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Spin relaxation of two-dimensional holes in strained asymmetric SiGe quantum wells
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We analyze spin splitting of the two-dimensional hole spectrum in strained asymmetric SiGe quantum wells
(QWS59). Based on the Luttinger Hamiltonian, we obtain expressions for the spin-splitting parameters up to the
third order in the in-plane hole wave vector. The biaxial strain of SiGe QWs is found to be a key parameter that
controls spin splitting. Application to SiGe field-effect transistor structures indicates that typical spin splitting
at room temperature varies from a few tenths of meV in the case of Si QW channels to several meV for the Ge
counterparts, and can be modified efficiently by gate-controlled variation of the perpendicular confining elec-
tric field. The analysis also shows that for sufficiently asymmetric QWSs, spin relaxation is due mainly to the
spin-splitting related D’yakonov-Pdrmechanism. In strained Si QWs, our estimation shows that the hole spin
relaxation time can be on the order of 100 picoseconds at room temperature, suggesting that such structures are
suitable forp-type spin transistor applications as well.
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I. INTRODUCTION tonian. The symmetry properties of the effective Hamiltonian

Recently, there has been considerable interest in the fiel@f confined holes were analyzed previously, for example, in
of spintronic applications. They range from various ap-Refs. 6-9.
proaches in logic and memory elements to quantum [N this paper, we address the problem of the hole spectrum
computation: Many spintronic device concepts rely on the and spin relaxation in strained SiGe QWs. Previously,
so-called Das-Datta spin transistowhere the transfer of spin splitting in such QWs was estimated based on
spins between the spin-polarized source and drain contactsf&e observation of the circular photogalvanic efféand
controlled by the gate bias through the perpendicGlar, transport measuremerifs.In Ref. 10, possible sources
confining electric field in the quantum wellQW) channel.  of spin splitting proportional to the in-plane hole wave vector
Experimentally, the efforts have concentrated mainly orwere examined briefly. Here, we present quantitative
n-type I1I-V devices; in particular, those with InGaAs QWSs. calculations of spin splitting based on the Luttinger
The reasons for this preference &ig easy control of elec- Hamiltonian approach. We take into account the biaxial
tron spin states in this materfednd (2) availability of I11-V strain inherent in the SiGe heterostructures which gives
diluted magnetic semiconductdtsMuch less attention has rise to stronger splitting of the hole subbands. We consider
been paid to the hole-based spintronic applications, whoseoth the cases of tensile and compressive strain resulting
rationale actually originates from the considerations relatedn the light-hole(LH)-like and heavy-holé¢HH)-like ground
to the bulk semiconductors. Indeed, in bulk cubic semiconstate, respectively. Based on the results for spin splitting,
ductors the top of the valence band at the Brillouin zoneve analyze the spin-relaxation process for 2D holes.
center is fourfold degeneratcluding spin, and hybridiza- For asymmetric QWs, it is found that the D’yakonov-Rere
tion of the hole states for finite wave vectors depends on th&echanism is more important than the Elliott-Yafet mecha-
direction of the wave vector. As a result, hole scattering ighism. According to our calculations, the hole spin mean-free
supplemented by simultaneous change of spin, and the sgath in a strained Si QW can be as large as a micron at
called Elliott-Yafet mechanism of spin relaxation is very room temperature. This estimate suggests the feasibility
effective’ In fact, the hole spin relaxation rate is close to theof p-type spintronic applications based on Si, particularly
momentum relaxation rate; i.e., nonquilibrium spin relaxegn view of recent advances in group-IV magnetic
too fast to allow control in any realistic device. This picture semiconductors?
is not exactly correct in the case of two-dimensional
(2D) holes confined in a QW, where the degeneracy at the
zone center is partially lifted due to quantization. Moreover,
the hole spectrum in a QW is in general completely First, we need clarify what we mean by the term “spin.”
nondegenerate for nonzero wave vectors, qualitatively reBue to the degeneracy at the zone center, the spin-orbit in-
sembling that of electrons. For the QWSs based on the certeraction leads to strong hybridization of the hole states and
trosymmetric crystals such as Si and Ge, the removal of dethe total angular momentum must be considered. If some
generacy takes place due to the QW asymmetry, while foasymmetry is introduced such as the confinement in a QW,
the compound material-based QWs the additional contributhe degeneracy between the LH and HH states is lifted at
tion arises due to the bulklike contributions to the Hamil- least partly. When the resulting doublet is well separated

II. BASIC EQUATIONS
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energetically from the other states, it can be treated by usinffom the eigenvalue equations for the LH and SS envelope
a spin Hamiltonian with the effective spin 1/2. So, in speak-functionsy,
ing of spin states, we mean the states of this quasidegenerate

doublet. H Xffl) _E Xfwﬂ)
Let us describe the model used in our calculations. We 2 ngZ) B ngz) '
consider the case of a QW grown along fl0@1] direction
that is subject to biaxial strain. We start from the following 5 ) w2 g2
6X 6 effective-mass Hamiltonian: ﬁ_(A+ B)d_ +E -B—— - E:
2my dz V2mydZ 2
H=HP +H + H + U@l (1) Hp= @ E a2 @ g |TU@R
Here H = H(L°)+HE') is the Luttinger Hamiltonian with -B \Emog - E EAd_zz —A+ 2
H(LO) corresponding to the part witk, ,=0, H, is the contri-
bution due to the biaxial strainU(z) is the confining 3

potential which forms the QW, ang is the 66 unity ma-  erex stands for or s, A andB are parameters of the hole
trix. The explicit expression foH is not provided since it is spectrum4 m, is the free electron mass, is the 2x2
readily available in the literaturesee, for example, Ref. 13 nitary matrix, and the deformation energy mentioned previ-
Note, however, that in the following thg top of the I—!‘I‘;I .band ously is E,=b(2U,,~U,,~U,,), whereb is the deformation

is used as the reference energy. Askirp theory, H, " is IE)otential constant and is the strain tensor. The envelope

treatgd 1?5 a perturbation. FoIIowing the conventionaknctions for HH states(;h) are determined by the conven-
notation;* we choose the zeroth-ordéi.e., unperturbed  ionq Schrodinger equation with an effective mass

wave functions as m"=my/(A-B).
0 0 In general, further steps require numerical solution of Eq.
(1) 0 (3) to obtain the spectrum and envelope functions of LH and
Xn N SS states. Considerable simplification is possible, however, if
¥ 0 ¥ Xﬁ, ) the quantization energy is much less thignor A, which is
Un = ' 2n =~ ' often the case for strained SiGe QWs. Under this approach, it
0 0 pp
S (12 0 is adequate to use an “effective mass” approximation for the
1Xn s solution of Eq.(3), which treats the nondiagonal part ldf
0 IXn containing thez derivatives as a perturbation. Subsequently,
we obtain
x5 0 W
'sn
0 0 XY =t + 122 Xs=( g
0 0 nr Er-| - En/
Wipn= I , 2
1hn 0 2hn Xgh) ( ) .
n’snl
0 0 X2 = ol + 1o Xors = g
g - E( )
0 0 n’ n n’
0 0 Wi/
1) _ n’Ins
ngl) 0 XEwS )= toXns t112 Xn'l £ _ E(I) ,
n’ n n’
\Irlsn 1 \Pan 1
0 0 (s2) _ Whn'Ins
ixgﬁ) 0 Xn _tZZan+t212 Xn’lw- (4)
n n’
0 X2

Here the spectrurEﬂ'S) and the envelope functiong,, xns
are determined by the conventional Schrddinger equation
with the effective masses,

where the plane-wave factors ¢xix+kyy)] are omitted
for simplicity. In Eq.(2), the first subscript o (i.e., 1 or 2
denotes the doubly degenerate states fgr,=0, n
is the subband number, andh, or s represents the LH, n 1 9/4 +A/(2E,) -1
HH, or spin-split (SS states, respectively. In fact, if the mY=mp| A+B P S/atAE + (AE ) ,
strain is strong enough such that the corresponding strain v e+ (A/E)
energy E, is comparable to the spin-orbital gap in the

bulk material, the so-called LH and SS states are hybridized ~_ [, _p| _ 94+A@E) 1 o )
even for k,,=0. Hereafter, we term the states “LH” ~Mo \VOI4 +AJE_+ (AJE)? 2 '

and “SS” which take the genuinely light and spin-split

nature in the limitA—c. This hybridization is evident and
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h? an,B
Whan'g =~ 2m* fd Z Xna a2

-
VOEZ/4 + AE, + A?
\’EAB .

m* =mg

In Eq. (4), t;; are the elements of the unitary transformation
matrix T that approximately diagonalizés, (for U=0 and
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%3 |3B%+C2
O=—\—F5—
mO 3

1
(i _ L a2
o Sl 5

X (szo'r?“) + AUy (12)

In Egs.(11) and(12), we use the following overlap integrals:

d/dz=0), B
d)(n[?
+ S N [ o O A i S
r V/W dz
_ S
T= N For the ground HH state, we have
\/ N EV/E,) \/ - ES/E) " = my(A + B/2)L
whereE" are the LH and SS states in a strained material o =oh
=0,

with no confinementi.e., U=0),
gl = ( E.— A+ \9EY4 +AE +A)

and
N s=1+21-E"9/E)2

These basis functions result in nondiagonal terms in the
HamiltonianH. Using the perturbation methddit is pos-
sible to transform it to the quasidiagonal form in any desired
order in HE‘). Under this approach, the effective Hamiltonian
for the quasidegenerate ground subband can be written as

H(I’h)_ M| _ﬁ Q(Ih)( ),

eff = (Ih)

2m

where o are Pauli matrices. Restrictir@ to the terms pro-

(8) QF) = A[3BK (K2 - K2) - 2y3(3B2 + CH)K’k,],
© QF) = A[3Bk/(K; - K2) + 23(3B2 + CHKZk,],  (14)

where

B ﬁ3 /352+c2

1 hi2
[ E<“> E o
<

1
(h2) _
+ =K,
n=0 EE)h) - En ( 2 on

hi1 [oy (12 hi1
(n )>(V2)‘E)n )+)\E)n ))

(10)
)
(B xezﬂ”] |

portional tok and k® and neglecting the corrections to the (15)

For both the LH-like and HH-like states, trzecomponent of
Q is zero. It is important to note th& is proportional to the
product fdz y d®x’/dZfdz y dx'/dz for the terms propor-
tional tok and to the producfdz yx' fdzx dy’/dzfor those

longitudinal effective mass, we obtain for the ground LH-
like state
[A B()\llll \2)\|l|2)] ,
0V=00+0f,

Qg) zi\@(?’Bz CZ) |1|2 Xy,
Mgy

Q) = TIBk,(K: + K2) + B[ 3Bk, (K2 - K2)
+213(3B% + C2)k§kx]
Qf) = T1BK,(K + k&) + O[ - 3BK (K2 - k)
+2V3(3B%+ C?)Kk, ],
whereC is a parameter of the hole spectrifrand
3(382 +C?)
1
(11s2) _
X —
ng Eg) - EES) fon
X206+ 25 -G,

1=

(IZSl))

proportional tok®, wherey andy’ are the envelope functions
obtained as a solution of the Schrddinger equation with the

(11) potentialU(z) and appropriate effective masses. For a sym-
metric U(z), the products of this kind are zero and the spin
splitting vanishes in accordance with the general symmetry
requirements.

Based on these results for hole spectrum, we can calculate
the related spin relaxation rate. Basically, two mechanisms of
relaxation must be addressed. The first is the D’yakonov-
Peréd (DP) mechanisni?® It is related to spin precession with
a frequencyQ(k,, k), which changes randomly due to rapid
electron transitions in the momentum space. For this mecha-
nism, the spin relaxation times for they, andz spin com-
ponents obey the following relatiof,=T,=2T,=Tpp. For
nondegenerate carriers, it is given as

1 Sk 2 kak)folkaky) L6
Tor Soufotkek) 1o

In this equation,fy is the Boltzmann distribution function
and 7 is an average characteristic time of electron
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FIG. 1. Model valence band profile used for spin splitting cal-

culations. Holes are assumed to be confined in a triangular well F1G. 2. Spin splitting and D’yakonov-Pdrepin relaxation rate
with an infinite barrier on the left-hand side. The band discontinuityfor a strained Si QW grown on the SiGe, 5 buffer. Spin splitting is
at the SiGe interface depends on the structure §fieSiGe or  given for the hole kinetic energy désT along the[100] (dotted

Ge/SiGe and was disregarded. line) and[110] (dashed ling directions.

scattering®® in the following, we will assume it to be equal In Figs. 2 and 3, we show the obtained spin splitting and
to the electron momentum relaxation time. Another dominanspin relaxation rate Ilyp as a function of the confining elec-
source of spin relaxation is the Elliott-Yaf€¢EY) mecha- tric field at T=300 K. Figure 2 presents the case of a
nism. It is caused by hybridization of the hole states at theSi/Si, /Ge, 5 structure, while Fig. 3 is for Ge/§iGey 7. The
finite wave vectors. Using the results for hole wave func-momentum relaxation time of 5xX 104 s is used, which
tions, an order-of-magnitude estimate in a strongly asymmeteorresponds roughly to the reported values of hole
ric QW is obtained for the ratio of Elliott-Yafet relaxation mobility.1*'® The material parameters are taken from Ref.

time Tgy to Tpp, 14. The spin splitting is calculated for the absolute value of
T E r\2 the wave vector corresponding to the in-plane kinetic energy
T—EY ~ (—%) , (17)  of kgT along the[100] (dotted ling or [110] (dashed ling
DP

direction, respectively. For the case of a Si QW, the main
whereEg is the characteristic energy of hole confinement,contribution tOQS at room temperature is due to the terms
typically of the order of few tens of meV. The expressionProportional tok®. This is because thk-linear term is pro-
suggests that the D'yakonov-PEreechanism provides the portional toB, which is small in the case of Si. On the other
major contribution to spin relaxation in the case of well-hand, the main contribution t0 in the Ge QW is from the
defined quantized energy levels. Of course, this is not truélH-LH coupling since the spin-orbital gapin Ge is large.

for weakly asymmetric QWs, where the D’yakonov-Rere Note that the mixing between valence and conduction band

mechanism can become less important. states can noticably influence spin splitting in the latter case
(i.e., the Ge QW For a Si QW, this is less likely to be
[ll. RESULTS AND DISCUSSION important since the direct band gap is 3.5 eV, much larger

As a specific example, we consider SiGe inversion layersthan that for Ge0.9 eyt
The first case corresponds to a thin Ge layer grown on SiGe, AS can be seen for the figures, the valence band of a Ge
and the second a Si layer on SiGe; an insulator is placed oRW S characterized by spin splitting comparable to that for
top in each case. Such structures have been studied extgflectrons in 1l-V QWs. Simultaneously, the hole spin relax-
sively due to their perspective applications iotype ation time is quite short. In contrast, spin splitting and the
enhanced-mobility metal-oxide-semiconductor field-effect

transistors# Hole confinement in these devices is achieved — 100

by a strong perpendicular electric field and the insulator as A 8.0 .
schematically illustrated in Fig. 1. The barrier at the left- S 1803
hand side is assumed to be infinitely high. The deformation = ] %
energy in this case iE,=—2b(2c,,/c;;+1)8, wherec,; and 8 %07 - 180g
c,, are the elastic constants of the QW mate(ia., Si or 5 —_— s
Ge), b is the deformation potential constant, adds the g 401 T 1408
relative mismatch in the lattice parameters. For the case of a ° 1
relaxed SiGe buffer, the ground state in the Si QW is LH-like c%' 204 7 120

with E.>0, while the Ge QW withE, <0 has a HH-like 0 200 400
ground state. Note that the band discontinuity at the Si/SiGe
or Ge/SiGe interface is not a well-defined quantity since not
only the band gap but also the spin-orbit enefgyre dif- FIG. 3. Spin splitting and D’yakonov-Pdrspin relaxation rate
ferent across the interface. In our calculations, we assumfer a strained Ge QW grown on the,3Ge, - buffer. Spin splitting
that the confining electric field is strong enough to shift theis given for the hole kinetic energy ¢T along the[100] (dotted

holes away from the interface. line) and[110] (dashed ling directions.

F(kV/cm)
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relaxation rate for holes in a strained Si QW are much IV. CONCLUSION
smaller. The reason for this is a weak spin-orbit interaction in

Si, which is characteristic for light elements. In particular, g, relaxation time in strained SiGe QWSs can be effectively
the k* contribution to€ is proportional toA, which is as  conirolled by the structure composition and the degree of
little as 44 meV for Si. Hence, it can be suggested that bys\w asymmetry. For field-effect transistorlike structut®s,
applying a moderate longitudinal electric field, hole spin in aspin splitting depends strongly on the value of the perpen-
strained Si QW can be transferred over a distance of a migicular electric field. In particular, the hole spin relaxation
cron or so without the loss of coherence. On the other handime in a strained Si QW channel can be in the hundred
spin relaxation can be tuned effectively by modulating thepicosecond range at room temperature, making it suitable for
confining electric field. It is important to note once more thatspintronic applications.

in unstrained structures, say conventiopdype Si/SiQ in-
version channels, spin relaxation is expected to be much
faster due to relatively small subband separation and, as a This work was supported in part by the Defense Ad-
result, strong hybridization of the hole states at finite wavevanced Research Projects Agency, the SRC/MARCO Center
vectors. on FENA, and the CRDF Grant No. UE2-2439-KV-02.

We predict that spin splitting of 2D holes and the related
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