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Tunneling time of long-wavelength phonons through semiconductor heterostructures
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A characteristic time for the tunneling of long-wavelength phonons through nonpolar semiconductor
heterostructures is derived from the energy density continuity equation of the system. It is a mathematical
analog of the well known dwell time for electrons. We study the tunneling of optical and acoustic phonons at
normal incidence on multiple layers systems. A relation between the dwell time and the phase times for
phonons which is similar to that obtained for electrons is deduced. At the same time the phase times for
acoustic phonons are generalized to include the optical phonons. Our findings could be easily extrapolated to
both the particle and electromagnetic wave tunneling. This study could also be useful for the design of phonon
optics devices.
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I. INTRODUCTION ful has shown that the peak of the tunneling wave packet

The tunneling time of electrons through a potential barrie/d0€S not propagate from input to outptt® Output and
have been a long standing question for physicists and stillPut wave packet peaks are therefore not related by
remains controversial. There is not a unique definition for thecausal propagation and hence the phase time is not a propa-
tunneling time up to now:* A direct experimental study is gation delay. These simulations could be easily extrapolated
not straightforward for the barrier traversal time of electronsto the electron tunneling. Similar studies with the Dirac
is orders of magnitude shorter—of the order of €quation also show an absence of a wave packet peak in the
101-1015 s—than the highest time resolution achievablebarrier during tunneling® With these simulations in mind,
in electronics’ In fact, very few experiments provide some Winful has exploited the analogy between EM waves in band
indirect information about the temporal dynamics of particlegap structures and the electrons to show that the Hartman
tunneling. Instead, some general trends can be extrapolat@ffect can be explained by the saturation of the integrated
from optical experiments. Martin and Landauer have showrProbability density (or number of particles under the
that the one-dimensional particle tunneling is in direct analbarrier?? After some algebra with the time-independent
ogy with evanescent electromagne(itM) waves found ina Schrédinger equation, he derived a relation between the
low-dielectric-constant region separating two regions ofdwell time and the phase times, previously obtained by
higher dielectric constaftAccurate measurements of single- Haugeet al. using a wave packet analy$isThis relation
photon and optical-pulse delay times in the photonic bandeads

ap of multilayer medid;*'in wave guides operating below _
gut[z)f“f,lzv13 an{i for frustrated to%al inteFr)naI rgflection to=nT+ 7R+, @
experiments;' have stimulated the interest in studying the where 7, is the reflexion phase timeJ and R are the
tunneling time—mainly the  superluminal  barrier transmission and reflexion coefficients, respectively, and
tunneling—up to the present tinie. t; is a self-interference term that comes from the overlap

In a series of recent interesting papers, Winful has arguedf the incident and the reflected waves in front of the
that the time delays for EM waves are not propagation delaybarrier. The dwell time for a particle in the barrier region
and should not be related to a velodity'® He has shown 0<x<L is defined in accordance with Refs. 24 and 25
that the phase time is proportional to the average time iras
which the energy is stored in the cavity and it is a measure of L
the cavity lifetime for the EM wave. He used this proportion- f |yAx)|dlx
ality between the phase time and the stored energy to explain 0
the paradox of the Hartman effé¢for EM waves. For the o= .
photonic band gap structures studied in Refs. 16 and 17 the Jin
dwell time, tp, was shown to be equal the phase timeas  wherey(X) is the stationary state wave function ajpgdis the
a consequence of the nondispersive plane wave propagatidiox of the incident particle. Falck and Hauge have shown
characteristic of these EM waves. In a simulation based othat for symmetric scattering potentiats=7,.26 Thus, the
EM field equations for the photonic band gap structure Win-expression foty simplifies to

: (2)
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to=7+1. 3) ies for electrons and EM waves—these studies considering
] ) ) ] together both the dwell and phase time—that are generally
In this paper only symmetric potentials are considered for th§imited to two barriers or to some windows of the whole
sake of convenience. spectrum.

A time which does not saturate with barrier length is ob- * The phonon tunneling has been largely studisee, for
tained after dividing the integrated particle density by theexample, Refs. 32—35 and references theréitso acoustic
flux within the barrier(that arises from the interference be- phonons have been proposed as an alternative to study
tween evanescent and antievanescent modes, dividing  the tunneling time. A few years ago Mizuno and Tanitra
the previous expression fog by the transmission coefficient suggested—by considering that phonons travel at sound
7. It was intuitively proposed by Moura and Albuquerdife. velocity, which is slower than the electron velocity, and
Winful named it as perfectly “luminal” net-flux delagy,22in  taking also into account that its mean free path is
the sense that it does not suffer from the paradoxical Hartmacroscopic in pure samples and ranging in THz character-

man effect. Thus istic frequencies—that the measurement of the time delay or
the advance of phonons in heterostructures is easier than in

N = %) @) the case of electronsee the discussion about it in Ref.)32
D™ 7 On the other hand, semiconductor heterostructures are

) ) o ) ) useful for the design of various phonon optic devices such as
With this redefinition of the dwell time the aforementioned phonon mirrors, phonon reflectors, phonon resonators, and

derivation of the relatiorfl) is still valid, when it is written  so on3® Systems for phonons based on multiple superlattice
as (SL) structures have been proposédee Ref. 32 and

NT= 7T+ 7R +t,. (5) references therejn Tamura and Mizuno also studied the

time evolution of acoustic phonon packets normally incident

As Winful stated, this analysis is also valid for photons,on the layer interfaces of superlatticésA theoretical
with the conditiont;=0. The above mentioned experiments study of the group velocity of acoustic phonons in a finite
with EM waves are designed to measure the group delaguperlattice is presented in Ref. 35. But neither of the previ-
between incident and transmitted wave packets, i.e., theus papers have considered the dwell time, derived here, or
phase delayand not the redefined dwell timeThe experi- its relation with the phase time. In addition, previous results
mental data is in agreement with theoretical calculati§@8. of Mizuno and Tamur¥ for the phase times of acoustic
The net-flux delay can be computed from these experimentagdhonons are generalized here in order to include optical
results?? phonons.

In this paper we show that for phonons a well-behaved We consider in the following the phonons incident
dwell time like tg in (4), i.e., which does not saturate on a multiple-barrier structure consisting of an alternate
with barrier length, can be derived directly from the energystacking of the layersA and B. The system studied is
density continuity equation, without any additional assump-expressed aX(AB)NY, whereX andY denote the substrate
tion. Consequently the label “net” is not used in the follow- and detector layer, respectively. Their vibrational properties
ing. We also obtain the relation between dwell time andare assumed to be the same as that of le&§erand N
phase time for an arbitrary layered structure, casts in thés the number of the paiAB layers in the structure. We
form (5). Then a saturation of the vibrational energy stored insuppose the phonon propagation normal to the layer
the barrier can be invoked to disregard paradoxically interinterfaces and adopt the continuum model valid for long
pretations of phonon group velocities larger than the sounevavelength oscillations. Under this assumption the acoustic
velocity in the solid. In fact, some nice experiments are preand optical bulk dispersion relations are linear and parabolic,
sented in Ref. 30 showing the breaking of the sound barrierespectively.
in solids. The acoustic phonon dispersion relation in a periodic su-

We study long-wavelength phonons propagatingperlattice is obtained by folding the dispersion curves for the
along high symmetry directions in nonpolar semiconductorsbulk materials back into the mini-Brillouin-zon#BZ) de-
Under these conditions the atomic oscillations are describettrmined by the periodicity of the superlattice. In the folded
by one-dimensional differential equatiotls.The results dispersion relation frequency gaps are generally formed at
here obtained could be easily extrapolated to the tunneling dhe center and at the boundary of the MBZ. We can control
both EM and electrons. In fact the acoustic phonons ar¢he size of the MBZ by changing the length of the unit period
not dispersivelike EM waves in photonic band gap struc- of the SL. On the other hand, for a finite superlattice with a
tureg while the optical phonons show a dispersive charactesmall number of periods some resonances appear. Each state
(like electron$. For the sake of generality we write expres- is duplicatedN times when the number of periods increases
sions valid for both optical and acoustic phonons. WeN times(as a result of the hybridization of the modes in the
find some analytical properties valid for an arbitrary numberdifferent periods For a given number of periods the phonon
of barriers that, to the best of our knowledge, have nofeatures are similar to the dispersion relation of the infinite
been considered before neither for electrons nor for EMperiodic SL32 For the optical vibrations a similar behavior is
waves. We also show that a more comprehensive picture ddund. Though in this case it is worth to recall that the bulk
the tunneling time can be achieved by studying multibarriephonon branches for one material in the period does not
systems with more than two barriers for the whole energyverlap the branch of the other, instead a bulk phonon gap is
range. This picture is not clearly revealed in theoretical studpresent. Then, for optical phonons we differentiate the fre-
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quency values for which the oscillations are allowed in both o=-ppR2oulox, (7)
materials from these frequencies that are forbidden in one of . )
the materials. where is a parameter that accounts for the behavior of the

As mentioned above, nanostructures made of nonpoldfUlk phonon dispersion relation. _ _
semiconductors are ideal for our study. In particular, we con- Fom (6), the one-dimensional equation of motforis
sider the isotopic short period Ge multibarrier system, thaf2Sily obtained,
have attracted the attention in the past y&arEhe phonon 2u 2u
dispersions of two isotopic enriched Ge bulk materials over- —=- w%u - ,82—2. (8)
lap over a large frequency ran@eut confined optical modes o x
are also preseptand strain effects are not important. Thesenote that the stationary solution ¢8), i.e., a solution pro-
structures are also grown in practice with almost ideal interportional toe“t where w is the mode frequency, leads to a
faces. Helmholtz equation which is equivalent to both the time-

The paper is organized as follows. The main theoreticajndependent Schrodinger equation and the EM field
findings are presented in Sec. Il, where the dwell time forequations.
phonon in heterostructures is derived from the energy density ysing (8) it is possible to write the continuity equation for
continuity equation. In Sec. Ill we computed the phase timeshe energy density
valid for optical phonons, which includes previous results for
acoustic phonons as a particular case. In Sec. IV we study JHIdt + djlax =0, 9

the analytical relation between dwell time and phase times. . .
This relation is deduced in the Appendix. An additional dis-25 @ particular case of the developments presented in Ref. 33,

cussion of the analytical results and some numerical ex\_/vhere the energy density fluk, is written as

amples are given to Sec. V. At the end, the main conclusions j=—12cou*/at+o* auld). (10)

are given in Sec. VI. ) _ ) )
For the stationary solution of the equation of motion

it is straightforward to obtain thatH/dj="H/j, and thatj
Il. DWELL TIME does not depend on the coordinate(we will return in

. . . Sec. Il C to these statemept$or this case, the continuity
For high symmetry directions of the Diamond structure,gqation is integrated—taking into account that the infini-

like the [001] and [111] directions, the harmonic (egimal incrementlt, is related to the infinitesimal incre-

phonon equations of motion decouple into one longitudinal,ant of the total energy per unit of incoming energy density
and two degenerated transverse oscillations, which arg . 5 optain

described by a linear chain mod€lPhonons with wave

vectors close to the center of the Brillouin zéhelo not H

feel the discrete nature of the atomic structure, and for tD:_T' (11)
them the long-wavelength approximation is valid. In these

conditions the discrete equations of motion transform to avhereH is the total energy in the interviik;,x,], obtained
continuum problem described by a second order differentiaffter the integration of6), i.e.,

system of equation®.*° The same equations are valid for «

both longitudinal and transverse vibrations and we will sup- H :J szx. (12)
press these labels in the following. We write down formulas X

valid for optical phonons. These include the case of acoustic ) o

phonon with the appropriate selection of the parameters thap the following we take(11) as the definition of the
will be shown belovw# For the sake of convenience we for- dwell time tp. Note thatj refers to the flux in the same

mulate the problem with the help of its one-dimensional eninterval where the energi is computed. A minus sign
ergy density in (11) is needed due to the energy density flux for

optical phonons is negative, given the negative group veloc-

2 ity for the parabolic dispersion relation in the bulk, as shown
1 |ou 1 , 5, 1 ou* au bel
H=Zo| 5| 4 Zpoue 3|0t ror |, () below _ . .
27| ot 2 4] ox X In order to obtain the equation for acoustic phonons

we need to set to zero the constamy, and make the
and we write it for the stationary case. The first termreplacemeng?— —v2, wherev is the sound velocity. Alsp
in (6) represents the kinetic energy density, the secondefers in this case to the total atomic mass density. For
one represents the interaction energy density of the phonoicoustic phonons the integration (8) leads totp=H/j.
field with itself, and the third one the strain energy For the sake of convenience, from now on we will
density that accounts for the dispersive character of tharite the expressions for optical phonons unless otherwise
oscillations. These terms depend on the atomic relativetated.

displacementsu, the linear mass density, the phonon Note also that for an interval composed by the union of a
frequency at the center of the Brillouin zong, the one-  set of nonintersecting intervels; , x,] U [X2,Xs]: - -, and when
dimensional strain tensofu/dx, and the stress tensar, j remains constaritike in the stationary case we are consid-
which is equal to ering), the dwell time is additive, i.e.,
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to =t 2+ t27s+ - | (13 i = 2pwB2k|A|AISIN(a; — ). (19

a very convenient fact for the layered systems we are studyNevertheless these differences, we find that the reported ana-
ing. Calculating the energy stored in each layer and the enlytical expressions for the dwell time for forbidden states can
ergy flux(which is unique to the structuré is easy to obtain be obtained from the corresponding expression for allowed

the dwell time. states after the replaceméatix.
While calculating the vibrational energy and the energy
flux for bulk phonon modes it is worth noticing that they C. Heterostructures

have different forms when considering propagating or for- o heterostructures with an arbitrary configuration of
bidden states. In the next two sections we will give the forme|_acting and barrier-acting materials the dwell time is the
of these magnitudes and thereafter they will be used to calgum of the dwell time in each layéll), (13). The expres-
culate the dwell time. sion for the allowed15), (16) and the forbidder{18), (19)
oscillations are used in this case. We suppose the heterostruc-
ture sandwiched between well-acting bulk materials, and that
a phonon is incident from the heterostructure left side. Part
We first consider some spatial region with constant mateef the energy is reflected at the heterostructure’s left side and
rial parameters and in the frequency range of allowed opticathe other part is transmitted to the right side, according with
oscillations, i.e., withw<w,. The solution for the equation the conservation of the energy density flux. In our stationary
of motion (8) reads in this case approach the energy density flux is independent on the coor-
i ik i dinate and it is equal to the transmitted energy flux to the
u=[Ae¥+Ae" e, (14) right of the hetero(itructurja. It is proportional tg )t/he trans-
where k=\(w2-w? /B2 is the wave vector, andy, A, Mission coefficient of the structure as can be seem fbéh
are the coefficients of the solutions propagating to the?r (19). The transfer matrix method is useful to compute the

right (transmitted and to the left(reflected, respectively. €nergy(15), (18). In our case, the reflection coefficient is
For this solution the energyl?) in the interval [xy,x,]  Z2€ro atthe right side of the heterostructure. We compute the

is equal to coefficients .in. each layer start'ing from the right §id¢, where
all the coefficients are proportional to the transmission coef-
ficient, or equivalently to the transmitted flux, Dividing H

andj to computety (11) the transmission coefficient is can-

_ celed in both the numerator and the denominataiyofThat

= sin(ay = oy + 2kxy) |, (15 s quite significative because the transmission coefficient has

where the coefficients are written in terms of their Pe@KS and valleys related to the bands and gaps of the pho-
modules and phases, i.A=|Ajé and A =|A|é*; and NON spectr® and these features are not reflected in the curve

Ax=X,—%,. On the other hand, for the energy density flux of tp, which is smoother. Of course, some resonances are

A. Propagating states

2
w .
H = po AL + [AZ1AX+ p A Alsin(ey - ar + 2k0x)

we obtain presented in this curve, as we will see later. This discussion
also shows that for the stationary case the relatibfy Jj
i =— poBK|AJZ - A2 (16)  =H/j is valid.
1. PHASE TIME
B. Forbidden states In Ref. 33 the one-dimensional transmission and reflec-

In a region of constant material parameters, for frequention coefficients are computed for a finite superlattice with an
cies w>wy, the oscillations are forbidden. The solution to arbitrary number of periods. We calculate here further the
the equation of motioii8) could be obtained from the solu- Phase times. The results are generalizations of the acoustic
tion to the propagating stated4) after the replacement Phonons studied in Ref. 32 in order to include optical

k=ik, phonons. The solution at th¥ detector has a coefficient
_ given by
u=[Ae " +Ae%e, (17) ‘
26_'k2Nd
where now k=y(w?-wd)/ . It is important to notice A= Y Y : (20
that the substitutiodkk=ix which leads us from{14) to (17) 2C(N) —i{(y—zx+ Y—1§>JS(N)
1 2

is useless to transform directlyl5). It is necessary to

calculate the vibrational energy starting fral) using(12)  where the following expressions are taken ffdm
to obtain

sinNd N+ u
w5 : for | ——| <1,
H= p2_|:|At|2(_ e—2KX2 + e—ZKXl) + |Ar|2(e2KX2 - eZKXj_)] QN) _ sind 2
K (()\+M)>N+lsinhNﬂ S
+ 2pw?|A|Alcog ey — o) AX. (18 N+ u sinh & 2 :
The energy density flux is now given as (21
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A+
cosNd for 2’“ <1,
C(N) = N
N+ +
( ~ ) coshNd  for RN N 1,
IN+ u
(22
by definition
N+ A+
cosd = A for AR g R 1, (23)
2 2
+ A+
coshd = ‘—’u for STA 1, (24
and
Y, | .
\ = COSa; COSar, — Y. sina; sinay, (25)
2
. Y, .
X =Sina; CoSa, + Y. COSaq Sinay, (26)
2
. Y, .
{=sina; cosa, + Y CcoSa; Sin asy, (27
1
Y, . .
M =COSa; COSap — Y. Sin ay Sin ay, (298

1

also Y;=p;8k;, a;=kid;, j=1,2, andd; is the layer width.
The subindex @) labels the barrietwell)-acting materialN

is the number of periodd=d,+d,. The phase of the trans-
mitted amplitudeA=|Ae*t is equal to

h,S(N)
=-k,Nd+ arct , 29
I 5 arc a{ 2C(N) } (29
where
Y, Y,
h,=—"y+ —C. 30
" le ng (30)

On the other hand, the coefficient of the solution at ¥he
detector is equal to

_[h-=i( - IS

, 31
" h,S(N) + 2iC(N) (3Y)
and the corresponding reflection phase is
h,S(N) T
a, = —kyd, + arctar[ 2+C—(N)] -5 (32

PHYSICAL REVIEW B 71, 035322(2005

UR(X,D) = f X poladertomer, (34)

2T
where ¢(k) is the phonon packet in the wave-vector space,
defined as the Fourier transform of the phonon displacement
describing the incident packet. It is assumed that the phonon
packet is peaked around=k,. In the stationary phase ap-
proximation the peaks of the transmitted and reflected pack-
ets move according to

X=vg< - ) (35)
w
ko
x:—vg( -5 ) (36)
w
ko

wherevy=dw/dkis the phonon group velocity. Scattering by
the heterostructure causes temporal delays for the transmitted
and reflected packets

do,
= | (37)
ko
da
t;)h_ d_a)r ’ (38)
ko

which can be calculated froif29) and (32). In this way we
generalize the results of Mizuno and Tamura for acoustic
phonons to include optical phono#s.

For the sake of simplicity we are assuming that the origin
of the superlattice is at=0. The phases are sensitive to the
location of the SL, i.e., they change as we shift the origin of
the SL. This shifting also occurs for the electrons, see for
example, Appendix A of Ref. 2 and Ref. 26, and will be
useful in the next section.

Finally, let us recall the transmission and reflection coef-
ficients reported in Ref. 33,

. 1
T=— profokalAlji = |A? = ———, (39
C(N)?+ jS(N)2
R = = poofkolAlTji= IAP=1-T, (40)

wherej;=—p,w3k, is the incident flux.

IV. RELATION BETWEEN DWELL TIME AND PHASE
TIMES

For an arbitrary configuration of barriers and wells be-
tween two semi-infinite medidthe substrate and detector
layers of well-acting materialst is possible to find the fol-
lowing relationship between the dwell time and the phase
times:

Similar to Ref. 32, the transmitted and reflected time-

dependent phonon packets are defined as

dk .
ur(xt) = f ZM(k)lAAe'“X‘"’““ﬂ. (33

to7=r7T+ R+ 7, (41)
where
d b-a
RE— e (42)
dw Vg
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da, 2a phases shift conveniently and the relatige 7, is still ful-
Tr:‘a‘“v_a (43) filled. Using the identity7+R =1 the above relatiori41)
K simplifies to
2 tp7=m7+ 7. (46)
7= —29 R sin(a, - 2Ka), (44) prT
wpk Following the method of Ref. 26 based on the time-

reflection symmetry and the conservation of the density flux
can be easily proven that also for phonons the total times are
equal only for symmetric potentials. We mean by symmetric
6'}F)Otential the case where the same material is used for both
emitter and detector layers.

For the resonances, i.eZ=1 andR =0, the last term of
(41) vanishes andp=7. The interference term is also zero
for sin(a,)=0. That implies

and the group velocity isg=—,82k/w. The proof is similar,
from the mathematical point of view, to the calculations pre-
sented in Ref. 2, and is sketched in the Appendix. Note th
(41) is identical to the one obtained for electrd$ in Refs.
22 and 23, as previously discussed.

We call r; and 7, total transmission and reflection times,
respectively, or shortly transmission and reflection times
They are function of the time delays defined abd@@),
(38). Note that the total phase times refer to the extrapolated h, SIN)
phase times of Ref. 2, i.e., they are the linear extrapolation to Ew =
the local region of the heterostructure of the asymptotic
phase times which are defined for a region with an extenfng the transmission coefficient reads
large compared to the spatial extend of the wave packet. The
relation (41) is still valid for a region(a,b) including not sirP(k,d,)
only the heterostructure but also a large region where there is = m- (48)
not scattering potential, see the Appendix. In this extended
region the phase times show their asymptotic character. WRote thatr is equal to zero for acoustic phonons. Thus the
know the dwell time is a local quantity defined as function ofrelation (46) is even simpler,
the energy and the flux in each particular layer. In order to
understand the meaning @f we can substract both the en- T
ergy density of the incident phond, and the energy den- b= T (49)
sity of the reflected wavé{y from the energy density at the
heterostructure left sidé?;, and integrate this difference It is equivalent to the relation obtained for EM wavés.
from the point +, whenL tends to infinity, to an arbitrary The replacements;— -7 and 7.——7, in (42) and (43
point x; to the left of the heterostructure. After dividing by are also needed for acoustical phonons when we follow
the incident fluxj; we obtain the calculations of the Appendix for nown=H/j, as
commented above.

Looking at the form of expressio#9), the following is
expected. Firstfp is proportional to the inverse df, and
then the valleygpeaks of tp should correspond to the peaks
(valleys of 7. We will show later that the shape of re-
sembles that of/. That is also expected from the previous
results for EM wave$? Then, at the peaks &, ty should be
showing thatr, is an interference terifor time) coming from  a smoother function of the frequency when compared with
the overlap of the incident and reflected waves in from of ther;. On the other hand, for the valleys @f the value ofty at
heterostructure. Knowing that, we can substract from thesach frequency should be larger than the valueroft is
asymptotic phase times those parts corresponding to free m&nown that as the number of barriers in the structure raises
tion, coming back to a region that only includes the heterothe valley in the transmission curve gets deépdihen, in-
structure. creasing the number of barriers the valuetpshould raise

Given that our heterosystem is embedded in twofaster than the transmission time—for EM waves it is found
semi-infinite media of well-acting materials we suppose,n Ref. 29 thatr increases and tends asymptotically to a
without any loss of generality, that the system has oneonstant value. For the optical frequency range we find nu-
barrier both at the beginning and at the end. It is straightformerically that the contribution of the interference part is neg-
ward to prove that both the transmission and reflectiorigible at all frequencies, and the behavior discussed for
phased«; and «;), computed for the periodic finite superlat- acoustic modes should also be valid for the optical modes.
tice in the preceding section do not change if we removeThese features are illustrated with numerical examples in the
the last well. Then we only need to consider that the lengtmext section.
of the systems is nols—a=Nd-d,, and we obtain that the The type of relation here considered allows one to state an
total transmission time equals the total reflection time, appropriate definition for the characteristic time involved in
=7,. Note that in the preceding section we suppose the hethis problem and also when further complications appear, as
erosystem begins at=0, thus we have hera=0. Fora for the oblique phonon incidence. This problem is now in
different from zero it is straightforward to prove that the progress.

- cot(kyd,) (47)

1 1
AtD:_j_ I|mf (HL_H| _HR)dX
i L—oo -L

2
w — .
== KSKZVR sm(a, - 2kX1), (45)
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V. DISCUSSION f(ky, ko) = 2 sinky€)?sin(2ky,€) + &, sin(ky€)?sin(2k,).
To get insight into the physics of these systems it is (54)

worth to first consider both the one-barrier and double-FOr acoustic phonons the second tern{58) vanishes, and

barrier cases, for which analytical expressions for tthe find the maxima of; at the resonanceskg = (2n+1)7

dwell time and phase times can be easny_ Obt"’“nwwheren is an integer. The frequency values arexwatvs(n
These cases may help us to predict the behavior of Iarge+r1/2) /¢ These resonances depend on the parameters of
systems. At the end of this section some numerical example e P b

will be given t]sqe bafrie_r materia_d_and correspond to _the minima in the
We start considering a phonon incident perpendicularly afransmission coefficient curves. Incregsmg the number .Of
one barrier of width¢. It is easy to check that at the fre- wells, the degenerate resonant states in each well hypr|§j|ze
quency region where phonons in the barrier are allowed, th 0 fo”'? new resonant states for the whole structure. Asimilar
dwell time is equal to _ehawor is expe_cted for the optical modes, as will be con-
firmed by numerical examples.
We study numerically thé’“Ge),-("°Ge), finite superlat-

tp= 2Pk [0 + (wiw)é-sin(2k€)/2k,], (50) tices, previously considered in Refs. 31 and 33, for the rea-
2Pk sons explained in the Introduction. The same input param-
eters as in Refs. 31 and 33 are used. In Figs. 1-3 the dwell
where  &=ppiki/ (pa3ko) £ paBkol (pBiky),  and 9

k= (0 D) A is th ion for th . time (solid lineg and the transmission tim¢dashed linesas
1=V (@] g~ w%)/ By is the expression for the wave vector in ,qtions of the phonon frequency given in Grrare de-

the barrier. For frequencies forbidden in the barrier mate”abicted for acoustic and optical phonons in the isotopic Ge
itis only needed for the repla(.:emdqt—u\(wz f"i o/BL 1t finite superlattice. In Fig. 1 the acoustic phonons are shown,
is also valid for the phase time. For acoustic phonons thehile in Figs. 2 and 3 the optical phonons for the allowed
dwell time is independent on the frequency, it grows linearly(Fig. 2 and forbidden(Fig. 3 frequency regions are pre-

with the barrier width, and reads sented. In order to clarify the meaning of both times we also
o ac plot the transmission coefficiedtas a function of the pho-
th = &°0/120,, (51 non frequency. As noted in Ref. 33,describes the behavior

. of the phonon modes. We increase in the calculations the
where  £°=pv1/(pv2) £ pvol (pv1). We recall  that  nymper of barriers from 2 to 15. In Ref. 33 it was found that
we made the replacementy ——tp, w;0=w20=0, and for 15 barriers the characteristics of the phonon modes are

2 2 2 2 H H H . . . s e . . .
B1— —vi, B;—~v; to write it as a function of the sound close enough to the dispersion relation of the infinite periodic
velocities. Also herep; and p, refer to the total atomic system.

masses. The most significant feature in Fig. 1 is the existence of a
For the phase times we have frad®), (43) gap for the phonon modésquivalent to a valley fof}, that
] is narrower and deeper for larger systems. The phase time
e —w }( 1 1 > 3 sin(2ky€) shows the same behavior ZsThe dwell time presents char-
o 4\ Bks K & acteristic peaks, indicating that the phonon spends more time
1+ 4 sirf(ky0) in the heterosystem for these frequencies. With the exception
of the modes in the gaps, the acoustic phonons have trans-
| & 1 ¢ (52) mission coefficients very close to one. In Figdilwe rep-
zlgikl gﬁ _ ' resent? for 15 barriers with a dashed line in order to differ-
1 7 sirf(ky€) entiate the peaks. In the inset of graphic Fitg) the peaks

of 7, for the 15 barriers system are shown. Note thds the

For both acoustic and optical phonons the phase times sho@ivelope of these peaks ef. As commented before, this
an oscillatory character, though the first term vanishes fopmoother behavior is expected from relatie#9). Also tp.
acoustic phononiven thatB,k; = B,k,). Also for nonpropa-  increases faster than when the size of the system is in-

gating optical states anltending to infinity, 7, converges to ~ creased. . .
a constant valuéHartman effedt Figure 2 shows the case of optical phonon modes in

For the system composed by two barriers, with an innefh® frequency range allowed to propagate in both the
well (both barrier and well of widti) we obtain for the last Well and barrier layers. This is the same physical
barrier to the rightassuming left phonon incidencan ex-  Situation found for acoustic modes. The differences

pression identical t¢50), as expected. Fdp in the quantum ~Nere come from the new dispersion relation of optical
well we have modes. The new feature in the dwell time is the divergences

appearing when the frequency approach the value
1 w3 o corresponding to the bulk materiéd01.5 cm?). The trans-
thel = ———\ wl[& - & cod2ky )]+ ———F(ky,ko) [, mission coefficient tends to zero when approaching this fre-
4B2kz wko quency value.
(53 Figure 3 shows the case of optical phonon modes in the
frequency range forbidden in the barrier layer and allowed in
where the well one. We pay attention here to the resonances result-
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FIG. 2. The same as Fig. 1 for the allowed optical phonon
states. For the sake of clarity the transmission coefficient for 15
barriers is plotted with dashed lines and for two barriers is shown in

FIG. 1. The dwell time(solid line) and the transmission time
(dashed ling both in ps, are plotted as a function of the acoustic
phonon frequencieéin cmi?) for the ("‘Ge),-("°Ge), finite super- !
lattice, with two (c), three(b), and 15(a) barriers. In(d) the trans- € inset.
mission coefficient is given for comparison. For the sake of clarity

the transmission coefficient for 15 barriers is both plotted with VI. CONCLUSIONS
dashed lines and shown in the inset. The upper inset shows some
details of the times for 15 barriers. We have derived the dwell time that characterizes the tun-

neling for long wavelength phonons in semiconductor het-
erostructures from the energy density continuity equation. It

. . . isrel he vibrational ener red in the heterostruc-
ing from the presence of inner wells between the barrlersS elated to the vibrational energy stored in the heterostruc

Gi he hvbridizati £ th d h h ture during the tunneling process. We also derived an ana-
lven the hybridization 0 the modes, the resonance, t a\E/tical relationship between the dwell timig and the phase
appears for the well in the double-barrier system

1 ; . ; alime 7. This result helps to clarify the meaning of both
~305.57 cm, is duplicate for the system with three barriers {jjes 1n general it is found that both times could be used to

and two inner wells. The number of peaks increases fopescripe the features of the phonon modes. For optical
larger systems. Here it is clearly observed that the dwell timfbhonons it is found that the magnitude of the time is larger
is the envelope function of the phase time. Also both timeshan for acoustic phonons. Though for optical phonons the
are equal at the resonances, as proved above. This behavigterference term—resulting from the overlap of incident and
is found for all the figures. Here the order of magnitudépf reflected waves in front of the heterostructure—is not zero
and r is 3 times larger than for both acoustic and allowed(like for acoustic phononsit has a small value. We also
optical phonons. In general it is found that the time valuedound that the dwell time is the envelope function of the
for optical phonons are larger than for acoustic phonons. It ipeaks of the phase time for allowed states. In partictjar,
also worth noticing in Fig. 4 the small values of the interfer- equals at the resonances. In Ref. 30 the Christoffel equa-
ence termr;, which are much smaller than bothandr for  tions are employed to study a macroscopic system, i.e., the
all optical modes. same equations used to study the long wavelength acoustic
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FIG. 4. The interference timen p9 is plotted as a function of

7 the phonon frequenciggn cm™?) for the ("*Ge),-("°Ge), finite su-
> perlattice with 15 barriers.
E
On the other hand, given the mathematical analogy be-
00 tween the phonon problem and both the electronic tunneling
5 10 : and the propagation of EM waves, and despite the concep-
8 08 tual complications deriving an appropriate time for electrons,
S o6 the findings reported in this paper could be easily extrapo-
2 04 lated for these other systems.
§ 02f!
E ooEE== : . : . . : ACKNOWLEDGMENT
3046 3048 3050 3052 3054 3056 3058 306.0
Frequency (cm”) The authors gratefully acknowledge H. Rodriguez-

Coppola for useful and clarifying comments.
FIG. 3. The same as in the previous figures for the forbidden
optical phonon states. The time is now in ns. For the sake of clarity,
the transmission coefficient for 15 barriers is plotted with dashe
lines.

PPENDIX: DERIVATION OF THE RELATION BETWEEN
THE DWELL TIME AND THE PHASE TIMES

phonons. These authors also considered decoupled modes.SUpDOS(.e we have.an ar_bitrary configuration of barriers
They computed theoretically the transmission coefficient?lnd wells in the spatial regio(a,b), sandwiched between

using the transfer matrix method and the group velocitiedW© Semi-infinite’ well-acting materials. We employ the
simulating the propagation of waves packets. Their theoretiethod developed in Refs. 2 and 24, taking advantage of the

cal results are in agreement with their own experimentamathematical analogy between the stationary electron and
data. Given that we are also employing the speed of th@honon problems. The emphasis is here in the features char-
sound in the media as input parameter, a qualitative chec®cteristic of phonons. We integrate the continuity equation
of the order of magnitude our times is obtained replacing®) across the region of interest for an arbitrary time-
the dimension of their system by the nanometric dimensionslependent energy density,

of our systems. The same order of magnitude of the 4 [

times prese_znted in _Flg. 1 is obtained. AIth(_)ugh more experi- _J Hdx+j(b,t) —j(at) = 0. (A1)
mental evidence is needed. An experimental study of dtJ,

the features of the tunneling time from the allowed states to ] ] ) ]

the gap of the bulk phonon modes could be useful. These It |s'usefullto cast the solution of the stationary equation
oscillations are not easily detected in the experimentof motion(8) in the form

Add_itionally, real structures have imperfec_tions that destroy ¥+ A (e, x<a,

the interference pattern, and the small oscillations or peaks in

the times, and also the interference term are not easily u(x) =1 ¥xk, a<x<b, (A2)
detected—in addition to the small oscillations for the Ay, X= Db,

allowed states and the different behavior of allowed and for-

bidden states. In this sense, the isotopic heterostructur@é1d to write the. Fourier dec.omposmon for gach part of the
(given their almost ideal interfacesre the most valuable Solution with weights determined by the Fourier transform of

candidates for an experimental study. We hope that this worH~|e initial wave packet,

could motivate further experimental studies and possible dk ) _ )
applications. u (x,t) = J Zcb(k)[e'k“Ar(k)e_'kx]e_"”t, (A3)
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dk i EURECAYE
u(a,b)(x,t)=f qu(k)*lf(x,k)e' t (A4) Hﬁf dk7 )] AXH apy(kX), (A7)
where
dk .
Ug(X,t) = f — p(KA(KER e, (A5) 1 21 1 |aw|?
" 2 t HeankX) = 2p| —- +§pw§|‘1’|2—59 o
where the subscripts (R) refer to the left(right) of the (A8)

region (a,b). Substituting(A3)—(A5) in the expressionb)
and (10) to write (Al), assuming that initially the wave
packet was at the left of=a and considering that the overlap
with the interval(a, b) will be essentially zero, thefAl) can

be integrated twice in time. In the time integration the

Both the second and third part 6&1) involve larger terms.

The integration in eithek or k’ is easier by changing to the
variablesk=Q+q/2 andk’=Q-q/2. The calculations are
lengthly but straightforward and lead to

relation

a1 * T (w+ ') L
w-w )——wa_we dT_—ﬂz(k+k')5(k k'),
(AB)

valid for the phonon dispersion relatiasf=w3— 82k?, is em-

ployed. The first part ofAl) reads after the integration and

for the stationary solution

dk
I, =~ f ;laﬁ(kﬂzpwz{|At(k>|2n(k) +|A (K)?7,(K)

2
(1)0 )
+ er(k)lsm(ﬁ(k) - 2ka)} , (A9)
where 7(K) =—dey(k) /dw—(b—a)/vg and 7.(k) =—de, (K) / dw
+2alvg. From(Al) we have the conditiohl, +11,=0. Given
that |¢(k)|? is essentially arbitrary the relatio@1) is ob-
tained.

*Electronic address: villegas@uclv.edu.cu

Electronic address: fernando@theo3.physik.uni-stuttgart.de

*Electronic address: rpa@fisica.uh.cu

1C. A. A. de Carvalho and H. M. Nussenzveig, Phys. R&@4, 83
(2002.

2E. H. Hauge and J. A. Stgvneng, Rev. Mod. PH§/%.917(1989.

3V. S. Olkhovsky and E. Recami, Phys. Retil4, 339 (1992.

4R. Y. Chiao and A. M. Steinberg, iRrogress in Opticsedited by
E. WoIf (Elsevier, Amsterdam, 199;7Vol. XXXVII, p. 345.

5R. Landauer, Naturé_ondon 341, 567 (1989.

6Th. Martin and R. Landauer, Phys. Rev.45, 2611(1992.

"A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, Phys. Rev. Lett.

71, 708(1993.

Milchberg, ibid. 88, 073901(2002; A. Kuzmich, A. Dogariu,
L. J. Wang, P. W. Milonni, and R. Y. Chiaabid. 86, 3925
(2002.

164, G. Winful, Opt. Express 10, 1491 (2002, http:/
www.opticsexpress.org/abstract.cfm?GRIPEX-10-25-1491

17H. G. winful, Phys. Rev. Lett90, 023901(2003.

184, G. Winful, IEEE J. Sel. Top. Quantum Electrord, 17
(2003.

19H. G. Winful, Phys. Rev. E68, 016615(2003.

20T, E. Hartman, J. Appl. Phys33, 3427(1962.

2lp, Krekora, Q. Su, and R. Grobe, Phys. Rev.64, 022105
(2002.

22H. G. Winful, Phys. Rev. Lett91, 260401(2003.

8Ch. Spielmann, R. Szipécs, A. Stingl, and F. Krausz, Phys. ReV?3E. H. Hauge, J. P. Falck, and T. A. Fjeldly, Phys. Re\3& 4203

Lett. 73, 2308(1994.

(1987).

9M. Mojahedi, E. Schamiloglu, F. Hegeler, and K. J. Malloy, Phys. ?*F. T. Smith, Phys. Rev118, 349 (1960.

Rev. E 62, 5758(2000.

25M. Bittiker, Phys. Rev. B27, 6178(1983.

103, Longhi, M. Marano, P. Laporta, and M. Belmonte, Phys. Rev.28J. P. Falck and E. H. Hauge, Phys. Rev3B, 3287(1988.

E 64, 055602ZR) (2001).
1G. Nimtz, A. Enders, and H. Spieker, J. Phys4,1565 (1994).
12A. Enders and G. Nimtz, J. Phys. 2, 1693 (1992; 3, 1089
(1993.

2TM. A. Moura and M. de Albuquerque, Solid State Commd,
353(1990.

283, Esposito, Phys. Rev. B4, 026609(2007).

29p, Pereyra, Phys. Rev. Lets4, 1772(2000.

I3A, Ranfagni, D. Mugnai, P. Fabeni, and G. P. Pazzi, Appl. Phys3°W. M. Robertson, C. Baker, and C. B. Bennett, Am. J. PI#3.

Lett. 58, 774(199).

14pPh. Balcou and L. Dutriaux, Phys. Rev. Le®8, 851(1997); J. J.
Carey, J. Zawadzka, D. A. Jaroszynski, and K. Wyribiel. 84,
1431(2000.

15M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Sciengel,

255(2004; W. M. Robertson, J. Ash, and J. M. McGaugid.
70, 689(2002; J. N. Munday, C. B. Bennett and W. M. Rob-
ertson, J. Acoust. Soc. Anl12, 1353(2002.

S1F. de Ledn-Pérez and R. Pérez-Alvarez, Phys. Re%1B4820
(2000.

200 (2003; L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 32S. Mizuno and S. |. Tamura, Phys. Rev.3®, 7708(1994.

(London 406, 277 (2000; D. R. Solli, C. F. McCormick, C.
Ropers, J. J. Morehead, R. Y. Chiao, and J. M. Hickmann, Phys.

Rev. Lett. 91, 143906(2003; I. Alexeev, K. Y. Kim, and H. M.

33F de Ledn-Pérez and R. Pérez-Alvarez, Phys. Re§3R245304
(2002.
343, Tamura and S. Mizuno, Physica B53-264 455 (1999.

035322-10



TUNNELING TIME OF LONG-WAVELENGTH PHONONS.. PHYSICAL REVIEW B 71, 035322(2005

35K, Imamura, Y. Tanaka, and S. Tamura, Physic8B-317 234 The diamond structure is a particular case of the former with
(2002. two equal atoms in the elemental cell.

36\, Narayanamurti, Scienc@13 717 (1981). 39Most spectroscopic techniques are able to measure long-
87]. Spitzer, T. Ruf, M. Cardona, W. Dondl, R. Schorer, G. Abstre- wavelength phonons, see for example, B. Jusserand and M. Car-
iter, and E. E. Haller, Phys. Rev. Letf72, 1565 (1994; J. dona, inLight Scattering in Solids Medited by M. Cardona and

Spitzer, Ph.D. thesis, University of Stuttgart, 1994. For a review G. Guntherod{Springer-Verlag, Heidelberg, 1989

see E. E. Haller, J. Appl. Phyg.7, 2857 (1995. 40C. Trallero-Giner, R. Pérez-Alvarez, and F. Garcia-Molineng
38For a study of the zinc-blend structure see, for example, A. Fa- Wave Polar Modes in Semiconductor Heterostructures

solino, E. Molinari, and K. Kunc, Phys. Rev. 81, 8302(1990. (Pergamon/Elsevier Science, London, 1998

035322-11



