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Within the lowest-order Born approximation, we present an exact calculation of the time dynamics of the
spin-boson model in the Ohmic regime. We observe non-Markovian effects at zero temperature that scale with
the system-bath coupling strength and cause qualitative changes in the evolution of coherence at intermediate
times of order of the oscillation period. These changes could significantly affect the performance of these
systems as qubits. In the biased case, we find a prompt loss of coherence at these intermediate times, whose
decay rate is set bya, wherea is the coupling strength to the environment. We also explore the calculation
of the next-order Born approximation: we show that, at the expense of very large computational complexity,
interesting physical quantities can be rigorously computed at fourth order using computer algebra, presented
completely in an accompanyingaTHEMATICA file. We compute th€(«) corrections to the long time behavior
of the system density matrix; the result is identical to the reduced density matrix of the equilibrium state to the
same order inx. All these calculations indicate precision experimental tests that could confirm or refute the
validity of the spin-boson model in a variety of systems.
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I. INTRODUCTION solutions—in particular, no Markov approximation is made.

Novel solid-state devices that can control spin degrees oftS Other workers have recently emphasi?é# understand-
freedom of individual electrons? or discrete quantum states INg the details of the short-time dynamics of this model is
in superconducting circuits? show promise in realizing the €specially crucial for the operation of these systems as qu-
ideal of the completely controllable two-state quantum sysbits. It is clear that the spin-boson model will be an impor-
tem, weakly coupled to its environment, that is the essentidiant tool in understanding imperfections in quantum gate
starting point for qubit operation in quantum computation.operation®4
From a fundamental point of view, these experimental suc- We find important non-Markovian effects in this regime.
cesses also bring us close to embodying the ideal test dft lowest order in the Born expansion of the self-energy
guantum coherence as envisioned by Leggett and co-workegsiperoperator, the time dynamics of the model rigorously
many years agé® in which a simple quantum system is Separates into a sum of strictly exponential pie@ks usual
placed in a known initial state, is allowed to evolve for a“T;" and “T,” decays of the Bloch-Redfield modgdlus two
definite timet under the action of its own Hamiltonian and distinct nonexponential pieces that arise, technically speak-
under the influence of decoherence from the environmening, from two different kinds of branch cuts in the Laplace
and is then measured. transform of the solution of the generalized master equation

Recent experiments, starting with Ref. 4, show that thighat we obtain.
ideal test can be implemented in practice. The decay of quan- These two contributions both have power-law forms at
tum oscillations due to environmental decoherence is®now long times,t>T;,T,, and thus formally dominate the expo-
sufficiently weak that some tens of coherent oscillations camentially decaying parts. But more interesting is that they
be observed. If quantum computation is to become a realitypoth give new structure to the time evolution at intermediate
it is believed that these systems will eventually need totimest, 1/w,<t<Ty,T,; this structure typically occurs fdr
achieve even lower levels of decoherence, such that thown the order of the oscillation perio@Here, w is a high-
sands or tens of thousands of coherent oscillations could Heequency cutoff of the bath modes, defining the very short
observed. This prospect of producing experiments with ultime regimet<1/w., which is of no interest hereWe can
tralong coherence times in quantum two-state systems offegxplain our results in the language of the double-well poten-
a new challenge for theoretical modeling of decoherencetial, where the two quantum states are “left” and “right”
Despite the many years of wdfil! following Leggett’s ini-  (L/R), thet=0 state is purd., and the system oscillates in
tial proposals, there has never been a full, systematic analysigne via tunneling fromL to R. The first branch-cut contri-
of the most popular description of these systems, the spirbution is most important in the unbiased cdkeandR en-
boson model, in the limit of very weak coupling to the envi- ergies degeneratand it causes the system, starting immedi-
ronment. ately in the first quantum oscillation, to spend more time in

In this paper, we provide an exact analysis of the weakthe R well, that is, theoppositewell from the one the system
coupling limit of the spin-boson model for the Ohmic heatis in initially. The second branch-cut contribution, present
bath, and in the low-temperature limit. In this limit, the Born when the system is biased, adds to the amplitude of the co-
approximation(to the self-energyshould become essentially herent oscillation, but dies out after an intermediate time
exact, and we make no other approximations in oumwhich scales like the inverse square root of the interaction
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strength @ with the bath. Thisprompt loss of coherengce tating wave, Markov, “noninteracting blips,” short tinare
whose amplitude is proportional i@, changes qualitatively made(see, e.g., Refs. 7 and 10913Ve will find that, in
the picture of the initial decay of coherence that is so imporparticular, avoidance of the Markov approximation endows
tant for discussions of fault-tolerant quantum computatfon. the solution with qualitatively new features.

Finally, we set up the next-order Born approximation and We will work out all our results for the Ohmic spin-boson
do some initial calculations with it. This involves computing model, for which the Hamiltonian is
the self-energy of the master equation to fourth order in the

system-bath coupling. At this order, the self-energy is a sum Hg= éUXJr EUZ, (5)
of thousands of separate terms; but we find that it is feasible 2 2

to compute various quantities of physical interest with the

aid of MATHEMATICA. As an illustration, we provide a full Hsg=0,® | > cy(bl+by) |, (6)
calculation of the steady-state system density matrix to order n

a in the limit of low temperature, which requires the fourth-

order self-energy. Given the enormous complexity of the cal- Ho=S wbib
culation, we find a very simple result for the corrections to BT - @nBnSh-
steady state; they turn out to be identical to those for the

thermodynamic equilibrium state calculated to the same orHereo, , are the Pauli operators; we will usg=1 (identity
der in a. Thus, we are able to establish rigorously a veryoperato). Also, bl andb, are the creation and annihilation
strong form of ergodicity for the spin-boson model at thisoperators of harmonic oscillatarof the bath. With the spec-
order. tral density defined as

Jw) =2 chdlw- o), (8

()

Il. GENERALIZED MASTER EQUATION

. . . . e “Ohmic” case is defined by choosing the coefficients
We are interested in studying the time dependence of thI:i'lhnd the oscillator frequencies, such that, in the limit of a

system density matrigg(t) =Trgp(t) with a time-independent ,
L . . . _continuous spectrum,
system Hamiltonian, and in the presence of a fixed coupling

to an environment. An exact equation fos—the general- a
ized master equatio(GME)—is'é Jw) = Z e, 9)
t
SN ; / / / Here w. is an ultraviolet cutoff frequency.
t)=—ilLgpg(t) —i [ dt/Sqt-t t'), 1 c )
Pt sl Jo sl Jps(t) @ The first few steps of the solution of the GME do not
depend on the details of this model; we need only assume
So(t) = —i Trg Lege L gp. ) that the system Hilbert space is two-dimensional, and the

system-bath coupling has the bilinear fodyg=S® X [S(X)
Here the kernel.(t) is the self-energy superoperator, the is an operator in the systethath spacé. Under these gen-
system-bath Hamiltonian is written eral circumstances, the GM&) in the Born approximation
can be rewritten in an ordinary operator form,

H=Hg+Hgp+ Hp ()
t
(S=system,B=bath, the Liouvillian superoperator is de- (o, 0)=-i Tfs%[Hs,Ps(t)]—f dt'l,(tt), (10
fined by Lyp=[H,,p], pg=€P"8/Z, B=1/kgT, T is the tem- 0

perature, andQ is the projection superoperato@=1
—pg Trg. Equation() is written for the case FrHggog=0, 3

and the total initial state is taken to be of the fogtD) 1, (t,t") = IMO(t’)+E [ ("o (t—t)), (12)
=p<(0) ® pg, for an arbitrarypg(0). Since we are interested in v=1

the case of weak coupling to the bath, we will consider a

systematic expansion in powers of this coupling; in the l,,(t")=ReC(-t")Trso,(-t")[o,,SIS-t)}. (12
self-energy operatar.(t).

Retention of only the lowest-order term in this expansion,Here<X>ETr5XpS’ and the bath correlation function is

giving the first Born approximation, is obtainédy the re- = -c’ Tl
placemene QU — g7 QlLstlelt in Eq. (2). Thus, in the lowest C) = TraXX(t)pg] = C'() +1C"(V). (13
Born approximation, the self-energy becomes C’ and C” denote the real and imaginary parts of the bath
@rer (LeLat correlator, and, for the spin-boson mod¥k3,c,(bl+b,).
3(t)=~1iTrg Lsge™ s Lsgpg. (4)  The time-dependent operators are in the interaction picture,
We have used the fact here that the expression is unaffecté-:
if the Q superoperator is dropped in the exponential. =(t) = dHstHeltmgritsHelt (14)

We now proceed to solve the GMmith no further
approximationg® This distinguishes our work from previous for any operatoi=.
efforts, in which various other approximatiofsecular, ro- The GME in Eq.(10) can be written in the matrix form
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o(t)) = : E[ E A E?
(a(t) =R (g) +k 15 = _(E_ _K;(S)>k_(s) . (_ZO .\ k;(s)><s+ —zrl(s)),

Here ¢ denotes the vectofoy, 0y, 0,)" and convolution is = = S -
denotedA* B= [{dt'A(t")B(t—t'). When the system Hamil- (28)

tonian is chosen as in E@5),!° and the system part of the
system-bath interaction Hamiltonian$s o, then we havé’

2 2 2
09 =[5+ 139+ 2 )(s+ S ) +[ e Exseo)

2

E E

- pl“l(t) - edt) + ZK;(t) 0 (29)

— To go further, we need an explicit expression for the bath
R(t) E , 9 p p
ed(t) - XK;(t) -yt —Ad() correlatorC(t). For the spin-boson model, the well-known
formula is
0 AS(t) 0 .
(16) C(t) = f dwJ(w)[coth(Bw/2)coq wt) +i sin(wt)].
0
E _ )T 30
l_<(t)=<— i (t),—kya),o) , (17) 30
For the Ohmic case, E¢9), Eq. (30) becomes
with . 2
@ 1-iwt aw
C(t) = - —Rey/’ °>— ——, 31
E=\Ve+A2 (18 ® B o ( B 2(i + wgt)? S
We have introduced the functions where /' is the derivative of the digamma functiéh.
4A2 I1l. MARKOVIAN LIMIT
rit=— 2 cogEY)C' (1), (19

For discussing the exact solution, it is instructive to un-
) 2 derstand the structure of the solution in a Markov approxi-
4A° € , mation. This approximation is obtained by replacing all the

Ty = ( AZ COS(ED>C ®, (20 kernelsl'y, Ty, K;, k™, andk;, by their forms neas=0. For

all exceptk™, this means replacing them by constahkishas
deA a 1/s divergence at sma#l. Then the solutions Eq$27) are
Kyt = =3 sSin(EYC’ (1), (21)  rational functions os. If the poles of these rational functions
are located at positions in the complexs plane, with resi-
A2 (1 duesr,/2i, then the inverse Laplace transform can be writ-
K (t) = _2J dt’ sin(Et')C"(t"), (22) ten_(aﬂ(t»:Ekrﬁ’“ exp(st). We indicate here that wh|-lg the
E residues do depend on the lahetx,y,z, the pole positions
do not, as is shown by the form of E@®7).
As is well known!0 there are four poles at positions

ky(t) = —Af dt'[1 - codEt")]JC"(t'). (23

$=0, 5=-T9 s5,=-T5+iE. (32
~ Equation(15) can be solved in the Laplace domain. De-The first pole describes the long-time asymptote of the
fining the Laplace transform as solution (stationary state the second the purely exponential,
% “T,"-type decay(relaxatior), and the last twgcomplex con-
f(s) :f e S (t)dt, (24)  jugate pairegldescribe an exponentially decaying sinusoidal
0 part, the T,"-type decay of coherent oscillations. The ex-
the solutions are, for the “standard” initial conditions pressmnsbfor the constants in E2) are, to lowest order in
(¢(t=0))=(0,0,2=1)", given by
AZ
1 E (s E, _ r=1'= coth(BE/2), 33
<ax<s>>:T[( B0 )0 - Ex (s)], o e 39
s+ =I(9)
. ro-iiztpo, 227, o 34
(25) 2772 T o571 g2 '8 (34)
N(S) anC?z
<0-y(s)> =T (26) il Lamb Stark
D(s) E=E+8E, OE=0E2"+ sE>1K (35
AN(s) z aA2< D) )
-_= + 20 27 Lamb_ == fd
(oA9) =~ 7 b s’ (27) SE = (C-Ing (36)
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Stark— ah? ) expressions are straightforwardly derivable, and agree with
OB~ = ?[Re‘ﬂ('EB/zW) —In(EB/2m)],  (37)  the literature® except for the energy shift due to vacuum
fluctuations,sE-2™ [which contains in general (w./E) and
where we have dropped terms of ordi&iw, and higherCis  not In(w./A)].
the Euler constant, ang is the digamma functioft These The residues of these poles are, in the limit- 0,

ri=x.=-(A/E)taniBE/2), r{=y,=0, ri=z,=-(eE)taniBE/2),
r3=eAlE?-x,, 13=0, r3=¢€lE*-z,, (39)

r54=—€AI2E%, 13 ,=-AI2E, r§,=A%2E°

We note that this Markovian theory satisfies the expected fundamental rétation

ro=r92+ (262/E2)Jx di(X(t)X)g (Korringa relation; (39)

also, to lowest order inv, the asymptotic values ofo,(t I'y(s) and k;(s) have three branch points, a=0 ands
—)) go to the Boltzmann equilibrium distribution of the =+iE. Thus, the solutions to the GM&w ,(s)) also have
system, e.g.z.=—(e/E)tanHBE/2), unlike in the popular three branch points in the complex plane. We find by numeri-
“noninteracting blip” approximatiof? cal study that the exact solutions still have four poles as
before, which, for smalk, have nearlybut not exactly the
same pole positions and residues as in the Markov approxi-
IV. BRANCH CUTS AT T=0 mation.
) o . Thus, the structure of the solutions in the comm@egtane
We now return to the exact solution, examining it in detailjs a5 shown in Fig. (B). The locations of the branch cuts are
at vanishing temperatufe=0. In this case, Eq31) becomes  cpqsen for computational convenience, as discussed shortly.
2

aw? 1 - w2 Given this branch-cut structure, the inverse Laplace trans-
Croo) = — 55 form (the Bromwich integral is evaluated by closing the
2 (1+ot) contour as shown. Thus, the exact inverse Laplace transform
can be expressed @s>0)
w.t
"ot = awi——= (40)

‘(1+ i)
and the Laplace transform & is

Cr=o(8) = as/2[- cogS)Ci(8) - sin§)si(3)],

Ci=o(s) = —ial2[~ w, + s sin(S)Ci(5) — scog3)si(9)],
(41

where$=s/ w..?* There is an important feature of this corre-
lation function that makes the Markov solution qualitatively
incomplete: while the sine integral(sj is an analytic func- FIG. 1. (8 Structure of the solutionéo,(s)) in the complexs

tion of s, the cosine integral ©¥) behaves like Its) for s Plane. The four polepy, p;, ps, andp, are indicated by crosses; the
—.02! This means tha€(s) is nonanalytic as=0—it has a three branch points &=0, +iE are indicated by solid circles, and

branch point there. Thus, the exact solutic(n%(s)) have the threg branch c_uts chosen, bcl, bc2, and bc3_, are |n_d|cated_ by
. . . dashed lines. The inverse Laplace transform requires an integration
extra analytic structure not present in the Markov approxi-

. . - Y along the contoulC parallel to the imaginary axis. This integral
mation, and the real-time .dynaml(:sﬂ(t» has qualitatively .5 "he evaluated by closing with a contour in the left half-plane
dlffergnt features in addition to the pole contributions We(c,, the Bromwich contoyy which lies at infinity except for loop-
have just discussed. ing back around each of the branch cuty. zyedt) andz,y(t) for

The s=0 branch point inC(s) leads the kerneld';(S),  the unbiased case=0, A=1, w,=30, T=0, and@=0.01.t is in
K;(s), andk™(s) to have branch points at *iE; the kernels  units of 1/E (i.e., E=1).

L |
40 ¢ S0
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(o) = % f dsé%aM(s» Zya(t) = — {1 — At[Ci(At)sin(At) - si(At)cogAt)]}.
mJc

(45

1 1 38 o This function, plotted along with the pole contribution in Fig.

= —jg ds€¥o,(s)) - —> q"f dxet 1(b) for the choice of parameters shown, has the following
2mi J¢, 2miicy features:z,4(t) is negative for allt, it is monotonically in-
X[(o,(ax + 70) = (o, (Ax = )] (42)  creasing, and its long-time behavior 45 (1) ~ —2a/ (A1)%

Also, z,4(t=0)=-a.

Let us survey, then, the peculiar features that this branch
cut contribution introduces into the time respoaég. Visu-
alizing the e=0 spin-boson model as a symmetric double-
well system coupled to its environment, the bcl piece being

choices we have made),=5w/4, 6,=m/2, =372, p; ; hat. if th is initiallv in the left well
=0, andp,=p;=E. The closed-contour integral in the expres- 'neg.atl\./e means that, If the system Is |n|t!a y In the left well,
: 27 3™ = it will, in the course of coherently tunneling back and forth,

sion can be written as a sum over the four poles, and so gives S . X
. oo . . Spend more time in theght well. This effect becomes stron-
complex exponential contributions to the solution as in the

Markovian case. The extra terms, the sum over the thregeSt at long time, much longer thap, for in this regime the

: . . SpoIe contributions are exponentially small, while the bcl
branch cuts, are new and give qualitatively different feature contribution decavs like a power law. Experimentally it ma
The contributions of the second and third branch cuts ar y b - =XP y y

. . . ; %e hard to see the effect in this regirfoa account of finite-
complex conjugates of each other, so we will be dISCUSSIngemperature effects, for exampleso it is important to note
them together. that this memory effect appears already at early times, indi-

The contribution of these cuts to the solution is Indepen'cating that already in the first couple of coherent oscillations,

dent of the detailed positioning of the branch cuts, so long a . . . X )
) X -2 “There will be an excess amplitude in the right-well excursions
they are not moved across a pole; the choice of the direction . .
s compared with the left-well excursions, by an amount

of bcl is a computational convenience—the apparently mosatlroportional toe. We judge, on the basis of a variety of

natural choice of this cut direction, along the negative reagvidence?,6 that the Born approximation should be reliable
axis, passes it essentially on top of thiepole, making the

. X . ; up to a’s of order 1-2 %; thus, experiments that look at
evaluation of the branch-cut integral numerically inconve- o .

. . ; coherent oscillations accurately at the percent l@wkich, it
nient. As a check, we find that the results we discuss now arg ; : .
) ; oo seems, will ultimately be necessary for performing quantum
indeed independent of the cut direction.

We will do a detailed study of these branch-cut con'[ribu—(:C)n\;\/pUtatIoDI could Irear?llly_see th|§ bcfl effect. f uti
tions for(o,(t)) = z(t). We will use the following notation for e note severa other interesting eatures_ of-our sojution
the b hZ . . Ed42) for “b h cut 17 (bel for €=0. Taking into account the non-Markovian effects, we

e branch-cut terms in E¢42); for “branch cut 1"(bcl), can do a more precise calculation of the pole positions and

residues(only poles 3 and 4 contributeWe find, forT=0,
1 > I',=-Re(sy)=T'%r, where, as beforeI'S=awA/2, and
Zp(t) = —EQJ dxe (o (tax + 7)) = (o(X = 7)), the renormalization factor is given by r=(1-a)/(i?
P1 +a?m) <1, with k=1-2a[1/2+C-In(w./A)]. Further,
(43)  Im(sy)=E+SE"™F with T={x—an]C~In(w./A)]/2}/[ x>
+(am)?]. These expressions are obtained as systematic ex-
and for two complex-conjugate cuts denoted together apansions in the small parametdrs/E and 6E/E, and they
“branch cut 2”(bc2), match a direct numerical evaluation of the pole positions
very well up toa’s of a few percent. For the corresponding
i B pole residues, vv2e find the simple result in leading order
__ 1 Xt _ _ rs+ry=1+a+0(a). This would be impossible in a Markov-
o2 = 2 qupk X oax+ 7)) = (oax =m0 theory, in whichz(t=0)=rz+r,, so thatrs+r, would be
exactly 1 to all orders im. In fact, this excess pole residue is
exactly what is needed to cancel out the initial value of the
bcl contribution toz(t). We note that our results for the
residues differ from the weak-coupling expressions in the
A. Unbiased case literaturé® (we are not aware of prior reports on the renor-
malization factorg andf).

Hereq,=€% and 7= 7€ % ™2 with 7 an infinitesimal posi-
tive real number. That isy, is an infinitesimal displacement
perpendicular to the direction of branch dutFor the cut

27T| k=2
(44)

For the unbiased spin-boson case;0, an essentially
analytic calculation can be done for all contributions; we find
that these agree, as expected, with the weak-coupling limit of
the calculations presented in Ref. [For a discussion of For the biased moddle+ 0), the bc2 contributions be-
nonexponential effects for large (neara:%), see Ref. 25.  come nonzero; we find that they give other peculiar nonex-
In this case, there is no bc2 contributiag,,(t)=0 for allt.  ponential corrections to the solutiart), very different from
The bcl contribution can be obtained analytically to leadinghe bcl contribution. The previous “NIBA” calculations of
order ina: z(t) =Zped ) + 2y (1), Ref. 7 are inapplicable in this case, giving our results here

B. Biased case
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particular value. We can do a nearly analytic evaluation of

the bc2 contribution to Eq42): Using Eq.(27) and expand-
ing to lowest order inv, we find for the integrand of the sum
of thek=2 and 3 terms of Eq42),

o ﬂ“ b™(w)
Zyo(S=iw) = ® [E2- 02+ b" () 2+ b (0)2

Here Db(iwx7n)=b*(w)xib (w), b(s)=a[d(s)+n(s)(s?
+E?)/A], whered(s) andn(s) are given byN(s)=A+an(s)
[see EQq(28)] andD(s)=s>+E?+ad(s) [see Eq(29)]. Since

b (w)=0 for |w|<E, it is reasonable to expect that will
grow linearly as one passes onto the branch cut; and, in fa
we find from numerical study that a good ansatdi$w)
=(E—w)5‘(w), with B‘(w) being a weakly varying, real func-
tion of w/E. With this, for w of orderE, Eq. (46) simplifies
to

(46)

A% (E) 1

2E® w-E’
We find that Eq.(47) should be valid forw>E+b*(E)/2E.
Using Eq.(47), we can do the branch cut integral, which
gives[for t<1/(aEx))—see the Appendix for an alternative
approach

Zyo(S=iw) == (47)

Zyo(t) = axq log(XgaEt)cCOJEt + ¢). (48)

PHYSICAL REVIEW B71, 035318(2005

In Fig. 2, we show a direct numerical evaluatiorzgh(t).

One can see the decay of the oscillatory part, which is loga-
rithmic according to Eq(48). Even though the decay is very
nonexponential, it is reasonable to attempt to characterize
this decay by a time scale. Equati®#B) obviously does not
work att=0, since it is logarithmically divergent. This is not
surprising, since our calculation has neglected cutoff effects
(dependence ow,), so Eq.(48) is not expected to be correct
for t<1/w.. However, if we consider “early” time to be the
first half-period of the coherent oscillatiog=7/E, then Eq.
(48) should be valid and we can use it to characterize the
?ecay by determining the timg at whichz,(t) decreases to

Falf its early-time value, i.ez,o(th) = 5Z,o(ty). We obtain
2

1 [=E 11
E V|E| Eva

th: (51)
Surprisingly, t,« 1/\a depends nonanalytically oa. This
explains the effect that is evident in Fig. 2: for smallty,
<T,, that is, on the scale df,, there is a very rapid loss of
coherence as contributed by bc2. This phenomenon may be
called aprompt loss of coherencas it would appear experi-
mentally as a fast initial loss of coherenddeom 100% to
(1-ca)100%, ¢ being some constant near uritfollowed
by a much slower, exponential decay of coherence on the
regularT, time scale.

We make a few final remarks about the bc2 calculation.

Here ¢ is a constant phase shift that we have not determine@he absolute size of the bc2 contribution reaches a maximum

explicitly (but see the Appendixand the dimensionless con-
stantsxy andx; are

Xo = |b*(E)|/2aE? = | 5E|/aE, (49)

x, = A% (E)/2aE3. (50)

Sinceb*« «, these constants are independentofThe last
expression forx, comes from an evaluation dff(E): it is

directly related to the energy renormalization in the Markov

approximation pb*(E) = 2E SE-2MP,

1

0.5

—Z poles

10 22

th

kil |

10

| | |
30 0 t 30

!
20

FIG. 2. zy5edt) and z,(t) for the biased case, illustrating the
prompt loss of coherence produced by bc2. H&el, /A

=-1.38,w.=30, T=0, anda=0.01. For these parameters, the time

scale for the prompt loss of coherenfesing Eq. (51)] is t,
=18.98.1;, is the time at which the envelope gf, falls to half its

near the value o&/A used in Fig. 2; the relative size of this
contribution continues to increase |&f A increases, so that

it eventually becomes much larger than the pole contribution
[but all contributions taz(t) go to zero ase|/A— «]. When
lel=A, we find that, because of the prompt loss of coher-
ence, there is deficitin the total pole contribution, that is,

2 =1-0O(a)<1. Even in the absence of an explicit
branch-cut computation, this deficit signals the prompt loss
of coherence, in that it indicates that the exponentially de-
caying contributions ta(t) do not account for all the coher-
ence neat=0. Note that this is opposite to the unbiased case,
where, as a result of the bcl part, there isexcesspole
contribution.

V. NEXT-ORDER CALCULATION:
STEADY-STATE SOLUTION

Finally, we present the result of a calculation of the cor-
rections to order to the steady-statéong-time solution of
the GME. To this order, as we will now show, the spin does
not go to the Gibbs distribution of the uncoupled system,
at T=0, the ground-state density matrix of the isolated jpin
However, the result is consistent with the Gibbs distribution
of the coupledsystem, giving good evidence for a strong
form of ergodicity, even aT=0.

These apparently simple corrections, reported below, re-
quire an enormous additional calculation, in that they require
an evaluation of the next order of the Born series. That is, we

value atty=/E. This time scale is much shorter than the regularMust take the expansion of the self-energy superopekator

exponential decay of coherence #,eg for our parametersT,
=204.6.

to fourth order inLsg The formal expression foE@ is
simple enough to generate: it is well known that the full Born
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series is generated by repeated substitution of the following propagator identity into the exact expressitqfa.4.7a of
Ref. 16:

t
e—iQLt:e—iQLot_iJ dtle_iQL(t_tl)QLSBe_iQLOtl' (52)
0

Here
LO = Ls+ LB' (53)

This generates the superoperator expressiofX {8y
t tq ) ) )
@) =(-i)? f dty f dt,P Trglgge™ Qo QLgge Qo2 QL™ 02 gppp. (54)
0 0

This expression can be simplified with the use of the operator identities
Qlp=Ly PLsgQ=PLgg (59

Only one factor of the projection superopera@«1-P survives,
t ! . . :
3@t = (- i)aj dtlf dt, Trglgge oL gge 01 2QLgge o'z gppp. (56)
0 0

Note also that the projectdt has been dropped from the expression; since it is immediately followed by a trace over the bath,
it acts as the identity. We can also wrié” in several equivalent convenient forms using the identity
gt gg=Lype ™, V(1) = eloHgg, (57)

This gives the following two equivalent forms for the self-energy:

t 4 _
29t = (=) f dyy f dtTralvio)Lbvie, -y Qlvit,-oLvi-yree ™, (58
o Jo

t ty A
S@) = (-i)° J dty f dte"STraly(oLvity Qlvity Lviops- (59
0 0
Equation(58) can be used to evaluate corrections to the last term of Hlj, we must add to Eq12) a term of the form
(4) _i_ (4)
Lot = 2Trsaﬂ2 t)o,. (60)

The bath part of these traces requires the fourth-order bath correlator, which using Wick’s theorei=i8, at

cxzafc1 1 1
Tral X)Xt X (M) X tpe] = =) i T + nlts — T [1 + wonlte— T + wnlta— DT
1

+ .
[i + otz = t) i + oclts — ta) 2

(61)

Equations(58)—(61) are the starting point of our next-order ordinary operator form. The four nested commutators gener-
calculation of thes=0 residue, which gives the long-time ated by the Liouvillian superoperator produces thousands of
asymptote of the density matrix. Every detail of this calcu-distinct terms, which all need to be integrated and studied in
lation is presented in the accompanymgrHEMATICA note-  the limit of w./E— .

book. It can be understood why computer algebra is neces- To illustrate the complexity of this calculation, we give in
sary for the completion of this calculation if one considersAppendix B one example of a relatively “simple” intermedi-
the complexity of the above expressions when written out irate resul{the integral form fon;i)(t)] that is obtained in the
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MATHEMATICA notebook(see EPAPS supplement, Ref.)27  sity of stateg® For all these circumstances, the systematic
Given the enormity of the calculation, the final result is Born expansion procedure we report here can be done. It is
very simple, clear on general grounds that the appearance of branch cut
A A3 A3 2A contributions will not be restricted to the Ohmic model, how-
X, = ——+ a{_ =2 . (C— In &?><_ — _ﬂ (62)  ever the Ohmic case is special in that the size branch cut
E3 E/\E® E contribution is not governed by any small parameter. For any
super-Ohmic spectral density of the fordw) o« w" at low
€ eA? g frequenciegn=1,2,..), C(t) will have a power-law depen-
Z="gtamm C-1-In—=/. (63 dence at long time, and th@&s) will have a branch point at
s=0. However, the magnitude of the branch cut contribution
Recall thaty..=0 exactly in the spin-boson model. In this jn the general case goes likewt7*. So, nonexponential con-
expression, all terms that vanish in the limit ®f/E—>  trpytions to the dynamics vanish in the physical limit in all
have been dropped. Note that as in #iecalculation above, these other cases.
we see a mildlogarithmig divergence with the ultraviolet  oyr hope is that, using the present and further exact cal-
cutoff; all physica}I guantities that we have calcul_ated at thissylations of the weak-coupling behavior of the spin-boson
order have no divergence more severe than this. These rgyodel, a tool will be made available to permit precision ex-
sults differ with theO(«) limit results reported in Sec. 21.5.2 periments to test the validity of the modethich, at present,
of Ref. 10; we can offer no explanation for this. There is nojg only phenomenologically justifiedin various physical
obvious way of treating the logarithmic divergencesxin  sjtuations of present interest in quantum information. A fun-
andz, by introduction of a renormalized ande, exceptin  damentally correct, experimentally verified theory of the sys-
the unbiased case. Nevertheless, the expressions given aggn and its environment should ultimately be of great value
perfectly physical(xC+Z.<1) within the expected limits in finding a satisfactory qubit for the construction of a quan-
[w:>E, ande<1/In(w/E)]. tum information processor.
After obtaining the above results, we separately calculated
the equilibrium density matrix, i.e.,
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While this result is natural, it should not be considered ob-
vious; it provides a rigorous demonstration that, to order
the system is ergodic in a strong sense.

We give a few final notes about other quantities that re- By numerical study, we find that the branch cut integrals
quire a calculation o to the=® level. TheO(a) correc-  conform to some simple scaling laws for smalllf we write
tions to pole positions, given in an earlier section, are unafthe bcl and bc2 integrals &g (t)=[qdxe %Xz, 4 (S=0,X)
fected by inclusion of2®:; however,O(a) corrections to andz,(t) = Refdxe¥z,»(s=ix), then we find that for small
residues of both pole {s=0) and pole 2 foro, ando; are 4 and fors<w,, Z,4(s) can be written in a scaling form
affected by=®. O(a) corrections too, residues, andr,,
residues of poles 2 and poles 3 and 4, are determined entirely Zp1(X) = (a/E)f1 (el A, XE). (A1)
by 2@); they donot have contributions fron .

1 1
lim =InZ==(E+ SE®™+ aew,), (65)
B*}W B 2

APPENDIX A: SCALING FORM FOR BRANCH
CUT INTEGRALS

But for bc2, a very different scaling law applies,
VI. DISCUSSION Zyo(X) = (L/E)f (€l A, (X~ E)/ aE). (A2)

Naturally, many more regimes could be studied using thé1ere f1 , are dimensionless, “universal” functions that gov-
present approach. For finite temperature, the time evolutioR™ the behavior of the branch cut contributions for small
is very different at long times, but it is essentially the same=0r bcl, the behavior that the scaling law gives is very
as theT=0 evolution whent<#/kT. Recently, there has simple: Eq.(Al) implies thatz,.(t) =af,(e/ A, Et), wheref,
been interest in varying both the sysférand batR® initial  is the Laplace transform of the scaling functinWe might
conditions, as well as in varying the model of the bath denhave expected this behavior from Eg5), from which we
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can read off the scaling function fe=0. In fact, it appears properties of ther, function: (i) f,(0)=0; (ii) |fo(x)| has a

from numerical studies thdt hardly changes asis varied,

except for an overall scale factor; that i$;(e/A,Et)
~a(e/ A)b(Et). We find that the scaling functioa(7) >0 is

single maximum ak=x,, wherex, is some constant of order
unity; (i) most important for the present discussion, %or
>Xo, fo(X) approaches X that is, fo(x) ~x1/x, wherex; is

peaked atr=0. So, the memory effect described above foranother real constant of order unity. F&at) implies that, for

€=0 persists for finitee, but becomes smaller. Foe = A,

7—0, ry(7) =X, log(xg7). That is, we conclude that at suffi-

the bc2 contribution, which we will describe now, becomesciently short timelactually fort<1/(aExy), so a relatively

dominant over the bcl one.

Returning to Eq(A2), Ewe write the Fourier transform
of the scaling function a$,(7)=[;€*"f,(x)dx and consider

its polar formf,(n)=r (&%, then we obtain

Zyeo(t) = ary(aEt)cod Et + ¢p,(aEL)]. (A3)

long time],
Zpeo(t) = aXq log(XoaEt)COSEL + ), (A4)

as stated in the text.

APPENDIX B: 1%(t)

This shows that bc2 contributes an oscillatory part to the As an example of one of many, many intermediate results
solution, whose T,” decay is determined by the features of worked through in the accompanyingATHEMATICA note-

the scaling functiorr,. A few more observations abou}

(obtained initially from numerical studyeveal some crucial

€2 cogEt)

book, we give here the expression fé‘t)(t) [Eqg. (60)], in
“simplified” form,

€ coqEt) € cogEt)

t_tz_;
C

W¢

t tq
|<;Q(t):Jdt1f dt,| - — —— -
N e R e

€% coqEt)

€2 cogEt)

i \2 i\ i \2 i \2
2
Wc (& We Wc

€% cogEt)

- i \2 i\ i \2 i\ i \2 i \2
2 2 2
(& We Wc We We We

€ cogEt)

€ cogEt)

A? cogEt - Et, — Et,)

e

A? cogEt - Et, — Et,)

A? cogEt - Et; — Ety)

i\ i )2 i )2
Tt — 2E2—t1—z t-tp-—
C Cc C

A? cogEt - Et, — Ety)

2F?

A? cogEt - Et, — Et,)

S\ 2 \2 S\ 2
i i ) i
W¢ W¢ W¢

A? cogEt - Et; — Ety)

i \2 i )2 i )2
t-tp-— 2E2t—z ti-to-—
C Cc C

A? cogEt — Et, — Ety)

2F?

e S

A? cogEt - Et; — Ety)

i \2 i \2 i\? i\2
2
)(—t+t2— ) 2E<—t— )(—t1+t2— )
e O e

i \2 i\
-t - — | |-t+t,-— | 2Bft, - —
We We We

A? cogEt - Et, + Ety)

A? cogEt — Et, + Ety)

2F?

—

A? coqEt - Et; + Ety)

i \2 i\2 i

2
t——)(—t1+t2——) 2E(—t1——
We (2 We

A? cogEt - Et; + Et))

2 i \2 - i \2 i \2
[ e
We We We

A? cogEt - Et; + Et))

N
m
N
—
|
—
|

A? coqEt - Et; + Ety)

e

A? cogEt - Et; + Et))

i \2 i )2 i )2
i-tp-— 2E2—t1—; St - —
C C C

A? cogEt - Et; + Et))

L i )2 i\ i )2
2E tl__ _t+t2__ 2E _t__
W¢ We We

(B1)

i\2 i \2 i \2|
"Lt — 2E2t—; "Lt —
Cc C Cc

This double integral, and many others, are fully evaluated iniliRiEMATICA notebook, in the large, limit.
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