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Anisotropic conductivity tensor on a half-filled high Landau level
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We study two-dimensional interacting electrons in a weak perpendicular magnetic field with the filling factor
v>1 and in the presence of a quenched disorder. As it is known, the unidirectional charge density wave state
can exist near a half-filled high Landau level at low temperatures if disorder is weak enough. We show that the
existence of the unidirectional charge density wave state at tempefbtuiie where T is the transition
temperature leads to the anisotropic conductivity tensor. We find that the anisotropic part of conductivity tensor
is proportional to(T,—T)/T. below the transition. The order parameter fluctuations wash out the mean-field
cusp afT=T. and the conductivity tensor becomes anisotropic even above the mean-field transition temperature
Te.
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I. INTRODUCTION wy is cyclotron frequencyy =eH/mwith e andm being the
electron charge and band mass, respecti(xg/use the units

A two-dimensional electron gg2DEG) in a perpendicu-  with 2=1, c=1, andkg=1). In the framework of Hartree-
lar magnetic field(H) has remained a subject of intensive Fock analysis one can show that there is mean-field
studies, both theoretical and experimental, for severaisotropic-to-UCDW transition at some temperatufk,
decades. Recently the phenomenon of sharp anisotropy of=T.(1/7) on a half-filled high Landau levéf The disorder
magnetoresistance near half-filled Landau levels with Landecreases the transition temperature such that there is the
dau level indexN=2,3,4 at lowtemperatures has been critical value of the Landau level broadening7l+8T,/
discovered:® Right away the magnetoresistance anisotropywhere To=T,(1/7=0) at which the UCDW state disappears
has been related with the possible existence of unidirectiongkee Fig. L Surprisingly, the disorder does not affect the
charge density waveJCDW) state near half-filling of a high period of the UCDW state that remains of the order of cy-
Landau level theoretically predictéd in the absence of dis- clotron radiusR.= 2N+ 1l,, wherel,=1/Vmwy denotes the
order by the mean-field treatment in the linfN&>1. How-  magnetic field length=® It has been showfithat the correc-
ever it is well-known that the UCDW statemectig is de-  tion due to Gaussian fluctuations of the UCDW order param-
stroyed by thermal fluctuations in two dimensions in theeter(weak crystallizationto the mean-field value 6F, is of
absence of crystal field anisotropyt zero temperature the the order of T« T,N"?2<T,. In accordance with general
UCDW state can exist only on high Landau levels>1,  expectations about the effect of disorder on ordering in two
whereas at moderate values Nfa nematic phase should dimensions, these fluctuations destroy the UCDW state on
appeaf At nonzero temperaturedl) the nematic phase is the lengthscalet=R.g(1/47T7NY3 where g(x) monotoni-
stable against fluctuations and the isotropic-to-nematic trarcally increases from the value 0.55xat0 to infinity whenx
sition may lead to anisotropic magnetoresistahtais sce-  tends to infinity!” Thus, the effect of Gaussian fluctuations
nario is supported by experimental measuremémis mag-
netoresistance dependence on in-plane magnetic fields near T
half-filled Landau levels with Landau level indé&k=2,3,4. T,

However, in spite of enormous effots,a microscopical
theory for the temperature dependence of magnetoresistance
on Landau levels with moderat¢ is absent so far.

In practice the UCDW state can exist on lengthsmaller
than lengthscaleg, and & at which translational order is
destroyed in directions perpendicular and parallel to a stripe,
respectively. The microscopic analysis of smectic $tate
yields thaté, | increases as a power law with growing Mof
and the temperature. In the presence of disorder the UCDW
state is destroyed on a scale of the order of the Larkin
lengtht® that grows withN as a power law alst One can
therefore expect to find the UCDW state on high Landau
levels (with N>1) in samples of small size.

If a random potential created by impurities near 2DEG is
weakthen the Landau level broadeningzlis much less than FIG. 1. Mean-field phase diagram for electrons on half-filled
the spacingw, between Landau levels, 1 wy. Here the  high Landau levelsN> 1.
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of the UCDW order parameter is qualitatively the same as irand a perpendicular magnetic figtl The conventional pa-

more elaborate treatmeris!* The fluctuations about the rameter that characterizes the strength of the Coulomb inter-

mean-field UCDW state are negligible on high Landau lev-action isr = 2€?/ R wy with the & being the dielectric con-

els,N>1, for samples of sizé <¢. stant of a media. We assume that the Coulomb interaction
The main objective of the paper is to present the analysigetween the electrons is weak

of temperature dependence of the conductivity tensor on a

half-filled high Landau level near the isotropic-to-UCDW re<1, 1)

tran5|t|on(|TC—T|§TC) where the expansion in the UCDW and the magnetic field obeys the condition

order parameter is legitimate. The effect of the order param-

eter fluctuations that are enhanced near the phase transition N>, 2)
on the conductivity tensor both below and above the transi-
tion temperaturd, will be investigated also. where the Landau level inded=[»/2] is the integer part of

One of the main results of the paper is the fact that thehalf of filling factor v. In addition, we assume that the Lan-
conductivity tensokr,, (Wwe measure conductivity in units of dau level broadening %/ is not too smalt’ 1/7
€?/h) of two-dimensional electrons on a high Landau level ins> ;N1 In y2rN. In this case it is possible to construct an
the UCDW state acquires an anisotropic part proportional teffective field theory for electrons on the highest partially
temperature deviation froff.. Such temperature dependencefilled Landau level by integrating out all other degrees of
can be understood in the following way. Since the UCDWfreedom?0.21
state appears at nonzero wave vector the first nonvanishing Ajso we consider the case when the Landau levels are
contribution to the Conductivity tensor due to the UCDW Spin resolved that occurs according to Ref. 20 ifT%/Aex
induced potential is of the second order in the UCDW order= (1 ,,/ y2)In 212/r, Therefore, the Landau level broad-
parameter. It is proportional tQ(T.~T)/T; in the Landau  ening should be restricted from below and from above as
theory. Hence the conductivity tensor in the UCDW state _
should acquire corrections, isotropic as well as anisotropic, L T 1 rawy, 2V2
proportional to(T,—T)/T,. Other principal results of the N In v2rN < ;< 2 In r
present paper is that in the vicinity of the isotropic-to-

UCDW transition in the presence of an anisotropy with typi-  Throughout the paper we characterize the UCDW state by
cal energyE, there are additional anisotropic contributions the order parameteA(Q). All calculations are performed

to the conductivity tensor proportional tdEx/T.)(|T,  under the assumption
-T|/T,) "% that we shall refer to as fluctuational. In general, )
in the presence of crystal field anisotroy the conductivity N>rg” (4)
tensor has an anisotropic part at all temperatures. Compargd this case the Hartree-Fock approximation is
to this background anisotropy of the conductivity tensor thewell-justified® As it was shown the corrections to the
anisotropic correction due to fluctuations becomes anoma-artree-Fock approximation are controlled by the small pa-
lously enhanced in the vicinity of.. We mention that it is rameteraB/IHzllNr§< 1, whereag=¢/mé stands for the
analogous to fluctuational contribution to the conductivity of Bohr radius.

a normal metal due to superconducting paring above the Thermodynamic potential of the system in hand can be
critical temperaturé?® written as

We start out with an introduction to the formalism that
mainly follows one introduced in the previous papein T — —
order to consider the transport properties of electrons on the Q== N, JDMI’ v J DIVeisPLVaislexpSL, V],
Nth high Landau level we integrate electron degrees of free- 5)
dom on all Landau levels except tli—1)th, Nth, and(N
+1)th levels(Sec. I). Next we prove that scattering electrons \yhere actionS[y, i, Vg, is written in Matsubara represen-
from theNth Landau level to th€N+1)th Landau levels by  iation
the UCDW inlduced potential results in corrections of the
order of O(N™) and, consequently, can be neglect&ec. —_— -

Il F). The conductivity tensor in the UCDW state is evalu- S:Jdr > Yar, (MRlT0n + = Vaisr)16m — H}

3

ated in Sec. Ill. Effect of the UCDW order parameter fluc- Genem
tuations on the conductivity tensor is investigated in Sec. IV. oo T R IR
In Sec. V the results obtained are discussed in relation with X ‘ﬂwm(r) B 2, % ) drdr Yo, (r)¢wn—v|(r)
recent experiments® We end the paper with Sec. VI. i
Some of the results of the present paper have been pub- X Ug(r —r')lr/,gv”'(r)l/,gﬁ;vl(r’)_ (6)
m m

lished in a brief form in Ref. 19. o
Here,lpg'n"(r) and apf;n"(r) are annihilation and creation elec-
tron operatorsT stands for temperaturg, chemical poten-
A. Introduction tial, o and ¢’ spin indices, andw,=#T(2n+1) fermionic
To start out consider the system of two-dimensional interfrequency whereas,=27Tn bosonic one. MatriXH is de-
acting electrons in the presence of a random poteXtiglr) fined as

II. FORMALISM
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H=2 Hw)IE, 7

avp

with matrices
(I = 8F8* 8y (8)

beingU(1) generators. One-particle hamiltonighdescribes

PHYSICAL REVIEW B 71, 035331(2005

tors of an electron on theN—1)th, Nth, and(N+1)th Landau
levels

N+l L NeL
el = 3 ugnn, wTn= 3 ygin. (14
p=N-1 p=N-1

a two-dimensional electron in constant perpendicular magrhe screened electron-electron interactibn(r) has the fol-
netic field H=¢,,d,A, and in time-dependent magnetic field lowing Fourier transform:

with vector-potentiak,

Ry
H-Zm( i V-eA-ea). (9

As usual, we assume the white-noise distribution for the

random potential

1 1
PlVais(r)]= oo ex;n(— 2 J drvﬁis(r)). (10)

In order to average over disorder we introdidereplicated
copies of the systefd labeled by the replica indices
=1,... N.

It is convenient to rewrite one-particle Hamiltoni&®)
with the help of covariant derivative

D=V-ieA, (11)

in order to extract the time-dependent vector potertia},)

1
H:—%Dh K(vy), (12)

e
K(vy) = - s]a(vn)D + E]E a(vh-ma(vy).

B. Effective action of “three-level” model

u ,()——Zwez{ui(l— K )
scl®@ = eq gag 6oyt

-1
X[l-Jg(ch)-ij(ch)]} . (15

It is different from one obtained in Refs. 21 and 23.
The reason for that is exclusion of contributions from the
(N-1)th and (N+1)th Landau level from the polarization
operator.

Effective action(13) was obtained under assumptions
(1)—(3) discussed above. Hereafter, for reasons to be ex-
plained shortly we neglect small correctiaii (6wy7) <1 in
the screened electron-electron interactithf).

C. Hartree-Fock decoupling

Effective action(13) involves electron states with spin-up
and spin-down projections. Electron-electron interaction can
flip electron spin. Therefore, a charge density wé@®W)
state is characterized by an order paramA@igZZ(Q) that is
matrix in the space of Landau level and spin indices. How-
ever, as it will be clear from discussion below, if the Landau
levels are spin resolved, i.eA.>maxT,7 Y}, the charge
density wave state creates only on fiith Landau level with
certain spin projection. Then Landau levels with different

To investigate the thermodynamic properties of electronspin projection become completely separated and can be ig-

on theNth Landau level one can integrate out electrons on alhored. Thus, we can consider the charge density wave order

other Landau level® However, to find conductivity tensor parameter to be matrix only in the space of Landau level

projection on the singlé&ith Landau level is not appropriate indices. It is related with distortion of electron density on the

because of covariant derivatii@ has nonzero matrix ele- (N-1)th, Nth, and(N+1)th Landau levels as

ments only for transitions between adjacent Landau levels. It

is necessary therefore to consider not only ith Landau N+l

level alone but two adjacent ones, tliR—1)th and (N _

+1)th Landau levels. plan= Serl‘pZE:N_l Ao, (@Fpp,(@):
Extending the projection to thidth Landau level only of

Refs. 20 and 21, we obtain effective action for electrons on e :
the (N-1)th, Nth. and(N+1)th Landau level as follows: whereS stands for the area of two-dimensional electron gas

and form-facton:plpz(q) is defined as

(16)

s=[ o S VEOTon* Vs om- ) i
,wnom Fop,(0) = nilzk: ¢;1k(0)¢p2k(qlﬁ|)exp<quqylﬁ>. (17)
xun -7 3 [araros,o
“mem Here n_=1/2m1% and ¢,(r) are the eigenfunctions of the
X Ugefr —r’)gz/g"”(r) Z’”J,’V(r’)- free electron Hamiltonian witk being pseudomomentum.
o me After Hartree-Fock decoupling of interaction term in ef-
Here ng*n"(r) and %’n"(r) are annihilation and creation opera- fective action(13) (see Ref. 24 we obtain

(13
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N, whereV is arbitrary global unitary rotation arfe{}, obeys the
S§=-—-* fdf DI equation ’

P1,P2 a,0p,om
N+1

Kl = Vel ) B = L X 1)W1, (1), =igGn(r,r), GUn(r,r’)= X Gu(r,r'). (25
1, : on(r,r).

(18) P p=N-1
where Here Green’s functiorG‘F‘,’"(r ,r'") is as follows:
-0 P> | @ 8 @ 0 GUrr) =S GG b, (26)
(2r)c F1F2ETe 174 "2 k
(19)

_r _ son -1
Potential\, () in Eq. (18) appears as a consequence of Gplen) =Lion+un+ ey = e+ 1Pl

distortion of unlform electron density by the charge density

wave and is related with the order parameter as where chemical potentiaty is measured from thislith Lan-

dau level. Thes,=wy(p+1/2) are the eigenvalues of the free
Q) electron Hamiltonian. In the case of weak disordgrr=1,
Upgppip i i
Npp, (@) = gy —Pehahb2 T\ App (@) (20) the solution of Eq(25) yields
12 F ( ) 3F4
P3P pP1P2
) n_SiOnw, 1 —

l"’h?reluplpzpsm(m denotes the generalized Hartree-Fock po- Psp= oy ' .- VO (27)
entia

The fluctuations of th&/ field are responsible for the lo-
calization corrections to the conductivifyn the weak local-
ization regime they correspond to the maximally crossed dia-
grams. However, in the considered case, these corrections

igpi2 are of the order of IIN/N<1 and, therefore, can be ne-
X e PHUgcdp)Fpp,(P)Fpyp,(—P) |- (21)  glected. For this reason we simply pét1.
The presence of the induced potentigi) and the time-
The Hartree-Fock approximation that we use is justified undependent vector potentialresults in a shift of the saddle-
der condition(4) as we have mentioned above. point value(27) due to the coupling to the fluctuations of the
P field. The corresponding effective action for tiefield
follows from Eq.(19) after integrating out fermions

- p
Up1p2p3p4(Q) =-n Uscr(q)Fplpz(Q)Fpap4(_ CI) - f (277)2n|_

D. Average over disorder

After standard average over the random potentjgadr) B )
(see Ref. 25 effective action(18) becomes J drtrinG™ - J dr tr(Psp+ P)
S:_Nr?QA+fdrw(r)(im#_g),;\“Q)w) +fdr trin[1+(iP + K + X)G]. (28)
- zi f dr tr QA(r), (22) Finally, the thermodynamic potential can be written as
g
where we introduce new fiel@(r), that is unitary matrix in QO=- I In JD[F):“[P]eXpS, (29)
Matsubara and replica spaces. For convenience we use the r

following notation:
where following Ref. 26 the integration measuf&P] is

lﬂTXw: > > Wm(r)hplpz(r)ngzwn(r), (23) given by

P1P2 @,wn
. . aB
Let us recall that actio22) at zero temperature, i.e., for _ O
w,—0, and in the absence of the induced potentia) and In1[P]= (mp)? 2 [1=60m]PyPrim (30
the time-dependent vector-potential has the following

saddle-point solution: with p being the thermodynamic density of states &)

the Heaviside step function.
Qsp=V PV,  (Pspia=Pldmd™, (24 The quadratic inP part of the action28) together with
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the contribution(30) from the integration measure deter-
mines the propagator of the fields (see Ref. 21 for details

00im,m, Oy, 02 5°70 (g mg)
1+g7 (v m,, Q)

(Pl (P, (- ) =

_ 2[1 - @(m1m3)] g&mlnga
(mp)*>  1+gm“m(0,q)

y 9m,m,
1+g7m(0,q)’

(31)

where the bare polarization operatat“m(v,,q) involves
Green’s functions for théN-1)th, Nth, and(N+ 1)th Landau
levels only

n. 2 sz(wm)

P1P2

me(yan) = E Wg){?jz(vnuq) ==
P1P2

X Gpl(wm + Vn)Fplpz(q)szpl(_ Q) (32

E. Thermodynamic potential. Second order contribution

In the absence of the time-dependent vector poteatial
effective action(28) should contain onlyAyn(q) =A(q) or-
der parameter in the limit mdX, 7 1} <Ay < wy. To dem-

onstrate it, we find the second order contribution to the ther-

modynamic potential foa=0.

Performing evaluation similar to one presented in Ref. 16,

we obtain

0=004+0 4 e (33

is the thermodynamic potential of the isotropic state and

n,_S
0@ = pEp J 2 )2|: P1p2p3p4(Q)
1P
- TE E Uplpzpspe(q) Upgp4p7p8(_ a)
@n Ps P Fpspe(q) Fp7p8(_ q)

0,9) )
pgp7

X Aplpz(q)Ap3p4(_ Q)

5P5p8 6P6p7

(39)
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p

o), pP1=p2=N

T,71
wp { O(ma){ J }>1 pl:NorPZZN
Wplpz - WH )
T -1
O([M] > p; # N andp, # N.
\ @

(36)

According to the hierarchy36) we can write
plpZ(O q) 7TO (0 q) 2N1 (37)

where we introducery"(0,q) = w‘,(,'?\,(o,q). Thus in the lead-
ing order in small parameter m@x 7 1}/ wy <1 we obtain
from Eq. (35

0= nLS
2 p1§:p4 f (2 )2|: plp2p394(q)
r‘LG (owp)
#On(onq) 0NN Upp (= q)}

X Aplpz(q)Ap3p4(_ Q) (38)

To find the possible nonzero order paramemgsp (),
we should diagonalize the>9 matrix in Eq.(38). Fortu-
nately, the nontrivial part of Eq38) can be written as

& T.(9)
=" [ el sa. 5w
(2n )| A(a) Ty e(q)
A(-q)
a(q) a(q) )
><<a(q) a(q) +2b(q) l(q)cp( Q| 39
To(a)

Here ¢(q) involves a linear combination of all order param-
etersAplpz(q) exceptA(q). Characteristic energieg(q) and
T,(q) is related with Hartree-Fock potentig?l) as follows

Unnnn(@)
4 1

S Un e

To(a) = Ty = el g
where ¢ denotes angle of vectay with respect to the axis.
We emphasize that quantify;(q) depends only on the abso-

lute valueq of vectorqg. Matrix elementa(q) is given by

N, To(0) GR(wp)

-1 —
aT,7hg=1+ ﬂ% L+ gr(0g) (41)
whereas functio(q) is defined as
Tol@ 1
b(q)=—7"—7"-—. 42
(@) 2T 2 (42)

The eigenvalues of the22 matrix in Eg.(39) can be
easily found

n he order paramEthgg @ \(@ =a(@) +bio) £ @@ P+ b@P (43

It is worthwhile to mention that polarization operators As one can check, the eigenvalng(q) has the same sign as
o, (Vn,0) obey the following hierarchy with respect to b(q) for all values ofa(q) whereas the eigenvalue_(q)

smaII parameter, mgxX, 7 1}/ wy <1: changes its sign at poirgt(q)=0. Therefore, the instability
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appears at the same condition as if we consider only one

CDW order parameteh(q) as it has usually dorfe8-16Ac-

cording to the result derived in Appendix |, characteristic

energyT,(q) is of the order ofTy(q)/N<<Ty(q). By using the
conditionb(qg) >a(q), we find therefore

o NS [ dg [ ( _Tu(@) )
Q =7 _(277)2T°(q) a(g)| 1 —To(q)a(q)
L) B }
X A_(q)A( q)+TO(q)A+(q)A+( aQ|, (449
where
_ _ T1(q) 2
A_(q) =A(q) (To(q)) a(@e(q), (45)

A(g) = ¢(q) +a(@A(q).

Minimum of the free energy is reached at\,(g)=0. Ne-
glecting the difference of the order 6f(N~?) betweenA_(q)
and A(q), we obtain finally

(2 = Ez f dq < _ T1(Q) )
Q o7 | 2n sTo(aa(g)| 1 @ a(q)
X A(A(-q). (46)

Thus, the fact that the order parametags,, (q) with p; and
p, different fromN can exist leads to correction of the order
of O(N™). Hereafter we write therefore that

Aplpz(q) = A(Q) 5plN5p2N

and neglect the second term of the ordetxN™?) in brack-
ets in Eq.(46).

(47)

F. “Three-level” model

PHYSICAL REVIEW B71, 035331(2005

|

(50)

(1= Y2 (Xs +Xp)

. [y
ro) =2 b2 dniry) =nL eXp(' : o2
K H
|r1—r2|2 |r1—r2|2

xexp(' a7 )LN< 217 )

is the projection operator on thidth Landau level[Ly(x)
denotes the Laguerre polynonjiand
d
L U@A@A-1),
)

_ns
=" f(z

Here, for a brevity we introduct(q) =Upnynn0)-

PN(r 1s

(51)

Ill. CONDUCTIVITY OF THE UCDW STATE AT T.-T<T,
A. UCDW state

Effective action(49) allows us to evaluate conductivity of
the system in the CDW state. As the most interesting case we
consider the half-filled\Nth Landau level where the UCDW
can exist. Let us recall that the UCDW order parameter is
written ag*

(2m)?
S

where vectolQ, that determines period and direction of the
UCDW state can be oriented along spontaneously chosen
direction. Usually, its direction is fixed either by intrinsic
anisotropy of the system or by small magnetic field applied
parallel to 2DEG2-32\We assume that the vect@y is di-
rected at an angle with respect to thex axis. The tempera-
ture of the isotropic-to-UCDW transitionT,=maxT(q)
where T(q) is solution of equatiora[T(q),7*,q]=0. The
absolute value of vectdd, equals the valug=Q, at which

the T(qg) reaches its maximum. It was shown in Ref. 16 that
Qo=ro/R. with rq=2.4 being the first zero of the Bessel
function J,(x) and theT, is determined as the solution of the

A(g) = A[8(q + Qo) + 8(q — Qo) ], (52

The results of the previous section allows us to establishy|iowing equation(see Fig. 1

finally an effective action for the “three-level” model.

According to definition(20), CDW on theNth Landau
level with the order parametek(q) results in the induced
potential\y n+1(q), Scattering electrons from thdth Landau
level to the(N+1)th Landau level. However, the induced
potential is of the order of;(q) and, consequently, leads to
small corrections of the order @®(N™1). For the reasons to
be explained shortly, we write

Np,p,(@) = SUQFHA(G) 8y,nSp,n

Finally, the effective action for the “three-level” model
becomes

(48)

N, Q4
T

1
f dr tr(Pg,+ P)?

Pl=| drtrinG*-
ST,_[]frrn 29

+f dr trIn[1 +(iP + K + Py\Py)G], (49)

where

T
To

T 2 4T/
Here ¢(k,z) denotes the generalized Riemann zeta function
and we have introduced,=Ty(Qp) for the brevity. It has

meaning of the transition temperature in clean cdge
=T.(71=0). According to Refs. 4 and 6,

)

c
1+—

where c=1/(v’§r0)%0.3. It is worthwhile to mention that

To<Ag<wy and it is determined by the characteristic en-

ergy of the screened electron-electron interactith). Near

the transition temperaturd,-T<T,, the UCDW order pa-

rameter equal§
1 ) \/TC—T
ArT.r T,

(53

C
’/_
V2 +r1g

rst
—=

4m\2

1
T0: y _<rs<1,

1 1

2 4chr> \/g<

A:§<2 — (55)
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FIG. 2. Diagrams for corrections to the con-
ductivity tensoro,p,. Solid line denotes Green'’s
function, N/p/p’ Landau level indices, dashed
line the induced potential(r), and shaded block
the impurity ladder.

Here the functiorj(z) is determined as In order to find it, we expand the effective actién [P]
1 1 to the second order in both the induced poterXia) and the
g(z,— + z) - zg<3,§ + z) K. Then, we integrate ove®(r) fields. We do not present the

, (56) explicit calculations here since they are similar to ones pre-
sented in Ref. 16. We mention that there are three contribu-
tions of different structure to the conductivity tensor of the
UCDW state. Diagrams for them are shown in Fig. 2.

where The first and the second diagraiifdg. 2(a)] correspond

to the following contribution:

G(2)=
- 3((4,5 + z) +4Dy(2) + 2P,(2)

dy(2) =

1 1
§<2,—+z> Im ¢[—+z+izjo(nro)]

22 - 2 . (57) O'(a)(l v ) - — 87TwH TZAZTE Gﬁ(wn)
ZJ5(nro) Z J5(nro) abl! M, O < T+gm(0.0
The (2) stands for the Euler di-gamma function. .S DﬁngNGp(wn . Vn).
p [1+ gﬂgn(O:Qo)]z

Here D{,, denotes matrix element of the covariant derivative

(59
B. Conductivity tensor o,p(w)

To determine the conductivity tenser,,(w)=o,(®,q

=0) we use the Matsubara technique. We compute conduc- A . — N~
tivity o(iv,) on imaginary discrete frequencieg=2#Tn Np:f dr dn(1)Dacppi(r) = V[ Gpn-18°VN
and then perform analytic continuation from upper half plane ’
(v,>0) to real axis, iv,—w. The conductivity tensor + 1YV YN+ 1, (60)
oap(iv,) can be found after integration ovE(r) fields as the where
second derivative of logarithm of the effective action with
respect to spatially constant time-dependent vector potential Y=i, =1, g=-i, p=1. (61)
a(vy),
" The third diagraniFig. 2(b)] is given by
(iv) il & .
q, Vp) =
ab\I P SN, da,(v,) Sap(— vy) U;%)(i V)= MTSAZTE > Gr(wn + vp)
m O S [1+gmg(0,Q0)
X In fDPI[P]expSTL[P] (598
a0 X DgNDEp'Gp(wn)Gp’(wn){INpp’N(QO)
It is worthwhile to mention that Eq(58) corresponds to
the termj(v,)a(-v,) with j(v,) being current density in the N, Gn(wpn) Gp(@, + )
+

effective action for the vector potentialv,). As one can
check by inspection, contribution to the conductivity tensor
of the first order in the order parametafq) vanishes. It
occurs because the UCDW state appears at nonzero vector
Qo- Thus, the first nonvanishing contribution to the conduc-
tivity tensor of the UCDW state is of the second order in theSymboll, , , , (Q) denotes the impurity ladder in the Lan-
order parameteA. dau level index representatigeee Fig. 3

1 + gﬂ-g’n( Yy QO)

X TnpnN Qo) NNp’N(QO)] . (62
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P, P, P P Py P,
— +
Ps Py Py Py Py P,

FIG. 3. Impurity ladder. Frequency,+ v, runs from right to
left, whereasw, runs from left to right.

Lo, p,pana(Q) = gfq Fpupy(DFpyp, (= oexp(-iqQI3).

(63)

Evaluation ofl p1pzp3p4(Qo) is given in Appendix Il. For con-
venience we present the results for quantitig§2p3p4(Qo) in
Table I. As one can see, tHannpN Qo) InpnnNQo), and
Inpprn(Qo) are proportional tQ7(rg)=0. Thus, the contribu-

tion (62) vanishes
ofivy) =0, (64)

The last diagranfiFig. 2(c)] can be written as

vy = BT p2pery 5, OMOn G0 * 1)
VoM on pp [11975"(0,Qo)]
Gp(wn)Gp’(wn +vp)
(1+gm5""(0,Qp))
DSNDE'NI npNp (Qo)
1+ gﬂ'gn(vnaQO)

Although resultg59) and(65) allow us to compute the ac
conductivity tensowr,,(w) from now onwards we limit our-
selves to the case of dc conductivity tensgp= o4,(0=0).

(65)

C. DC conductivity tensor o, of the UCDW state

The conductivity tensor of the isotropic state is giveh as

- 2N o
o%=—%-Ni§, (66)
a
where & denotes the unit matrix and matric8s with a
=X,Y,z stand for the Pauli matrices.
Performing evaluation of frequency sums in E@9) and

PHYSICAL REVIEW B71, 035331(2005

o=00- 47TNA2ji(r0)h( )cos 28,
ArT.7
1 T 1
- 47-rNA2hXX( )éo— 477NA2{27T—Cth(—)
A7 T.T Wy A7 T.7
1 . .
- Ji(r@h( 417TC7-)8m 2¢] is,. (67)

Equation (67) constitutes one of the main results of the
present paper. We remind that the re$6l) describes the dc
conductivity tensor near the isotropic-to-UCDW transition,
T-T<T.

In order to simplify the discussion we pgt=0, i.e., chose
the x axis along the direction of the UCDW vectQy,. Then
the term proportional t§, corresponds to the anisotropic part
of the dc conductivity tensor, the term proportional §p
corresponds to isotropic part and the term proportiond, to
to Hall conductivity. We mention that anisotropic, isotropic,
and Hall conductivity corrections are of the ordemMbas the
conductivity of the isotropic state is itséee Eq(66)]. The
anisotropic, isotropic, and Hall conductivity corrections are
proportional to(T,—T)/T,<1 and are much smaller there-
fore than the conductivity of isotropic stat@6). \WWe mention
that the Hall conductivity correction contains additional
small factor mafT,, 7}/ wy compared to anisotropic and
isotropic ones. The presence of anisotropic part in the con-
ductivity tensor leads to the result that conductivity along the
electron density modulatiofioy,) is less than conductivity
across the modulatiotuy,).

The dependence of corrections to the conductivity tensor
on the Landau level broadening! is encoded in functions
h(2), hyy(2), hy,(2) as well as inA? [see Eq(55)]. The aniso-
tropic part of the conductivity tensor involves the function
h(z) that appears as a result of summation over Landau level
indices withp=p’=Nz+1 in Eq. (65 and is given by

g(6,%+z) %223, z<1,
h(z) = 52° il 5= 3 (68)
§<2,—+z> 1-—-, z>1.
2 Z

Theh(z) increases monotonically from 0 to 1, as it is shown
in Fig. 4. The isotropic part of conductivity tensor is de-
scribed by the functiorh,,(z) that contains Eq(59) and

(65), we obtain the following result for the dc conductivity terms withp=N+1 andp’=NZ¥1 in the sum over Landau

tensor of the UCDW state:

level indices in Eq(65),

TABLE |. Expressions for quantitielsplpngp‘l(Qo) involved in Egs.(59), (62), and(65).
INN-1N-1N gn J4(ro) [N N+ N+LN = gn J4(ro)
INN-1 NN+ = gn.J4(ro) [N+ N1 = gn Jx(ro)
INNN-1N = gn €9 J0(ro) J(ro) INN+LNN = gn € T5(ro) Ju(ro)
INN-1N,N = ~gn €4 Jo(ro) Ja(ro) [N N+IN = -gn e ?Jy(ro) Juro)
IN,N-1N,N-1 = gn e? ¢j§(r0) INN+LN N+ L = gne? ¢«7§(r0)
INN-LN+LN = gn € 4.71(r0) Jo(ro) INN+LIN-1N = an e 2971(ro) Jo(ro)
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s}
" hy2)
2.5 ot
N
e
< 2f
O
R FIG. 4. Functions(2), hy,(2) andhy(2).
P h(z)
h(2)
o.50 - o rmmemm—mm e m e
1 2 3 4 5

5 tensor decreases as the disorder becomes stronger. The Hall
hxx(z):jl(ro)h(z)+—1 conductivity increases with growing of the Landau level
22§< —+z> broadening[see Eq.(70)]. The enhancement of the aniso-
tropic and Hall conductivity by disorder is counterintuitive,
however, it is the effect of the magnetic fi¢ldlso we no-
Relﬁ( +(1—|)Z> tice that in the case of small Landau level broadeniiit
<T,, the correction to the isotropic part of the conductivity
§<2 1 + z) tensor is much larger than the anisotropic part. In the oppo-
2 site limit of large Landau level broadening'> T,, they are
2 of the same order.
-z, z<1,

X|[1-

-, (69) IV. EFFECT OF THE ORDER PARAMETER

1
3J2(I‘ ) - = FLUCTUATIONS ON THE CONDUCTIVITY TENSOR
a4 72>,

2
Ja(ro) + Z - 2 ) A. Order parameter fluctuations

) The order parameteX(r) has meaning of the saddle-point

The functionh,,(z) increases monotonically from 0 to 0.52 gqution for a plasmon field that appears in the Hubbard-
(see Fig. 4 The Hall conductivity correction involves the stratonovich transformatiéh of the screened electron-
function h,(2) given by electron interaction. The expansion of such physical quanti-
ties as free energy and linear response in the order parameter
| 2 - =+ _ series can be justified if fluctuations of the order parameter
N2 [jl(ro){4z4§( * Z) ’ ng( * Zﬂ 2h(2) can be neglected. As it was showfluctuations of the order
parameter results in the first order transition from the isotro-
+zIm g/ < +(1- |)z) pic state to the UCDW state at temperatdie- 5T, where
ST/ T.xN23<1. In the present section we investigate the
1 effect of the fluctuations on the conductivity tensor above
—Im l//( +(1- i)Z)} 1 3 and below the mean-field transition.
g(z, +z) In the previous section we assumed that the direction of
the CDW vectoiQy is fixed by intrinsic anisotropy of crystal

( 1 or by applied parallel to 2DEG small magnetic field. How-
5 712—2:#’(5> <1 ever, the functional dependence of anisotropy term in the
] 1 7, =4 hamiltonian was insignificant for mean-field results obtained
= (70) above. Now it should be concretized. Experimental research
7 273(ro) of the anisotropy that determines the direction along which
2”3 )* z>1. the UCDW creates has been performed in a number of
\

papers®-32The results obtained can be explained if one sug-
As one can see from E@68) the absolute value of the gests that the Hartree-Fock potentid(Q) involves terms
anisotropic part of the conductivity tensor increases monoproportional to cos @ and cos 4. We mention that the term
tonically with growing of the Landau level broadening'. cos 2p can be derived when small magnetic field parallel to
According to Eq.(69), the isotropic part of the conductivity 2DEG applied* However, without parallel magnetic field
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the term cos @ is restricted by the symmetry of bulk GaAs T-T,

crystal. To date its physical origin is unknowhAs experi- T>T,,

mentally prover?? coefficient of the cos @ term depends on t= ¢ (75)
the densityn of electrons. Moreover, at some certain vafue 2Tc -T T<T.

of the electron density it vanishes and next term proportional T, ¢

to cos 4p becomes important. Below we restrict our discus-
sion to the general case# n.. We note that the typical value
of the anisotropy energ¥, is of the order of 1 mK per
electron as it is obtained from experiméfin order to take

into account the anisotropy quantitatively we perform the Integrating over angles in Eq. (74), we obtain the fol-
following substitution[see Eq(40)] lowing fluctuational corrections to the mean-field dc conduc-

tivity tensor discussed in the previous section:

B. Fluctuational correction to the mean-field DC
conductivity tensor

1-cosap
To(Q) — To(Q) + EAT (72) ~ (fluc) o o 1 7\
50 :—szl(fo)H AT Fa 1%
nearQ=Q,. We note that the expression above has minimum A ¢
at ¢=0. _To 1 AW
At T>T, the UCDW order parameter is zero in average EH (47TTCT>FI< t )SO' (79

(A)=0 but the average of its square is nonzéd) #0. It
results in the additional contribution to the conductivity ten- 27T, o 1
sor of the isotropic state. It is worthwhile to mention that the - 7ny(4 T )F < )léy
contribution discussed above is analogous to one for normal @H T mheT
metal due to superconducting paring above criticalit js worthwhile to emphasize that E¢76) constitutes the
temperature principal result of the present paper.

The additional contribution to the conductivity tensor due e temperature dependence of the fluctuational correc-
to the order'palrameter fluctuations can be found with a helggn, (76) is encoded into a functioR(x) for the anisotropic
of the substitutionA(Q)A(-Q)) for AZin Eq. (67) and av-  part and a functior,(x) for the isotropic part and the Hall
eraging over all possible vecto@. The Green’s function of  onquctivity. FunctiorF A(x) involves complete elliptic func-
the order parameter fluctuations is as follose Ref. 15 ions of the first(K) and secondE) kind

_op=—1te | T-Te 1 2[(. 2\ - 2 -
<A(Q)A( Q)> - 4T0(Q0)n|_|: TC * 7( 47TTC7'> FA(X) = ’7_T|:(l + ;)K“ \‘"X) - ;E(' \”X):|

-1
X(Q-Qo)2R§+77$in2¢} . (72 x x<1,
B 8’
where dimensionless parametgr E5/ Tg and we have intro- - ks 77
duced —In16e™x, x>1,
VX
é~<4 1 + z) whereas functiorf (x) is determined as
WD) = B+ (107 —— (73) , 1, x<1,
§<2—+z) - ki =1 1
R WK(I\X) —FIn16x, x>1. (78)
VX
Here B,=0dIn Ty/dry=2.58. After integration over the abso- _ _ _
lute value of vectoQ we find that in Eq(67) the following We emphasize that with respect to the mean-field result
substitution should be used: (67) the fluctuational correctio(i76) is of the order ofN™™.
P However, because of the singular behaviof aff,. it cannot
HB)AZ g“ 5 } 1 1 be neglected.
‘2 AnT.r Y AnTer The dependence of the fluctuational correcti@®) on the
o Landau level broadening* is determined by functiof(z)
N f do (d’) for the anisotropic partH,,(z) for the isotropic part and
T-T, \/ smz 4’ H,y(2) for the Hall conductivity. They are given as
4
1 21
(74) 5(2,— + z) h(z2) 3\'E23’ z<1,
/P1
It is worthwhile to mention that in order to obtain the result 1@ = \,,fz) = VE
for T<T, from the known result foif >T. we should sub- /2= z>1.
stitute AT,—T)/T, for (T-T,)/ T, as usual. For convenience, 2\ J1(ro) + 381
let us define therefore (79
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H(2), Hxx(2), Hay(2)

FIG. 5. Functionsd(2), H,(2), andH,(2).

( l >h 7T,Z—Z z<1
y (Z)_g 212+Z xx(z)_ 3\"ﬁ1 ! !
S R R Y () S
4 Tro) +3B, 2’ ’
(80)
g(z,é . z) (2
Hy(2) = ————
g 2
( 1
1 - 2W(§> z<1,
—\l-——5—12],
={ VB w (81)
37— 8741 .
= e, > .
[ 4V38VJi(ro) + 361

We note that the functiomd(z) has maximum az=0.97,

Hxx(2) atz=0.34 andH,(2) atz=0.16, as it is shown in Fig.

5. In the case of small Landau level broadenirig< T, the

correction to the isotropic part of the conductivity tensor is

acting electrons on a half-filletNth Landau level withN
>1. Our results are applicable for samples of small $ize

< ¢ only where ¢ stands for the minimal lengthscale among
the translational order breaking length and Larkin length
such that the fluctuations do not destroy the mean-field
UCDW state on these lengthscales. We have demonstrated
that below temperatur&, of isotropic-to-UCDW transition
the anisotropic part of the conductivity tensor emerges in the
mean-field approximation. AfT.—T)/T.<1 the anisotropic
part is proportional to deviation of temperature framAs it

is shown in Fig. 6, it results in a cusp of temperature depen-
dence of the conductivity at=T.. According to result$76),
fluctuations of the UCDW order parameter above and below
transition temperatur&. smooth out the cusfsee Fig. 8.

The theory developed above involves several important
assumptions such that the electron-electron interaction is
weak (1), an applied magnetic field is we##) and random
potential is white-noise potential that produces small Landau
level broadening compared th,, [see Eq.(3)]. All the as-
sumptions are failed for the experimental samples. In Refs. 2
and 3 the electron-electron interaction was relatively strong,
r~1, the applied magnetic field was moderate with
=2,3,4 and theandom potential had correlation length
~|y. Therefore, the comparison of our theory with experi-

much larger than the anisotropic part as one can see fro%ents can beualitative only.

Fig. 5. In the opposite limit of large Landau level broaden-
ing, 7>T, they are of the same order. The fluctuational
correction to the Hall conductivity contains additional small

factor T./ oy <<1.

Equation(76) has singularity al — T, that indicates non-
applicability of it nearT.. The fluctuational correction should
be small as compared to the mean-field conductivity of th
isotropic stat€66). Hence we obtain the range of applicabil-

ity of Eq. (76) as

T.-T
1>LL—J>N4. (82)
T,

C

V. DISCUSSION

The results(67) and (76) for the anisotropic part of the
conductivity tensor are in qualitative agreement with experi-
mental oneg:315If a current runs in the direction of UCDW
modulation, the conductivityresistancgis less(more than
the conductivity(resistancgfor the case of current running
in the direction perpendicular to charge density modulation.

&orrection to the Hall conductivity is virtually nonexisteit

contains small parameter M@, 7}/ wy < 1) that is consis-

tent with experimental data>'® The temperature depen-
dence of the conductivity tensor derived in the present paper
describes the regiofT-T, <T.. It agrees qualitatively with
experimental dependence near the temperature where strong
deviation betweerR,, and Ry, appears. In our theory this
temperature should be of the order ©f Estimation ofT,

In the previous sections we have derived a number ofrom Eqgs.(53) and(54) are in reasonable agreem®nwith
results for the conductivity tensor of two-dimensional inter-experimental result.
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FIG. 6. The dependence of anisotropic part of
conductivity (oyy— oy, / Za(x(i) on temperature for
1/47T.7=0.24 and7»=0.01. Dashed line corre-
sponds to mean-field resu7).
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The UCDW state exists also near half-filled high Landauthe \(r) exists on theNth Landau level only whereas exter-
level ©1€ If chemical potentialuy # 0, the functionsh,, and  nal potential scatters electrons on all Landau levels.
H,p are dependent not only on parameter &T4r but on
ratio un/ T, too. Increasing the chemical potential, we

transform the UCDW state to the triangular CDW state char- VI. CONCLUSION

acterized by vector§),, Q,, and Q5 directed at anglesp, _ . ) )
&+2m/3, and ¢+4/3 with respect to the axis, respec- We obtained the conductivity tensor of two-dimensional
tively. H(;wever due to the identity ’ electrons in the presence of weak disorder and weak mag-

netic field at half-filled high Landau level where the UCDW
state exists. In the framework of the order parameter expan-
sion we derived that aT.—-T<T, anisotropic part of the
conductivity tensor proportional tor,—T)/ T, emerges. Also
the contribution from three vectofg; to the anisotropic part we demonstrated that the order parameter fluctuations result
of the conductivity tensor vanishes. Thus, the conductivityin additional anisotropic contribution nedg to the conduc-
tensor of the triangular CDW state does not contain the antivity tensor that wash out the mean-field cuspratT.. The
isotropic part in the approximation which is of the secondresults obtained are in qualitative agreement with the experi-
order in the CDW order parameter. For reasons to be exmental findings.
plained shortly, the conductivity tensor of the triangular In spite of remarkable qualitative agreement of our theory
CDW state should not have anisotropic component in genwith experimental resulfs'1®there is the principal question
eral. of whether the enhancement of anisotropic part of the resis-
It is worthwhile to mention that from the physical point of tance around half-filled Landau levels should be interpreted
view the anisotropic part of the mean-field conductivity ten-in terms of the isotropic-to-UCDW transition or a Kosterlitz-
sor appears due to the existence of the UCDW induced anfhouless-like isotropic-to-nematic transition rounded by
isotropic potentiah(r) in action(49). Anisotropic resistance crystal field®'° Since the results for the lengthscafeat
of two-dimensional electrons in a weak magnetic field in thewhich the fluctuations destroy the UCDW order obtained in
presence of unidirectional periodic potential has been measimple weak crystallization treatméftas well as in more
sured at several kelvins in heterostructures with mobilityelaborate treatmerits!4 suggest the power law dependence
o~ 1P cm?/V s by Weiss, von Klitzing, Ploog, and We- of ¢ on N we conclude that the scenario with isotropic-to-
imann fifteen years ag®. Theoretically, the effect of unidi- nematic transitioh'® for moderate values dfl is more prob-
rectional periodic potential on the conductivity tensor hasable. On the one hand, the microscopic theory that involves
been investigated with the help of both the kineticreal electron-electron interaction and long-ranged random
equatiod®3” and the diagrammatic technigéfe**However,  potential is needed in order to determine the elastic param-
the case of separate Landau levels considered in the presaziers for nematic and stripe phases as well as transport coef-
paper has not been analyzed. The important difference of thiicients. On the other hand, the real-space imafing the
induced potentiak(r) from external periodic potential is that UCDW order (stripeg or polarized light scattering experi-

1+ e277i/3 + e—Zwi/B =0 (83)
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ments to detect orientational order in nematic phase would
give the most definitive answer.
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APPENDIX A: CALCULATION OF CHARACTERISTIC
ENERGY T,
According to Egs(21) and(40) the T,(q) is given by

Ty =- nLeiq{ Used @) Jo(aR) T (qR)e ™
_qulHUscr(p)pX—Y

TN f(z )N p?ly

212, |
X LNN( p2 )W,N—l(%)e_pzlﬁ'/z} , (A1)

where we use the following resdit:

2|2
Fun-1(0) = \ﬁqxq—que a H/4LN,N—1<qTH
H

~ e 71(dRy), qR. < 2N. (A2)
The characteristic energl;, =T,(Qp) is given by

: rSwa“N dx J1(4Nx) Jo(4NX)

4y 2 “€(x) V1-x2

1= Ji(2rex),  (A3)
where
TX) = 1 +—[1 - F2A4NX)]. (Ad)
Xy2
Performing calculation of the integral, we find

_ rSer{r—oln<1+ r1 )+ C/l ]
167NV2| 2 V2rors 1+\2rgrg

(A5)

where constant; equals

c—\/r—ofl —Lsin(er—7—T>~1097
' 7 J 120y XVX(1 = %P) 4 o

(A6)

As we can see from EqA5) the characteristic energy;
~Ty/N as we mentioned above.

APPENDIX B: CALCULATION OF THE Ip1p2p3p4(Qo)

Using definition(63) and Eq.(A2), we obtain in the limit
N>1
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With a help of asymptotic expression for
polynomiaf?

(2a-1)/4
L“(x)~—e"’2< ) <2VNx——”—7—7),
VX 2 4

2
INNNN-1 =~ TN N = gne?= [ dxx
m™Jo

ipZ
I NN-1 N N- l_INN+1NN+1 gnLezqs
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X
— - —X
INN-1IN-1N = TN N NI N = gnLNJ X €
0

X [LRH0 T2 To(rov2%), (B1)

X
_ _ —X
INN-1 NN+ = TN TN N-1 = gnLNf x €
0

X L0 L1 (0. Tolro2x),

InoNNN-1 =~ TN = gnLei¢\"Nj =€
0 VX
X L)L) Ta(rov2x),

oo

i dx
- —_ | | —_
It = = I = e VN T
0 VX

X €Lt ()L T4 2%,

- *dx
_* _ i _x
InN-2NN-1 = TN ner = ONLE ¢Nf o e
0

X (LAY 0012 7a(rov2%),

ee]
; dx
= —_ 2i X
INN-IN+IN T TN NN = ONLE "’Nf €
0

X L)Lt () To(r oV 2x).

N> 1, (B2)

we find

2 [t TJo(2rex)

\J —_

INN-1N-1N = lN,N+l,N+1,N:gnL; dx——=", (B3)
0

Jo(2roX)

1
- — 2
INN-TAN+ = TN N N-1 = 9T f dx(1 - 2¢%) vk

J1(2rox)
\r 1 X2 '

J1(2rox)

— - g~
INneINN T ~ I NN =GN E ‘bﬂ_f XX =",
0

V1-x

jz(zrox)

7To \rlX,

Laguerre
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T2(2rpx)

2
InN- lN+lN_|NN+1N INT 9”|.92¢_J dx(1 - 20— 12

The integrals can be evaluated by using the following

equality?

PHYSICAL REVIEW B71, 035331(2005

2 72
7_Tf d¢ Coqzﬂ(ﬁ)jZV(er COS¢) = \.7V+;L(r0)\7v—ﬂ(r0)'
0

(B4)

Finally, it yields the results presented in Table I.
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