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Electromagnetic response of a finite-width two-dimensional electron stripe is theoretically studied. It is
shown that retardation and radiative effects substantially modify the absorption spectrum of the system at
microwave frequencies, leading to a nontrivial zigzag behavior of the magnetoplasmon-polariton modes in
magnetic fields, similar to that recently observed by Kukushkinet al. fPhys. Rev. Lett.90, 156801s2003dg.
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I. INTRODUCTION

Plasma oscillations in low-dimensional electron systems
sESd—inversion layers, systems on the surface of liquid he-
lium, quantum wells, wires and dots—have been experimen-
tally studied since 1976sRefs. 1–3d and seemed to be well
understoodssee, e.g., Refs. 4–11d. Far-infrared transmission,
as well as Raman spectroscopy experiments quantitatively
confirmed theoretically predicted12,13 plasmon and magneto-
plasmon spectra, both in two-dimensionals2Dd electron lay-
ers, and in systems with lower dimensionalityswires and
dotsd. However, recent experimental studies14,15 of the mi-
crowave response of macroscopic 2D electron disks with the
diameter.1 mm revealed very interesting and fully unex-
pected features of the magnetoplasmon spectra. Response of
relatively small disksswith the diameter&0.1 mmd was very
similar to that of microscopic dots. The spectrum consisted
of two sharp resonances corresponding to the bulk and edge
magnetoplasmon modes with the frequenciesv±sBd
=Îvp

2+vc
2/4±vc/2, wherevc is the cyclotron frequency and

vp the plasma frequency at zero magnetic fieldB=0. In
larger samples, however, the uppersbulk magnetoplasmond
mode exhibited substantial changes. At a certain finite value
of B this mode intersected the cyclotron resonancesCRd line
v=vc and disappeared experiencing dramatic broadening. A
second, and in some cases a third mode, with a comparable
or even larger amplitude, appeared in the absorption spec-
trum at higher frequencies and showed similar behavior. As a
result, theB-field dependence of the bulk magnetoplasma
modes exhibited intriguing zigzag behavior as a function of
magnetic field atv.vp.

14,15

It was shown in Refs. 14 and 15 that the observed features
of the magnetoplasmon spectra are due to the influence of
retardation effects. AtB=0 the measured resonance frequen-
cies turned out to be in a good quantitative agreement with
the old theoretical predictions,12 made for an infinite two-
dimensional electron systems2DESd. At finite B and in the
disk geometry numerical calculations14 did reveal a certain
zigzag behavior of the resonant bulk magnetoplasmon
modes. The physical reason of such a strange behavior of the
modes at finiteB, as well as the overall behavior of the
linewidths and strengths of the resonances, have not however
been explained.

The goal of this paper is to theoretically study electro-
magnetic response of a finite-size macroscopic 2DES. We

consider a 2D stripe of a finite widthW and focus on the
regime, where the retardation and radiative effects become
important16 sin the quasistatic approximation the problem
was considered in a number of papers, for instance in Refs.
17–19d. For mm-size 2D samples this corresponds to micro-
wave frequencies—the parameter range, where other, very
interesting microwave photoresistance experiments20–27have
been recently done. Although the stripe geometry differs
from the experimental onesdisksd, our calculations repro-
duce all the experimental findings14,15 and allow one to un-
derstand the physics of the observed effects. It will be shown
that the unusual zigzag behavior of the bulk-
magnetoplasmon modessmore exactly, magnetoplasmon-
polaritonsd is explained by interplay of radiative and dissipa-
tive contributions to their linewidth.

In an infinite sample the spectrum of 2D magnetoplas-
mons has been consideredstaking into account retardation
but ignoring the damping of modesd by Chiu and Quinn13 in
1974. Their results are applicable for the description of far-
infrared response, when the size of the sample is large as
compared to the magnetoplasmon and radiation wavelengths,
and the question of linewidth is not very important. We con-
sider a finite-size geometry, more relevant in view of the
recent microwave experiments,14,15,20–27where the radiation
and the plasmon wavelengths exceed or are comparable with
the sample dimensions, and where the linewidth of modes
essentially determines the observed nontrivial features of the
absorption spectra.

II. THEORY

Assume that the 2D electron-gas stripes−W/2,x
,W/2 ,−`,y,`d lies in the planez=0, the external mag-
netic field B=s0,0,Bd is directed along thez axis, and the
dielectric constante of surrounding medium is uniform in all
the space. Let an external plane electromagnetic wave, with
the frequency v and the electric field Eextsr ,td
=EexteivszÎe/c−td, be normally incident upon the structure. It
induces the oscillating charge and the electric currentj in the
2D system, and the electric and magnetic fields around it.
The total electric fieldEtot=Eext+Eind, given by the sum of
the external and the scatteredsinducedd fields, satisfies the
Maxwell equation
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¹ 3 s¹ 3 Etotd +
e

c2

]2Etot

] t2
= −

4p

c2

]

] t
j sx,tddszd. s1d

Assuming that all physical quantities do not depend on they
coordinate, and looking for a solution in the form

Eindsx,z,td =E dqxE
indsqx,z,vdeiqxx−ivt, s2d

we get equations for the Fourier components of the electric
fields and currents,

]2Ex
ind

] z2 − k2Ex
ind =

4pik2

ve
jxdszd, s3d

]2Ey
ind

] z2 − k2Ey
ind = −

4piv

c2 j ydszd. s4d

Here k2=qx
2−v2e /c2. Following a standard procedure, we

now relate the induced field at allz to the field at the plane
z=0

Ex,y
indsqx,zd = Ex,y

indsqx,0de−kuzu, s5d

and the field atz=0 to the Fourier components of the current

Ex
indsqx,0d = −

2pik

ve
jxsqxd, s6d

Ey
indsqx,0d =

2piv

c2k
j ysqxd. s7d

Substituting Eqs.s5d–s7d into Eq.s2d, we get a relation of the
electric field in all the space to the current inside the stripe at
z=0,

Ex
indsx,zd = −

i

ve
E

−`

`

dqxkeiqxx−kuzuE
−W/2

W/2

e−iqxx8 jxsx8ddx8,

s8d

Ey
indsx,zd =

iv

c2E
−`

` dqx

k
eiqxx−kuzuE

−W/2

W/2

e−iqxx8 j ysx8ddx8. s9d

The z dependence of the field is determined here by the
multipliers e−ksqxduzu in the integrands. Equationss8d and s9d
describe both the evanescent induced fieldssparts of the in-
tegrals corresponding toqx

2.v2e /c2d and the scattered out-
going wavesqx

2,v2e /c2d. The sign of Imk should be prop-
erly chosen to satisfy the scattering boundary conditions at
uzu→`.

Now we need to relate the current and the total electric
field inside the stripe. We do not consider in this paper pos-
sible nonlocal effects and use the relationjasr d
=sabEb

totsr dusW/2−uxud, wheresab is the conductivity tensor
of the 2DES, dependent on the frequency, magnetic field and
the momentum relaxation rate, andusxd is the step function.
Together with Eqs.s8d and s9d this gives a system of two
integral equations for the electric current inside the stripez
=0, uxu,W/2

jxsxd = sxaEa
ext −

isxx

ve
E

−`

`

dqxkeiqxxE
−W/2

W/2

e−iqxx8 jxsx8ddx8

+
ivsxy

c2 E
−`

` dqx

k
eiqxxE

−W/2

W/2

e−iqxx8 j ysx8ddx8, s10d

j ysxd = syaEa
ext −

isyx

ve
E

−`

`

dqxkeiqxxE
−W/2

W/2

e−iqxx8 jxsx8ddx8

+
ivsyy

c2 E
−`

` dqx

k
eiqxxE

−W/2

W/2

e−iqxx8 j ysx8ddx8. s11d

These equations are solved by reduction to a matrix form.
Expanding the currents in a complete set of functions,

S jxsxd
j ysxd

D = o
n=0

` SAn

Bn
DcosF2px

W
Sn +

1

2
DG , s12d

and following a standard procedure we get the system of
algebraic equations

o
n=0

`

Mmn
s11dAn + o

n=0

`

Mmn
s12dBn =

2s− 1dm

psm+ 1/2d
sxaEa

ext, s13d

o
n=0

`

Mmn
s21dAn + o

n=0

`

Mmn
s22dBn =

2s− 1dm

psm+ 1/2d
syaEa

ext, s14d

where

Mmn
s11d = dmn+

8p2isxx

veW
Jmn

s+dsVd, s15d

Mmn
s12d = −

2ivsxyW

c2 Jmn
s−dsVd, s16d

Mmn
s21d = −

8p2isyx

veW
Jmn

s+dsVd, s17d

Mmn
s22d = dmn−

2ivsyyW

c2 Jmn
s−dsVd, s18d

andV=vWÎe /2pc. The integralsJmn
s±d are defined as

Jmn
s±dsVd =E

−`

`

dQsQ2 − V2d±1/2gmsQdgnsQd, s19d

where

gnsQd =
s− 1dn+1sn + 1/2d

p

cospQ

Q2 − sn + 1/2d2 . s20d

The part of the integrals in Eq.s19d from Q=−V to Q=V
gives imaginary contribution to the matrix elements in Eqs.
s13d and s14d and physically corresponds to the radiative
decay.

Having solved Eqs.s13d and s14d and having got the co-
efficientsAn, Bn in terms of the external fieldEa

ext, we can
calculate the current Eq.s12d, and the fields Eqs.s8d ands9d,
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inside the stripe. Then, calculating the joule heatQ
=e−W/2

W/2 dxsj *E+ jE *d /4 and dividing it by the energy flowSz

=cÎesuEx
extu2+ uEy

extu2d /8p, we get the absorption cross section
Q/Sz sthe dimensionality cmd. All plots of the next section
show the frequency, magnetic field and other dependencies
of the dimensionless “absorption coefficient”

A =
Q

SzW
, s21d

defined as the absorption cross sectionQ/Sz normalized to
the width of the sample.

III. RESULTS

A. Preliminary notes

The plasma frequency in a 2DES, calculated in the qua-
sistatic approximation is given by the formula12

vp
2sqd =

2pnse
2

m!e
q, s22d

wherens, e, andm! are the density, the charge, and the ef-
fective mass of 2D electrons, andq is the plasmon wave
vector. In a stripe of a finite widthW the lowest quasistatic
eigen-mode frequency is expected atq<p /W. Therefore we
choose for the frequency unit the quantity

v0 =Î2p2nse
2

m!eW
. s23d

For a typical macroscopicsmillimeter-sized GaAs 2D sample
its value lies in the gigahertz range

v0

2p
= 43.33Însf1011 cm−2g

eWfmmg
fGHzg s24d

sfor the effective mass we usem! /m0=0.067d. Everywhere
below we measure the frequencies in unitsv /v0, magnetic
fields in unitsvc/v0, and the momentum relaxation rateg
=e/m!m in units g /v0 sm is the mobilityd

g

v0
=

0.1

mf106 cm2/Vsg
Î eWfmmg

nsf1011 cm−2g
. s25d

We also introduce the retardation parametera, defined as the
ratio of the frequency of the quasistatic 2D plasmons22d
with the wave vectorq=p /W to the frequency of light
pc/ÎeW with the same wave vector

a =
v0

ÎeW

pc
=Î2nse

2W

m!c2 . s26d

In the considered case of the uniform dielectric constant the
retardation parametera does not depend one. Its numerical
value is negligibly small for microscopic 2DESsfor instance
for quantum wires and dotsd, but can be of order unity for
millimeter-size 2D samples,

a = 0.29Însf1011 cm−2g 3 Wfmmg. s27d

The formulas26d can be also presented as

a =
G

v0
, s28d

where

G =
2pnse

2

m!cÎe
s29d

is the radiative decay rate in aninfinite samplessee a discus-
sion in Ref. 16d.

We solve the system of Eqs.s13d and s14d numerically,
restricting ourselves by a finite numberNh of harmonics in
the expansionss12d. The matrix equation, described by Eqs.
s13d and s14d, then has the size 2Nh32Nh. Convergence of
the solution with respect toNh has been checked. All results
shown below have been obtained withNh=16. For the con-
ductivity tensorsab we have used the Drude model

sxx = syy = i
nse

2

m!

v + ig

sv + igd2 − vc
2 s30d

sxy = − syx =
nse

2

m!

vc

sv + igd2 − vc
2 . s31d

FIG. 1. Absorption spectra of a 2D electron stripe atg /v0

=0.05 and at different values of the retardation parametera. 16
curves are shown insad with a varying from 0.1 up to 1.6 with the
step 0.1.sbd provides a more detailed view on the same spectra
around the first and the second modes.

MICROWAVE RESPONSE OF A TWO-DIMENSIONAL… PHYSICAL REVIEW B 71, 035320s2005d

035320-3



B. Zero magnetic field

We begin the presentation of results with the case ofB
=0. We assume that the incident electromagnetic wave is
linearly polarized, and show results only for the perpendicu-
lar polarizationsEy

ext=0d. The case of the parallel polariza-
tion has been also studied, but it is less interesting.

Figure 1 exhibits the absorption spectra of a stripe as a
function of the frequency, atg /v0=0.05 and at several val-
ues of the retardation parametera. One sees that at smalla
sthe quasistatic limitd the absorption spectrum is similar to
that of quantum wires: A strong peak corresponding to the
fundamental 2D plasmon mode withq,p /W is accompa-
nied by a number of very weak higher-harmonics peaks, cor-
responding toq,s2n−1dp /W with n=2,3,… , . Due to the
symmetry of the external electric fieldEx

extsxd=Ex
ext=const,

the even 2D plasmon modes withq,2np /W are not ex-
cited. Whena increases, the fundamental mode first in-
creases in amplitude, reaches its maximum, and then de-
creases, additionally experiencing a very strong broadening.
The behavior of the second mode is similar, but it reaches its
maximum at a larger value ofa. As a result, at a certaina
the second-mode peak has a larger amplitude and a smaller
linewidth than the first onessee, e.g., the curve fora=0.8d.
The third, fourth, and all other modes behave similarly, but
each subsequent mode reaches its maximumsand becomes

the dominant one in the spectrumd at a higher value of the
retardation parameter. In general, as seen from Fig. 1, ata
*1 the absorption spectrum has the shapequalitatively dif-
ferent from that in the quasistatic limit: It consists of many
peaks with quite comparable amplitudes, in contrast to the
quantum wire/dot spectra, when the higher modes are hardly
visible and only the lowest one is dominant. All the modes,
as seen from Fig. 1, experience quite essential redshift, in
agreement with Refs. 12, 14, and 15.

C. Finite magnetic fields

Figure 2 illustrates the behavior of modes in finite mag-
netic fields. Ifa is small, Fig. 2sad, the absorption spectrum
is, again, very similar to that of quantum wires. The funda-
mental mode approaches the CR line according to the simple
law vmpsBd=Îvp

2+vc
2, slightly increasing in the linewidth

and decreasing in the amplitude. All the higher modes be-
have similarly; no one of them becomes stronger than the
fundamental mode. Such a behavior was many times ob-
served in far-infrared experiments on quantum-wire arrays,
see, e.g., Refs. 7 and 9.

If a becomes larger, Fig. 2sbd, the lowest, fundamental
mode loses its amplitude, approaching the CR line, and the
second mode becomes stronger. At even higher frequencies,
and at larger values ofa, Fig. 2scd, the same happens with

FIG. 2. Absorption spectra of a 2D electron stripe as a function of the frequency and theB field, at g /v0=0.05 and at several
representative values of the retardation parameter:a=0.1, 0.4, 0.8 and 1.4. Each plot shows 21 curves forvc/v0 varying from 0 to 4 with
the step 0.2.
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the second mode: it disappears, approaching and intersecting
the CR, and releases its strength to the next mode. Experi-
mentally, this manifests itself as a zigzag behavior of
resonances14,15 swe remind readers that in experiments the
absorption was measured as a function of magnetic field at a
fixed microwave frequencyd: When v increases, the lower-
mode peak gets broader and disappears, intersecting the CR
line, while a new, stronger peak, corresponding to the next,
higher mode, arises at smallerB. At even larger values ofa,
Fig. 2sdd, such a relay-race of oscillator strengths between
the modes becomes more and more pronounced, especially
for higher modes. The frequency of the lowest modes exhib-
its a very weak magnetic-field dependence at largea, Fig.
2sdd.

It should be emphasized that the predicted features can be
observed only in samples with a sufficiently high electron
mobility. Figure 3 exhibits the absorption spectra ata=0.4
flike in Fig. 2sbdg, but for the four times higher scattering
rate sg /v0=0.2d. One sees that the nontrivial exchange of
oscillator strengths between the different modes almost dis-
appears and the whole spectrum reminds the one shown in
Fig. 2sad sbut with broader linewidthsd.

D. Discussion

As known, in an infinite 2DES the amplitude of the CR
has a maximum when the radiative and dissipative decay
rates equal to each other. The absorption coefficient in this
casesfor a wave circularly polarized in the CR directiond has
the form16,28

A` =
2gG

sv − vcd2 + sg + Gd2 , s32d

which shows that the CR peak decreases and tends to zero
both at G /g→0 and G /g→`, and reaches its maximum
s=1/2d at G /g=1. Similar situation is the case in a finite-
width stripe, and it is the competition between the radiative
and nonradiative processes that explains the zigzag behavior
of modes.

Consider first the caseB=0, Fig. 1. In the quasistatic limit
a→0, the linewidth of thenth mode is determined byg,
while its amplitudes—by the radiative decay rateGn, which

is gradually reduced withn because of the decrease of the
corresponding dipole matrix elementsfwe stress thatGn are
not identicalto the radiative decay rateG s29d in an infinite
sampleg. The growth ofa leads to the increase of the radia-
tive losses. When the radiative decay rateGn of thenth mode
becomes equal to the dissipative decay rateg, the amplitude
of this mode reachs its maximum. AsGn is a decreasing
function of n, the absorption maxima for the higher modes
are observed at larger values ofa. This explains the behavior
of resonances atB=0, Fig. 1.

In order to understand the behavior of modes at finite
magnetic fields, it is helpful to compare our results with
those of Ref. 13. Figure 4 exhibits the calculated in Ref. 13
dependence of frequency on magnetic field. As in Ref. 13 the
eigen-value problem with a continuous magnetoplasmon
wave vectorq was considered, we normalizesonly on this
plotd the frequenciesv andvc to vpsqd, Eq.s22d, and use the
retardation parameter defined as

a! ; a!sqd =
vpsqdÎe

cq
=

G

vpsqd
; s33d

vpsqd anda!sqd are reduced tov0 anda, if q=p /W. As seen
from Fig. 4, the magnetoplasmon dispersion exhibits two
different regimes. Ifvc/vp!1/a!, it follows the quasistatic
behaviorv=Îvp

2+vc
2. The interaction of magnetoplasmons

with light in this regime is small. Ifvc/vp*1/a!, the mag-
netoplasmon mode intersects the CR line and tends to the
asymptotev /vp=1/a!, corresponding tov=cq/Îe. In this
regime, in the infinite-sample geometry,13 magnetoplasmons
strongly interact with light, and this manifests itself in the
change of the mode dispersion.

In the finite-size geometry, strong interaction of magneto-
plasmons with light in this regime manifests itself in the
strong radiative decay of modes. As in the stripe thenth
mode corresponds toq=ps2n−1d /W, the strong interaction
regime is expected atv /v0.s2n−1d /a. As seen from Fig.

FIG. 3. Absorption spectra of a 2D electron stripe as a function
of the frequency and theB field, at g /v0=0.2 anda=0.4. FIG. 4. The frequency versus magnetic field dependence of

magnetoplasmon-polariton modes, as obtained in Ref. 13. The units
v /vpsqd, vc/vpsqd, and a!=G /vpsqd are used on this plot;
for explanations see the text. At largevc/vpsqd the curves tend
to the asymptotesv /vpsqd=1/a!sqd, which correspond to the
dispersion of lightv=cq/Îe.
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2, a substantial broadening of the modes is observed, indeed,
when thenth mode frequencyv /v0 approachess2n−1d /a.
As is also seen from these considerations, the modes with
smallern approach the strong interaction regime and die at
lower frequencies, releasing their oscillator strength to the
higher modes. This explains the nontrivial zigzag behavior of
the magnetoplasmon-polariton resonances, which is seen in
Fig. 2 and was experimentally observed in Refs. 14 and 15.

We complete our discussion by answering the question,
what happens with the spectra of Fig. 2 in the limit of a large
sample. How is the complicated structure of modes, shown
in Fig. 2, transformed to a simple, single-mode behavior of
Eq. s32d in the limit W→`? To answer this question, notice
that our frequency unitv0 is proportional to 1/ÎW and de-
creases whenW→`. This means that the dimensionless dis-
sipation parameterg /v0 grows up, and that the multiple-
resonance region observed atv,v0 is shifted to smaller
frequencies in realsdimensionald units. As seen for example
from Fig. 3, in this limit one does get a single-resonance
behavior of the absorption spectrum.

IV. CONCLUSIONS

As seen from our analysis, the most interesting effects,
related to retardation, are observable in the 2DES under the
condition

g ! v0 & G. s34d

This implies, first of all, that the parameterg /G should be
small. The conditiong /G!1 imposes the upper boundary on
the zero-B resistance of 2D samples: It should be much
smaller than the wave resistance of vacuum, 377V sthis is
the case if the electron mobility in typical GaAs samples
exceeds,106 cm2/Vsd. Second, Eq.s34d implies that the
typical size of the samples should lie in a certain window,
which extendssfor typical material parametersd from about 1
mm up to a few centimeterssdependent on the mobilityd.

To summarize, we have theoretically studied microwave
absorption spectra of a finite-width 2D stripe, taking into
account retardation effects. We have shown that retardation
substantially modifies the microwave response of macro-
scopic 2DESs, especially in high-mobility samples. Our re-
sults are in very good agreement with experimental observa-
tions, and explain the mysterious zigzag dispersion of
magnetoplasmon modes, discovered in Refs. 14 and 15. Fur-
ther experimental studies of the predicted features in a
broader range of parameters would be very interesting.
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