh

t
Dŝz

−
r0

Ît
HxxS 1

4pTct
DFISh

t
Dŝ0. s76d

−
2pTc

vH

r0

Ît
HxyS 1

4pTct
DFISh

t
Diŝy.

It is worthwhile to emphasize that Eq.s76d constitutes the
principal result of the present paper.

The temperature dependence of the fluctuational correc-
tion s76d is encoded into a functionFAsxd for the anisotropic
part and a functionFIsxd for the isotropic part and the Hall
conductivity. FunctionFAsxd involves complete elliptic func-
tions of the firstsKd and secondsEd kind

FAsxd =
2

p
FS1 +

2

x
DKsiÎxd −

2

x
EsiÎxdG

=5
x

8
, x ! 1,

p

Îx
ln 16e−4x, x @ 1,6 s77d

whereas functionFIsxd is determined as

FIsxd =
2

p
KsiÎxd = 51, x ! 1,

1

pÎx
ln 16x, x @ 1.6 s78d

We emphasize that with respect to the mean-field result
s67d the fluctuational corrections76d is of the order ofN−1.
However, because of the singular behavior atT=Tc it cannot
be neglected.

The dependence of the fluctuational corrections76d on the
Landau level broadeningt−1 is determined by functionHszd
for the anisotropic part,Hxxszd for the isotropic part and
Hxyszd for the Hall conductivity. They are given as

Hszd =

zS2,
1

2
+ zDhszd

Îgszd
=5

2p4

3Îb1

z3, z! 1,

Î3

zÎJ1
2sr0d + 3b1

, z@ 1.6
s79d
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Hxxszd =

zS2,
1

2
+ zDhxxszd

Îgszd
=5

p2

3Îb1

z, z! 1,

Î3h1 + 4J1
2sr0dj

4ÎJ1
2sr0d + 3b1

1

z
, z@ 1,6

s80d

Hxyszd =

zS2,
1

2
+ zDhxyszd

Îgszd

=5 1
Îb1

11 −

p2 − 2c9S1

2
D

p2 z2 ,
z! 1,

3p − 8J1
2sr0d

4Î3ÎJ1
2sr0d + 3b1

, z@ 1.6 s81d

We note that the functionHszd has maximum atz<0.97,
Hxxszd at z<0.34 andHxyszd at z<0.16, as it is shown in Fig.
5. In the case of small Landau level broadening,t−1!Tc, the
correction to the isotropic part of the conductivity tensor is
much larger than the anisotropic part as one can see from
Fig. 5. In the opposite limit of large Landau level broaden-
ing, t−1@Tc, they are of the same order. The fluctuational
correction to the Hall conductivity contains additional small
factor Tc/vH!1.

Equations76d has singularity atT→Tc that indicates non-
applicability of it nearTc. The fluctuational correction should
be small as compared to the mean-field conductivity of the
isotropic states66d. Hence we obtain the range of applicabil-
ity of Eq. s76d as

1 @
uTc − Tu

Tc
@ N−2. s82d

V. DISCUSSION

In the previous sections we have derived a number of
results for the conductivity tensor of two-dimensional inter-

acting electrons on a half-filledNth Landau level withN
@1. Our results are applicable for samples of small sizeL
!j only wherej stands for the minimal lengthscale among
the translational order breaking length and Larkin length
such that the fluctuations do not destroy the mean-field
UCDW state on these lengthscales. We have demonstrated
that below temperatureTc of isotropic-to-UCDW transition
the anisotropic part of the conductivity tensor emerges in the
mean-field approximation. AtsTc−Td /Tc!1 the anisotropic
part is proportional to deviation of temperature fromTc. As it
is shown in Fig. 6, it results in a cusp of temperature depen-
dence of the conductivity atT=Tc. According to resultss76d,
fluctuations of the UCDW order parameter above and below
transition temperatureTc smooth out the cuspssee Fig. 6d.

The theory developed above involves several important
assumptions such that the electron-electron interaction is
weak s1d, an applied magnetic field is weaks4d and random
potential is white-noise potential that produces small Landau
level broadening compared toDex fsee Eq.s3dg. All the as-
sumptions are failed for the experimental samples. In Refs. 2
and 3 the electron-electron interaction was relatively strong,
rs,1, the applied magnetic field was moderate withN
=2,3,4 and therandom potential had correlation lengthd
, lH. Therefore, the comparison of our theory with experi-
ments can bequalitativeonly.

The resultss67d and s76d for the anisotropic part of the
conductivity tensor are in qualitative agreement with experi-
mental ones.2,3,15 If a current runs in the direction of UCDW
modulation, the conductivitysresistanced is lesssmored than
the conductivitysresistanced for the case of current running
in the direction perpendicular to charge density modulation.
Correction to the Hall conductivity is virtually nonexistentsit
contains small parameter maxhTc,t−1j /vH!1d that is consis-
tent with experimental data.2,3,15 The temperature depen-
dence of the conductivity tensor derived in the present paper
describes the regionuT−Tcu!Tc. It agrees qualitatively with
experimental dependence near the temperature where strong
deviation betweenRxx and Ryy appears. In our theory this
temperature should be of the order ofTc. Estimation ofTc
from Eqs.s53d and s54d are in reasonable agreement16 with
experimental result.

FIG. 5. FunctionsHszd, Hxxszd, andHxyszd.
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The UCDW state exists also near half-filled high Landau
level.6,16 If chemical potentialmNÞ0, the functionshab and
Hab are dependent not only on parameter 1/4pTct but on
ratio mN/Tc too. Increasing the chemical potentialmN we
transform the UCDW state to the triangular CDW state char-
acterized by vectorsQ1, Q2, and Q3 directed at anglesf,
f+2p /3, andf+4p /3 with respect to thex axis, respec-
tively. However, due to the identity

1 + e2pi/3 + e−2pi/3 = 0 s83d

the contribution from three vectorsQi to the anisotropic part
of the conductivity tensor vanishes. Thus, the conductivity
tensor of the triangular CDW state does not contain the an-
isotropic part in the approximation which is of the second
order in the CDW order parameter. For reasons to be ex-
plained shortly, the conductivity tensor of the triangular
CDW state should not have anisotropic component in gen-
eral.

It is worthwhile to mention that from the physical point of
view the anisotropic part of the mean-field conductivity ten-
sor appears due to the existence of the UCDW induced an-
isotropic potentiallsr d in actions49d. Anisotropic resistance
of two-dimensional electrons in a weak magnetic field in the
presence of unidirectional periodic potential has been mea-
sured at several kelvins in heterostructures with mobility
m0,106 cm2/V s by Weiss, von Klitzing, Ploog, and We-
imann fifteen years ago.35 Theoretically, the effect of unidi-
rectional periodic potential on the conductivity tensor has
been investigated with the help of both the kinetic
equation36,37 and the diagrammatic technique.38–40 However,
the case of separate Landau levels considered in the present
paper has not been analyzed. The important difference of the
induced potentiallsr d from external periodic potential is that

the lsr d exists on theNth Landau level only whereas exter-
nal potential scatters electrons on all Landau levels.

VI. CONCLUSION

We obtained the conductivity tensor of two-dimensional
electrons in the presence of weak disorder and weak mag-
netic field at half-filled high Landau level where the UCDW
state exists. In the framework of the order parameter expan-
sion we derived that atTc−T!Tc anisotropic part of the
conductivity tensor proportional tosTc−Td /Tc emerges. Also
we demonstrated that the order parameter fluctuations result
in additional anisotropic contribution nearTc to the conduc-
tivity tensor that wash out the mean-field cusp atT=Tc. The
results obtained are in qualitative agreement with the experi-
mental findings.

In spite of remarkable qualitative agreement of our theory
with experimental results2,3,15 there is the principal question
of whether the enhancement of anisotropic part of the resis-
tance around half-filled Landau levels should be interpreted
in terms of the isotropic-to-UCDW transition or a Kosterlitz-
Thouless-like isotropic-to-nematic transition rounded by
crystal field.9,10 Since the results for the lengthscalej at
which the fluctuations destroy the UCDW order obtained in
simple weak crystallization treatment16 as well as in more
elaborate treatments12,14 suggest the power law dependence
of j on N we conclude that the scenario with isotropic-to-
nematic transition9,10 for moderate values ofN is more prob-
able. On the one hand, the microscopic theory that involves
real electron-electron interaction and long-ranged random
potential is needed in order to determine the elastic param-
eters for nematic and stripe phases as well as transport coef-
ficients. On the other hand, the real-space imaging41 of the
UCDW order sstripesd or polarized light scattering experi-

FIG. 6. The dependence of anisotropic part of
conductivity ssyy−sxxd /2sxx

s0d on temperature for
1/4pTct=0.24 andh=0.01. Dashed line corre-
sponds to mean-field results67d.
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ments to detect orientational order in nematic phase would
give the most definitive answer.
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APPENDIX A: CALCULATION OF CHARACTERISTIC
ENERGY T1

According to Eqs.s21d and s40d the T1sqd is given by

T1sqd = − nLeifFUscrsqdJ0sqRcdJ1sqRcde−if

− Î2NE dp

s2pd2nL
e−iqplH

2
Uscrspd

px − ipy

p2lH

3 LNNSp2lH
2

2
DLN,N−1Sp2lH

2

2
De−p2lH

2 /2G , sA1d

where we use the following result:1

FN,N−1sqd = Î2N
qx − iqy

q2lH
e−q2lH

2 /4LN,N−1Sq2lH
2

2
D

< e−ifJ1sqRcd, qRc ! 2N. sA2d

The characteristic energyT1=T1sQ0d is given by

T1 =
rsvH

4Î2
E

0

4N dx

ẽsxd

J1s4NxdJ0s4Nxd
Î1 − x2

J1s2r0xd, sA3d

where

ẽsxd = 1 +
rs

xÎ2
f1 −J0

2s4Nxdg. sA4d

Performing calculation of the integral, we find

T1 =
rsvH

16pNÎ2
F r0

2
lnS1 +

1
Î2r0rs

D +
c1

1 +Î2r0rs
G ,

sA5d

where constantc1 equals

c1 =Îr0

p
E

1/2r0

1 dx

xÎxs1 − x2d
sinS2r0x −

p

4
D < 1.097.

sA6d

As we can see from Eq.sA5d the characteristic energyT1
,T0/N as we mentioned above.

APPENDIX B: CALCULATION OF THE I p1p2p3p4
„Q0…

Using definitions63d and Eq.sA2d, we obtain in the limit
N@1

IN,N−1,N−1,N = IN,N+1,N+1,N = gnLNE
0

` dx

x
e−x

3 fLN
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Î2xd, sB1d

IN,N−1,N,N+1 = IN,N+1,N,N−1 = gnLNE
0

` dx

x
e−x

3 LN
−1sxdLN+1

−1 sxdJ0sr0
Î2xd,

IN,N,N,N−1 = − IN,N,N,N+1 = gnLeifÎNE
0

` dx
Îx

e−x

3 LN
−1sxdLNsxdJ1sr0

Î2xd,

IN,N+1,N,N = − IN,N+1,N,N = gnLe−ifÎNE
0

` dx
Îx

3 e−xLN+1
−1 sxdLNsxdJ1sr0

Î2xd,

IN,N−1,N,N−1 = IN,N+1,N,N+1
* = gnLe2ifNE

0

` dx

x
e−x

3 fLN
−1sxdg2J2sr0

Î2xd,

IN,N−1,N+1,N = IN,N+1,N−1,N
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With a help of asymptotic expression for Laguerre
polynomial42
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we find
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IN,N−1,N+1,N = IN,N+1,N−1,N
* = gnLe2if 2

p
E

0

1

dxs1 − 2x2d
J2s2r0xd
Î1 − x2

.

The integrals can be evaluated by using the following
equality:42
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p
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0

p/2
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sB4d

Finally, it yields the results presented in Table I.
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