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The interaction between electrons that form a quasi-two-dimensional crystal, as well as their interaction with
a dielectric/metallic substratesimage potentiald, is well understood within the standard theory of Wigner
crystals. Here we analyze the influence of the quantized electromagnetic field on the dynamics of Wigner
electrons, i.e., on the dispersion relation of Wigner phonons. We have found that a significant influence can be
expected from the surface polariton field when the energies of the surface polaritons and Wigner phonons
coincide. Such polaritons can be expected in ionic crystals or doped semiconductors and we have proposed a
geometry that can lead to the detection of a Wigner crystal by measuring the dispersion relation of surface
polaritons.
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I. INTRODUCTION

The Coulomb interaction between electrons at low elec-
tron densities is responsible for the formation of a quasi-two-
dimensional crystal, because electrons have lower energy os-
cillating around the lattice points than in the gas phase. The
energy difference is very small, therefore a crystal such as
this is stable only at very low temperatures. Its existence was
theoretically predicted by Wigner,1 but experimental prepa-
ration wassand still remainsd a rather tedious task mainly
because one has to prevent dissolution of Wigner electrons
into the substrate. The crystal was observed for the first time
by Grimes and Adams,2 who trapped electrons on a liquid He
layer, which has an energy gap at the typical energies of
Wigner electrons. The explanation of the excitation spectrum
was given by Fisheret al.3 and it includes the interaction
between phonons of a Wigner lattice and capillary waves
sripplonsd of a He substrate. This interaction becomes sig-
nificant at very low phonon energies and small wave vectors
involved in the experiment.4

There is an obvious question: Do Wigner phonons follow
the unperturbed, well known dispersion relation at higher
frequencies and wave vectors, or should one take into ac-
count yet another interaction? A promising candidate would
be the electron-photon interaction. But here we are not inter-
ested in a “direct” interaction, i.e., the excitation of a single
electron in some higher perpendicular state.5 Rather we
would like to analyze the interaction of Wigner phonons with
the electromagnetic field and discuss the possible change in
the corresponding phonon and photon dispersion relations. It
is well known that the standard photon-phonon interaction
dominantly involves only small phonon wave vectors. How-
ever, in the case of a Wigner crystal, one should take into
account also the interaction between phonons and surface
polaritonssSP’sd, which are the coupled modes of the elec-
tromagnetic field and the charged particles in the dielectric
smetallicd substrate. The SP dispersion relation is similar in
shape to the phonon dispersion relation so if they eventually
fall in the same energy range, we could expect a strong in-
teraction between these excitations. In order to have a com-
plete theory, we shall also include the interaction with rip-
plons. In such an approach, we need a quantized form of the
phonon, polariton, and ripplon fields and the appropriate

transformation that could define the renormalized frequen-
cies.

The article is organized as follows. In Sec. II we first
briefly discuss the Hamiltonian of Wigner phonons, without
an interaction with external fields. Then we analyze the ap-
propriate Hamiltonian of the electromagnetic field and the
photon-phonon interaction. Next, the ripplon Hamiltonian
and the phonon-ripplon coupling are added. Finally, the di-
agonalization of the total Hamiltonian leads to the required
form of the renormalized phonon eigenfrequencies. The re-
sults are discussed in Sec. III, and the conclusion is given in
Sec. IV.

II. EIGENMODES OF A WIGNER CRYSTAL

The properties of a Wigner crystal are usually analyzed by
taking into account the Coulomb interaction among crystal
electrons,6 possibly adding the influence of the image poten-
tial due to the metallic substrate.7 Here we wish to determine
the eigenmodes of Wigner electrons that also interact with
photon and ripplon fields. Let us start to analyze those fields
one by one, and then add the interaction.

A. Wigner crystal

The Hamiltonian of a Wigner crystal above a flatsliquid
Hed surface can be put in the form6,7

HWig = Hosc+ kEiml + kWeel. s1d

Hosc describes theparallel oscillation of Wigner electrons
sWigner phononsd. kEiml represents the averaged perpendicu-
lar kinetic energy as well as the averaged interaction of each
electron with the substratesimage potentiald, andkWeel is the
averaged interaction between electrons at their regular lateral
sites.

The averaged values are obtained by using the perpen-
dicular wave function that describes electrons in their per-
pendicular ground state,7

uszd = 2a3/2ze−az, z. 0 s2d

with the damping parametera=3/2z0, and z0 is the mean
perpendicular position of electrons above the substrate.
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Here we are interested in the dynamics of the Wigner
crystal, given by6,7

Hosc= o
mk

"Vmk
0 sbmk

† bmk + 1
2d. s3d

Vmk
0 are the eigenfrequencies of Wigner phonons, determined

by the two-dimensional phonon wave vectork from the first
Brillouin zone, and the polarizationm that can be either lon-
gitudinal sLd or transversesTd. bmk

† andbmk are the standard
creation and annihilation operators of phonons, respectively.

We assume that Wigner electrons form a quasi-two-
dimensional hexagonalstriangulard lattice with the reciprocal
lattice vectorG. The primitive lattice vector in the reciprocal
space is given byg0=4p /Î3r0 and r0 is the lattice constant
related to the surface electron density byns=2/Î3r0

2. Other
reciprocal vectors can be calculated from

Gmn= g0
Îm2 + n2 − mn, hm,nj = 0, ± 1, ± 2, ± 3,…,

The existence of a Wigner crystal is predicted from the
first principles8 as well as from the model calculations9 at
r0.40 Å, although some recent theories allow it even at
higher densities.10 Here we are interested in a high-density
region sr0<50 Åd since at these densities the phonon fre-
quencies are comparable with the SP spectrum. Notice that
relevant experiments to date were done at lower electron
densities.2,11,12Also notice that at very low electron densities
a square lattice can be more favorable than the hexagonal
lattice.13

B. Photons

Let us briefly discuss the electromagnetic field in a dis-
persive dielectric media with a planar symmetry, so that each
layer l is described by a dielectric functionel. The vector
potential takes a standard form:14,15

Asr d =
1

ÎAs
o
nkb

zbkfAnk
b szdank

b + An−k
b* szdan−k

b† geik·r. s4d

HereAs denotes the normalization surface, andz is the nor-
malization parameter:

zbk = cÎh/vbk .

The time dependence is implicitly assumed, i.e., the polar-
iton annihilation operatorank

b oscillates in time with the
eigenfrequencyvbk.

The eigenmodes of the vector potentialAnk
b szd are deter-

mined by the two-dimensional wave vectork, the “perpen-
dicular wave vector”b, defined asb2=evbk

2 /c2−k2, and by
the polarizationn, which can be eitherp sin the plane of
incidenced or s sin the direction perpendicular to the plane of
incidenced. The eigenfrequenciesvbk are determined by the
eigenequation

= 3 = 3 Ank
b szdeik·r −

1

c2evbk
2 Ank

b szdeik·r = 0. s5d

Let us assume thate=esvbkd is a real, Lorentz-type dielectric
function of a medium, or it takes a constant value for an inert

dielectric. Using that model, we can put the Hamiltonian of a
photon field in a dispersive dielectric mediasusually called a
polariton fieldd in a diagonal form:15

Hph = o
nkb

"vbksank
b†ank

b + 1
2d. s6d

C. Electron-photon interaction

The interaction between the electromagnetic field and the
electrons of a Wigner lattice at positionsr j and with mo-
mentap j, is described in a standard way:

Hint = HpA + HAA,

HpA = −
e

mc
o

j

kp j ·Asr jdl, s7d

HAA =
e2

2mc2o
j

kAsr jd ·Asr jdl, s8d

where k l means that we have to take the average with the
perpendicular electron wave functionuszd, Eq. s2d. We shall
also assume that the vector potential is taken at the regular
lateral position of Wigner electronsr j

0, i.e., r j =r j
0+zẑ sdi-

pole approximationd.
The two-photon processes are described byHAA, Eq. s8d,

which, after inserting the expansions4d, becomes:

HAA =
e2ns

2mc2o
n

o
bb8

o
kG8

zbkzb8k8kfank
b Ank

b szd + an−k
b† An−k

b* szdg

3fan− k8
b8 An− k8

b8 szd + ank8
b8†Ank8

b8*szdgl,

wherek8=k +G8.
The electron momentump j can be divided into parallelp j

i

and perpendicularp j
' components. We find

kp j
'l = 0,

kp j
il =

1
ÎAs

o
mk

s− idhmkfbm−k − bmk
† gemk

* e−ik·r j
0
,

whereemk is the unit polarization vector, and

hmk = Î"mVmk
0 /2.

Now the HamiltonianHpA, Eq. s7d, can be put in the form

HpA = i
e

mcomn
o
kb

Înshmkzbkkfemk
* ·Ank

b szdank
b

+ emk
* ·An−k

b* szdan−k
b† glfbm−k − bmk

† g.

The summations extend over all perpendicularsbd and par-
allel wave vectorsk =k+G as well as over the phononsmd
and the photonsnd polarizations.

Let us divide the vector potential into the perpendicular
partA' swith the perpendicular component ofp polarization
n=p'd and the lateral partA i swith the parallel polarizations
n=hs,pijd:
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Ank
b szd = Ank

b'szd + Ank
bi szd. s9d

Now we shall assume that the longitudinal polarizationm
=L of phonons takes the same directionskd as the parallel
component ofp-polarized photons, for all wave vectorsk sit
is strictly correct for k!g0d. Therefore theT-polarized
phonons are assumed to propagate in the same direction as
the s-polarized photons, and we can write

emk
* ·Ank

b szd = Amk
bi szddm,n.

From now on we shall neglect the influence of the perpen-
dicular componentA' on theslaterald phonon frequencies of
the Wigner lattice, which shall be stressed by using the same
polarization indexm=sL ,Td for both phonon and photon
modes.

The Hamiltonian Hosc
ph that includes photons, Wigner

phonons, and their interaction,

Hosc
ph = Hosc+ Hph + Hint, s10d

can be diagonalized with the generalized Hopfiled
transformation,16,17

dmk = umkbmk + vmkbmk
† + o

bG
fYmk

b amk
b + Zmk

b amk
b†g ,

where the summation extends over all perpendicular wave
vectorsb and over allG components of the parallel wave
vectork =k+G. The new operatordmk involves four param-
eterssu,v ,Z,Yd which should be determined by the follow-
ing requirement:

fdmk,Hosc
ph g = "Vmk

phdmk,

whereVmk
ph is the renormalized phonon frequency due to the

phonon-photon interaction. This requirement leads us to the
four equations:

"sVmk
ph − Vmk

0 dumk = i
e

mc
Înshmk

* emk ·Fmk,

"sVmk
ph + Vmk

0 dvmk = − i
e

mc
Înshmk

* emk ·Fmk,

"sVmk
ph − vmk

b dYmk
b = − i

e

mc
Înshmkzbkemk

* ·Amk
b sumk + vmkd

+Îe2ns

mc2zbkAmk
b ·Fmk,

"sVmk
ph + vmk

b dZmk
b = − i

e

mc
Înshmkzbkemk ·Am−k

b* sumk + vmkd

+Îe2ns

mc2zbkAmk
b ·Fmk,

where we have introduced

Fmk = o
bG

zbksAmk
b Ymk

b − Am−k
b Zmk

b d.

After the straightforward calculation the above-mentioned
equations can be combined to give the dispersion relation for
the renormalized phonon frequencies:

Vmk
ph2 − Vmk

02 = 4p
e2ns

m o
bG

Vmk
ph2

Vmk
ph2 − vbk

2 kuAmk
b szdu2l. s11d

To calculate the electromagnetic field acting on Wigner
electrons we have to define the properties of a medium that
supports Wigner crystal. In a standard model, we assume that
a Wigner crystal is formed above a liquid He layer which is
deposited on a dielectric or metallic substrate. The electro-
magnetic field above the He surface, i.e., in the vacuumse0

=1d, can be divided according to the parameterb0
2=vbk

2 /c2

−k2, into the radiativesb0
2.0d and the surfacesb0

2,0d
modes. Obviously, the radiative modes are real photons that
could be involved, e.g., in the excitation of Wigner electrons,
but they do not change Wigner phonon frequencies. If one
tries to apply Eq.s11d to radiative modes, the right-hand side
will diverge, which makes the whole procedure meaningless.

The surface modes have exponentially damped electro-
magnetic field above the He surface, with the damping pa-
rametera0=−ib0=Îk2−vbk

2 /c2. Those modes are the result
of the dynamics of ions in ionic crystal or conducting elec-
trons in metals, where the electromagnetic field is coupled
with such oscillations into thesurface polaritons. Liquid He
is not a polar medium and it can be described as an inert
dielectric of a thicknessdh, with a dielectric constanteh
=1.057. SP modes are therefore supported by the substrate
below the He layer, and they will influence the Wigner elec-
trons only if the effective distance of a Wigner crystalsz0

+dhd is not much larger than the attenuation parameter 1/a0.
To be specific, let us assume that the He layer with a

Wigner crystal on it, is supported by a thin dielectric film of
a thicknessdi, deposited on a semi-infinite metalsFig. 1d. For
the ionic crystal we shall take the standard dielectric func-
tion:

eisvd = e`

vL
2 − v2

vT
2 − v2 , s12d

with vL and vT being the longitudinal and the transverse
frequency of the crystal, respectively. The dielectric function
em of the metallic substrate can be taken in the same form,
with the usual replacement:vT→0 andvL→vP, wherevP
is the frequency of the electronic plasma in the metal. How-
ever, we are interested in the Wigner phonons whose fre-
quencies are much lower thanvP, so we can assume that the
metallic plate perfectly screens the electromagnetic field
sem→−`d.

From Eq. s5d we find the vector potential of SP eigen-
modes above the ionic crystal:

Apk
b szd = Cp

bs− ia0k̂ + kẑde−a0sdh+zd,
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Ask
b szd = Cs

bsk̂ 3 ẑde−a0sdh+zd.

The SP eigenfrequencies as well as the normalization con-
stantsCp

b andCs
b are determined in the Appendix. After av-

eraging with the functionuszd, Eq. s2d, we find the matrix
elements that determine the renormalized phonon frequen-
cies in Eq.s11d:

kuAmk
b szdu2l = uCm

bu2e−2a0dh
1

s1 + a0/ad3Ha0
2, m = pi

1, m = s.
s13d

D. Ripplons

Capillary waves of a liquid He surfacesripplonsd also
interact with the vibrations of the Wigner lattice. Free rip-
plons have a dispersion relation:

vk
2 =

a

r
k3,

wherea andr are the surface tension and the density of the
liquid He.

Due to the interaction with the liquid He substrate, the
eigenfrequencies of the Wigner phononsVmk

0 are renormal-
ized and the new frequenciesVmk

rp are determined from3

Vmk
rp2 − Vmk

02 =
1

2o
G

Vmk
rp2

Vmk
rp2 − vk

2 uVku2, s14d

where again we have used the notationk =k+G. In the long-
wavelength limitsk!g0d one can approximatek <G. The
interaction matrix element is given by

Vk =Î ns

ma
fskde−Wskd,

whereWskd is the Debye-Waller factor of a Wigner lattice,
and fskd is the effective force acting on Wigner electrons on
the He substrate:3,11

fskd = eE'sz0d +
1

8

seh − 1d
seh + 1d

e2k2 lnS 1

z0k
D .

E' represents the perpendicular component of the electric
field acting on the Wigner electrons.3,7

Here we are particularly interested in high frequencies at
which Eq.s14d takes a simple form:

Vmk
rp2 < Vmk

02 + Vk
dp2, s15d

where

Vk
dp2 =

1

2o
G

uVk+Gu2 s16d

is a frequency of an electron in a static dimple. It shows a
very small dispersion so it can be well approximated byV0

dp.

E. Renormalized Wigner phonon frequencies

Obviously, the two equationss11d ands14d have the same
form so we can combine them in order to obtain the disper-
sion relation for the Wigner phonos that includes the inter-
action with the He substrate as well as the interaction with
the electromagnetic field:

Vmk
2 − Vmk

02 =
e2ns

m
o
G
H1

2
uUku2

Vmk
2

Vmk
2 − vk

2

+ o
b

4puAmk
b u2

Vmk
2

Vmk
2 − vbk

2 J , s17d

where we have introduced the renormalized phonon-ripplon
interaction:

Uk =Î m

nse
2Vk =Î 1

ae2 fskde−Wskd.

III. RESULTS AND DISCUSSION

We are now able to analyze the influence of the photons
and ripplons on the frequencies of Wigner phonons. The in-
fluence of the ripplons at low frequenciessbelowVk

dpd is well
known3 so we shall be more interested in the influence of the
photon spectrum, which becomes important at higher fre-
quencies. Let us first analyze the possible influence of the
metallic substrate. The typical frequency of SP in metals is
vP/Î2. Usually we findvP.1 eV so the typical SP frequen-
cies are much higher than the frequency spectrum of Wigner
phonons, which lies below 0.1 eV. It means that one cannot
expect a significant influence of the metal polaritons on the
Wigner phonons, or vice versa. Obviously, the promising
setup would be to put a thin dielectric layer with well defined
optical phononssionic crystald, to support Wigner electrons.
The SP in ionic crystals have the frequency spectrum be-
tween the transversevT and the longitudinalvL frequency,
and they typically lie below 0.1 eV. It means that one can
expect a “crossing” between the polariton and phonon dis-
persion curves, that could cause their significant change. For
the experimental reasons, one usually puts a thin liquid He
layer below the Wigner crystal in order to prevent the pen-
etration of Wigner electrons into the substrate. Therefore, our
setup, as shown on Fig. 1, consists of Wigner crystal, inert
dielectric layersliquid Hed, optically active dielectric layer,
and metallic substratesthe electroded.

FIG. 1. Geometry of the model.
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Let us first analyze the dispersion relations for free sur-
face polaritons, ripplons, and Wigner phonons, as shown on
Fig. 2. The SP curve is calculated from Eq.sA1d given in the
Appendix. We took LiF as a dielectric layer, withe`=1.9,
vT=0.038 eV, vL=0.083 eV. The layers’ thickness isdh
=100 Å, di =100 Å, and the lattice parameter isr0=50 Å
sg0=0.145 Å−1d. The self-consistent result for the mean per-
pendicular position of Wigner electrons isz0=6 Å.

The SP mode is “connected” to the active-dielectric–inert
dielectric interfacesz=−dhd and its asymptotic frequency fol-
lows from sei +ehd=0. There is only ap-polarized SP mode,
so here we analyze only longitudinal Wigner phonons. Note
that only those phonons also strongly interact with ripplons.
The guided modes, which electromagnetic field is exponen-
tially damped into the vacuum but oscillates within the ionic
crystal, are also shown. Thesv ,kd plane is taken to give the
best view of the crossing between the phonon and SP curves,
so the photon curvesv=kcd looks almost parallel to they
axes and the ripplon curvefthe frequencyvk

bp, Eq. s16d, is
showng is almost parallel to thex axes. The photon and po-
lariton curves are very close at small wave vectors. In fact,
the SP curve starts withkT=vT/c and suddenly leaves the
photon curve roughly atkL=vL /c. It can be better seen in
Fig. 3, where the polariton and the phonon curves are shown
for the interacting system. In comparison with Fig. 2, one
can observe two main changes:sid due to the interaction with
ripplons, the phonon curve starts from the frequencyv0

dp, in
agreement with Eq.s15d; sii d due to the interaction with sur-
face polariton, a strong splitting occurs between the phonon
and SP curves around the crossing point, as expected. This
splitting could be clear evidence of existence of the Wigner
lattice.

Obviously, the phonon curve also crosses the guided
modes curves. These modes are shown on Fig. 2 as a straight
line at the frequencyvT=0.038 eV. In fact, these modes
fdetermined by Eq.sA2d in the Appendixg, start belowvT
and there is an infinite number of them between the
starting frequency andvT. But all their frequencies are very
close to vT and, e.g., even at small wave vector
k=0.01g0, we find for the three lowest frequencies:

v=h3.799980,3.799998,3.799999j310−2 eV. The dielectric
constant at those frequencies becomes very largesei .6.6
3105d, so the interaction between the Wigner phonon and
guided modes is quite negligible, as well as the splitting
caused by this interaction.

The dispersion relationsA2d enables yet one class of
guided modes, with frequencies abovevL. However, these
frequencies are much higher than the phonon frequencies,
and e.g., atk=0.01g0 the lowest allowed frequency isv
=2.856 eV, so these modes also could not influence the pho-
non spectrum.

Let us now apply our theory to the model of a Wigner
crystal above a semiconductor plate. Having in mind the pre-
vious discussion, we shall calculate the interaction of the
longitudinal Wigner phonon with thep-polarized SP mode
only. By doping the semiconductor one can vary the density
N of carriers and therefore their plasma frequencyvP
=4pNe2/mc, wheremc is the effective carrier mass. Within
the Drude model, one can describe the interaction of the
carriers with the electromagnetic field using the dielectric
function s12d and settingvT=0 and vL

2=vP
2 /e`, where e`

represents the influence of the dielectric.19 The problem is
that one usually cannot neglect losses in a semiconductor and
they are described by an imaginary part ofe. Since our
theory is developed for reale, the following results will show
some general features of the Wigner-phonon–SP interaction
more in a qualitative way.

In that sense, we shall calculate the frequencies of a
Wigner crystal in a vacuumseh=1d from the Bonsall-
Maradudin model,6 neglecting the influence of the image po-
tential from the substrate and the perpendicular delocaliza-
tion of Wigner electrons. The two-dimensional crystal is
obtained in our model by settinguszd=dszd, i.e., a→` or
z0→0, Eq. s2d. We shall take again the lattice parameterr0
=50 Å so that we can compare Fig. 4 with Figs. 2 and 3. The
comparison, as expected, shows only a small difference be-
tween the phonon curves.6 The SP curves are determined for
a di =100 Å thick Si layerse`=11.7d, deposited on a metallic
substrate. We have chosen three characteristic frequencies
vL, shown in Fig. 4. The asymptotic SP frequencies

FIG. 2. Dispersion relation of free fields. FIG. 3. Dispersion relation of coupled fields.
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sk@kLd are determined asva
2=fe` / se`+1dgvL

2. In semicon-
ductors we have typicallye`@1, which givesva<vL. Since
the Wigner-phonon–SP interaction is important only atk
@kL, i.e., atvpk

b <va, we can say that the curves shown in
Fig. 4 should be typical for many semiconductors with the
given frequenciesvL.

The interaction of the SP mode with the Wigner crystal, at
a distancedh=100 Å above the Si layer, is shown in Fig. 4
by dashed curves. AtvL=0.1 eV there is no crossing be-
tween the SP and phonon curves, so the interaction is quite
negligible. At vL=0.085 eV there are two crossing points,
but the interaction is significant only in the vicinity of the
first crossing point at smaller wave vectork, because the
interaction matrix elements13d becomes exponentially
damped for large k. At lower SP frequenciessvL

=0.060 eVd, the crossing occurs even at lower wave vectors
so the splitting between the SP and phonon curves becomes
more pronounced. Obviously, the interaction between the
surface polaritons and Wigner phonons should increase with
the decreasing distance between the Wigner electrons and the
dielectric. Dotted lines on Fig. 4 show very large splitting in
the case when this distance is reduced to 20 Å.

Let us add two additional remarks:sid By setting
em=−` we have neglected SP field connected with the dy-
namics of conducting electrons in the metallic substrate. It
can be included by taking a more realistic form of a metallic
dielectric constant, e.g.,em=1−vP

2 /v2, as discussed in Sec.
II C. This will bring two new SP modes associated with the
metallic-dielectric interface, with the asymptotic frequencies
determined fromsei +emd=0. As expected, these modes inter-
act very weakly with the Wigner phonons, so the dispersion
relation shown on Figs. 3 and 4 remains unchanged.sii d We
did not discuss the influence of thes-polarized modes on the
transverse Wigner phonon. The reason is that there is no
s-polarized SP modesfsee Eq.sA3d in the Appendixg, while
the interaction ofs-polarized guided modes, Eq.sA4d, with
the transverse Wigner phonon is negligible. This means that
the dispersion of the transverse Wigner phonon is not af-
fected by the polariton field.

IV. CONCLUSION

In this article we have analyzed the interaction between
electrons in the Wigner crystal, surface polaritons, and rip-
plons, where SP’s represent the interaction of the electro-
magnetic field with optical phonons or plasmons in a dielec-
tric media. All those interactions are put together to give the
dispersion relation of the phonons in the Wigner lattice.
There is a significant energy gap between the high-frequency
SP and low-frequency ripplon spectrum, so they can be ana-
lyzed separately. The phonon-ripplon interaction is well
known, so here we concentrated on higher phonon energies
that include the phonon-polariton interaction. Since the ener-
gies of the conducting electrons in metallic substrate are
much higher than the energies of the electrons in a Wigner
crystal, we have taken a thin dielectric layer which optically
active modes have the same frequency range as the Wigner
phonons, and put it above a metallic substratesan electroded.

First, we have taken an ionic crystal with well-defined
optical phonons and calculated the renormalized Wigner
phonon frequencies by taking into account the contribution
from all polariton modes. It turns out that the only significant
interaction occurs between longitudinal Wigner phonons and
p-polarized surface polaritons. As another example, we have
put Wigner electrons above a doped semiconductor layer and
tuned doped carriers to obtain plasmon frequencies compa-
rable with frequencies of longitudinal Wigner phonons. By
determining the splitting between the renormalized SP and
phonon curves, we have shown that this splitting can be sig-
nificantly increased by decreasing either the plasmon fre-
quency or the distance between the Wigner crystal and the
dielectric surface.

The measuring of the dispersion curves splitted due to the
phonon-ripplon interaction at very low frequencies2 gave us
positive evidence that the Wigner crystal really exists. Here
we predict a strong splitting between the phonon and SP
dispersion curves at higher frequencies, appropriate for the
SP excitation; so measuring the SP spectrum could also give
clear evidence of the existence of the Wigner crystal.

APPENDIX: SP DISPERSION RELATION

In this appendix we shall briefly discuss the dispersion
relation of surface polaritons. Our geometry, discussed in
Sec. II, consists of a thinsoptically actived dielectric layer
with a dielectric constantei, above a perfectly screening me-
tallic substratesem=−`d. Using the geometry shown on Fig.
1, we shall assumeeh=e0=1 svacuumd for the space above
the dielectric.sIf we would take preciselyeh=1.057 for the
He layer, we would obtain much more complicated disper-
sion relations than given below, and without any influence on
the calculated dispersion curves.d Here we are interested in
the modes whose fields are damped above the dielectric layer
z.0, where z=z+dh is the renormalized coordinate. The
polariton eigenmodes18 and dispersion relations20 are
determined by the parametersai

2=k2−eivbk
2 /c2 and

a0
2=k2−e0vbk

2 /c2.

FIG. 4. Wigner crystal on a semiconductor.
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For p polarization,

Apk
b szd = Cp

b 3 5s− ia0k̂ + kẑde−a0z, z. 0

S e0

ei
DFsiaik̂ + kẑd

eaiz

s1 + e−2aidid
+ s− iaik̂ + kẑd

e−aiz

s1 + e2aididG , − di , z, 0.

sid ai
2.0 ssurface modesd:

a0ei

aie0
= − tanhsaidid. sA1d

sii d bi
2=−ai

2.0 sguided modesd:

a0ei

bie0
= tansbidid sA2d

For s polarization,

Ask
b szd = Cs

bsk̂ 3 ẑd

35e−a0z, z. 0

e−ibiz

1 − ei2bidi
+

eibiz

1 − e−i2bidi
, − di , z, 0.

sid ai
2.0 ssurface modesd:

ai

a0
= − tanhsaidid, no solution. sA3d

sii d bi
2=−ai

2.0 sguided modesd:

bi

a0
= − tansbidid. sA4d

To determine the coefficientsCn
b we shall use the theory

developed in Ref. 15, which takes into account both the
space and the frequency dependence of the dielectric con-

stant. The eigenmodes normalization is given by

E dzẽszduAnk
b szdu2 = 1, sA5d

where the renormalized dielectric constant is

ẽszd =
] v2eszd

] v2 .

Obviously, ẽ0=e0=1, and from Eq.s12d:

ẽi = e` + e`

svL
2 − vT

2dvT
2

svT
2 − v2d2 .

Inserting the eigenmodesAnk
b szd into Eq. sA5d we find

uCp
bu−2 =

k2 + a0
2

2a0
+ S e0

ei
D2 ẽi

2ai
hsk2 + ai

2dtanhsaidid + sk2 − ai
2d

3f1 − tanh2saididgaidij, ai
2 . 0

uCp
bu−2 =

k2 + a0
2

2a0
+ S e0

ei
D2 ẽi

2bi
hsk2 − bi

2dtansbidid + sk2 + bi
2d

3f1 + tan2sbididgbidij, bi
2 . 0

uCs
bu−2 =

1

2a0
+

ẽi

2bi
Ha0

bi
+ F1 +Sa0

bi
D2GbidiJ, bi

2 . 0.
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