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We determine the collective excitations spectrum and discuss the numerical results for a parabolically
confined density modulated quasi-one-dimensional electron gas in the presence of an external magnetic field.
We derive the inter- and intra-band magnetoplasmon spectrum within the self-consistent-field approach. In this
work we focus on magnetoplasmon oscillations in this system and as such results are presented for the
intra-Landau-band magnetoplasmon spectrum that exhibits oscillatory behavior, these oscillations are not with
constant period in 1B and are significantly effected at lo& and corresponding high B/

DOI: 10.1103/PhysRevB.71.035325 PACS nun®er73.20.Mf, 71.45.Gm
|. COLLECTIVE EXCITATION SPECTRUM OF DENSITY pected for the quasi-one-dimensional system under consider-
MODULATED ONE-DIMENSIONAL ELECTRON ation. The density of states affects many response and trans-
GAS (DM1DEG) port phenomena as well as thermodynamic properties. Of

these, one of the most important properties is the collective

In the last couple of decades or so remarkable progressycitation spectrum and we evaluate the dynamic, nonlocal
has been made in epitaxial crystal growth techniques whicljielectric response function to study it. As we show in our

have made pOSSible the fabrication of semiconductor heterqlvork for a quasi_one_dimensiona| System, magnetoplasma
structures. These modern microstructuring techniques can Rgectrum significantly exhibits modulation of the electronic

used to laterally confine quasi-two-dimensional electron gagensity-of-states as oscillating magnetoplasma frequencies.
(2DEG) in, e.g., GaAs/AlGaAs heterostructure on a submi-as we discuss in detail, this result is obtained in the regime
crometer scale to quasi-one-dimensional struct(ygantum  of weak modulation and long wavelength thus we do not find
wires) or quasi-zero-dimensional quantum dots. The systenis result discussed in Ref. 9. Another condition for the
that we are considering in the present work can be realizegpservation of these oscillations is that the coupling between

by various methods, e.g., the application of a laterally microintra-Landau band mode and inter-Landau band mode must
structured gate electrode and the holographic illuminatiohe small. Mixing of these modes can be minimized by con-
teChnique which allow for a tunable periOdiC denSity mOdU'trouing the degree of density modulation and by app|y|ng an

lation of the quasi-one-dimensional electron gas. appropriate magnetic field and confinement potential.
There have been a number of approaches to study collec-

tive excitations spectrum of a quasi-two- and one-

dimensional electron gaélDEG) systems theoretically® Il. FORMULATION

and experimentally®1* We extend the theoretical work by

calculating the inter- and intra-Landau band magnetoplas- Our system is a density modulated quasi-one dimensional
mon spectrum of a density modulated quasi-one-dimensiona&lectron gasDM1DEG) built on a two-dimensional electron
electron gagDM1DEG) in the presence of a perpendicular gas(2DEG) by inducing another effective confining potential
magnetic field using the self-consistent-fi€®CH approach  Z(m* wx? along thex direction which is assumed to be
and focus on the oscillatory behavior of the intra-Landauparabolic. The magnetic field is perpendicular to thg
band magnetoplasmons. In this context, the term “1D"plane in which electrons with unmodulated areal densify
means that we start with the original 2DEGx#y plane. We  effective massn*, and charge e are confined. We employ
apply a confining potential in the direction leaving they  the Landau gauge and write the vector potential Aas
direction free. A magnetic field is applied along thelirec-  =(0,Bx,0). The two-dimensional Schrodinger equation with
tion perpendicular to the-y plane of the original 2DEG. The parabolic confining potential in the Landau gauge(fisc
collective particle energy spectru@j(ky)=h2k§/2m*+ Ex =1 here

consists of energetically separated 1D subbands formed due

to lateral confining potential along thedirection. The elec-

i ion i 1 & g e\ 1
trpn wave vectork, characterizes the free motion in tiye Ho = -+ (_ i~ 4 —Bx) +=(m* ngz)_
direction. 2m* | ox 2
The effect of density modulation is to broaden the Landau (1)

levels into minibands whose width oscillates as a function of

the magnetic field strength. The electronic states are thus

substantially altered, resulting in modulated density of statesSince the Hamiltonian does not depend on yheoordinate,
as shown by magnetocapacitance measureftéfitsf the  the unperturbed wave functions are plane waves inythe
quasi-two-dimensional systems. Behavior akin to this is exdirection. This allows us to write for the wave functions,
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1 1. DENSITY-DENSITY CORRELATION FUNCTION OF A
¢nK/(7<5 = ’_fel yyunlg,(x)a (2 DM1DEG IN A MAGNETIC FIELD
Y y

The dynamic and static response properties of an electron
system are all embodied in the structure of the density-
density correlation function. We employ the Ehrenreich-
Cohen self-consistent-fiekCP approach’ to calculate the

with L, being a normalization length in thedirection andx
a 2D position vector on the-y plane. Substitution of the
above form of the wave function into E€L), yields

1 # 1 ) K2 density-density correlation function. The SCF treatment pre-
Ho=~- ol Em* QF(x=X0)* + m (3)  sented here is by its nature a high density approximation

which has been successful in the study of collective excita-
with (Qg:w§+ wg,IZ(B):lzwg/Qg), wherew,=eB/m* is the  tions in lower-dimensional systems such as planar semicon-
cyclotron frequencyx,=—I%(B)k,=-wck,/m* Q2 is the co-  ductor supgrlatticé% and quantum wire ;tructuréé?'19both
ordinate of cyclotron orbit center ankiB) is the mag- With and without an applied magnetic field. Such success has
netic length,m* (B)=m* (lewg) is the normalized effect- Peen con_vmcmgly attested by the expellent e}greement of
ive mass. In thex direction, the Hamiltonian has the SCF predictions of plasmon spectra with experiments.

form of a harmonic oscillator Hamiltonian. Hence we Following the SCF approach, the density response of
can write the unmodulated eigenstates in the forflectrons due to a perturbing potential is given by

o 9= LNLyE M ), WIth U gy = (Va2 1) 72 f(eqr) = f(e,)
xexp{ 1/2%(x- xO)Z]Hn(x Xol1), Where Uy ;) is @ nor- an(xo20;t) = > m<a|V(ZZ;w)|a'>
malized harmonic oscillator wave function centered gand a’ Za T g
Hn(x) are Hermite polynomial8 with n the Landau level X (a'|8(X=%g) 8z~ Zp)| ), (7)
guantum number. The energy ofh Landau level(unper- . . )
turbed HamiltoniarH,) is whereV(x,z; w) is the self-consistent potential aadstands
5 for the quantum numberns andk,. Fourier transforming on
(o) = (n+1/2) Qg+ lfy 4) the x-y plane we obtain the induced particle density
m* (B)’ f(eq) = f(eg)
In the presence of modulation, the Hamiltonian is augmented (4, 20;0) = —5(z)V(q 2=0; “’)E g, twtin
by the termH’ =V, coq(2w/a)x), whereV, is the amplitude - ad! “
of the modulation and is about an order of magnitude smaller X [(a'|e79¥a)?,

than Fermi energyV,/eg). Due to the smallness of, we
employ first orderin H') perturbation theory in the evalua-
tion of the energy eigenvalues using the unperturbed wav
functions. The correction to the unperturbed eigenenergies

whereA denotes the area of the system. We can perform the
g’, sum in the above equation to obtain

with a new variabley=x-x,/1, is given by an(0,z;w) = _5(2 V(0,2=0;0) X 2 Copy
n,n’ Ky
2V, 2 @
i cos(;xo) f dy exp(- y?) X( RO ) fle(n’,ky = a1 - fle(n.k)]
Ve ° 2m* 02) e(n' k,~q,) —e(nk) + 0 +i7y’
2w
x[Hn(y)]Zcos<?ly> . (8)

Writing the induced particle density ason(q,z;w)
The integral in above equation is given by =én(q,w)d(z), allows us to rewrite Eq(8) as on(q,w)
_Gradshteyn-Ryzhﬂ@ (page 841, No. 7.388)5and the result  =v(q,w)IIy(q,w): Wwhere V(q,w)=V(q,z=0;w) and

IS ITy(q,w) is the density-density correlation function of the
20 noninteracting electron system, given by
D=y cos( x0>, (5) 7
w
2 Ty(q,w) = E 2 Chn ( % - 2)
where V=V exp(—X/2)L,(X),X=(27/a)?w./2m* QF, and Al ky 2m* Qg
L,(x) is a Laguerre polynomial. By combining Eqg) and fle(n’ k- )] - fle(nk,)]

(5) we write, for the energy eigenvalues to first ordeHh

e(n’k,—q,) —&(nk) +w+in’ ©

K2 2

g(n,Xg) = (N+1/2)Q + —*‘3 V, co fxo). (6)  where
n,!

The above equation shows that the formerly sharp Landau Chy(X) = —fle‘Xx"l‘”Z[Lﬂ{”Z(x)]2

levels, Eq.(4), are now broadened into minibands by the ny:

modulation potential. Furthermore, the Landau bandwidthyith n,=maxn,n’), n,=min(n,n’), andL/(x) an associated

C |V,) oscillate as a function afi, sinceL,(X) is an oscilla-  Laguerre polynomial. The induced potentiél? is related to

tory function of its index:> the density responsén by Poisson’s equation
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. 4re? é fle(n,
VAN Z;t) = - = an(X,z;), (10) (w) =P f dx Lol :
k o to-enX) e X+ X
where k is the background dielectric constant. The aboveyherePp is the principal value.
equation can be solved to yield The plasma modes originate from two kinds of electronic
_ 2re? transitions, those involving different Landau ban@ster-
Vg, w) = ——n(q, w). (11 Landau band plasmohsnd those within a single Landau
kq band(intra-Landau band plasmaongnter-Landau band plas-

Recalling that the self-consistent potentiaV(q,) Mons involve the local 1D magnetoplasma mode and the
=VeX(q, w) +V"(q, ), is the sum of the external and in- Bernstein-like plasma resonané@sll of which involve ex-

duced potentials, multiplying both sides ") and solv- citation frequencies greater than the Landau-band separation
ing forF:m(q_ o) yields pying By, ) (~Qyg). On the other hand, intra-Landau band plasmons reso-

nate at frequencies comparable to the bandwidths, and the

on(q, w) =T1(g, ) V*Y(Q, w), (12)  existence of this new class of modes is due to finite width of

the Landau levels. These magnetoplasmons in a quasi-one-

where dimensional system have been analyzed in detail elsevlhere.
To(q ) We will concentrate on the oscillatory behavior of these

Qe = —————— (13 magnetoplasmons. The occurrence of such intra-Landau

1 -vd(@Tlo(q, @) band plasmons is accompanied by SdH type of oscillatory

is the density-density correlation function of the interactingPehaviof-**in 1/B. These oscillatiorfs" are not with con-
system with v(q)=27€?/kq the 2D Coulomb potential. stant period in 1B (which exhibits significant effect for
Making use of the transformatidg— —k, with the fact that ~Small value of8 and corresponding large value ofB)/due

s(n,ky) is an even function ok,, and at the same time inter- to confinement potential acting in thedirection and also

changingn—n’ we write for the noninteracting density- SnOW the depopulation, and cross over effeots magneto-
density correlation function Ed8) plasmons from density modulated two-dimensional electron

gas (DM2DEG) (Ref. 23 to density modulated one-

. m*Q3 P | (2 ) dimensional electron ga®M1DEG).
Io(q ) = . 2 Con om* 2 J dxoffle(n,xo + X ] SdH type of oscillations result from the emptying out of
¢ 070 electrons from successive Landau bands when they pass
— fle(n’,xg) I} X [e(n,Xo + X)) — &(n', %) + @ through the Fermi level as the magnetic field is increased.
rig (14) The amplitude of the SdH type of oscillations is a monotonic

function of magnetic field, when the Landau bandwidth is
In writing the above equation we converted tqesum into independent of the band_ indax In_ DM1DEG cons_idered
an integral ovex,. f(E) is the Fermi-Dirac distribution func- here, the Landau bandwidths oscillate as a function of the
tion, Xo=-k,w./m* 02 andx)=—g,w./m* 02 band indexn. Itis to be expected that such oscillating band-
The above Eq(13) and(14) will be the starting point of widths would effect the .plas'mon spectrum of the. mtra—
our examination of the inter- and intra-Landau band plas-andau band type, resulting in another type of oscillation.
mons. The form of the expressions for the real and imaginary Nese oscillations are not with constant period irB1be-
part of the density-density correlation function makes thec@use at a small value &and corresponding large value of
even and oddin frequencyw) properties of these functions 1/B cycl_ot.ron d|amgter exceeds the characteristic length of
very apparent. These functions are the essential ingredientd€ confining potential. _
for theoretical considerations of such diverse problems as FOr the excitation spectrum, we need to numerically solve
high frequency and steady state transport, static and dynamigd- (15) for all vectors, frequencies, magnetic field, and con-
screening, and correlation phenomena. finement potential. We will consider the case of weak modu-
The plasma modes are readily furnished by the singularilation (Vo/Er<1) and long wavelength. In these limits we
ties of the functionl1(q, w), from the roots of the longitudi- c¢an solve Eq(16) analytically for zero temperature. We ex-

nal plasmon dispersion relation obtained from ELp) as pand the coefficienC, (q°wc/ 2m€5) to lowest order in its
. argument with the result
1 -v(gRelly(q,w) =0 (15 o 1 o,
along with the condition Inily(q, w)=0 to ensure long-lived 1= . Qz( wa > f(8n)>- (17)
excitations. The roots of Eq15) give the plasma modes of 0 "
the system. The term in parentheses is easily recognized as the unmodu-
o m* 02 — lated particle densityiy=(mQy/ 7a)=,f(e,), wheren is the
1="7" Y Cnn’( q o 2>[I(w) +1(- w)], sum over all occupied Landau bands. Defining the plasma
kg mawe 2m* Qg frequency throughw; p=(2mmMpe?/km)g, we finally obtain
(16) the inter-Landau band plasmon dispersion relation 1
=0}/ 0?=Qf or w?=0F+w]p, Which is the ordinary one-
with dimensional plasmon dispersion relation.
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The intra-Landau band plasmon dispersion relation forOnly the intra-Landau band mod®) will be excited in the

zero temperature reduces to &% w?, where
_o@m 0}
" Kq maw,

2'02

(18)
with A,=(a/2m) (V| IVIN1-AZ6(1-A,), An=|er—en/ Vi,

6(x) the Heaviside unit step function.

We have derived the expression for[Eq. (18)] under
the condition w>|e(n,Xy+X5) —e(n,%o)| as x,—0 which
leads to a relation between the frequency and the Lan
dau level broadeningw> |2V, sin((/a)xy)sin(27/a)(Xo
+X5/2)]|. This ensures that Ifiy(q,w)=0 and the intra-
Landau-band magnetoplasmons are undamped. For a giv
V,, this can be achieved with a small but nonzeggdrecall

that xy=—0,w./m* QF).

In general, the inter- and intra-Landau band modes a
coupled for arbitrary magnetic field strengths. The gener

dispersion relation is

_ “’29,0 w
1=—"02% >
0w -0 w

This equation yields two modes which are given by
1 - 1 ~ ~
W = S(QF+ wop + @) £ {(OF + wfp + &7 + 2000)

X(Qf+ wa b + @7 = 200w) 12,

which reduces to

wf = Qg + w;'D,
and

0> =2,

with corrections of orde?/Q§ and @?/w}p. So long as

st Z06)) x S VA2t -0,

frequency regimely> w~ |V,|. We now present the results
for the oscillatory behavior of the intra-Landau band magne-
toplasmons as a function of B/and the confinement energy.

IV. NUMERICAL RESULTS AND DISCUSSION

The intra-Landau band plasma frequency given by Eg.
(18) is shown graphically in Fig. 1 as a function of & for
two different values of confinement energy, using
parameteré®>!! m*=0.07m,, k=13.6,np=6x10"m™2, a
=500 nm, andV,=1.0 meV; also we takey,=0 and Oy
=0.0Xkg, with ke=(27np)Y? being the Fermi wave number
of the unmodulated 1DEG in the absence of magnetic field.

%he modulation induced oscillations are apparent, superim-

posed on SdH-type oscillations. These oscillations are not
with constant period in 1B (which exhibits a significant

'Bffect for a small value oB and a corresponding large value

f 1/B) due to confinement potential acting in tkedirec-
tion. They have longer period and much reduced amplitude.
It must be noted that this result is obtained in the regime of
weak modulation and long wavelength. Another condition
for the observation of these oscillations is that the coupling
between inter-Landau band mode and intra-Landau band
mode must be small. These modes involve different energy
scalesw> Q) for the former andv ~ |V,| < Q, for the latter.
Mixing of these modes can be minimized by controlling the
degree of density modulation and by applying an appropriate
magnetic field and confinement potential.

The origin of two types of oscillations can be understood
by a closer analytic examination of E(L8). In the regime
0y>|V,|, the unit step function vanishes for all but the high-
est occupied Landau band, corresponding, say, to the band
index N. The sum oven is trivial, and plasma frequency is
given as@?=|Vy|Y41-A2)Y46(1-Ay). The analytic struc-
ture primarily responsible for the SdH type of oscillations is

IV,| < Q. mixing of the inter- and intra-band modes is small. the function8(1-Ay), which jumps periodically from zero

|

A OO0 U U L

FIG. 1. Intra-Landau band
plasma frequency as a function of
inverse magnetic field for confine-
ment energy(1 meV).

1/B(TY)
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E plasma frequency as a function of
~ 0.1} inverse magnetic field for confine-
):? ment energy(2 meV).
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(when the Fermi level is above the highest occupied Landaif we increase the confinement potential, the confinement
band to unity (when the Fermi level is contained within potential overcomes the magnetic confinement and we have
the highest occupied Landau bandn the other hand, a crossoveéf from a two-dimensional system to a one-
the periodic modulation of the amplitude of the SdH-typedimensional system. In Figs. 1 and 2 we have plotted the
oscillations shown in Figs. 1 and 2 is due to the oscilla-intra-Landau band plasma frequency as a function of the in-
tory nature of the factojvy|'/2, which has been shown in a verse magnetic field for two different confinement energies
two-dimensional system to exhibit commensurability given by Eq.(18).

oscillations®132224|n our case, these oscillations are not

with constant period in 18. This clearly indicates the one-

dimensional character of our theory. In a DM2DEG the num- V- CONCLUSION

ber of occupied Landau levels increases with decreaBijng We have determined the intra-Landau band plasmon fre-
leading, ideally, to an infinite number of SdH type of oscil- quency for a density modulated quasi-one-dimensional elec-
lations periodic in 1B.2% In a 1DEG system however, only a tron gas in the presence of a magnetic field employing the
finite number of 1D subbands are occupiedBat0, giving  SCF approach. Furthermore, we have seen the oscillations of
rise to a finite number of SdH type of oscillations and devia-the intra-Landau band plasma frequency in 1D regime as a
tions from the 1B period, because with increasigthe 1D function of B2, their origin lies in the interplay of the three
density of states increases and the hybrid 1D subband Laiphysical length scales of the system, i.e., the modulation pe-
dau levels are depopulatéd??>28n the extreme 2D regime riod, confinement length, and cyclotron diameter at the
(wp<w.), the Fermi energy goes to the bottom of the 1DFermi level. When a strong magnetic field is applied, our
Landau subband. If we lower the confinement potential thenodel recovers complete Landau quantization and for a very
magnetic confinement overcomes the potential confinemenhigh magnetic field our results are comparable with extreme
hence we are in the original 2D regifieOn the other hand 2D regime(Qy< wy).
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