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Interaction of electromagnetic field with electrons in a Wigner crystal
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The interaction between electrons that form a quasi-two-dimensional crystal, as well as their interaction with
a dielectric/metallic substratémage potential is well understood within the standard theory of Wigner
crystals. Here we analyze the influence of the quantized electromagnetic field on the dynamics of Wigner
electrons, i.e., on the dispersion relation of Wigner phonons. We have found that a significant influence can be
expected from the surface polariton field when the energies of the surface polaritons and Wigner phonons
coincide. Such polaritons can be expected in ionic crystals or doped semiconductors and we have proposed a
geometry that can lead to the detection of a Wigner crystal by measuring the dispersion relation of surface
polaritons.
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I. INTRODUCTION transformation that could define the renormalized frequen-

The Coulomb interaction between electrons at low elecl€S: o . _
tron densities is responsible for the formation of a quasi-two- 'The grncle IS orgam;ed as follows. In Sec. Il we first
dimensional crystal, because electrons have lower energy oBiefly discuss the Hamiltonian of Wigner phonons, without
cillating around the lattice points than in the gas phase. Th@n interaction with external fields. Then we analyze the ap-
energy difference is very small, therefore a crystal such agropriate Hamlltpman o_f the electromagneuc field gnd .the
this is stable only at very low temperatures. Its existence waBhoton-phonon interaction. Next, the ripplon Hamiltonian
theoretically predicted by Wignédrput experimental prepa- and the phonon-ripplon coupling are added. Finally, the di-
ration was(and still remaing a rather tedious task mainly agonalization of the total Hamiltonian leads to the required
because one has to prevent dissolution of Wigner electronf®'m of the renormalized phonon eigenfrequencies. The re-
into the substrate. The crystal was observed for the first im&ults are discussed in Sec. Ill, and the conclusion is given in
by Grimes and Adam3who trapped electrons on a liquid He Se€c- V.
layer, which has an energy gap at the typical energies of
Wigner electrons. The explanation of the excitation spectrum Il. EIGENMODES OF A WIGNER CRYSTAL

was given by Fisheet al® and it includes the interaction i ,
between phonons of a Wigner lattice and capillary waves | he Properties of a Wigner crystal are usually analyzed by

(ripplong of a He substrate. This interaction becomes sig2king into account the Coulomb interaction among crystal
nificant at very low phonon energies and small wave vector€lectrons; possibly adding the influence of the image poten-
involved in the experimert. tial dge to the metallic _substra'fd-.lere we wish to c_ietermlne_
There is an obvious question: Do Wigner phonons followthe elgeanQes of ngner electrons that also interact _W|th
the unperturbed, well known dispersion relation at higherphOtO” and ripplon fields. Let us start to analyze those fields
frequencies and wave vectors, or should one take into a@"€ by one, and then add the interaction.
count yet another interaction? A promising candidate would
be the electron-photon interaction. But here we are not inter- A. Wigner crystal
ested in a “direct” interaction, i.e., the excitation of a single
electron in some higher perpendicular sfatBather we
would like to analyze the interaction of Wigner phonons with
the electromagnetic field and discuss the possible change in Hwig=Hosc* (Eim) + (Weo - (1)
the corresponding phonon and photon dispersion relations. . I i
is well known that the standard photon-phonon interactiorl'tlos_C describes theparallel oscillation of Wigner electron_s
dominantly involves only small phonon wave vectors. How-'Vigner phonons (E;) represents the averaged perpendicu-
ever, in the case of a Wigner crystal, one should take intéar kinetic energy as well as the averaged mteractl(_)n of each
account also the interaction between phonons and surfa@ectron with the substratémage potential and{Weo is the
polaritons(SP’s, which are the coupled modes of the elec- ayeraged interaction between electrons at their regular lateral
tromagnetic field and the charged particles in the dielectri$!t€s. _ _
(metallic) substrate. The SP dispersion relation is similar in The averaged values are obtained by using the perpen-
shape to the phonon dispersion relation so if they eventuall?'cmar wave function that describes electrons in their per-
fall in the same energy range, we could expect a strong inPendicular ground stafe,
teraction between these excitations. In order to have a com-
plete theory, we shall also include the interaction with rip-
plons. In such an approach, we need a quantized form of theith the damping parametex=3/2z,, and 7, is the mean
phonon, polariton, and ripplon fields and the appropriatgperpendicular position of electrons above the substrate.

The Hamiltonian of a Wigner crystal above a flaguid
He) surface can be put in the fofm

u(z) =2a%%ze® z>0 (2
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Here we are interested in the dynamics of the Wignerielectric. Using that model, we can put the Hamiltonian of a
crystal, given b$’ photon field in a dispersive dielectric medigsually called a
polariton field) in a diagonal formt®
Hose= 2 0, (DL, + 3). 3 .
K Hopn= > ﬁwﬁk(aﬁ:rafk +3). (6)

Qfm are the eigenfrequencies of Wigner phonons, determined e

by the two-dimensional phonon wave vectofrom the first
Brillouin zone, and the polarization that can be either lon-
gitudinal (L) or transversé€T). bfm andb,, are the standard The interaction between the electromagnetic field and the
creation and annihilation operators of phonons, respectivelglectrons of a Wigner lattice at positioms and with mo-

We assume that Wigner electrons form a quasi-twoimentap, is described in a standard way:
dimensional hexagonériangulay lattice with the reciprocal
lattice vectorG. The primitive lattice vector in the reciprocal
space is given bgy=4m/13ry andr, is the lattice constant
related to the surface electron density iy 2/y3r3. Other
reciprocal vectors can be calculated from

C. Electron-photon interaction

Hine =Hpat Haa,

Hon= = 2o (A ™)

Gmn=goVnP+n°-mn  {mn}=0,+1,+2,+3,.,

e
The existence of a Wigner crystal is predicted from the Haa= WE (A(r) -Ary)), (8)
first principle$ as well as from the model calculatiénat J

ro>40 A, although some recent theories allow it even atwhere() means that we have to take the average with the
higher densitie$? Here we are interested in a high-density perpendicular electron wave functioiz), Eq. (2). We shall
region (ro=50 A) since at these densities the phonon fre-aiso assume that the vector potential is taken at the regular
quencies are comparable with the SP spectrum. Notice th@iteral position of Wigner electronp?, ie. rj:p?+22 (di-
relevant experiments to date were done at lower electropole approximation

densities**"*?Also notice that at very low electron densities  The two-photon processes are describedHiy, Eq. (8),

a square lattice can be more favorable than the hexagonglich, after inserting the expansidd), becomes:
lattice 13

e’n
Haa= ﬁE > X {pdpi AL + al AT (2]
B. Photons " BB kG
Let us briefly discuss the electromagnetic field in a dis- X[afikafikf(z) +af|;,TAféf(z)]>,

persive dielectric media with a planar symmetry, so that each
layer | is described by a dielectric functiog. The vector wherek’=k+G’.

potential takes a standard forh®® The electron momentum; can be divided into paralleﬂ‘j‘

1 and perpendiculap]-L components. We find

A(r) = ?E (alAB (a8 + AL, (a8 Jekr.  (4) Ly —

\"Asvkﬁ P <pJ > 0,
Here As denotes the normalization surface, ahi$ the nor- | 1 . for g
malization parameter: (pj) = ?E (= 1) 7l e = bl JE, 871,

\"As,lLK
La =cVhlwpgy. wheree,,. is the unit polarization vector, and

The time dependence is implicitly assumed, i.e., the polar- N
iton annihilation operator?, oscillates in time with the Myuse = VRHY,J2.
eigenfrequencyo . Now the HamiltoniarH 5, Eq. (7), can be put in the form

The eigenmodes of the vector potentdf (2) are deter-
mined by the two-dimensional wave vectoy the “perpen-
dicular wave vector’s, defined ags?=ew3,/c?>~k?, and by
the polarizationv, which can be eithep (in the plane of .
incidence or s (in the direction perpendicular to the plane of +e,,- AL (e Db, .~ b, .
incidence. The eigenfrequenciesg, are determined by the
eigenequation

. e ’f_ *
Hpa= |_2 E \ ns%éﬁk([eﬂk : A'fk(z)agk
mCMV k.B

The summations extend over all perpendicyj@r and par-
allel wave vectork=x+G as well as over the phonamp)
s D P o and the photorgv) polarizations.
VXV XA P~ ?ewﬁkAvk(z)e ?=0. (9 Let us divide the vector potential into the perpendicular
partA+ (with the perpendicular component pfpolarization
Let us assume that=e(wg) is a real, Lorentz-type dielectric »=p,) and the lateral paA" (with the parallel polarizations
function of a medium, or it takes a constant value for an inerv={s, p}):
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Afk(z) = Afki(z) + A’fﬂ(z). 9 Fue= > §5k(AﬁkYﬁk - Aﬁ—kzﬁk)'
BG

Now we shall assume that the longitudinal polarizatjon

=L of phonons takes the same directiox) as the parallel  After the straightforward calculation the above-mentioned

component op-polarized photons, for all wave vectaks(it  equations can be combined to give the dispersion relation for

is strictly correct for k<go). Therefore theT-polarized  the renormalized phonon frequencies:

phonons are assumed to propagate in the same direction as

the s-polarized photons, and we can write en Qph2

QP2 )02 = g7——= (AL 23, (11
m m m BG Qzl;z - wék #

€ AL =AR (D)8,

From now on we shall neglect the influence of the perpen- To calculate the electromagnetic field acting on Wigner
dicular componena* on the(latera) phonon frequencies of electrons we have to define the properties of a medium that
the Wigner lattice, which shall be stressed by using the samg-PPOrts Wigner crystal. In a standard model, we assume that

polarization indexx=(L,T) for both phonon and photon a Wigner crystal is formed above a liquid He layer which is
deposited on a dielectric or metallic substrate. The electro-

modes. o T
The Hamiltonian HP. that includes photons, Wigner magnetic f'EId_ Qbove the H_e surface, i.e., in the V%szm
phonons, and their interaction, =1), can be divided according to the paramq%t:wfk/c
-k3, into the radiative(ﬂ§>0) and the surfacgB;<0)
HPD = Higeet Hon* Hint, (100 modes. Obviously, the radiative modes are real photons that

could be involved, e.g., in the excitation of Wigner electrons,
can be diagonalized with the generalized Hopfiledbut they do not change Wigner phonon frequencies. If one

transformatiori®” tries to apply Eq(11) to radiative modes, the right-hand side
will diverge, which makes the whole procedure meaningless.
Qe = Uy + U,mbLK + [Yﬁkaﬁk + zﬁkaﬁu, The _sur_face modes have exponentiglly damped _electro-
BG magnetic field above the He surface, with the damping pa-

. B> 5
rameterag=-i BO:\,'kZ—wfgk/cz. Those modes are the result

where the summation extends over all perpendicular wavgs the dynamics of ions in ionic crystal or conducting elec-
vectors and over allG components of the parallel wave yons in metals, where the electromagnetic field is coupled
vectork=«+G. The new operatod,, involves four param- yith such oscillations into theurface polaritonsLiquid He
eters(u,v,Z,Y) which should be determined by the follow- s not a polar medium and it can be described as an inert
Ing requirement: dielectric of a thicknesdl,, with a dielectric constangy,
oh1_ 7 ph =1.057. SP modes are therefore supported by the substrate
(A Hosd = A below the He layer, and they will influence the Wigner elec-
whereQzh is the renormalized phonon frequency due to thetrons_ only if the effective distance of a _ngner crysta
¢ . . . . +dp) is not much larger than the attenuation paramete1/
phonon-photon interaction. This requirement leads us to the To be specific. let that the He | ith
four equations: _ pecific, let us assume that the He layer with a
Wigner crystal on it, is supported by a thin dielectric film of
a thicknesgl,, deposited on a semi-infinite met#dig. 1). For

e — . e ; .
h(QZﬂL—QﬁK)uM= —VNs7, € * Fses the ionic crystal we shall take the standard dielectric func-
mc tion:
. e — . = w?
QD0+ Q)0 e = = 1= N7 800 Fure 6(0) = e.—~——, (12)
mc T~ w2

oh BB e — . P with @ and w7 being the longitudinal and the transverse
(Ve = D) Y == eV NS s ke AL (U + 040 frequency of the crystal, respectively. The dielectric function
€, Of the metallic substrate can be taken in the same form,

e’ng P with the usual replacemends;— 0 and w, — wp, Wherewp
+ mczfﬁkAuk “F e is the frequency of the electronic plasma in the metal. How-
ever, we are interested in the Wigner phonons whose fre-
guencies are much lower than, So we can assume that the
h __. & = metallic plate perfectly screens the electromagnetic field
ﬁ(Qfm + wﬁk)zﬁk =" 'R\‘ 5716 pcCpusc 'Aﬁ*—k(uuk U (em— —oc)F_) P Y J
o From Eg.(5) we find the vector potential of SP eigen-
+ —nsg’,;kA’Bk F e modes above the ionic crystal:
mc .
. - LR 15 A
where we have introduced Af(2) = Ch(—iagk + kz)e 02,
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z Here we are particularly interested in high frequencies at
_______ €° which Eq.(14) takes a simple form:
i Ofe ~ Qi+ QP (15)
0
e g where
dp2 _ 1 2
07 =22 Vil (16)
E| dl
is a frequency of an electron in a static dimple. It shows a
very small dispersion so it can be well approximatecﬂ:g?.
8m
E. Renormalized Wigner phonon frequencies

FIG. 1. Geometry of the model. Obviously, the two equationd1) and(14) have the same
form so we can combine them in order to obtain the disper-
. sion relation for the Wigner phonos that includes the inter-
Ak (2) = CB(k x 2)g 0ldn*?), action with the He substrate as well as the interaction with

The SP eigenfrequencies as well as the normalization cor¥Ije electromagnetic field:

stantsC? and C? are determined in the Appendix. After av- en 1 02
p (S
eraging with the functionu(z), Eq. (2), we find the matrix Q,ZLK‘Q%(: ?52 §|Uk|zﬁ
elements that determine the renormalized phonon frequen- ¢ e Tk
cies in Eq.(11): 02
) + 2 AmAL P (1)
1 ap, = B k'~ Wpk
<|Aﬁk(z)|2>= |Cﬁ|2e—2a0dh 3{ 0 MEP (13) . Iz | B -
(l+aga)* (1, w=s. where we have introduced the renormalized phonon-ripplon
interaction:
D. Ripplons 1
[ m /
Capillary waves of a liquid He surfac&ipplons) also U= @Vk= —ezf(k)e_w(k)-
interact with the vibrations of the Wigner lattice. Free rip- s @
plons have a dispersion relation:
2 ak3 Ill. RESULTS AND DISCUSSION
Wy = —K7,
p We are now able to analyze the influence of the photons
wherea andp are the surface tension and the density of theand ripplons on the frequencies of Wigner phonons. The in-
liquid He. fluence of the ripplons at low frequenci&mlowﬂ?j’) is well

Due to the interaction with the liquid He substrate, theknowr? so we shall be more interested in the influence of the

eigenfrequencies of the Wigner phonafi§, are renormal- Photon spectrum, which becomes important at higher fre-

ized and the new frequenci€kP. are determined frof quencies. Let us first analyze the possible influence of the
" metallic substrate. The typical frequency of SP in metals is

OP2_ 02 = }2 Q2 VL2 (14 wp/\2. Usually we findwp> 1 eV so the typical SP frequen-
pre Tl 9 Q;f'f_ wﬁ ki< cies are much higher than the frequency spectrum of Wigner
phonons, which lies below 0.1 eV. It means that one cannot
where again we have used the notaticr+G. In the long-  expect a significant influence of the metal polaritons on the
wavelength limit(x<g,) one can approximate~G. The  Wigner phonons, or vice versa. Obviously, the promising

interaction matrix element is given by setup would be to put a thin dielectric layer with well defined
optical phonongionic crysta), to support Wigner electrons.
vV, = &f K)e (k) The SP in ionic crystals have the frequency spectrum be-
k — ( )e ’ . .
Ma tween the transverse; and the longitudinaty, frequency,

and they typically lie below 0.1 eV. It means that one can
expect a “crossing” between the polariton and phonon dis-
persion curves, that could cause their significant change. For
the experimental reasons, one usually puts a thin liquid He
1(e=1) ,, (1 layer below the Wigner crystal in order to prevent the pen-
f(k) =eE, (z) + 8(er 1) In ) etration of Wigner electrons into the substrate. Therefore, our

€h % setup, as shown on Fig. 1, consists of Wigner crystal, inert
E, represents the perpendicular component of the electridielectric layer(liquid He), optically active dielectric layer,
field acting on the Wigner electroi. and metallic substratéhe electrodg

whereW(k) is the Debye-Waller factor of a Wigner lattice,
andf(k) is the effective force acting on Wigner electrons on
the He substratg!
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FIG. 2. Dispersion relation of free fields. FIG. 3. Dispersion relation of coupled fields.

Let us first analyze the dispersion relations for free surw={3.799980,3.799998,3.79999910°2 eV. The dielectric
face polaritons, ripplons, and Wigner phonons, as shown ononstant at those frequencies becomes very laege 6.6
Fig. 2. The SP curve is calculated from E41) given inthe X 10P), so the interaction between the Wigner phonon and

Appendix. We took LiF as a dielectric layer, wi#,=1.9,  guided modes is quite negligible, as well as the splitting
w1=0.038 eV, 0 =0.083 eV. The layers’ thickness &, caused by this interaction.

=100 A, d;=100 A, and the lattice parameter i§=50 A The dispersion relatiofA2) enables yet one class of
(9o=0.145 A™%). The self-consistent result for the mean per-guided modes, with frequencies abowg. However, these
pendicular position of Wigner electronszg=6 A. frequencies are much higher than the phonon frequencies,

The SP mode is “connected” to the active-dielectric—inertand e.g., atx=0.01g, the lowest allowed frequency i®
dielectric interfacdz=-d,) and its asymptotic frequency fol- =2.856 eV, so these modes also could not influence the pho-
lows from (¢ +¢€,)=0. There is only g-polarized SP mode, non spectrum.
so here we analyze only longitudinal Wigner phonons. Note Let us now apply our theory to the model of a Wigner
that only those phonons also strongly interact with ripplonscrystal above a semiconductor plate. Having in mind the pre-
The guided modes, which electromagnetic field is exponenvious discussion, we shall calculate the interaction of the
tially damped into the vacuum but oscillates within the ioniclongitudinal Wigner phonon with th@-polarized SP mode
crystal, are also shown. THe, ) plane is taken to give the only. By doping the semiconductor one can vary the density
best view of the crossing between the phonon and SP curved, of carriers and therefore their plasma frequenoy
so the photon curvéw=«c) looks almost parallel to thg =47N€&?/m,, wherem, is the effective carrier mass. Within
axes and the ripplon cunjghe frequencyu'?f, Eq. (16), is  the Drude model, one can describe the interaction of the
showr is almost parallel to the axes. The photon and po- carriers with the electromagnetic field using the dielectric
lariton curves are very close at small wave vectors. In factfunction (12) and settingwr=0 and w?=wdl€,, Wheree,
the SP curve starts witkt=wr/c and suddenly leaves the represents the influence of the dielectficThe problem is
photon curve roughly ak, =w, /c. It can be better seen in that one usually cannot neglect losses in a semiconductor and
Fig. 3, where the polariton and the phonon curves are showthey are described by an imaginary part ©f Since our
for the interacting system. In comparison with Fig. 2, onetheory is developed for rea] the following results will show
can observe two main changés:due to the interaction with some general features of the Wigner-phonon—SP interaction
ripplons, the phonon curve starts from the frequeng§, in ~ more in a qualitative way.
agreement with Eq15); (i) due to the interaction with sur- In that sense, we shall calculate the frequencies of a
face polariton, a strong splitting occurs between the phonoVigner crystal in a vacuum(e,=1) from the Bonsall-
and SP curves around the crossing point, as expected. Thidaradudin modef,neglecting the influence of the image po-
splitting could be clear evidence of existence of the Wigneitential from the substrate and the perpendicular delocaliza-
lattice. tion of Wigner electrons. The two-dimensional crystal is

Obviously, the phonon curve also crosses the guide@btained in our model by setting(z)=48(2), i.e., a—= or
modes curves. These modes are shown on Fig. 2 as a straighht— 0, Eq. (2). We shall take again the lattice parametgr
line at the frequencywr=0.038 eV. In fact, these modes =50 A so that we can compare Fig. 4 with Figs. 2 and 3. The
[determined by Eq(A2) in the Appendiy, start beloww;  comparison, as expected, shows only a small difference be-
and there is an infinite number of them between thetween the phonon curvésThe SP curves are determined for
starting frequency andy. But all their frequencies are very ad,=100 A thick Si layer(e,,.=11.7, deposited on a metallic
close to wy and, e.g., even at small wave vector substrate. We have chosen three characteristic frequencies
x=0.01g,, we find for the three lowest frequencies: w, shown in Fig. 4. The asymptotic SP frequencies
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0.10 - @ =0.10eV IV. CONCLUSION

0.09 In this article we have analyzed the interaction between

electrons in the Wigner crystal, surface polaritons, and rip-
plons, where SP’s represent the interaction of the electro-
magnetic field with optical phonons or plasmons in a dielec-
tric media. All those interactions are put together to give the
dispersion relation of the phonons in the Wigner lattice.
There is a significant energy gap between the high-frequency
[ SP and low-frequency ripplon spectrum, so they can be ana-
lyzed separately. The phonon-ripplon interaction is well
known, so here we concentrated on higher phonon energies
that include the phonon-polariton interaction. Since the ener-
03 o4 05 o8 gies of the conducting electrons in metallic substrate are
¥ much higher than the energies of the electrons in a Wigner
crystal, we have taken a thin dielectric layer which optically
FIG. 4. Wigner crystal on a semiconductor. active modes have the same frequency range as the Wigner
phonons, and put it above a metallic substfate electrodg
First, we have taken an ionic crystal with well-defined
(k>k,) are determined a®§:[em/(ex+l)]wf. In semicon- optical phonons and calculated the renormalized Wigner
ductors we have typically,,> 1, which givesw,~ w,. Since  phonon frequencies by taking into account the contribution
the Wigner-phonon-SP interaction is important onlykat from all polariton modes. It turns out that the only significant
>k, i.e., atwfszwa. we can say that the curves shown in interaction occurs between longitudinal Wigner phonons and
Fig. 4 should be typical for many semiconductors with theP-polarized surface polaritons. As another example, we have
given frequencieso, . put Wigner electrons above a doped semiconductor layer and
The interaction of the SP mode with the Wigner crystal, atuned doped carriers to obtain plasmon frequencies compa-
a distanced,=100 A above the Si layer, is shown in Fig. 4 rable with frequencies of longitudinal Wigner phonons. By
by dashed curves. A, =0.1 eV there is no crossing be- determining the splitting between the renormalized SP and
tween the SP and phonon curves, so the interaction is quiféhonon curves, we have shown that this splitting can be sig-
negligible. At w =0.085 eV there are two crossing points, nificantly increased by decreasing either the plasmon fre-
but the interaction is significant only in the vicinity of the duency or the distance between the Wigner crystal and the
first crossing point at smaller wave vecter because the dielectric surface.
interaction matrix element(13) becomes exponentially ~ The measuring of the dispersion curves splitted due to the
damped for large x. At lower SP frequencies(w,  Phonon-ripplon interaction at very low frequencigmve us
=0.060 eV}, the crossing occurs even at lower wave vectord0sitive evidence that the Wigner crystal really exists. Here
so the splitting between the SP and phonon curves becom#é Predict a strong splitting between the phonon and SP
more pronounced. Obviously, the interaction between th&liSpersion curves at higher frequencies, appropriate for the
surface polaritons and Wigner phonons should increase witRP €xcitation; so measuring the SP spectrum could also give
the decreasing distance between the Wigner electrons and thi€ar evidence of the existence of the Wigner crystal.
dielectric. Dotted lines on Fig. 4 show very large splitting in
the case when this distance is reduced to 20 A.
Let us add two additional remarks(i) By setting APPENDIX: SP DISPERSION RELATION
en=—> we have neglected SP field connected with the dy-
namics of conducting electrons in the metallic substrate. It In this appendix we shall briefly discuss the dispersion
can be included by taking a more realistic form of a metallicrelation of surface polaritons. Our geometry, discussed in
dielectric constant, e.ge,mzl—wﬁlwz, as discussed in Sec. Sec. Il, consists of a thifioptically active dielectric layer
[I C. This will bring two new SP modes associated with thewith a dielectric constang;, above a perfectly screening me-
metallic-dielectric interface, with the asymptotic frequenciestallic substratg e,,=—). Using the geometry shown on Fig.
determined frone + €,,)=0. As expected, these modes inter- 1, we shall assume;,=€,=1 (vacuunm for the space above
act very weakly with the Wigner phonons, so the dispersiorthe dielectric.(If we would take precisely,=1.057 for the
relation shown on Figs. 3 and 4 remains unchangedWe  He layer, we would obtain much more complicated disper-
did not discuss the influence of tgolarized modes on the sion relations than given below, and without any influence on
transverse Wigner phonon. The reason is that there is nthe calculated dispersion curvesiere we are interested in
s-polarized SP moddgsee Eq(A3) in the Appendi¥, while  the modes whose fields are damped above the dielectric layer
the interaction ofs-polarized guided modes, E@A4), with  z>0, wherez=z+d, is the renormalized coordinate. The
the transverse Wigner phonon is negligible. This means thatolariton eigenmodé® and dispersion relatiods are
the dispersion of the transverse Wigner phonon is not afdetermined by the parameters;>1i2=k2—eiwzklc2 and
fected by the polariton field. af=K?~ w5,/ 2.

0.08 = 0.0850V

0.07 4

® (eV)

0.06 = 0.060eV

0.05

0.04 4
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For p polarization,

(= iagk + k2)e™a?,

AR =Cp X (@> {(iai& +12)

€

Qi Z

(i) @?>0 (surface modes

208 - _ tanKad,). (A1)
Qi€
(i) B2=-a?>0 (guided modes
€
—= = tan(Bd) (A2)
Bieo
For s polarization,
AL (@) =CE(k x 2)
e—DzOZ’ 2 > 0
X e—i,Biz ei,Biz _
1 —el26id * 1—gi2hd’ ¢ <z<0.
(i) @?>0 (surface modes
- tanh«;d;), no solution. (A3)
Qo
(i) B2=-a?>0 (guided modes
Bi- argd). (Ad)
Qg

To determine the coefficien8” we shall use the theory
developed in Ref. 15, which takes into account both the |cB|2=
space and the frequency dependence of the dielectric con- ' °

_— +
(1 + e—2aidi)
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z>0

—;Z

(— ia’ik + kZ)m

] -d;<z<0.

stant. The eigenmodes normalization is given by

f dZe(2)|AL (2= 1, (A5)

where the renormalized dielectric constant is

J w’e(2)
d w?

€(2) =

Obviously,¢p=€,=1, and from Eq(12):
- (wf - ool
§=€te 5 55
(w'r - )
Inserting the eigenmodetsfk(Z) into Eq. (A5) we find
k2+ 2 2~
CH2==——"0+ (ﬁ) (K + adtanhad) + (K - a?)
P Zao € 2ai
X[1 - tant(e;d)]ed}, >0

2+ ol <e>2z
Bl-2 — 0, (S0} S r2_ 2 d 24 32
cp 2= | 2] S0 Bar(pd) + (6 + )

x[1+taf(Bd)]Bd}, B7>0

1, %] @)2] I
2ao+2ﬁi{5i+[l+<ﬁi Bldl}’ A=0.
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