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A characteristic time for the tunneling of long-wavelength phonons through nonpolar semiconductor
heterostructures is derived from the energy density continuity equation of the system. It is a mathematical
analog of the well known dwell time for electrons. We study the tunneling of optical and acoustic phonons at
normal incidence on multiple layers systems. A relation between the dwell time and the phase times for
phonons which is similar to that obtained for electrons is deduced. At the same time the phase times for
acoustic phonons are generalized to include the optical phonons. Our findings could be easily extrapolated to
both the particle and electromagnetic wave tunneling. This study could also be useful for the design of phonon
optics devices.
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I. INTRODUCTION

The tunneling time of electrons through a potential barrier
have been a long standing question for physicists and still
remains controversial. There is not a unique definition for the
tunneling time up to now.1–4 A direct experimental study is
not straightforward for the barrier traversal time of electrons
is orders of magnitude shorter—of the order of
10−14–10−15 s—than the highest time resolution achievable
in electronics.5 In fact, very few experiments provide some
indirect information about the temporal dynamics of particle
tunneling. Instead, some general trends can be extrapolated
from optical experiments. Martin and Landauer have shown
that the one-dimensional particle tunneling is in direct anal-
ogy with evanescent electromagneticsEMd waves found in a
low-dielectric-constant region separating two regions of
higher dielectric constant.6 Accurate measurements of single-
photon and optical-pulse delay times in the photonic band
gap of multilayer media,7–11 in wave guides operating below
cutoff,12,13 and for frustrated total internal reflection
experiments,14 have stimulated the interest in studying the
tunneling time—mainly the superluminal barrier
tunneling—up to the present time.15

In a series of recent interesting papers, Winful has argued
that the time delays for EM waves are not propagation delays
and should not be related to a velocity.16–19 He has shown
that the phase time is proportional to the average time in
which the energy is stored in the cavity and it is a measure of
the cavity lifetime for the EM wave. He used this proportion-
ality between the phase time and the stored energy to explain
the paradox of the Hartman effect20 for EM waves. For the
photonic band gap structures studied in Refs. 16 and 17 the
dwell time, tD, was shown to be equal the phase time,tt, as
a consequence of the nondispersive plane wave propagation
characteristic of these EM waves. In a simulation based on
EM field equations for the photonic band gap structure Win-

ful has shown that the peak of the tunneling wave packet
does not propagate from input to output.17,18 Output and
input wave packet peaks are therefore not related by
causal propagation and hence the phase time is not a propa-
gation delay. These simulations could be easily extrapolated
to the electron tunneling. Similar studies with the Dirac
equation also show an absence of a wave packet peak in the
barrier during tunneling.21 With these simulations in mind,
Winful has exploited the analogy between EM waves in band
gap structures and the electrons to show that the Hartman
effect can be explained by the saturation of the integrated
probability density sor number of particlesd under the
barrier.22 After some algebra with the time-independent
Schrödinger equation, he derived a relation between the
dwell time and the phase times, previously obtained by
Haugeet al. using a wave packet analysis.23 This relation
reads

tD = ttT + trR + ti , s1d

where tr is the reflexion phase time,T and R are the
transmission and reflexion coefficients, respectively, and
ti is a self-interference term that comes from the overlap
of the incident and the reflected waves in front of the
barrier. The dwell time for a particle in the barrier region
0,x,L is defined in accordance with Refs. 24 and 25
as

tD =

E
0

L

ucsxdu2dx

j in
, s2d

wherecsxd is the stationary state wave function andj in is the
flux of the incident particle. Falck and Hauge have shown
that for symmetric scattering potentialstt=tr.

26 Thus, the
expression fortD simplifies to
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tD = tt + ti . s3d

In this paper only symmetric potentials are considered for the
sake of convenience.

A time which does not saturate with barrier length is ob-
tained after dividing the integrated particle density by the
flux within the barriersthat arises from the interference be-
tween evanescent and antievanescent modesd, i.e., dividing
the previous expression fortD by the transmission coefficient
T. It was intuitively proposed by Moura and Albuquerque.27

Winful named it as perfectly “luminal” net-flux delaytD
N,22 in

the sense that it does not suffer from the paradoxical Hart-
man effect. Thus

tD
N =

tD
T . s4d

With this redefinition of the dwell time the aforementioned
derivation of the relations1d is still valid, when it is written
as

tD
NT = ttT + trR + ti . s5d

As Winful stated, this analysis is also valid for photons,
with the conditionti =0. The above mentioned experiments
with EM waves are designed to measure the group delay
between incident and transmitted wave packets, i.e., the
phase delaysand not the redefined dwell timed. The experi-
mental data is in agreement with theoretical calculations.28,29

The net-flux delay can be computed from these experimental
results.22

In this paper we show that for phonons a well-behaved
dwell time like tD

N in s4d, i.e., which does not saturate
with barrier length, can be derived directly from the energy
density continuity equation, without any additional assump-
tion. Consequently the label “net” is not used in the follow-
ing. We also obtain the relation between dwell time and
phase time for an arbitrary layered structure, casts in the
form s5d. Then a saturation of the vibrational energy stored in
the barrier can be invoked to disregard paradoxically inter-
pretations of phonon group velocities larger than the sound
velocity in the solid. In fact, some nice experiments are pre-
sented in Ref. 30 showing the breaking of the sound barrier
in solids.

We study long-wavelength phonons propagating
along high symmetry directions in nonpolar semiconductors.
Under these conditions the atomic oscillations are described
by one-dimensional differential equations.31 The results
here obtained could be easily extrapolated to the tunneling of
both EM and electrons. In fact the acoustic phonons are
not dispersiveslike EM waves in photonic band gap struc-
turesd while the optical phonons show a dispersive character
slike electronsd. For the sake of generality we write expres-
sions valid for both optical and acoustic phonons. We
find some analytical properties valid for an arbitrary number
of barriers that, to the best of our knowledge, have not
been considered before neither for electrons nor for EM
waves. We also show that a more comprehensive picture of
the tunneling time can be achieved by studying multibarrier
systems with more than two barriers for the whole energy
range. This picture is not clearly revealed in theoretical stud-

ies for electrons and EM waves—these studies considering
together both the dwell and phase time—that are generally
limited to two barriers or to some windows of the whole
spectrum.

The phonon tunneling has been largely studiedssee, for
example, Refs. 32–35 and references thereind. Also acoustic
phonons have been proposed as an alternative to study
the tunneling time. A few years ago Mizuno and Tamura32

suggested—by considering that phonons travel at sound
velocity, which is slower than the electron velocity, and
taking also into account that its mean free path is
macroscopic in pure samples and ranging in THz character-
istic frequencies—that the measurement of the time delay or
the advance of phonons in heterostructures is easier than in
the case of electronsssee the discussion about it in Ref. 32d.
On the other hand, semiconductor heterostructures are
useful for the design of various phonon optic devices such as
phonon mirrors, phonon reflectors, phonon resonators, and
so on.36 Systems for phonons based on multiple superlattice
sSLd structures have been proposedssee Ref. 32 and
references thereind. Tamura and Mizuno also studied the
time evolution of acoustic phonon packets normally incident
on the layer interfaces of superlattices.34 A theoretical
study of the group velocity of acoustic phonons in a finite
superlattice is presented in Ref. 35. But neither of the previ-
ous papers have considered the dwell time, derived here, or
its relation with the phase time. In addition, previous results
of Mizuno and Tamura32 for the phase times of acoustic
phonons are generalized here in order to include optical
phonons.

We consider in the following the phonons incident
on a multiple-barrier structure consisting of an alternate
stacking of the layersA and B. The system studied is
expressed asXsABdNY, whereX and Y denote the substrate
and detector layer, respectively. Their vibrational properties
are assumed to be the same as that of layerB, and N
is the number of the pairAB layers in the structure. We
suppose the phonon propagation normal to the layer
interfaces and adopt the continuum model valid for long
wavelength oscillations. Under this assumption the acoustic
and optical bulk dispersion relations are linear and parabolic,
respectively.

The acoustic phonon dispersion relation in a periodic su-
perlattice is obtained by folding the dispersion curves for the
bulk materials back into the mini-Brillouin-zonesMBZd de-
termined by the periodicity of the superlattice. In the folded
dispersion relation frequency gaps are generally formed at
the center and at the boundary of the MBZ. We can control
the size of the MBZ by changing the length of the unit period
of the SL. On the other hand, for a finite superlattice with a
small number of periods some resonances appear. Each state
is duplicatedN times when the number of periods increases
N timessas a result of the hybridization of the modes in the
different periodsd. For a given number of periods the phonon
features are similar to the dispersion relation of the infinite
periodic SL.33 For the optical vibrations a similar behavior is
found. Though in this case it is worth to recall that the bulk
phonon branches for one material in the period does not
overlap the branch of the other, instead a bulk phonon gap is
present. Then, for optical phonons we differentiate the fre-
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quency values for which the oscillations are allowed in both
materials from these frequencies that are forbidden in one of
the materials.

As mentioned above, nanostructures made of nonpolar
semiconductors are ideal for our study. In particular, we con-
sider the isotopic short period Ge multibarrier system, that
have attracted the attention in the past years.37 The phonon
dispersions of two isotopic enriched Ge bulk materials over-
lap over a large frequency rangesbut confined optical modes
are also presentd, and strain effects are not important. These
structures are also grown in practice with almost ideal inter-
faces.

The paper is organized as follows. The main theoretical
findings are presented in Sec. II, where the dwell time for
phonon in heterostructures is derived from the energy density
continuity equation. In Sec. III we computed the phase times
valid for optical phonons, which includes previous results for
acoustic phonons as a particular case. In Sec. IV we study
the analytical relation between dwell time and phase times.
This relation is deduced in the Appendix. An additional dis-
cussion of the analytical results and some numerical ex-
amples are given to Sec. V. At the end, the main conclusions
are given in Sec. VI.

II. DWELL TIME

For high symmetry directions of the Diamond structure,
like the f001g and f111g directions, the harmonic
phonon equations of motion decouple into one longitudinal
and two degenerated transverse oscillations, which are
described by a linear chain model.38 Phonons with wave
vectors close to the center of the Brillouin zone39 do not
feel the discrete nature of the atomic structure, and for
them the long-wavelength approximation is valid. In these
conditions the discrete equations of motion transform to a
continuum problem described by a second order differential
system of equations.31,40 The same equations are valid for
both longitudinal and transverse vibrations and we will sup-
press these labels in the following. We write down formulas
valid for optical phonons. These include the case of acoustic
phonon with the appropriate selection of the parameters that
will be shown below.33 For the sake of convenience we for-
mulate the problem with the help of its one-dimensional en-
ergy density

H =
1

2
rU ]u

]t
U2

+
1

2
rv0

2uuu2 +
1

4
Fs

]u*

]x
+ s *

]u

]x
G , s6d

and we write it for the stationary case. The first term
in s6d represents the kinetic energy density, the second
one represents the interaction energy density of the phonon
field with itself, and the third one the strain energy
density that accounts for the dispersive character of the
oscillations. These terms depend on the atomic relative
displacementsu, the linear mass densityr, the phonon
frequency at the center of the Brillouin zonev0, the one-
dimensional strain tensor]u/]x, and the stress tensors,
which is equal to

s = − rb2]u/]x, s7d

whereb is a parameter that accounts for the behavior of the
bulk phonon dispersion relation.

From s6d, the one-dimensional equation of motion31 is
easily obtained,

]2u

]t2
= − v0

2u − b2]2u

]x2 . s8d

Note that the stationary solution ofs8d, i.e., a solution pro-
portional toeivt wherev is the mode frequency, leads to a
Helmholtz equation which is equivalent to both the time-
independent Schrödinger equation and the EM field
equations.6

Usings8d it is possible to write the continuity equation for
the energy density

]H/]t + ] j /]x = 0, s9d

as a particular case of the developments presented in Ref. 33,
where the energy density flux,j , is written as

j = − 1/2ss]u * /]t + s * ]u/]td. s10d

For the stationary solution of the equation of motion
it is straightforward to obtain that]H /] j =H / j , and thatj
does not depend on the coordinatex swe will return in
Sec. II C to these statementsd. For this case, the continuity
equation is integrated—taking into account that the infini-
tesimal incrementdtD is related to the infinitesimal incre-
ment of the total energy per unit of incoming energy density
flux—to obtain

tD = −
H

j
, s11d

whereH is the total energy in the intervalfx1,x2g, obtained
after the integration ofs6d, i.e.,

H =E
x1

x2

Hdx. s12d

In the following we take s11d as the definition of the
dwell time tD. Note that j refers to the flux in the same
interval where the energyH is computed. A minus sign
in s11d is needed due to the energy density flux for
optical phonons is negative, given the negative group veloc-
ity for the parabolic dispersion relation in the bulk, as shown
below.

In order to obtain the equation for acoustic phonons
we need to set to zero the constantv0, and make the
replacementb2→−v2, wherev is the sound velocity. Alsor
refers in this case to the total atomic mass density. For
acoustic phonons the integration ofs9d leads to tD=H / j .
For the sake of convenience, from now on we will
write the expressions for optical phonons unless otherwise
stated.

Note also that for an interval composed by the union of a
set of nonintersecting intervalsfx1,x2gø fx2,x3g¯, and when
j remains constantslike in the stationary case we are consid-
eringd, the dwell time is additive, i.e.,
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tD = tD
x1,x2 + tD

x2,x3 + ¯ , s13d

a very convenient fact for the layered systems we are study-
ing. Calculating the energy stored in each layer and the en-
ergy fluxswhich is unique to the structured it is easy to obtain
the dwell time.

While calculating the vibrational energy and the energy
flux for bulk phonon modes it is worth noticing that they
have different forms when considering propagating or for-
bidden states. In the next two sections we will give the form
of these magnitudes and thereafter they will be used to cal-
culate the dwell time.

A. Propagating states

We first consider some spatial region with constant mate-
rial parameters and in the frequency range of allowed optical
oscillations, i.e., withw,w0. The solution for the equation
of motion s8d reads in this case

u = fAte
ikx + Are

−ikxge−ivt, s14d

where k=Îsv0
2−v2d /b2 is the wave vector, andAt, Ar

are the coefficients of the solutions propagating to the
right stransmittedd and to the leftsreflectedd, respectively.
For this solution the energys12d in the interval fx1,x2g
is equal to

H = rv2fuAtu2 + uAru2gDx + r
v0

2

k
uAtuuArufsinsat − ar + 2kx2d

− sinsat − ar + 2kx1dg, s15d

where the coefficients are written in terms of their
modules and phases, i.e.,At= uAtueiat and Ar = uArueiar; and
Dx=x2−x1. On the other hand, for the energy density flux
we obtain

j = − rvb2kfuAtu2 − uAru2g. s16d

B. Forbidden states

In a region of constant material parameters, for frequen-
cies w.w0, the oscillations are forbidden. The solution to
the equation of motions8d could be obtained from the solu-
tion to the propagating statess14d after the replacement
k= ik,

u = fAte
−kx + Are

kxge−ivt, s17d

where now k=Îsv2−v0
2d /b2. It is important to notice

that the substitutionk= ik which leads us froms14d to s17d
is useless to transform directlys15d. It is necessary to
calculate the vibrational energy starting froms6d using s12d
to obtain

H = r
v0

2

2k
fuAtu2s− e−2kx2 + e−2kx1d + uAru2se2kx2 − e2kx1dg

+ 2rv2uAtuuArucossat − ardDx. s18d

The energy density flux is now given as

j = 2rvb2kuAtuuArusinsat − ard. s19d

Nevertheless these differences, we find that the reported ana-
lytical expressions for the dwell time for forbidden states can
be obtained from the corresponding expression for allowed
states after the replacementk= ik.

C. Heterostructures

For heterostructures with an arbitrary configuration of
well-acting and barrier-acting materials the dwell time is the
sum of the dwell time in each layers11d, s13d. The expres-
sion for the alloweds15d, s16d and the forbiddens18d, s19d
oscillations are used in this case. We suppose the heterostruc-
ture sandwiched between well-acting bulk materials, and that
a phonon is incident from the heterostructure left side. Part
of the energy is reflected at the heterostructure’s left side and
the other part is transmitted to the right side, according with
the conservation of the energy density flux. In our stationary
approach the energy density flux is independent on the coor-
dinate and it is equal to the transmitted energy flux to the
right of the heterostructurej t. It is proportional to the trans-
mission coefficient of the structure as can be seem froms16d
or s19d. The transfer matrix method is useful to compute the
energy s15d, s18d. In our case, the reflection coefficient is
zero at the right side of the heterostructure. We compute the
coefficients in each layer starting from the right side, where
all the coefficients are proportional to the transmission coef-
ficient, or equivalently to the transmitted flux,j t. Dividing H
and j to computetD s11d the transmission coefficient is can-
celed in both the numerator and the denominator oftD. That
is quite significative because the transmission coefficient has
peaks and valleys related to the bands and gaps of the pho-
non spectra33 and these features are not reflected in the curve
of tD, which is smoother. Of course, some resonances are
presented in this curve, as we will see later. This discussion
also shows that for the stationary case the relation]H /] j
=H / j is valid.

III. PHASE TIME

In Ref. 33 the one-dimensional transmission and reflec-
tion coefficients are computed for a finite superlattice with an
arbitrary number of periods. We calculate here further the
phase times. The results are generalizations of the acoustic
phonons studied in Ref. 32 in order to include optical
phonons. The solution at theY detector has a coefficient
given by

At =
2e−ik2Nd

2CsNd − iFSY2

Y1
x +

Y1

Y2
zDGSsNd

, s20d

where the following expressions are taken from33

SsNd =5
sinNq

sinq
for Ul + m

2
U ø 1,

S sl + md
ul + mu D

N+1sinhNq

sinhq
for Ul + m

2
U . 1,6

s21d
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CsNd =5cosNq for Ul + m

2
U ø 1,

S l + m

ul + muD
N

coshNq for Ul + m

2
U . 1,6

s22d

by definition

cosq ;
l + m

2
forUl + m

2
U ø 1, s23d

coshq ; Ul + m

2
U forUl + m

2
U . 1, s24d

and

l = cosa1 cosa2 −
Y1

Y2
sina1 sina2, s25d

x = sina1 cosa2 +
Y1

Y2
cosa1 sina2, s26d

z = sina1 cosa2 +
Y2

Y1
cosa1 sina2, s27d

m = cosa1 cosa2 −
Y2

Y1
sina1 sina2, s28d

also Y j =r jb j
2kj, a j =kjdj, j =1,2, anddj is the layer width.

The subindex 1s2d labels the barrierswelld-acting material.N
is the number of periodsd=d1+d2. The phase of the trans-
mitted amplitudeAt= uAtueiat is equal to

at = − k2Nd+ arctanFh+SsNd
2CsNd G , s29d

where

h± =
Y2

Y1
x ±

Y1

Y2
z. s30d

On the other hand, the coefficient of the solution at theX
detector is equal to

Ar =
fh− − isl − mdgSsNd
h+SsNd + 2iCsNd

, s31d

and the corresponding reflection phase is

ar = − k2d2 + arctanFh+SsNd
2CsNd G −

p

2
. s32d

Similar to Ref. 32, the transmitted and reflected time-
dependent phonon packets are defined as

uTsx,td =E dk

2p
fskduAtueifkx−vt+atg, s33d

uRsx,td =E dk

2p
fskduArue−ifkx+vt−arg, s34d

wherefskd is the phonon packet in the wave-vector space,
defined as the Fourier transform of the phonon displacement
describing the incident packet. It is assumed that the phonon
packet is peaked aroundk=k0. In the stationary phase ap-
proximation the peaks of the transmitted and reflected pack-
ets move according to

x = vgSUt −
dat

dv
U

k0

D , s35d

x = − vgSUt −
dar

dv
U

k0

D , s36d

wherevg=dv /dk is the phonon group velocity. Scattering by
the heterostructure causes temporal delays for the transmitted
and reflected packets

tph
t = Udat

dv
U

k0

, s37d

tph
r = Udar

dv
U

k0

, s38d

which can be calculated froms29d and s32d. In this way we
generalize the results of Mizuno and Tamura for acoustic
phonons to include optical phonons.32

For the sake of simplicity we are assuming that the origin
of the superlattice is atx=0. The phases are sensitive to the
location of the SL, i.e., they change as we shift the origin of
the SL. This shifting also occurs for the electrons, see for
example, Appendix A of Ref. 2 and Ref. 26, and will be
useful in the next section.

Finally, let us recall the transmission and reflection coef-
ficients reported in Ref. 33,

T = − r2vb2
2k2uAtu2/ j i = uAtu2 =

1

CsNd2 +
h+

2

4
SsNd2

, s39d

R = − r2vb2
2k2uAru2/ j i = uAru2 = 1 −T, s40d

where j i =−r2vb2
2k2 is the incident flux.

IV. RELATION BETWEEN DWELL TIME AND PHASE
TIMES

For an arbitrary configuration of barriers and wells be-
tween two semi-infinite mediasthe substrate and detector
layers of well-acting materialsd it is possible to find the fol-
lowing relationship between the dwell time and the phase
times:

tDT = ttT + trR + ti , s41d

where

tt = −
dat

dv
−

b − a

vg
, s42d
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tr = −
dar

dv
+

2a

vg
, s43d

ti =
v0

2

vb2k2
ÎR sinsar − 2kad, s44d

and the group velocity isvg=−b2k/v. The proof is similar,
from the mathematical point of view, to the calculations pre-
sented in Ref. 2, and is sketched in the Appendix. Note that
s41d is identical to the one obtained for electronss5d in Refs.
22 and 23, as previous1y discussed.

We call tt and tr total transmission and reflection times,
respectively, or shortly transmission and reflection times.
They are function of the time delays defined aboves37d,
s38d. Note that the total phase times refer to the extrapolated
phase times of Ref. 2, i.e., they are the linear extrapolation to
the local region of the heterostructure of the asymptotic
phase times which are defined for a region with an extent
large compared to the spatial extend of the wave packet. The
relation s41d is still valid for a regionsa,bd including not
only the heterostructure but also a large region where there is
not scattering potential, see the Appendix. In this extended
region the phase times show their asymptotic character. We
know the dwell time is a local quantity defined as function of
the energy and the flux in each particular layer. In order to
understand the meaning ofti, we can substract both the en-
ergy density of the incident phononHI and the energy den-
sity of the reflected waveHR from the energy density at the
heterostructure left sideHL, and integrate this difference
from the point −L, whenL tends to infinity, to an arbitrary
point x1 to the left of the heterostructure. After dividing by
the incident fluxj i we obtain

DtD = −
1

j i
lim
L→`

E
−L

x1

sHL − HI − HRddx

= −
v0

2

vb2k2
ÎR sinsar − 2kx1d, s45d

showing thatti is an interference termsor timed coming from
the overlap of the incident and reflected waves in from of the
heterostructure. Knowing that, we can substract from the
asymptotic phase times those parts corresponding to free mo-
tion, coming back to a region that only includes the hetero-
structure.

Given that our heterosystem is embedded in two
semi-infinite media of well-acting materials we suppose,
without any loss of generality, that the system has one
barrier both at the beginning and at the end. It is straightfor-
ward to prove that both the transmission and reflection
phasessat andard, computed for the periodic finite superlat-
tice in the preceding section do not change if we remove
the last well. Then we only need to consider that the length
of the systems is nowb−a=Nd−d2, and we obtain that the
total transmission time equals the total reflection time,tt
=tr. Note that in the preceding section we suppose the het-
erosystem begins atx=0, thus we have herea=0. For a
different from zero it is straightforward to prove that the

phases shift conveniently and the relationtt=tr is still ful-
filled. Using the identityT+R=1 the above relations41d
simplifies to

tDT = tt + ti . s46d

Following the method of Ref. 26 based on the time-
reflection symmetry and the conservation of the density flux
can be easily proven that also for phonons the total times are
equal only for symmetric potentials. We mean by symmetric
potential the case where the same material is used for both
emitter and detector layers.

For the resonances, i.e.,T=1 andR=0, the last term of
s41d vanishes andtD=tt. The interference term is also zero
for sinsard=0. That implies

h+

2

SsNd
CsNd

= − cotsk2d2d s47d

and the transmission coefficient reads

T =
sin2sk2d2d
cos2sNud

. s48d

Note thatti is equal to zero for acoustic phonons. Thus the
relation s46d is even simpler,

tD =
tt

T . s49d

It is equivalent to the relation obtained for EM waves.16

The replacementstt→−tt and tr →−tr in s42d and s43d
are also needed for acoustical phonons when we follow
the calculations of the Appendix for nowtD=H / j , as
commented above.

Looking at the form of expressions49d, the following is
expected. First,tD is proportional to the inverse ofT, and
then the valleysspeaksd of tD should correspond to the peaks
svalleysd of T. We will show later that the shape oftt re-
sembles that ofT. That is also expected from the previous
results for EM waves.29 Then, at the peaks ofT, tD should be
a smoother function of the frequency when compared with
tt. On the other hand, for the valleys ofT, the value oftD at
each frequency should be larger than the value oftt. It is
known that as the number of barriers in the structure raises
the valley in the transmission curve gets deeper.33 Then, in-
creasing the number of barriers the value oftD should raise
faster than the transmission time—for EM waves it is found
in Ref. 29 thattt increases and tends asymptotically to a
constant value. For the optical frequency range we find nu-
merically that the contribution of the interference part is neg-
ligible at all frequencies, and the behavior discussed for
acoustic modes should also be valid for the optical modes.
These features are illustrated with numerical examples in the
next section.

The type of relation here considered allows one to state an
appropriate definition for the characteristic time involved in
this problem and also when further complications appear, as
for the oblique phonon incidence. This problem is now in
progress.
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V. DISCUSSION

To get insight into the physics of these systems it is
worth to first consider both the one-barrier and double-
barrier cases, for which analytical expressions for the
dwell time and phase times can be easily obtained.
These cases may help us to predict the behavior of larger
systems. At the end of this section some numerical examples
will be given

We start considering a phonon incident perpendicularly at
one barrier of width,. It is easy to check that at the fre-
quency region where phonons in the barrier are allowed, the
dwell time is equal to

tD =
1

2b1
2k1

fvj+, + sv10
2 /vdj− sins2k1,d/2k1g, s50d

where j±=rb1
2k1/ sr2b2

2k2d±r2b2
2k2/ srb1

2k1d, and
k1=Îsv1 0

2 −v2d /b1
2 is the expression for the wave vector in

the barrier. For frequencies forbidden in the barrier material
it is only needed for the replacementk1→ iÎsv2−v1 0

2 d /b1
2. It

is also valid for the phase time. For acoustic phonons the
dwell time is independent on the frequency, it grows linearly
with the barrier width, and reads

tD
ac = j+

ac,/2v1, s51d

where j±
ac=r1v1/ sr2v2d±r2v2/ sr1v1d. We recall that

we made the replacementstD→−tD, v1 0=v2 0=0, and
b1

2→−v1
2, b2

2→−v2
2 to write it as a function of the sound

velocities. Also herer1 and r2 refer to the total atomic
masses.

For the phase times we have froms42d, s43d

tt = tr = − v51

4
S 1

b2
2k2

2 −
1

b1
2k1

2Dj−
sins2k1,d

1 +
j−

2

4
sin2sk1,d

− 3 j+

2b1
2k1

1

1 +
j−

2

4
sin2sk1,d4,6 . s52d

For both acoustic and optical phonons the phase times show
an oscillatory character, though the first term vanishes for
acoustic phononssgiven thatb1k1=b2k2d. Also for nonpropa-
gating optical states and, tending to infinity,tt converges to
a constant valuesHartman effectd.

For the system composed by two barriers, with an inner
well sboth barrier and well of width,d we obtain for the last
barrier to the rightsassuming left phonon incidenced an ex-
pression identical tos50d, as expected. FortD in the quantum
well we have

tD
well =

1

4b2
2k2
Hv,fj+

2 − j−
2 coss2k1,dg +

v2 0
2 j−

vk2
fsk1,k2dJ ,

s53d

where

fsk1,k2d = 2 sinsk2,d2sins2k1,d + j+ sinsk1,d2sins2k2,d.

s54d

For acoustic phonons the second term ins53d vanishes, and
we find the maxima oftD at the resonances 2k1,=s2n+1dp,
wheren is an integer. The frequency values are atv=v1sn
+1/2dp /,. These resonances depend on the parameters of
the barrier material and correspond to the minima in the
transmission coefficient curves. Increasing the number of
wells, the degenerate resonant states in each well hybridize
to form new resonant states for the whole structure. A similar
behavior is expected for the optical modes, as will be con-
firmed by numerical examples.

We study numerically thes74Ged4-s
70Ged4 finite superlat-

tices, previously considered in Refs. 31 and 33, for the rea-
sons explained in the Introduction. The same input param-
eters as in Refs. 31 and 33 are used. In Figs. 1–3 the dwell
time ssolid linesd and the transmission timessdashed linesd as
functions of the phonon frequency given in cm−1 are de-
picted for acoustic and optical phonons in the isotopic Ge
finite superlattice. In Fig. 1 the acoustic phonons are shown,
while in Figs. 2 and 3 the optical phonons for the allowed
sFig. 2d and forbiddensFig. 3d frequency regions are pre-
sented. In order to clarify the meaning of both times we also
plot the transmission coefficientT as a function of the pho-
non frequency. As noted in Ref. 33,T describes the behavior
of the phonon modes. We increase in the calculations the
number of barriers from 2 to 15. In Ref. 33 it was found that
for 15 barriers the characteristics of the phonon modes are
close enough to the dispersion relation of the infinite periodic
system.

The most significant feature in Fig. 1 is the existence of a
gap for the phonon modessequivalent to a valley forTd, that
is narrower and deeper for larger systems. The phase time
shows the same behavior asT. The dwell time presents char-
acteristic peaks, indicating that the phonon spends more time
in the heterosystem for these frequencies. With the exception
of the modes in the gaps, the acoustic phonons have trans-
mission coefficients very close to one. In Fig. 1sdd we rep-
resentT for 15 barriers with a dashed line in order to differ-
entiate the peaks. In the inset of graphic Fig. 1sad the peaks
of tt for the 15 barriers system are shown. Note thattD is the
envelope of these peaks oftt. As commented before, this
smoother behavior is expected from relations49d. Also tD
increases faster thantt when the size of the system is in-
creased.

Figure 2 shows the case of optical phonon modes in
the frequency range allowed to propagate in both the
well and barrier layers. This is the same physical
situation found for acoustic modes. The differences
here come from the new dispersion relation of optical
modes. The new feature in the dwell time is the divergences
appearing when the frequency approach the value
corresponding to the bulk materials301.5 cm−1d. The trans-
mission coefficient tends to zero when approaching this fre-
quency value.

Figure 3 shows the case of optical phonon modes in the
frequency range forbidden in the barrier layer and allowed in
the well one. We pay attention here to the resonances result-
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ing from the presence of inner wells between the barriers.
Given the hybridization of the modes, the resonance, that
appears for the well in the double-barrier system at
,305.57 cm−1, is duplicate for the system with three barriers
and two inner wells. The number of peaks increases for
larger systems. Here it is clearly observed that the dwell time
is the envelope function of the phase time. Also both times
are equal at the resonances, as proved above. This behavior
is found for all the figures. Here the order of magnitude oftD
and tt is 3 times larger than for both acoustic and allowed
optical phonons. In general it is found that the time values
for optical phonons are larger than for acoustic phonons. It is
also worth noticing in Fig. 4 the small values of the interfer-
ence termti, which are much smaller than bothtD andtt for
all optical modes.

VI. CONCLUSIONS

We have derived the dwell time that characterizes the tun-
neling for long wavelength phonons in semiconductor het-
erostructures from the energy density continuity equation. It
is related to the vibrational energy stored in the heterostruc-
ture during the tunneling process. We also derived an ana-
lytical relationship between the dwell timetD and the phase
time tt. This result helps to clarify the meaning of both
times. In general it is found that both times could be used to
describe the features of the phonon modes. For optical
phonons it is found that the magnitude of the time is larger
than for acoustic phonons. Though for optical phonons the
interference term—resulting from the overlap of incident and
reflected waves in front of the heterostructure—is not zero
slike for acoustic phononsd, it has a small value. We also
found that the dwell time is the envelope function of the
peaks of the phase time for allowed states. In particular,tD
equalstt at the resonances. In Ref. 30 the Christoffel equa-
tions are employed to study a macroscopic system, i.e., the
same equations used to study the long wavelength acoustic

FIG. 1. The dwell timessolid lined and the transmission time
sdashed lined, both in ps, are plotted as a function of the acoustic
phonon frequenciessin cm−1d for the s74Ged4-s

70Ged4 finite super-
lattice, with twoscd, threesbd, and 15sad barriers. Insdd the trans-
mission coefficient is given for comparison. For the sake of clarity
the transmission coefficient for 15 barriers is both plotted with
dashed lines and shown in the inset. The upper inset shows some
details of the times for 15 barriers.

FIG. 2. The same as Fig. 1 for the allowed optical phonon
states. For the sake of clarity the transmission coefficient for 15
barriers is plotted with dashed lines and for two barriers is shown in
the inset.
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phonons. These authors also considered decoupled modes.
They computed theoretically the transmission coefficients
using the transfer matrix method and the group velocities
simulating the propagation of waves packets. Their theoreti-
cal results are in agreement with their own experimental
data. Given that we are also employing the speed of the
sound in the media as input parameter, a qualitative check
of the order of magnitude our times is obtained replacing
the dimension of their system by the nanometric dimensions
of our systems. The same order of magnitude of the
times presented in Fig. 1 is obtained. Although more experi-
mental evidence is needed. An experimental study of
the features of the tunneling time from the allowed states to
the gap of the bulk phonon modes could be useful. These
oscillations are not easily detected in the experiment.
Additionally, real structures have imperfections that destroy
the interference pattern, and the small oscillations or peaks in
the times, and also the interference term are not easily
detected—in addition to the small oscillations for the
allowed states and the different behavior of allowed and for-
bidden states. In this sense, the isotopic heterostructures
sgiven their almost ideal interfacesd are the most valuable
candidates for an experimental study. We hope that this work
could motivate further experimental studies and possible
applications.

On the other hand, given the mathematical analogy be-
tween the phonon problem and both the electronic tunneling
and the propagation of EM waves, and despite the concep-
tual complications deriving an appropriate time for electrons,
the findings reported in this paper could be easily extrapo-
lated for these other systems.
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APPENDIX: DERIVATION OF THE RELATION BETWEEN
THE DWELL TIME AND THE PHASE TIMES

Suppose we have an arbitrary configuration of barriers
and wells in the spatial regionsa,bd, sandwiched between
two semi-infinite well-acting materials. We employ the
method developed in Refs. 2 and 24, taking advantage of the
mathematical analogy between the stationary electron and
phonon problems. The emphasis is here in the features char-
acteristic of phonons. We integrate the continuity equation
s9d across the region of interest for an arbitrary time-
dependent energy density,

d

dt
E

a

b

Hdx+ jsb,td − jsa,td = 0. sA1d

It is useful to cast the solution of the stationary equation
of motion s8d in the form

usxd = 5eikx + Arskde−ikx, x ø a,

Csx,kd, a , x , b,

Atskdeikx, x ù b,
6 sA2d

and to write the Fourier decomposition for each part of the
solution with weights determined by the Fourier transform of
the initial wave packet,

uLsx,td =E dk

2p
fskdfeikx + Arskde−ikxge−ivt, sA3d

FIG. 4. The interference timesin psd is plotted as a function of
the phonon frequenciessin cm−1d for the s74Ged4-s

70Ged4 finite su-
perlattice with 15 barriers.

FIG. 3. The same as in the previous figures for the forbidden
optical phonon states. The time is now in ns. For the sake of clarity
the transmission coefficient for 15 barriers is plotted with dashed
lines.
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usa,bdsx,td =E dk

2p
fskdCsx,kde−ivt, sA4d

uRsx,td =E dk

2p
fskdAtskdeiskx−vtd, sA5d

where the subscriptsL sRd refer to the leftsrightd of the
region sa,bd. SubstitutingsA3d–sA5d in the expressionss6d
and s10d to write sA1d, assuming that initially the wave
packet was at the left ofx=a and considering that the overlap
with the intervalsa,bd will be essentially zero, thensA1d can
be integrated twice in time. In the time integration the
relation

dsv − v8d =
1

2p
E

−`

`

e−isv−v8dtdt =
sv + v8d

b2sk + k8d
dsk − k8d,

sA6d

valid for the phonon dispersion relationv2=v0
2−b2k2, is em-

ployed. The first part ofsA1d reads after the integration and
for the stationary solution

P1 =E dk
ufskdu2

2p
S v

kb2DE
a

b

dxHsa,bdsk,xd, sA7d

where

Hsa,bdsk,xd =
1

2
rU ]C

]t
U2

+
1

2
rv0

2uCu2 −
1

2
rU ]C

]x
U2

.

sA8d

Both the second and third part ofsA1d involve larger terms.
The integration in eitherk or k8 is easier by changing to the
variablesk=Q+q/2 and k8=Q−q/2. The calculations are
lengthly but straightforward and lead to

P2 = −E dk

2p
ufskdu2rv2FuAtskdu2ttskd + uArskdu2trskd

+
v0

2

vb2k2uArskdusinsbskd − 2kadG , sA9d

wherettskd=−datskd /dv−sb−ad /vg and trskd=−darskd /dv
+2a/vg. FromsA1d we have the conditionP1+P2=0. Given
that ufskdu2 is essentially arbitrary the relations41d is ob-
tained.

*Electronic address: villegas@uclv.edu.cu
†Electronic address: fernando@theo3.physik.uni-stuttgart.de
‡Electronic address: rpa@fisica.uh.cu
1C. A. A. de Carvalho and H. M. Nussenzveig, Phys. Rep.364, 83

s2002d.
2E. H. Hauge and J. A. Støvneng, Rev. Mod. Phys.61, 917s1989d.
3V. S. Olkhovsky and E. Recami, Phys. Rep.214, 339 s1992d.
4R. Y. Chiao and A. M. Steinberg, inProgress in Optics, edited by

E. Wolf sElsevier, Amsterdam, 1997d, Vol. XXXVII, p. 345.
5R. Landauer, NaturesLondond 341, 567 s1989d.
6Th. Martin and R. Landauer, Phys. Rev. A45, 2611s1992d.
7A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, Phys. Rev. Lett.

71, 708 s1993d.
8Ch. Spielmann, R. Szipöcs, A. Stingl, and F. Krausz, Phys. Rev.

Lett. 73, 2308s1994d.
9M. Mojahedi, E. Schamiloglu, F. Hegeler, and K. J. Malloy, Phys.

Rev. E 62, 5758s2000d.
10S. Longhi, M. Marano, P. Laporta, and M. Belmonte, Phys. Rev.

E 64, 055602sRd s2001d.
11G. Nimtz, A. Enders, and H. Spieker, J. Phys. I4, 565 s1994d.
12A. Enders and G. Nimtz, J. Phys. I2, 1693 s1992d; 3, 1089

s1993d.
13A. Ranfagni, D. Mugnai, P. Fabeni, and G. P. Pazzi, Appl. Phys.

Lett. 58, 774 s1991d.
14Ph. Balcou and L. Dutriaux, Phys. Rev. Lett.78, 851s1997d; J. J.

Carey, J. Zawadzka, D. A. Jaroszynski, and K. Wynne,ibid. 84,
1431 s2000d.

15M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science301,
200 s2003d; L. J. Wang, A. Kuzmich, and A. Dogariu, Nature
sLondond 406, 277 s2000d; D. R. Solli, C. F. McCormick, C.
Ropers, J. J. Morehead, R. Y. Chiao, and J. M. Hickmann, Phys.
Rev. Lett. 91, 143906s2003d; I. Alexeev, K. Y. Kim, and H. M.

Milchberg, ibid. 88, 073901s2002d; A. Kuzmich, A. Dogariu,
L. J. Wang, P. W. Milonni, and R. Y. Chiao,ibid. 86, 3925
s2001d.

16H. G. Winful, Opt. Express 10, 1491 s2002d, http://
www.opticsexpress.org/abstract.cfm?URI5OPEX-10-25-1491

17H. G. Winful, Phys. Rev. Lett.90, 023901s2003d.
18H. G. Winful, IEEE J. Sel. Top. Quantum Electron.9, 17

s2003d.
19H. G. Winful, Phys. Rev. E68, 016615s2003d.
20T. E. Hartman, J. Appl. Phys.33, 3427s1962d.
21P. Krekora, Q. Su, and R. Grobe, Phys. Rev. A64, 022105

s2001d.
22H. G. Winful, Phys. Rev. Lett.91, 260401s2003d.
23E. H. Hauge, J. P. Falck, and T. A. Fjeldly, Phys. Rev. B36, 4203

s1987d.
24F. T. Smith, Phys. Rev.118, 349 s1960d.
25M. Büttiker, Phys. Rev. B27, 6178s1983d.
26J. P. Falck and E. H. Hauge, Phys. Rev. B38, 3287s1988d.
27M. A. Moura and M. de Albuquerque, Solid State Commun.74,

353 s1990d.
28S. Esposito, Phys. Rev. E64, 026609s2001d.
29P. Pereyra, Phys. Rev. Lett.84, 1772s2000d.
30W. M. Robertson, C. Baker, and C. B. Bennett, Am. J. Phys.72,

255 s2004d; W. M. Robertson, J. Ash, and J. M. McGaugh,ibid.
70, 689 s2002d; J. N. Munday, C. B. Bennett and W. M. Rob-
ertson, J. Acoust. Soc. Am.112, 1353s2002d.

31F. de León-Pérez and R. Pérez-Alvarez, Phys. Rev. B61, 4820
s2000d.

32S. Mizuno and S. I. Tamura, Phys. Rev. B50, 7708s1994d.
33F. de León-Pérez and R. Pérez-Alvarez, Phys. Rev. B63, 245304

s2001d.
34S. Tamura and S. Mizuno, Physica B263–264, 455 s1999d.

VILLEGAS, DE LEÓN-PÉREZ, AND PÉREZ-ALVAREZ PHYSICAL REVIEW B71, 035322s2005d

035322-10



35K. Imamura, Y. Tanaka, and S. Tamura, Physica B316–317, 234
s2002d.

36V. Narayanamurti, Science213, 717 s1981d.
37J. Spitzer, T. Ruf, M. Cardona, W. Dondl, R. Schorer, G. Abstre-

iter, and E. E. Haller, Phys. Rev. Lett.72, 1565 s1994d; J.
Spitzer, Ph.D. thesis, University of Stuttgart, 1994. For a review
see E. E. Haller, J. Appl. Phys.77, 2857s1995d.

38For a study of the zinc-blend structure see, for example, A. Fa-
solino, E. Molinari, and K. Kunc, Phys. Rev. B41, 8302s1990d.

The diamond structure is a particular case of the former with
two equal atoms in the elemental cell.

39Most spectroscopic techniques are able to measure long-
wavelength phonons, see for example, B. Jusserand and M. Car-
dona, inLight Scattering in Solids V, edited by M. Cardona and
G. GüntherodtsSpringer-Verlag, Heidelberg, 1989d.

40C. Trallero-Giner, R. Pérez-Alvarez, and F. García-Moliner,Long
Wave Polar Modes in Semiconductor Heterostructures
sPergamon/Elsevier Science, London, 1998d.

TUNNELING TIME OF LONG-WAVELENGTH PHONONS… PHYSICAL REVIEW B 71, 035322s2005d

035322-11


