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We analyze spin splitting of the two-dimensional hole spectrum in strained asymmetric SiGe quantum wells
sQWsd. Based on the Luttinger Hamiltonian, we obtain expressions for the spin-splitting parameters up to the
third order in the in-plane hole wave vector. The biaxial strain of SiGe QWs is found to be a key parameter that
controls spin splitting. Application to SiGe field-effect transistor structures indicates that typical spin splitting
at room temperature varies from a few tenths of meV in the case of Si QW channels to several meV for the Ge
counterparts, and can be modified efficiently by gate-controlled variation of the perpendicular confining elec-
tric field. The analysis also shows that for sufficiently asymmetric QWs, spin relaxation is due mainly to the
spin-splitting related D’yakonov-Pereĺ mechanism. In strained Si QWs, our estimation shows that the hole spin
relaxation time can be on the order of 100 picoseconds at room temperature, suggesting that such structures are
suitable forp-type spin transistor applications as well.
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I. INTRODUCTION

Recently, there has been considerable interest in the field
of spintronic applications. They range from various ap-
proaches in logic and memory elements to quantum
computation.1 Many spintronic device concepts rely on the
so-called Das-Datta spin transistor,2 where the transfer of
spins between the spin-polarized source and drain contacts is
controlled by the gate bias through the perpendicularsi.e.,
confiningd electric field in the quantum wellsQWd channel.
Experimentally, the efforts have concentrated mainly on
n-type III-V devices; in particular, those with InGaAs QWs.
The reasons for this preference ares1d easy control of elec-
tron spin states in this material3 and s2d availability of III-V
diluted magnetic semiconductors.4 Much less attention has
been paid to the hole-based spintronic applications, whose
rationale actually originates from the considerations related
to the bulk semiconductors. Indeed, in bulk cubic semicon-
ductors the top of the valence band at the Brillouin zone
center is fourfold degeneratesincluding spind, and hybridiza-
tion of the hole states for finite wave vectors depends on the
direction of the wave vector. As a result, hole scattering is
supplemented by simultaneous change of spin, and the so-
called Elliott-Yafet mechanism of spin relaxation is very
effective.5 In fact, the hole spin relaxation rate is close to the
momentum relaxation rate; i.e., nonquilibrium spin relaxes
too fast to allow control in any realistic device. This picture
is not exactly correct in the case of two-dimensional
s2Dd holes confined in a QW, where the degeneracy at the
zone center is partially lifted due to quantization. Moreover,
the hole spectrum in a QW is in general completely
nondegenerate for nonzero wave vectors, qualitatively re-
sembling that of electrons. For the QWs based on the cen-
trosymmetric crystals such as Si and Ge, the removal of de-
generacy takes place due to the QW asymmetry, while for
the compound material-based QWs the additional contribu-
tion arises due to the bulklike contributions to the Hamil-

tonian. The symmetry properties of the effective Hamiltonian
of confined holes were analyzed previously, for example, in
Refs. 6–9.

In this paper, we address the problem of the hole spectrum
and spin relaxation in strained SiGe QWs. Previously,
spin splitting in such QWs was estimated based on
the observation of the circular photogalvanic effect10 and
transport measurements.11 In Ref. 10, possible sources
of spin splitting proportional to the in-plane hole wave vector
were examined briefly. Here, we present quantitative
calculations of spin splitting based on the Luttinger
Hamiltonian approach. We take into account the biaxial
strain inherent in the SiGe heterostructures which gives
rise to stronger splitting of the hole subbands. We consider
both the cases of tensile and compressive strain resulting
in the light-holesLHd-like and heavy-holesHHd-like ground
state, respectively. Based on the results for spin splitting,
we analyze the spin-relaxation process for 2D holes.
For asymmetric QWs, it is found that the D’yakonov-Pereĺ
mechanism is more important than the Elliott-Yafet mecha-
nism. According to our calculations, the hole spin mean-free
path in a strained Si QW can be as large as a micron at
room temperature. This estimate suggests the feasibility
of p-type spintronic applications based on Si, particularly
in view of recent advances in group-IV magnetic
semiconductors.12

II. BASIC EQUATIONS

First, we need clarify what we mean by the term “spin.”
Due to the degeneracy at the zone center, the spin-orbit in-
teraction leads to strong hybridization of the hole states and
the total angular momentum must be considered. If some
asymmetry is introduced such as the confinement in a QW,
the degeneracy between the LH and HH states is lifted at
least partly. When the resulting doublet is well separated
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energetically from the other states, it can be treated by using
a spin Hamiltonian with the effective spin 1/2. So, in speak-
ing of spin states, we mean the states of this quasidegenerate
doublet.

Let us describe the model used in our calculations. We
consider the case of a QW grown along thef001g direction
that is subject to biaxial strain. We start from the following
636 effective-mass Hamiltonian:

H = HL
s0d + HL

sid + He + UszdI6. s1d

Here HL;HL
s0d+HL

sid is the Luttinger Hamiltonian with
HL

s0d corresponding to the part withkx,y=0, He is the contri-
bution due to the biaxial strain,Uszd is the confining
potential which forms the QW, andI6 is the 636 unity ma-
trix. The explicit expression forH is not provided since it is
readily available in the literaturessee, for example, Ref. 13d.
Note, however, that in the following the top of the HH band
is used as the reference energy. As ink ·p theory, HL

sid is
treated as a perturbation. Following the conventional
notation,13 we choose the zeroth-ordersi.e., unperturbedd
wave functions as
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where the plane-wave factors expfiskxx+kyydg are omitted
for simplicity. In Eq.s2d, the first subscript ofC si.e., 1 or 2d
denotes the doubly degenerate states forkx,y=0, n
is the subband number, andl, h, or s represents the LH,
HH, or spin-split sSSd states, respectively. In fact, if the
strain is strong enough such that the corresponding strain
energy Ee is comparable to the spin-orbital gapD in the
bulk material, the so-called LH and SS states are hybridized
even for kx,y=0. Hereafter, we term the states “LH”
and “SS” which take the genuinely light and spin-split
nature in the limit D→`. This hybridization is evident

from the eigenvalue equations for the LH and SS envelope
functionsx,

H2Sxn
sx1d

xn
sx2d D = ESxn
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Herex stands forl or s, A andB are parameters of the hole
spectrum,14 m0 is the free electron mass,I2 is the 232
unitary matrix, and the deformation energy mentioned previ-
ously is Ee=bs2uzz−uxx−uyyd, where b is the deformation
potential constant andu is the strain tensor. The envelope
functions for HH statesxn

shd are determined by the conven-
tional Schrödinger equation with an effective mass
mshd=m0/ sA−Bd.

In general, further steps require numerical solution of Eq.
s3d to obtain the spectrum and envelope functions of LH and
SS states. Considerable simplification is possible, however, if
the quantization energy is much less thanEe or D, which is
often the case for strained SiGe QWs. Under this approach, it
is adequate to use an “effective mass” approximation for the
solution of Eq.s3d, which treats the nondiagonal part ofH2
containing thez derivatives as a perturbation. Subsequently,
we obtain
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Here the spectrumEn
sl,sd and the envelope functionsxnl, xns

are determined by the conventional Schrödinger equation
with the effective masses,

msld = m0SA + BF1

2
+

9/4 +D/s2Eed
Î9/4 +D/Ee + sD/Eed2GD−1
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and
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wnan8b = −
"2

2m*
E dzxna

d2xn8b

dz2 ,

m* = m0

Î9Ee
2/4 + DEe + D2

Î2DB
. s6d

In Eq. s4d, tij are the elements of the unitary transformation
matrix T that approximately diagonalizesH2 sfor U=0 and
d/dz=0d,

T =1
1

ÎNl

1
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Ns
s1 − Essd/Eed 2 , s7d

whereEsl,sd are the LH and SS states in a strained material
with no confinementsi.e., U=0d,

Esl,sd = 1
2s 3

2Ee − D ± Î9Ee
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and

Nl,s = 1 + 2s1 − Esl,sd/Eed2. s9d

These basis functions result in nondiagonal terms in the
HamiltonianH. Using the perturbation method,13 it is pos-
sible to transform it to the quasidiagonal form in any desired
order inHL

sid. Under this approach, the effective Hamiltonian
for the quasidegenerate ground subband can be written as

Heff
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2
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wheres are Pauli matrices. RestrictingV to the terms pro-
portional to k and k3 and neglecting the corrections to the
longitudinal effective mass, we obtain for the ground LH-
like state
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whereC is a parameter of the hole spectrum14 and
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In Eqs.s11d ands12d, we use the following overlap integrals:
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For the ground HH state, we have

mi
shd = m0sA + B/2d−1,
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For both the LH-like and HH-like states, thez component of
V is zero. It is important to note thatV is proportional to the
product edzx d2x8 /dz2edzx dx8 /dz for the terms propor-
tional tok and to the productedzxx8edzx dx8 /dz for those
proportional tok3, wherex andx8 are the envelope functions
obtained as a solution of the Schrödinger equation with the
potentialUszd and appropriate effective masses. For a sym-
metric Uszd, the products of this kind are zero and the spin
splitting vanishes in accordance with the general symmetry
requirements.

Based on these results for hole spectrum, we can calculate
the related spin relaxation rate. Basically, two mechanisms of
relaxation must be addressed. The first is the D’yakonov-
Pereĺ sDPd mechanism.15 It is related to spin precession with
a frequencyVskx,kyd, which changes randomly due to rapid
electron transitions in the momentum space. For this mecha-
nism, the spin relaxation times for thex, y, andz spin com-
ponents obey the following relationTx=Ty=2Tz;TDP. For
nondegenerate carriers, it is given as

1

TDP
=

Skx,ky
Vx

2skx,kydf0skx,kyd

Skx,ky
f0skx,kyd

t. s16d

In this equation,f0 is the Boltzmann distribution function
and t is an average characteristic time of electron
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scattering;15 in the following, we will assume it to be equal
to the electron momentum relaxation time. Another dominant
source of spin relaxation is the Elliott-YafetsEYd mecha-
nism. It is caused by hybridization of the hole states at the
finite wave vectors. Using the results for hole wave func-
tions, an order-of-magnitude estimate in a strongly asymmet-
ric QW is obtained for the ratio of Elliott-Yafet relaxation
time TEY to TDP,

TEY

TDP
, SEQt

"
D2

, s17d

whereEQ is the characteristic energy of hole confinement,
typically of the order of few tens of meV. The expression
suggests that the D’yakonov-Pereĺ mechanism provides the
major contribution to spin relaxation in the case of well-
defined quantized energy levels. Of course, this is not true
for weakly asymmetric QWs, where the D’yakonov-Pereĺ
mechanism can become less important.

III. RESULTS AND DISCUSSION

As a specific example, we consider SiGe inversion layers.
The first case corresponds to a thin Ge layer grown on SiGe,
and the second a Si layer on SiGe; an insulator is placed on
top in each case. Such structures have been studied exten-
sively due to their perspective applications inp-type
enhanced-mobility metal-oxide-semiconductor field-effect
transistors.14 Hole confinement in these devices is achieved
by a strong perpendicular electric field and the insulator as
schematically illustrated in Fig. 1. The barrier at the left-
hand side is assumed to be infinitely high. The deformation
energy in this case isEe=−2bs2c12/c11+1dd, wherec11 and
c12 are the elastic constants of the QW materialsi.e., Si or
Ged, b is the deformation potential constant, andd is the
relative mismatch in the lattice parameters. For the case of a
relaxed SiGe buffer, the ground state in the Si QW is LH-like
with Ee.0, while the Ge QW withEe,0 has a HH-like
ground state. Note that the band discontinuity at the Si/SiGe
or Ge/SiGe interface is not a well-defined quantity since not
only the band gap but also the spin-orbit energyD are dif-
ferent across the interface. In our calculations, we assume
that the confining electric field is strong enough to shift the
holes away from the interface.

In Figs. 2 and 3, we show the obtained spin splitting and
spin relaxation rate 1/TDP as a function of the confining elec-
tric field at T=300 K. Figure 2 presents the case of a
Si/Si0.7Ge0.3 structure, while Fig. 3 is for Ge/Si0.3Ge0.7. The
momentum relaxation timet of 5310−14 s is used, which
corresponds roughly to the reported values of hole
mobility.14,16 The material parameters are taken from Ref.
14. The spin splitting is calculated for the absolute value of
the wave vector corresponding to the in-plane kinetic energy
of kBT along thef100g sdotted lined or f110g sdashed lined
direction, respectively. For the case of a Si QW, the main
contribution toV at room temperature is due to the terms
proportional tok3. This is because thek-linear term is pro-
portional toB, which is small in the case of Si. On the other
hand, the main contribution toV in the Ge QW is from the
HH-LH coupling since the spin-orbital gapD in Ge is large.
Note that the mixing between valence and conduction band
states can noticably influence spin splitting in the latter case
si.e., the Ge QWd.10 For a Si QW, this is less likely to be
important since the direct band gap is 3.5 eV, much larger
than that for Ges0.9 eVd.17

As can be seen for the figures, the valence band of a Ge
QW is characterized by spin splitting comparable to that for
electrons in III-V QWs. Simultaneously, the hole spin relax-
ation time is quite short. In contrast, spin splitting and the

FIG. 1. Model valence band profile used for spin splitting cal-
culations. Holes are assumed to be confined in a triangular well
with an infinite barrier on the left-hand side. The band discontinuity
at the SiGe interface depends on the structure typesSi/SiGe or
Ge/SiGed and was disregarded.

FIG. 2. Spin splitting and D’yakonov-Pereĺ spin relaxation rate
for a strained Si QW grown on the Si0.7Ge0.3 buffer. Spin splitting is
given for the hole kinetic energy ofkBT along thef100g sdotted
lined and f110g sdashed lined directions.

FIG. 3. Spin splitting and D’yakonov-Pereĺ spin relaxation rate
for a strained Ge QW grown on the Si0.3Ge0.7 buffer. Spin splitting
is given for the hole kinetic energy ofkBT along thef100g sdotted
lined and f110g sdashed lined directions.
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relaxation rate for holes in a strained Si QW are much
smaller. The reason for this is a weak spin-orbit interaction in
Si, which is characteristic for light elements. In particular,
the k3 contribution toV is proportional toD, which is as
little as 44 meV for Si. Hence, it can be suggested that by
applying a moderate longitudinal electric field, hole spin in a
strained Si QW can be transferred over a distance of a mi-
cron or so without the loss of coherence. On the other hand,
spin relaxation can be tuned effectively by modulating the
confining electric field. It is important to note once more that
in unstrained structures, say conventionalp-type Si/SiO2 in-
version channels, spin relaxation is expected to be much
faster due to relatively small subband separation and, as a
result, strong hybridization of the hole states at finite wave
vectors.

IV. CONCLUSION

We predict that spin splitting of 2D holes and the related
spin relaxation time in strained SiGe QWs can be effectively
controlled by the structure composition and the degree of
QW asymmetry. For field-effect transistorlike structures,18

spin splitting depends strongly on the value of the perpen-
dicular electric field. In particular, the hole spin relaxation
time in a strained Si QW channel can be in the hundred
picosecond range at room temperature, making it suitable for
spintronic applications.
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