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We determine the collective excitations spectrum and discuss the numerical results for a parabolically
confined density modulated quasi-one-dimensional electron gas in the presence of an external magnetic field.
We derive the inter- and intra-band magnetoplasmon spectrum within the self-consistent-field approach. In this
work we focus on magnetoplasmon oscillations in this system and as such results are presented for the
intra-Landau-band magnetoplasmon spectrum that exhibits oscillatory behavior, these oscillations are not with
constant period in 1/B and are significantly effected at lowB and corresponding high 1/B.
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I. COLLECTIVE EXCITATION SPECTRUM OF DENSITY
MODULATED ONE-DIMENSIONAL ELECTRON

GAS (DM1DEG)

In the last couple of decades or so remarkable progress
has been made in epitaxial crystal growth techniques which
have made possible the fabrication of semiconductor hetero-
structures. These modern microstructuring techniques can be
used to laterally confine quasi-two-dimensional electron gas
s2DEGd in, e.g., GaAs/AlGaAs heterostructure on a submi-
crometer scale to quasi-one-dimensional structuressquantum
wiresd or quasi-zero-dimensional quantum dots. The system
that we are considering in the present work can be realized
by various methods, e.g., the application of a laterally micro-
structured gate electrode and the holographic illumination
technique which allow for a tunable periodic density modu-
lation of the quasi-one-dimensional electron gas.

There have been a number of approaches to study collec-
tive excitations spectrum of a quasi-two- and one-
dimensional electron gass1DEGd systems theoretically1–9

and experimentally.10–14 We extend the theoretical work by
calculating the inter- and intra-Landau band magnetoplas-
mon spectrum of a density modulated quasi-one-dimensional
electron gassDM1DEGd in the presence of a perpendicular
magnetic field using the self-consistent-fieldsSCFd approach
and focus on the oscillatory behavior of the intra-Landau
band magnetoplasmons. In this context, the term “1D”
means that we start with the original 2DEG inx-y plane. We
apply a confining potential in thex direction leaving they
direction free. A magnetic field is applied along thez direc-
tion perpendicular to thex-y plane of the original 2DEG. The
collective particle energy spectrum,Eijskyd="2ky

2/2m* + Ex
i

consists of energetically separated 1D subbands formed due
to lateral confining potential along thex direction. The elec-
tron wave vectorky characterizes the free motion in they
direction.

The effect of density modulation is to broaden the Landau
levels into minibands whose width oscillates as a function of
the magnetic field strength. The electronic states are thus
substantially altered, resulting in modulated density of states,
as shown by magnetocapacitance measurements13,14 of the
quasi-two-dimensional systems. Behavior akin to this is ex-

pected for the quasi-one-dimensional system under consider-
ation. The density of states affects many response and trans-
port phenomena as well as thermodynamic properties. Of
these, one of the most important properties is the collective
excitation spectrum and we evaluate the dynamic, nonlocal
dielectric response function to study it. As we show in our
work for a quasi-one-dimensional system, magnetoplasma
spectrum significantly exhibits modulation of the electronic
density-of-states as oscillating magnetoplasma frequencies.
As we discuss in detail, this result is obtained in the regime
of weak modulation and long wavelength thus we do not find
this result discussed in Ref. 9. Another condition for the
observation of these oscillations is that the coupling between
intra-Landau band mode and inter-Landau band mode must
be small. Mixing of these modes can be minimized by con-
trolling the degree of density modulation and by applying an
appropriate magnetic field and confinement potential.

II. FORMULATION

Our system is a density modulated quasi-one dimensional
electron gassDM1DEGd built on a two-dimensional electron
gass2DEGd by inducing another effective confining potential
1
2sm* v0

2x2d along thex direction which is assumed to be
parabolic. The magnetic field is perpendicular to thex-y
plane in which electrons with unmodulated areal densitynD,
effective massm*, and charge −e are confined. We employ
the Landau gauge and write the vector potential asA
=s0,Bx,0d. The two-dimensional Schrödinger equation with
parabolic confining potential in the Landau gauge iss"=c
=1 hered

H0 =
1

2m*
F−

]2

]x2 + S− i
]

]y
+

e

c
BxD2G +

1

2
sm* v0

2x2d.

s1d

Since the Hamiltonian does not depend on they coordinate,
the unperturbed wave functions are plane waves in they
direction. This allows us to write for the wave functions,
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fnky
sx̄d =

1
ÎLy

eikyyunkysxd, s2d

with Ly being a normalization length in they direction andx̄
a 2D position vector on thex-y plane. Substitution of the
above form of the wave function into Eq.s1d, yields

H0 = −
1

2m*

]2

]x2 +
1

2
m* V0

2sx − x0d2 +
ky

2

2m* sBd
, s3d

with sV0
2=vc

2+v0
2, l2sBd= l2vc

2/V0
2d, wherevc=eB/m* is the

cyclotron frequency,x0=−l2sBdky=−vcky/m* V0
2, is the co-

ordinate of cyclotron orbit center andlsBd is the mag-
netic length,m* sBd=m* sV0

2/v0
2d is the normalized effect-

ive mass. In thex direction, the Hamiltonian has the
form of a harmonic oscillator Hamiltonian. Hence we
can write the unmodulated eigenstates in the form
fnky

sx̄d=1/ÎLye
ikyyunkysx;x0d, with unkysx;x0d=sÎp2nn! ld−1/2

3expf−1/2l2sx−x0d2gHnsx−x0/ ld, where unkysx;x0d is a nor-
malized harmonic oscillator wave function centered atx0 and
Hnsxd are Hermite polynomials15 with n the Landau level
quantum number. The energy ofnth Landau levelsunper-
turbed HamiltonianH0d is

«n
s0d = sn + 1/2dV0 +

ky
2

2m* sBd
. s4d

In the presence of modulation, the Hamiltonian is augmented
by the termH8=V0 cosss2p /adxd, whereV0 is the amplitude
of the modulation and is about an order of magnitude smaller
than Fermi energysV0/«Fd. Due to the smallness ofV0 we
employ first ordersin H8d perturbation theory in the evalua-
tion of the energy eigenvalues using the unperturbed wave
functions. The correction to the unperturbed eigenenergies
with a new variabley=x−x0/ l, is given by

«n
s1d =

2V0

Îp2nn!
cosS2p

a
x0DE

0

a

dy exps− y2d

3fHnsydg2cosS2p

a
lyD .

The integral in above equation is given by
Gradshteyn-Ryzhik16 spage 841, No. 7.388.5d; and the result
is

«n
s1d = Vn cosS2p

a
x0D , s5d

where Vn=V0 exps−X/2dLnsXd ,X=s2p /ad2vc/2m* V0
2, and

Lnsxd is a Laguerre polynomial. By combining Eqs.s4d and
s5d we write, for the energy eigenvalues to first order inH8

«sn,x0d = sn + 1/2dV0 +
ky

2

2m* sBd
+ Vn cosS2p

a
x0D . s6d

The above equation shows that the formerly sharp Landau
levels, Eq.s4d, are now broadened into minibands by the
modulation potential. Furthermore, the Landau bandwidth

s̃ uVnud oscillate as a function ofn, sinceLnsXd is an oscilla-
tory function of its index.15

III. DENSITY-DENSITY CORRELATION FUNCTION OF A
DM1DEG IN A MAGNETIC FIELD

The dynamic and static response properties of an electron
system are all embodied in the structure of the density-
density correlation function. We employ the Ehrenreich-
Cohen self-consistent-fieldsSCFd approach17 to calculate the
density-density correlation function. The SCF treatment pre-
sented here is by its nature a high density approximation
which has been successful in the study of collective excita-
tions in lower-dimensional systems such as planar semicon-
ductor superlattices18 and quantum wire structures,5,12,19both
with and without an applied magnetic field. Such success has
been convincingly attested by the excellent agreement of
SCF predictions of plasmon spectra with experiments.

Following the SCF approach, the density response of
electrons due to a perturbing potential is given by

dnsx̄0,z0;td = o
aa8

fs«a8d − fs«ad

«a8 − «a + v + ih
kauVsx̄,z;vdua8l

3 ka8udsx̄ − x̄0ddsz− z0dual, s7d

whereVsx̄,z;vd is the self-consistent potential anda stands
for the quantum numbersn andky. Fourier transforming on
the x-y plane we obtain the induced particle density

dnsq̄,z0;vd =
1

A
dszdVsq̄,z= 0;vdo

aa8

fs«a8d − fs«ad

«a8 − «a + v + ih

3 ukaI 8ue−iq̄.x̄uaI lu2,

whereA denotes the area of the system. We can perform the
ky8 sum in the above equation to obtain

dnsq̄,z;vd =
1

A
dszdVsq̄,z= 0;vd 3 o

n,n8,ky

Cnn8

3S q̄2vc

2m* V0
2D ff«sn8,ky − qydg − ff«sn,kydg

«sn8,ky − qyd − «sn,kyd + v + ih
.

s8d

Writing the induced particle density asdnsq̄,z;vd
=dnsq̄,vddszd, allows us to rewrite Eq.s8d as dnsq̄,vd
=Vsq̄,vdP0sq̄,vd: where Vsq̄,vd=Vsq̄,z=0;vd and
P0sq̄,vd is the density-density correlation function of the
noninteracting electron system, given by

P0sq̄,vd =
1

A
o
n,n8

o
ky

Cnn8S q̄2vc

2m* V0
2D

3
ff«sn8,ky − qydg − ff«sn,kydg

«sn8,ky − qyd − «sn,kyd + v + ih
, s9d

where

Cnn8sxd =
n2!

n18!
e−xxn1−n2fLn2

n1−n2sxdg2

with n1=maxsn,n8d, n2=minsn,n8d, andLn8sxd an associated
Laguerre polynomial. The induced potentialVind is related to
the density responsedn by Poisson’s equation
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¹2Vindsx̄,z;td = −
4pe2

k
dnsx̄,z;td, s10d

where k is the background dielectric constant. The above
equation can be solved to yield

Vindsq̄,vd =
2pe2

kq̄
dnsq̄,vd. s11d

Recalling that the self-consistent potential,Vsq̄,vd
=Vextsq̄,vd+Vindsq̄,vd, is the sum of the external and in-
duced potentials, multiplying both sides byPsq̄,vd and solv-
ing for dnsq̄,vd yields

dnsq̄,vd = Psq̄,vdVextsq̄,vd, s12d

where

Psq̄,vd =
P0sq̄,vd

1 − vcsq̄dP0sq̄,vd
s13d

is the density-density correlation function of the interacting
system with vcsq̄d=2pe2/kq̄ the 2D Coulomb potential.
Making use of the transformationky→−ky with the fact that
«sn,kyd is an even function ofky, and at the same time inter-
changingn↔n8 we write for the noninteracting density-
density correlation function Eq.s8d

P0sq̄,vd =
m* V0

2

pavc
o Cnn8S q̄2vc

2m* V0
2DE

0

a

dx0hff«sn,x0 + x08dg

− ff«sn8,x0dgj 3 f«sn,x0 + x08d − «sn8,x0d + v

+ ihg−1. s14d

In writing the above equation we converted theky sum into
an integral overx0. fsEd is the Fermi-Dirac distribution func-
tion, x0=−kyvc/m* V0

2 andx08=−qyvc/m* V0
2.

The above Eqs.s13d ands14d will be the starting point of
our examination of the inter- and intra-Landau band plas-
mons. The form of the expressions for the real and imaginary
part of the density-density correlation function makes the
even and oddsin frequencyvd properties of these functions
very apparent. These functions are the essential ingredients
for theoretical considerations of such diverse problems as
high frequency and steady state transport, static and dynamic
screening, and correlation phenomena.

The plasma modes are readily furnished by the singulari-
ties of the functionPsq̄,vd, from the roots of the longitudi-
nal plasmon dispersion relation obtained from Eq.s13d as

1 − vcsq̄dReP0sq̄,vd = 0 s15d

along with the condition ImP0sq̄,vd=0 to ensure long-lived
excitations. The roots of Eq.s15d give the plasma modes of
the system.

1 =
2pe2

kq̄

m* V0
2

pavc
o
n,n8

Cnn8S q̄2vc

2m* V0
2DfIsvd + Is− vdg,

s16d

with

Isvd = PE
0

a

dx0
ff«sn,x0dg

+ v − «sn,x0d + «sn8,x0 + x08d
,

whereP is the principal value.
The plasma modes originate from two kinds of electronic

transitions, those involving different Landau bandssinter-
Landau band plasmonsd and those within a single Landau
bandsintra-Landau band plasmonsd. Inter-Landau band plas-
mons involve the local 1D magnetoplasma mode and the
Bernstein-like plasma resonances,20 all of which involve ex-
citation frequencies greater than the Landau-band separation
s,V0d. On the other hand, intra-Landau band plasmons reso-
nate at frequencies comparable to the bandwidths, and the
existence of this new class of modes is due to finite width of
the Landau levels. These magnetoplasmons in a quasi-one-
dimensional system have been analyzed in detail elsewhere.9

We will concentrate on the oscillatory behavior of these
magnetoplasmons. The occurrence of such intra-Landau
band plasmons is accompanied by SdH type of oscillatory
behavior2,21 in 1/B. These oscillations2,22 are not with con-
stant period in 1/B swhich exhibits significant effect for
small value ofB and corresponding large value of 1/Bd due
to confinement potential acting in thex direction and also
show the depopulation, and cross over effects8 on magneto-
plasmons from density modulated two-dimensional electron
gas sDM2DEGd sRef. 23d to density modulated one-
dimensional electron gassDM1DEGd.

SdH type of oscillations result from the emptying out of
electrons from successive Landau bands when they pass
through the Fermi level as the magnetic field is increased.
The amplitude of the SdH type of oscillations is a monotonic
function of magnetic field, when the Landau bandwidth is
independent of the band indexn. In DM1DEG considered
here, the Landau bandwidths oscillate as a function of the
band indexn. It is to be expected that such oscillating band-
widths would effect the plasmon spectrum of the intra-
Landau band type, resulting in another type of oscillation.
These oscillations are not with constant period in 1/B, be-
cause at a small value ofB and corresponding large value of
1/B cyclotron diameter exceeds the characteristic length of
the confining potential.

For the excitation spectrum, we need to numerically solve
Eq. s15d for all vectors, frequencies, magnetic field, and con-
finement potential. We will consider the case of weak modu-
lation sV0/EF!1d and long wavelength. In these limits we
can solve Eq.s16d analytically for zero temperature. We ex-
pand the coefficientCnn8sq̄

2vc/2mV0
2d to lowest order in its

argument with the result

1 =
2pe2

km*
q̄

1

v2 − V0
2SmV0

pa
o
n

fs«ndD . s17d

The term in parentheses is easily recognized as the unmodu-
lated particle densitynD=smV0/padonfs«nd, wheren is the
sum over all occupied Landau bands. Defining the plasma
frequency throughvp,D

2 =s2pnDe2/kmdq̄, we finally obtain
the inter-Landau band plasmon dispersion relation 1
=vp,D

2 /v2−V0
2 or v2=V0

2+vp,D
2 , which is the ordinary one-

dimensional plasmon dispersion relation.
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The intra-Landau band plasmon dispersion relation for
zero temperature reduces to 1=ṽ2/v2, where

ṽ2 =
8e2

kq̄

m* V0
2

pavc
sin2Sp

a
sx08dD 3 o

n

uVnuÎ1 − Dn
2us1 − Dnd,

s18d

with An=sa/2pdsuVnu /VndÎ1−Dn
2us1−Dnd, Dn= u«F−«n/Vnu,

usxd the Heaviside unit step function.
We have derived the expression forṽ fEq. s18dg under

the condition v@ u«sn,x0+x08d−«sn,x0du as x08→0 which
leads to a relation between the frequency and the Lan-
dau level broadeningv@ u2Vn sinssp /adx08dsinfs2p /adsx0

+x08 /2dgu. This ensures that ImP0sq̄,vd=0 and the intra-
Landau-band magnetoplasmons are undamped. For a given
Vn, this can be achieved with a small but nonzeroqy srecall
that x08=−qyvc/m* V0

2d.
In general, the inter- and intra-Landau band modes are

coupled for arbitrary magnetic field strengths. The general
dispersion relation is

1 =
vp,D

2

v2 − V0
2 +

ṽ2

v2 .

This equation yields two modes which are given by

v±
2 =

1

2
sV0

2 + vp,D
2 + ṽ2d ±

1

2
hsV0

2 + vp,D
2 + ṽ2 + 2V0ṽd

3sV0
2 + vp,D

2 + ṽ2 − 2V0ṽdj1/2,

which reduces to

v+
2 = V0

2 + vp,D
2 ,

and

v−
2 = ṽ2,

with corrections of orderṽ2/V0
2 and ṽ2/vp,D

2 . So long as
uVnu,V0, mixing of the inter- and intra-band modes is small.

Only the intra-Landau band modesṽd will be excited in the
frequency regimeV0.v,uVnu. We now present the results
for the oscillatory behavior of the intra-Landau band magne-
toplasmons as a function of 1/B and the confinement energy.

IV. NUMERICAL RESULTS AND DISCUSSION

The intra-Landau band plasma frequency given by Eq.
s18d is shown graphically in Fig. 1 as a function of 1/B for
two different values of confinement energy, using
parameters:2,5,11 m* =0.07me, k=13.6, nD=631015 m−2, a
=500 nm, andV0=1.0 meV; also we takeqx=0 and qy
=0.01kF, with kF=s2pnDd1/2 being the Fermi wave number
of the unmodulated 1DEG in the absence of magnetic field.
The modulation induced oscillations are apparent, superim-
posed on SdH-type oscillations. These oscillations are not
with constant period in 1/B swhich exhibits a significant
effect for a small value ofB and a corresponding large value
of 1/Bd due to confinement potential acting in thex direc-
tion. They have longer period and much reduced amplitude.
It must be noted that this result is obtained in the regime of
weak modulation and long wavelength. Another condition
for the observation of these oscillations is that the coupling
between inter-Landau band mode and intra-Landau band
mode must be small. These modes involve different energy
scalesv.V0 for the former andv,uVnu,V0 for the latter.
Mixing of these modes can be minimized by controlling the
degree of density modulation and by applying an appropriate
magnetic field and confinement potential.

The origin of two types of oscillations can be understood
by a closer analytic examination of Eq.s18d. In the regime
V0. uVnu, the unit step function vanishes for all but the high-
est occupied Landau band, corresponding, say, to the band
index N. The sum overn is trivial, and plasma frequency is
given asṽ2= uVNu1/2s1−DN

2d1/4us1−DNd. The analytic struc-
ture primarily responsible for the SdH type of oscillations is
the functionus1−DNd, which jumps periodically from zero

FIG. 1. Intra-Landau band
plasma frequency as a function of
inverse magnetic field for confine-
ment energys1 meVd.
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swhen the Fermi level is above the highest occupied Landau
bandd to unity swhen the Fermi level is contained within
the highest occupied Landau bandd. On the other hand,
the periodic modulation of the amplitude of the SdH-type
oscillations shown in Figs. 1 and 2 is due to the oscilla-
tory nature of the factoruVNu1/2, which has been shown in a
two-dimensional system to exhibit commensurability
oscillations.6,13,22,24 In our case, these oscillations are not
with constant period in 1/B. This clearly indicates the one-
dimensional character of our theory. In a DM2DEG the num-
ber of occupied Landau levels increases with decreasingB,
leading, ideally, to an infinite number of SdH type of oscil-
lations periodic in 1/B.23 In a 1DEG system however, only a
finite number of 1D subbands are occupied atB=0, giving
rise to a finite number of SdH type of oscillations and devia-
tions from the 1/B period, because with increasingB the 1D
density of states increases and the hybrid 1D subband Lan-
dau levels are depopulated.4,14,25,26In the extreme 2D regime
sv0!vcd, the Fermi energy goes to the bottom of the 1D
Landau subband. If we lower the confinement potential the
magnetic confinement overcomes the potential confinement,
hence we are in the original 2D regime.23 On the other hand

if we increase the confinement potential, the confinement
potential overcomes the magnetic confinement and we have
a crossover13 from a two-dimensional system to a one-
dimensional system. In Figs. 1 and 2 we have plotted the
intra-Landau band plasma frequency as a function of the in-
verse magnetic field for two different confinement energies
given by Eq.s18d.

V. CONCLUSION

We have determined the intra-Landau band plasmon fre-
quency for a density modulated quasi-one-dimensional elec-
tron gas in the presence of a magnetic field employing the
SCF approach. Furthermore, we have seen the oscillations of
the intra-Landau band plasma frequency in 1D regime as a
function of B−1, their origin lies in the interplay of the three
physical length scales of the system, i.e., the modulation pe-
riod, confinement length, and cyclotron diameter at the
Fermi level. When a strong magnetic field is applied, our
model recovers complete Landau quantization and for a very
high magnetic field our results are comparable with extreme
2D regimesV0!vcd.
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