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Within the lowest-order Born approximation, we present an exact calculation of the time dynamics of the
spin-boson model in the Ohmic regime. We observe non-Markovian effects at zero temperature that scale with
the system-bath coupling strength and cause qualitative changes in the evolution of coherence at intermediate
times of order of the oscillation period. These changes could significantly affect the performance of these
systems as qubits. In the biased case, we find a prompt loss of coherence at these intermediate times, whose
decay rate is set byÎa, wherea is the coupling strength to the environment. We also explore the calculation
of the next-order Born approximation: we show that, at the expense of very large computational complexity,
interesting physical quantities can be rigorously computed at fourth order using computer algebra, presented
completely in an accompanyingMATHEMATICA file. We compute theOsad corrections to the long time behavior
of the system density matrix; the result is identical to the reduced density matrix of the equilibrium state to the
same order ina. All these calculations indicate precision experimental tests that could confirm or refute the
validity of the spin-boson model in a variety of systems.
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I. INTRODUCTION

Novel solid-state devices that can control spin degrees of
freedom of individual electrons,1,2 or discrete quantum states
in superconducting circuits,3–6 show promise in realizing the
ideal of the completely controllable two-state quantum sys-
tem, weakly coupled to its environment, that is the essential
starting point for qubit operation in quantum computation.
From a fundamental point of view, these experimental suc-
cesses also bring us close to embodying the ideal test of
quantum coherence as envisioned by Leggett and co-workers
many years ago,7,8 in which a simple quantum system is
placed in a known initial state, is allowed to evolve for a
definite timet under the action of its own Hamiltonian and
under the influence of decoherence from the environment,
and is then measured.

Recent experiments, starting with Ref. 4, show that this
ideal test can be implemented in practice. The decay of quan-
tum oscillations due to environmental decoherence is now3–6

sufficiently weak that some tens of coherent oscillations can
be observed. If quantum computation is to become a reality,
it is believed9 that these systems will eventually need to
achieve even lower levels of decoherence, such that thou-
sands or tens of thousands of coherent oscillations could be
observed. This prospect of producing experiments with ul-
tralong coherence times in quantum two-state systems offers
a new challenge for theoretical modeling of decoherence.
Despite the many years of work10,11 following Leggett’s ini-
tial proposals, there has never been a full, systematic analysis
of the most popular description of these systems, the spin-
boson model, in the limit of very weak coupling to the envi-
ronment.

In this paper, we provide an exact analysis of the weak-
coupling limit of the spin-boson model for the Ohmic heat
bath, and in the low-temperature limit. In this limit, the Born
approximationsto the self-energyd should become essentially
exact, and we make no other approximations in our

solutions—in particular, no Markov approximation is made.
As other workers have recently emphasized,12,13 understand-
ing the details of the short-time dynamics of this model is
especially crucial for the operation of these systems as qu-
bits. It is clear that the spin-boson model will be an impor-
tant tool in understanding imperfections in quantum gate
operation.9,14

We find important non-Markovian effects in this regime.
At lowest order in the Born expansion of the self-energy
superoperator, the time dynamics of the model rigorously
separates into a sum of strictly exponential piecessthe usual
“T1” and “T2” decays of the Bloch-Redfield modeld plus two
distinct nonexponential pieces that arise, technically speak-
ing, from two different kinds of branch cuts in the Laplace
transform of the solution of the generalized master equation
that we obtain.

These two contributions both have power-law forms at
long times,t.T1,T2, and thus formally dominate the expo-
nentially decaying parts. But more interesting is that they
both give new structure to the time evolution at intermediate
timest, 1 /vc, t,T1,T2; this structure typically occurs fort
on the order of the oscillation period.sHere, vc is a high-
frequency cutoff of the bath modes, defining the very short
time regime,t,1/vc, which is of no interest here.d We can
explain our results in the language of the double-well poten-
tial, where the two quantum states are “left” and “right”
sL /Rd, the t=0 state is pureL, and the system oscillates in
time via tunneling fromL to R. The first branch-cut contri-
bution is most important in the unbiased casesL and R en-
ergies degenerated and it causes the system, starting immedi-
ately in the first quantum oscillation, to spend more time in
theR well, that is, theoppositewell from the one the system
is in initially. The second branch-cut contribution, present
when the system is biased, adds to the amplitude of the co-
herent oscillation, but dies out after an intermediate time
which scales like the inverse square root of the interaction
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strengtha with the bath. Thisprompt loss of coherence,
whose amplitude is proportional toa, changes qualitatively
the picture of the initial decay of coherence that is so impor-
tant for discussions of fault-tolerant quantum computation.15

Finally, we set up the next-order Born approximation and
do some initial calculations with it. This involves computing
the self-energy of the master equation to fourth order in the
system-bath coupling. At this order, the self-energy is a sum
of thousands of separate terms; but we find that it is feasible
to compute various quantities of physical interest with the
aid of MATHEMATICA . As an illustration, we provide a full
calculation of the steady-state system density matrix to order
a in the limit of low temperature, which requires the fourth-
order self-energy. Given the enormous complexity of the cal-
culation, we find a very simple result for the corrections to
steady state; they turn out to be identical to those for the
thermodynamic equilibrium state calculated to the same or-
der in a. Thus, we are able to establish rigorously a very
strong form of ergodicity for the spin-boson model at this
order.

II. GENERALIZED MASTER EQUATION

We are interested in studying the time dependence of the
system density matrixrSstd=TrBrstd with a time-independent
system Hamiltonian, and in the presence of a fixed coupling
to an environment. An exact equation forrS—the general-
ized master equationsGMEd—is16

ṙSstd = − iLSrSstd − iE
0

t

dt8SSst − t8drSst8d, s1d

SSstd = − i TrB LSBe
−iQLtLSBrB. s2d

Here the kernelSSstd is the self-energy superoperator, the
system-bath Hamiltonian is written

H = HS+ HSB+ HB s3d

sS=system,B=bathd, the Liouvillian superoperator is de-
fined byLxr=fHx,rg, rB=e−bHB/Z, b=1/kBT, T is the tem-
perature, andQ is the projection superoperatorQ=1
−rB TrB. Equations1d is written for the case TrB HSBrB=0,
and the total initial state is taken to be of the formrs0d
=rSs0d ^ rB, for an arbitraryrSs0d. Since we are interested in
the case of weak coupling to the bath, we will consider a
systematic expansion in powers of this couplingLSB in the
self-energy operatorSSstd.

Retention of only the lowest-order term in this expansion,
giving the first Born approximation, is obtained17 by the re-
placemente−iQLt→e−iQsLS+LBdt in Eq. s2d. Thus, in the lowest
Born approximation, the self-energy becomes

SS
s2dstd = − i TrB LSBe

−isLS+LBdtLSBrB. s4d

We have used the fact here that the expression is unaffected
if the Q superoperator is dropped in the exponential.

We now proceed to solve the GMEwith no further
approximations.18 This distinguishes our work from previous
efforts, in which various other approximationsssecular, ro-

tating wave, Markov, “noninteracting blips,” short timed are
made ssee, e.g., Refs. 7 and 10–13d. We will find that, in
particular, avoidance of the Markov approximation endows
the solution with qualitatively new features.

We will work out all our results for the Ohmic spin-boson
model, for which the Hamiltonian is

HS=
D

2
sx +

e

2
sz, s5d

HSB= sz ^ Fo
n

cnsbn
† + bndG , s6d

HB = o
n

vnbn
†bn. s7d

Heresx,y,z are the Pauli operators; we will uses0= I sidentity
operatord. Also, bn

† and bn are the creation and annihilation
operators of harmonic oscillatorn of the bath. With the spec-
tral density defined as

Jsvd ; o
n

cn
2dsv − vnd, s8d

the “Ohmic” case is defined by choosing the coefficientscn
and the oscillator frequenciesvn such that, in the limit of a
continuous spectrum,

Jsvd =
a

2
ve−v/vc. s9d

Herevc is an ultraviolet cutoff frequency.
The first few steps of the solution of the GME do not

depend on the details of this model; we need only assume
that the system Hilbert space is two-dimensional, and the
system-bath coupling has the bilinear form,HSB=S^ X fSsXd
is an operator in the systemsbathd spaceg. Under these gen-
eral circumstances, the GMEs1d in the Born approximation
can be rewritten in an ordinary operator form,

kṡmstdl = − i TrS smfHS,rSstdg −E
0

t

dt8Imst,t8d, s10d

Imst,t8d = Im0st8d + o
n=1

3

Imnst8dksnst − t8dl, s11d

Imnst8d = RehCs− t8dTrS sns− t8dfsm,SgSs− t8dj. s12d

Here kxl;TrSxrS, and the bath correlation function is

Cstd ; TrBfXXstdrBg = C8std + iC9std. s13d

C8 and C9 denote the real and imaginary parts of the bath
correlator, and, for the spin-boson model,X=oncnsbn

†+bnd.
The time-dependent operators are in the interaction picture,
i.e.,

Jstd = eisHS+HBdtJe−isHS+HBdt, s14d

for any operatorJ.
The GME in Eq.s10d can be written in the matrix form
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kṡI stdl = Rp ksI l + kI . s15d

Here sI denotes the vectorssx,sy,szdT and convolution is
denotedA* B;e0

t dt8Ast8dBst− t8d. When the system Hamil-
tonian is chosen as in Eq.s5d,19 and the system part of the
system-bath interaction Hamiltonian isS=sz, then we have20

Rstd =1 −
E2

D2G1std − edstd +
E

D
Ky

+std 0

edstd −
E

D
Ky

+std − Gystd − Ddstd

0 Ddstd 0
2 ,

s16d

kIstd = S−
E

D
k−std,− ky

−std,0DT

, s17d

with

E = Îe2 + D2. s18d

We have introduced the functions

G1std =
4D2

E2 cossEtdC8std, s19d

Gystd =
4D2

E2 S1 +
e2

D2 cossEtdDC8std, s20d

Ky
+std =

4eD

E2 sinsEtdC8std, s21d

k−std =
4D2

E2 E
0

t

dt8 sinsEt8dC9st8d, s22d

ky
−std =

4eD

E2 E
0

t

dt8f1 − cossEt8dgC9st8d. s23d

Equations15d can be solved in the Laplace domain. De-
fining the Laplace transform as

fssd =E
0

`

e−stfstddt, s24d

the solutions are, for the “standard” initial conditions
ksI st=0dl=s0,0,z0=1dT,

ksxssdl =
1

s+
E2

D2G1ssd
FSe −

E

D
Ky

+ssdDNssd
Dssd

−
E

D
k−ssdG ,

s25d

ksyssdl = −
Nssd
Dssd

, s26d

kszssdl = −
D

s

Nssd
Dssd

+
z0

s
, s27d

Nssd =
E

D
Se −

E

D
Ky

+ssdDk−ssd + SD

s
z0 + ky

−ssdDSs+
E2

D2G1ssdD ,

s28d

Dssd = Ss+ Gyssd +
D2

s
DSs+

E2

D2G1ssdD + Se −
E

D
Ky

+ssdD2

.

s29d

To go further, we need an explicit expression for the bath
correlatorCstd. For the spin-boson model, the well-known
formula is

Cstd =E
0

`

dvJsvdfcothsbv/2dcossvtd + i sinsvtdg.

s30d

For the Ohmic case, Eq.s9d, Eq. s30d becomes

Cstd = −
a

b2Rec8S1 − ivct

bvc
D −

avc
2

2si + vctd2 , s31d

wherec8 is the derivative of the digamma function.21

III. MARKOVIAN LIMIT

For discussing the exact solution, it is instructive to un-
derstand the structure of the solution in a Markov approxi-
mation. This approximation is obtained by replacing all the
kernelsG1, Gy, Ky

+, k−, andky
− by their forms nears=0. For

all exceptk−, this means replacing them by constants;k− has
a 1/s divergence at smalls. Then the solutions Eqs.s27d are
rational functions ofs. If the poles of these rational functions
are located at positionssk in the complexs plane, with resi-
duesrk/2pi, then the inverse Laplace transform can be writ-
ten ksmstdl=okrk

m expssitd. We indicate here that while the
residues do depend on the labelm=x,y,z, the pole positions
do not, as is shown by the form of Eq.s27d.

As is well known,10 there are four poles at positions

s1 = 0, s2 = − G1
0, s3,4= − G2

0 ± iẼ. s32d

The first pole describes the long-time asymptote of the
solutionsstationary stated, the second the purely exponential,
“T1”-type decaysrelaxationd, and the last twoscomplex con-
jugate pairedd describe an exponentially decaying sinusoidal
part, the “T2”-type decay of coherent oscillations. The ex-
pressions for the constants in Eq.s32d are, to lowest order in
a, given by

G1
0 = T1

−1 =
apD2

E
cothsbE/2d, s33d

G2
0 = T2

−1 =
1

2
G1

0 +
2ape2

E2 kBT, s34d

and22

Ẽ = E + dE, dE = dELamb+ dEStark, s35d

dELamb=
aD2

E
SC − ln

vc

E
D , s36d
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dEStark=
aD2

E
fRecsiEb/2pd − lnsEb/2pdg, s37d

where we have dropped terms of orderE/vc and higher,C is
the Euler constant, andc is the digamma function.21 These

expressions are straightforwardly derivable, and agree with
the literature,10 except for the energy shift due to vacuum
fluctuations,dELamb fwhich contains in general lnsvc/Ed and
not lnsvc/Ddg.

The residues of these poles are, in the limita→0,

r1
x = x` = − sD/EdtanhsbE/2d, r1

y = y` = 0, r1
z = z̀ = − se/EdtanhsbE/2d,

r2
x = eD/E2 − x`, r2

y = 0, r2
z = e2/E2 − z̀ , s38d

r3,4
x = − eD/2E2, r3,4

y = − D/2E, r3,4
z = D2/2E2.

We note that this Markovian theory satisfies the expected fundamental relation23

G2
0 = G1

0/2 + s2e2/E2dE
−`

`

dtkXstdXlB sKorringa relationd; s39d

also, to lowest order ina, the asymptotic values ofksmst
→`dl go to the Boltzmann equilibrium distribution of the
system, e.g.,z̀ =−se /EdtanhsbE/2d, unlike in the popular
“noninteracting blip” approximation.10

IV. BRANCH CUTS AT T=0

We now return to the exact solution, examining it in detail
at vanishing temperatureT=0. In this case, Eq.s31d becomes

CT=08 std =
avc

2

2

1 − vc
2t2

s1 + vc
2t2d2 ,

CT=09 std = avc
2 vct

s1 + vc
2t2d2 , s40d

and the Laplace transform ofC is

CT=08 ssd = as/2f− cosss̃dCiss̃d − sinss̃dsiss̃dg,

CT=09 ssd = − ia/2f− vc + ssinss̃dCiss̃d − scosss̃dsiss̃dg,

s41d

wheres̃=s/vc.
24 There is an important feature of this corre-

lation function that makes the Markov solution qualitatively
incomplete: while the sine integral sissd is an analytic func-
tion of s, the cosine integral Cissd behaves like lnssd for s
→0.21 This means thatCssd is nonanalytic ats=0—it has a
branch point there. Thus, the exact solutionsksmssdl have
extra analytic structure not present in the Markov approxi-
mation, and the real-time dynamicsksmstdl has qualitatively
different features in addition to the pole contributions we
have just discussed.

The s=0 branch point inCssd leads the kernelsG1ssd,
Ky

+ssd, andk−ssd to have branch points ats= ± iE; the kernels

Gyssd and ky
−ssd have three branch points, ats=0 and s

= ± iE. Thus, the solutions to the GMEksx,y,zssdl also have
three branch points in the complex plane. We find by numeri-
cal study that the exact solutions still have four poles as
before, which, for smalla, have nearlysbut not exactlyd the
same pole positions and residues as in the Markov approxi-
mation.

Thus, the structure of the solutions in the complexs plane
is as shown in Fig. 1sad. The locations of the branch cuts are
chosen for computational convenience, as discussed shortly.
Given this branch-cut structure, the inverse Laplace trans-
form sthe Bromwich integrald is evaluated by closing the
contour as shown. Thus, the exact inverse Laplace transform
can be expressed asst.0d

FIG. 1. sad Structure of the solutionsksmssdl in the complexs
plane. The four polesp1, p2, p3, andp4 are indicated by crosses; the
three branch points ats=0, ±iE are indicated by solid circles, and
the three branch cuts chosen, bc1, bc2, and bc3, are indicated by
dashed lines. The inverse Laplace transform requires an integration
along the contourC parallel to the imaginary axis. This integral
may be evaluated by closing with a contour in the left half-plane
sC0, the Bromwich contourd, which lies at infinity except for loop-
ing back around each of the branch cuts.sbd zpolesstd andzbc1std for
the unbiased case,e=0, D=1, vc=30, T=0, anda=0.01. t is in
units of 1/E si.e., E=1d.
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ksmstdl =
1

2pi
E

C
dsestksmssdl

=
1

2pi
R

Co

dsestksmssdl −
1

2pi
o
k=1

3

qkE
pk

`

dxeqkxt

3fksmsqkx + hkdl − ksmsqkx − hkdlg. s42d

Hereqk=eiuk andhk=heisuk−p/2d, with h an infinitesimal posi-
tive real number. That is,hk is an infinitesimal displacement
perpendicular to the direction of branch cutk. For the cut
choices we have made,u1=5p /4, u2=p /2, u3=3p /2, p1
=0, andp2=p3=E. The closed-contour integral in the expres-
sion can be written as a sum over the four poles, and so gives
complex exponential contributions to the solution as in the
Markovian case. The extra terms, the sum over the three
branch cuts, are new and give qualitatively different features.
The contributions of the second and third branch cuts are
complex conjugates of each other, so we will be discussing
them together.

The contribution of these cuts to the solution is indepen-
dent of the detailed positioning of the branch cuts, so long as
they are not moved across a pole; the choice of the direction
of bc1 is a computational convenience—the apparently most
natural choice of this cut direction, along the negative real
axis, passes it essentially on top of theG1 pole, making the
evaluation of the branch-cut integral numerically inconve-
nient. As a check, we find that the results we discuss now are
indeed independent of the cut direction.

We will do a detailed study of these branch-cut contribu-
tions for kszstdl;zstd. We will use the following notation for
the branch-cut terms in Eq.s42d; for “branch cut 1”sbc1d,

zbc1std = −
1

2pi
q1E

p1

`

dxeq1xtfkszsq1x + h1dl − kszsq1x − h1dlg,

s43d

and for two complex-conjugate cuts denoted together as
“branch cut 2”sbc2d,

zbc2 = −
1

2pi
o
k=2

3

qkE
pk

`

dxeqkxtfkszsqkx + hkdl − kszsqkx − hkdlg.

s44d

A. Unbiased case

For the unbiased spin-boson case,e=0, an essentially
analytic calculation can be done for all contributions; we find
that these agree, as expected, with the weak-coupling limit of
the calculations presented in Ref. 7.fFor a discussion of
nonexponential effects for largea sneara= 1

2d, see Ref. 25.g
In this case, there is no bc2 contribution,zbc2std=0 for all t.
The bc1 contribution can be obtained analytically to leading
order ina: zstd=zpolesstd+zbc1std,

zbc1std = − ah1 − DtfCisDtdsinsDtd − sisDtdcossDtdgj.

s45d

This function, plotted along with the pole contribution in Fig.
1sbd for the choice of parameters shown, has the following
features:zbc1std is negative for allt, it is monotonically in-
creasing, and its long-time behavior iszbc1std,−2a / sDtd2.
Also, zbc1st=0d=−a.

Let us survey, then, the peculiar features that this branch
cut contribution introduces into the time responsezstd. Visu-
alizing the e=0 spin-boson model as a symmetric double-
well system coupled to its environment, the bc1 piece being
negative means that, if the system is initially in the left well,
it will, in the course of coherently tunneling back and forth,
spend more time in theright well. This effect becomes stron-
gest at long time, much longer thanT2, for in this regime the
pole contributions are exponentially small, while the bc1
contribution decays like a power law. Experimentally it may
be hard to see the effect in this regimeson account of finite-
temperature effects, for exampled, so it is important to note
that this memory effect appears already at early times, indi-
cating that already in the first couple of coherent oscillations,
there will be an excess amplitude in the right-well excursions
as compared with the left-well excursions, by an amount
proportional toa. We judge, on the basis of a variety of
evidence,26 that the Born approximation should be reliable
up to a’s of order 1−2 %; thus, experiments that look at
coherent oscillations accurately at the percent levelswhich, it
seems, will ultimately be necessary for performing quantum
computationd could readily see this bc1 effect.

We note several other interesting features of our solution
for e=0. Taking into account the non-Markovian effects, we
can do a more precise calculation of the pole positions and
residuessonly poles 3 and 4 contributed. We find, for T=0,
G2;−Ress3d=G2

0r, where, as before,G2
0=apD /2, and

the renormalization factorr is given by r =s1−ad / sk2

+a2p2d,1, with k=1−2af1/2+C−lnsvc/Ddg. Further,
Imss3d=E+dELambr̃, with r̃ =hk−ap2fC−lnsvc/Ddg /2j / fk2

+sapd2g. These expressions are obtained as systematic ex-
pansions in the small parametersG2/E and dE/E, and they
match a direct numerical evaluation of the pole positions
very well up toa’s of a few percent. For the corresponding
pole residues, we find the simple result in leading order
r3+r4=1+a+Osa2d. This would be impossible in a Markov-
ian theory, in whichzst=0d=r3+r4, so thatr3+r4 would be
exactly 1 to all orders ina. In fact, this excess pole residue is
exactly what is needed to cancel out the initial value of the
bc1 contribution tozstd. We note that our results for the
residues differ from the weak-coupling expressions in the
literature10 swe are not aware of prior reports on the renor-
malization factorsr and r̃d.

B. Biased case

For the biased modelseÞ0d, the bc2 contributions be-
come nonzero; we find that they give other peculiar nonex-
ponential corrections to the solutionzstd, very different from
the bc1 contribution. The previous “NIBA” calculations of
Ref. 7 are inapplicable in this case, giving our results here
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particular value. We can do a nearly analytic evaluation of
the bc2 contribution to Eq.s42d: Using Eq.s27d and expand-
ing to lowest order ina, we find for the integrand of the sum
of the k=2 and 3 terms of Eq.s42d,

zbc2ss= ivd <
2D2

v

b−svd
fE2 − v2 + b+svdg2 + b−svd2 . s46d

Here bsiv±hd;b+svd± ib−svd, bssd;afdssd+nssdss2

+E2d /Dg, wheredssd and nssd are given byNssd=D+anssd
fsee Eq.s28dg andDssd=s2+E2+adssd fsee Eq.s29dg. Since
b−svd=0 for uvuøE, it is reasonable to expect thatb− will
grow linearly as one passes onto the branch cut; and, in fact,
we find from numerical study that a good ansatz isb−svd
=sE−vdb̃−svd, with b̃−svd being a weakly varying, real func-
tion of v /E. With this, for v of orderE, Eq. s46d simplifies
to

zbc2ss= ivd < −
D2b̃−sEd

2E3

1

v − E
. s47d

We find that Eq.s47d should be valid forv.E+b+sEd /2E.
Using Eq. s47d, we can do the branch cut integral, which
givesffor tø1/saEx0d—see the Appendix for an alternative
approachg

zbc2std < ax1 logsx0aEtdcossEt + fd. s48d

Heref is a constant phase shift that we have not determined
explicitly sbut see the Appendixd, and the dimensionless con-
stantsx0 andx1 are

x0 = ub+sEdu/2aE2 = udEu/aE, s49d

x1 = D2b̃−sEd/2aE3. s50d

Sinceb± ~a, these constants are independent ofa. The last
expression forx0 comes from an evaluation ofb+sEd: it is
directly related to the energy renormalization in the Markov
approximation,b+sEd=2EdELamb.

In Fig. 2, we show a direct numerical evaluation ofzbc2std.
One can see the decay of the oscillatory part, which is loga-
rithmic according to Eq.s48d. Even though the decay is very
nonexponential, it is reasonable to attempt to characterize
this decay by a time scale. Equations48d obviously does not
work at t=0, since it is logarithmically divergent. This is not
surprising, since our calculation has neglected cutoff effects
sdependence onvcd, so Eq.s48d is not expected to be correct
for t,1/vc. However, if we consider “early” time to be the
first half-period of the coherent oscillation,t0=p /E, then Eq.
s48d should be valid and we can use it to characterize the
decay by determining the timeth at whichzbc2std decreases to
half its early-time value, i.e.,zbc2sthd= 1

2zbc2st0d. We obtain

th =
1

E
Î pE

udEu
~

1

E

1
Îa

. s51d

Surprisingly, th~1/Îa depends nonanalytically ona. This
explains the effect that is evident in Fig. 2: for smalla, th
!T2, that is, on the scale ofT2, there is a very rapid loss of
coherence as contributed by bc2. This phenomenon may be
called aprompt loss of coherence, as it would appear experi-
mentally as a fast initial loss of coherenceffrom 100% to
s1−cad100%, c being some constant near unityg, followed
by a much slower, exponential decay of coherence on the
regularT2 time scale.

We make a few final remarks about the bc2 calculation.
The absolute size of the bc2 contribution reaches a maximum
near the value ofe /D used in Fig. 2; the relative size of this
contribution continues to increase asueu /D increases, so that
it eventually becomes much larger than the pole contribution
fbut all contributions tozstd go to zero asueu /D→`g. When
ueu<D, we find that, because of the prompt loss of coher-
ence, there is adeficit in the total pole contribution, that is,
okrk=1−Osad,1. Even in the absence of an explicit
branch-cut computation, this deficit signals the prompt loss
of coherence, in that it indicates that the exponentially de-
caying contributions tozstd do not account for all the coher-
ence neart=0. Note that this is opposite to the unbiased case,
where, as a result of the bc1 part, there is anexcesspole
contribution.

V. NEXT-ORDER CALCULATION:
STEADY-STATE SOLUTION

Finally, we present the result of a calculation of the cor-
rections to ordera to the steady-stateslong-timed solution of
the GME. To this order, as we will now show, the spin does
not go to the Gibbs distribution of the uncoupled systemsi.e.,
at T=0, the ground-state density matrix of the isolated spind.
However, the result is consistent with the Gibbs distribution
of the coupledsystem, giving good evidence for a strong
form of ergodicity, even atT=0.

These apparently simple corrections, reported below, re-
quire an enormous additional calculation, in that they require
an evaluation of the next order of the Born series. That is, we
must take the expansion of the self-energy superoperatorS
to fourth order inLSB. The formal expression forSs4d is
simple enough to generate: it is well known that the full Born

FIG. 2. zpolesstd and zbc2std for the biased case, illustrating the
prompt loss of coherence produced by bc2. HereE=1, e /D
=−1.38,vc=30, T=0, anda=0.01. For these parameters, the time
scale for the prompt loss of coherencefusing Eq. s51dg is th
=18.98.th is the time at which the envelope ofzbc2 falls to half its
value att0=p /E. This time scale is much shorter than the regular
exponential decay of coherence inzpoles; for our parameters,T2

=204.6.
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series is generated by repeated substitution of the following propagator identity into the exact expression forS sEq. 3.4.7a of
Ref. 16d:

e−iQLt = e−iQL0t − iE
0

t

dt1e
−iQLst−t1dQLSBe

−iQL0t1. s52d

Here

L0 = LS+ LB. s53d

This generates the superoperator expression forSs4d,

Ss4dstd = s− id3E
0

t

dt1E
0

t1

dt2P TrBLSBe
−iQL0st−t1dQLSBe

−iQL0st1−t2dQLSBe
−iQL0t2LSBrB. s54d

This expression can be simplified with the use of the operator identities

QL0 = L0, PLSBQ = PLSB. s55d

Only one factor of the projection superoperatorQ=1−P survives,

Ss4dstd = s− id3E
0

t

dt1E
0

t1

dt2TrBLSBe
−iL0st−t1dLSBe

−iL0st1−t2dQLSBe
−iL0t2LSBrB. s56d

Note also that the projectorP has been dropped from the expression; since it is immediately followed by a trace over the bath,
it acts as the identity. We can also writeSs4d in several equivalent convenient forms using the identity

e−iL0tLSB= LVs−tde
−iL0t, Vstd = eiL0tHSB. s57d

This gives the following two equivalent forms for the self-energy:

Ss4dstd = s− id3E
0

t

dt1E
0

t1

dt2TrBLVs0dLVst1−tdQLVst2−tdLVs−tdrBe−iLSt, s58d

Ss4dstd = s− id3E
0

t

dt1E
0

t1

dt2e
−iLStTrBLVstdLVst1dQLVst2dLVs0drB. s59d

Equations58d can be used to evaluate corrections to the last term of Eq.s10d; we must add to Eq.s12d a term of the form

Imn
s4dstd =

i

2
TrSsmSs4dstdsn. s60d

The bath part of these traces requires the fourth-order bath correlator, which using Wick’s theorem is, atT=0,

TrBfXst1dXst2dXst3dXst4drBg =
a2vc

4

4
F 1

fi + vcst3 − t2dg2fi + vcst4 − t1dg2 +
1

fi + vcst3 − t1dg2fi + vcst4 − t2dg2

+
1

fi + vcst2 − t1dg2fi + vcst4 − t3dg2G . s61d

Equationss58d–s61d are the starting point of our next-order
calculation of thes=0 residue, which gives the long-time
asymptote of the density matrix. Every detail of this calcu-
lation is presented in the accompanyingMATHEMATICA note-
book. It can be understood why computer algebra is neces-
sary for the completion of this calculation if one considers
the complexity of the above expressions when written out in

ordinary operator form. The four nested commutators gener-
ated by the Liouvillian superoperator produces thousands of
distinct terms, which all need to be integrated and studied in
the limit of vc/E→`.

To illustrate the complexity of this calculation, we give in
Appendix B one example of a relatively “simple” intermedi-
ate resultfthe integral form forIxx

s4dstdg that is obtained in the
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MATHEMATICA notebookssee EPAPS supplement, Ref. 27d.
Given the enormity of the calculation, the final result is

very simple,

x` = −
D

E
+ aF−

D3

E3 + SC − ln
vc

E
DSD3

E3 −
2D

E
DG , s62d

z̀ = −
e

E
+ a

eD2

E3 SC − 1 − ln
vc

E
D . s63d

Recall thaty`=0 exactly in the spin-boson model. In this
expression, all terms that vanish in the limit ofvc/E→`
have been dropped. Note that as in thedE calculation above,
we see a mildslogarithmicd divergence with the ultraviolet
cutoff; all physical quantities that we have calculated at this
order have no divergence more severe than this. These re-
sults differ with theOsad limit results reported in Sec. 21.5.2
of Ref. 10; we can offer no explanation for this. There is no
obvious way of treating the logarithmic divergences inx`

and z̀ by introduction of a renormalizedD ande, except in
the unbiased case. Nevertheless, the expressions given are
perfectly physicalsx`

2 + z̀2 ,1d within the expected limits
fvc@E, anda,1/ lnsvc/Edg.

After obtaining the above results, we separately calculated
the equilibrium density matrix, i.e.,

ksmleq=
Trsme−bH

Z
= −

2

b

]

]cm

ln Z, s64d

in the limit T→0 and for largevc. HereZ=Tre−bH, cx=D,
andcz=e. We find that

lim
b→`

1

b
ln Z =

1

2
sE + dELamb+ avcd, s65d

with dELamb from Eq. s36d. Then it is a simple calculation to
show that the equilibrium and steady-state solutions actually
coincide, i.e.,

x` = ksxleq, z̀ = kszleq. s66d

While this result is natural, it should not be considered ob-
vious; it provides a rigorous demonstration that, to ordera,
the system is ergodic in a strong sense.

We give a few final notes about other quantities that re-
quire a calculation ofS to the Ss4d level. TheOsad correc-
tions to pole positions, given in an earlier section, are unaf-
fected by inclusion ofSs4d; however,Osad corrections to
residues of both pole 1ss=0d and pole 2 forsx and sz are
affected bySs4d. Osad corrections tosy residues, andsx,z

residues of poles 2 and poles 3 and 4, are determined entirely
by Ss2d; they donot have contributions fromSs4d.

VI. DISCUSSION

Naturally, many more regimes could be studied using the
present approach. For finite temperature, the time evolution
is very different at long times, but it is essentially the same
as theT=0 evolution whent," /kT. Recently, there has
been interest in varying both the system13 and bath28 initial
conditions, as well as in varying the model of the bath den-

sity of states.28 For all these circumstances, the systematic
Born expansion procedure we report here can be done. It is
clear on general grounds that the appearance of branch cut
contributions will not be restricted to the Ohmic model, how-
ever the Ohmic case is special in that the size branch cut
contribution is not governed by any small parameter. For any
super-Ohmic spectral density of the formJsvd~vn at low
frequenciessn=1,2, . . .d, Cstd will have a power-law depen-
dence at long time, and thusCssd will have a branch point at
s=0. However, the magnitude of the branch cut contribution
in the general case goes like 1/wc

n−1. So, nonexponential con-
tributions to the dynamics vanish in the physical limit in all
these other cases.

Our hope is that, using the present and further exact cal-
culations of the weak-coupling behavior of the spin-boson
model, a tool will be made available to permit precision ex-
periments to test the validity of the modelswhich, at present,
is only phenomenologically justifiedd in various physical
situations of present interest in quantum information. A fun-
damentally correct, experimentally verified theory of the sys-
tem and its environment should ultimately be of great value
in finding a satisfactory qubit for the construction of a quan-
tum information processor.
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APPENDIX A: SCALING FORM FOR BRANCH
CUT INTEGRALS

By numerical study, we find that the branch cut integrals
conform to some simple scaling laws for smalla. If we write
the bc1 and bc2 integrals aszbc1std=e0

`dxe−q1xtzbc1ss=q1xd
andzbc2std=ReeE

`dxeixtzbc2ss= ixd, then we find that for small
a and fors!vc, zbc1ssd can be written in a scaling form

zbc1sxd = sa/Edf1se/D,x/Ed. sA1d

But for bc2, a very different scaling law applies,

zbc2sxd = s1/Edf2„e/D,sx − Ed/aE…. sA2d

Here f1,2 are dimensionless, “universal” functions that gov-
ern the behavior of the branch cut contributions for smalla.
For bc1, the behavior that the scaling law gives is very

simple: Eq.sA1d implies thatzbc1std=a f̄1se /D ,Etd, where f̄1

is the Laplace transform of the scaling functionf1. We might
have expected this behavior from Eq.s45d, from which we
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can read off the scaling function fore=0. In fact, it appears
from numerical studies thatf1 hardly changes ase is varied,

except for an overall scale factor; that is,f̄1se /D ,Etd
<ase /DdbsEtd. We find that the scaling functionastd.0 is
peaked att=0. So, the memory effect described above for
e=0 persists for finitee, but becomes smaller. Forueu<D,
the bc2 contribution, which we will describe now, becomes
dominant over the bc1 one.

Returning to Eq.sA2d, if we write the Fourier transform

of the scaling function asf̄2std=e0
`eixtf2sxddx and consider

its polar form f̄2std=r2stdeif2std, then we obtain

zbc2std = ar2saEtdcosfEt + f2saEtdg. sA3d

This shows that bc2 contributes an oscillatory part to the
solution, whose “T2” decay is determined by the features of
the scaling functionr2. A few more observations aboutf2
sobtained initially from numerical studyd reveal some crucial

properties of ther2 function: sid f2s0d=0; sii d uf2sxdu has a
single maximum atx=x0, wherex0 is some constant of order
unity; siii d most important for the present discussion, forx
.x0, f2sxd approaches 1/x, that is, f2sxd,x1/x, wherex1 is
another real constant of order unity. Factsiii d implies that, for
t→0, r2std<x1 logsx0td. That is, we conclude that at suffi-
ciently short timefactually for tø1/saEx0d, so a relatively
long timeg,

zbc2std = ax1 logsx0aEtdcossEt + fd, sA4d

as stated in the text.

APPENDIX B: I xx
„4…
„t…

As an example of one of many, many intermediate results
worked through in the accompanyingMATHEMATICA note-
book, we give here the expression forIxx

s4dstd fEq. s60dg, in
“simplified” form,

Ixx
s4dstd = E

0

t

dt1E
0

t1

dt23−
e2 cossEtd

E2S− t1 −
i

vc
D2St − t2 −

i

vc
D2 −

e2 cossEtd

E2St1 −
i

vc
D2St − t2 −

i

vc
D2 −

e2 cossEtd

E2S− t −
i

vc
D2St1 − t2 −

i

vc
D2

−
e2 cossEtd

E2St −
i

vc
D2St1 − t2 −

i

vc
D2 −

e2 cossEtd

E2S− t1 −
i

vc
D2S− t + t2 −

i

vc
D2 −

e2 cossEtd

E2St1 −
i

vc
D2S− t + t2 −

i

vc
D2

−
e2 cossEtd

E2S− t −
i

vc
D2S− t1 + t2 −

i

vc
D2 −

e2 cossEtd

E2St −
i

vc
D2S− t1 + t2 −

i

vc
D2 −

D2 cossEt − Et1 − Et2d

2E2S− t1 −
i

vc
D2St − t2 −

i

vc
D2

−
D2 cossEt − Et1 − Et2d

2E2St1 −
i

vc
D2St − t2 −

i

vc
D2 −

D2 cossEt − Et1 − Et2d

2E2S− t −
i

vc
D2St1 − t2 −

i

vc
D2 −

D2 cossEt − Et1 − Et2d

2E2St −
i

vc
D2St1 − t2 −

i

vc
D2

−
D2 cossEt − Et1 − Et2d

2E2S− t1 −
i

vc
D2S− t + t2 −

i

vc
D2 −

D2 cossEt − Et1 − Et2d

2E2St1 −
i

vc
D2S− t + t2 −

i

vc
D2 −

D2 cossEt − Et1 − Et2d

2E2S− t −
i

vc
D2S− t1 + t2 −

i

vc
D2

−
D2 cossEt − Et1 − Et2d

2E2St −
i

vc
D2S− t1 + t2 −

i

vc
D2 −

D2 cossEt − Et1 + Et2d

2E2S− t1 −
i

vc
D2St − t2 −

i

vc
D2 −

D2 cossEt − Et1 + Et2d

2E2St1 −
i

vc
D2St − t2 −

i

vc
D2

−
D2 cossEt − Et1 + Et2d

2E2S− t −
i

vc
D2St1 − t2 −

i

vc
D2 −

D2 cossEt − Et1 + Et2d

2E2St −
i

vc
D2St1 − t2 −

i

vc
D2 −

D2 cossEt − Et1 + Et2d

2E2S− t1 −
i

vc
D2S− t + t2 −

i

vc
D2

−
D2 cossEt − Et1 + Et2d

2E2St1 −
i

vc
D2S− t + t2 −

i

vc
D2 −

D2 cossEt − Et1 + Et2d

2E2S− t −
i

vc
D2S− t1 + t2 −

i

vc
D2 −

D2 cossEt − Et1 + Et2d

2E2St −
i

vc
D2S− t1 + t2 −

i

vc
D24 . sB1d

This double integral, and many others, are fully evaluated in theMATHEMATICA notebook, in the largevc limit.
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