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We report on a multiband microscopic theory of many-exciton complexes in self-assembled quantum dots.
The single particle states are obtained by three methods: single-band effective-mass approximation, the multi-
bandk ·p method, and the tight-binding method. The electronic structure calculations are coupled with strain
calculations via Bir-Pikus Hamiltonian. The many-body wave functions ofN electrons andN valence holes are
expanded in the basis of Slater determinants. The Coulomb matrix elements are evaluated using statically
screened interaction for the three different sets of single particle states and the correlatedN-exciton states are
obtained by the configuration interaction method. The theory is applied to the excitonic recombination spec-
trum in InAs/GaAs self-assembled quantum dots. The results of the single-band effective-mass approximation
are successfully compared with those obtained by using the ofk ·p and tight-binding methods.
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I. INTRODUCTION

Semiconductor self-assembled quantum dotssSAQDsd1–3

are islands of one semiconductor, e.g., InAs, in a host matrix
of another semiconductor, e.g., GaAs. The elementary exci-
tations, electrons and holes, are believed to be confined in all
three dimensions by the band gap difference between island
and matrix materials. The picture of electrons and holes as
confined elementary excitations with effective mass, interact-
ing via Coulomb interactions has been successfully
applied toward the explanation of many experimental
results.4–11 It is important to establish to what extent the
effective-mass picture is applicable to the description of elec-
tronic states of self-assembled quantum dots by a systematic
comparison of different approaches. The self-assembled
quantum dots plus the surrounding barrier material contain
millions of atoms and the density functionalab initio calcu-
lations are not possible yet. Hence, in this work we compare
two approaches, the multibandk ·p method and the tight-
binding method with the predictions of the effective-mass
calculations. The multibandk ·p method12–18 accounts for
the proper structure of the valence band, including heavy,
light, and spin split-off hole bands. It is, however, limited to
the top of the valence band, does not account for the atom-
istic character of the interfaces between the dot and barrier
material, and is expected to break down as the size of the
nanostructure decreases. The atomistic structure of the nano-
structure is captured in either the tight-binding19,20 or
pseudopotential approaches as developed by Zunger and
co-workers.21 The tight-binding approach chosen here is the
effective bond orbital modelsEBOMd,22–24 a version ofsp3

tight-binding models. The advantage of EBOM is that it ex-
trapolates to thek ·p approach making a direct comparison
possible. The disadvantage of EBOM is that it misses the
lack of inversion symmetry of zinc blende structures.

The single particle energy levels are not measured di-
rectly. What is measured in, e.g., optical experiments, is the
emission from self-assembled quantum dots as a function of
the excitation power, or the number of electrons and holes in
the dot. The electrons and holes interact and form multiexci-
ton complexes. Emission from multiexciton complexes has

been measured by a number of groups.6–9,25–30The higher the
pumping intensity is, the more excitons are involved, thus
the emission from higher excited electron and hole states can
be observed. The multiexciton emission spectra have been
interpreted using quantum mechanical methods such as the
Hartree-Fock method and the configuration interaction
methodsCId,31 in which the multiexciton complex states are
constructed from single-particle states of the system. It
is a challenge to combine realistic single-particle states
calculated for the million-atom structures with these
quantum mechanical methods. A number of theoretical
approaches have been proposed to address this issue, such as
combining multibandk ·p single-particle states with self-
consistent Hartree-Fock method16 and combining single-
band effective-mass9,32–35 or microscopic pseudopotential
wave functions with CI.36,37

In this paper, we use a general approach which combines
different multiband calculations of single-particle states with
the CI method for the calculation of multi-exciton states. By
using single-particle states obtained from the single-band
effective-mass approximation, the multibandk ·p method
and the atomistic tight-binding-like method, we are able to
compare the multiexciton emission spectra obtained from
different single-particle states and determine both the valid-
ity of the effective-mass approximation as well as the valid-
ity of multiexciton emission spectra as fingerprints of elec-
tronic structure of quantum dots.

II. SINGLE-PARTICLE CALCULATION

The single particle calculations for self-assembled quan-
tum dots started with the effective-mass calculations which
related shape and size of the dots to the single particle energy
levels.38 As experimental information accumulated, more so-
phisticated approaches were developed, such as single-band
effective-mass method coupled with strain calculation,39–41

eight-bandk ·p method,14–17 tight-binding methods,20,23 and
the empirical pseudopotential method.21 In the following, we
briefly describe the single-band effective-mass method, the
eight-bandk ·p method and EBOM for the calculation of
single-particle states in SAQDs.
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A. Effective-mass single-particle states

Here we use a single-band model with anisotropic effec-
tive masses of electrons and holes. The goal is to verify
whether one can obtain the correct energy spectrum of levels
in SAQDs48 by this relatively simple method. As the effec-
tive masses are known to be very different in SAQDs from
those in bulk materials,5 they are treated as adjustable param-
eters that can be obtained either from experiments or from
more sophisticated methods like the multibandk ·p and the
tight-binding methods.

The Hamiltonians, including strain, read

Ĥe = −
"2

2mi
es

]2

] x2 +
]2
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2m'
e
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where Hs=«xx+«yy+«zz and Bs=«zz− 1/2s«xx+«yyd is the
hydrostatic and biaxial strain component, respectively,Vbo

e

and Vbo
h are the potentials from the band offsets between

island sInAsd and matrixsGaAsd material, andVP is the pi-
ezoelectric potential.16 ac, av, andb are the deformation po-
tential parameters that are also used in the multibandk ·p
method and EBOM.

B. Eight-band k·p single-particle states

The eight-bandk ·p method uses eight Bloch functions at
the G point of the Brillouin zone as basis functions to de-
scribe electron states with finite wave vector. As the lateral
size of SAQDs is usually much larger than the lattice con-
stant, it has been widely used in the calculation of confined
electron states in SAQDs.13–15In general, the multibandk ·p
Hamiltonian can be written as

Ĥk·p = Ebo + Axk̂xk̂x + Ayk̂yk̂y + Azk̂zk̂z + Bxyk̂xk̂y + Byzk̂yk̂z

+ Bxzk̂xk̂z + Cxk̂x + Cyk̂y + Czk̂z + VP, s2d

whereEbo is the matrix for the band offsets,As, Bs, andCs
are the coefficient matrices.12 By using the deformation po-

tential theory, an additional partĤs,
12 which has a similar

form asĤk·p, can be added to take into account the effects of
the strain.

Figure 1 plots the energy dispersion of In0.5Ga0.5As bands
sdotted linesd calculated by the eight-bandk ·p method. Note
a spurious crossing between valence bands at wave vectorsk
halfway between theG andX points. This crossing may re-
sult in spurious valence band states in the intermixing
SAQDs. The same problem has been reported in the study of
InAs dots on InP17 and can be artificially removed by adding
additional terms proportional tok4 into the eight-bandk ·p
Hamiltonian.

C. Tight-binding single-particle states

By using the same number of basis functions as the eight-
band k ·p method, EBOM is asp3 tight-binding method

based on an effective fcc lattice,22 i.e., a pair of cation and
anion in a zinc blende lattice is treated as a single superatom.
The Hamiltonian is given by

kRauĤEBuR8a8l = sEp + VPddRR8daa8 + o
t

dR−R8,t,

hExytata8s1 − daa8d + fExxta
2 + Ezzs1 − ta

2dgdaa8j,

kRsuĤEBuR8s8l = sEs + VPddRR8 + o
t

EssdR−R8,t,

kRsuĤEBuR8al = o
t

EsptadR−R8,t, s3d

whereuRal denotes an orbitala located at siteR. Es, Ep, Ess,
Esp, Exy, Exx, and Ezz are parameters that are chosen to re-
produce the conduction-band effective mass, band gap, spin-
split energy, and Luttinger parameters.

Figure 1 plots the energy dispersion of In0.5Ga0.5As bands
ssolid linesd calculated by EBOM. As EBOM uses the same
Luttinger parameters as thek ·p theory does, both ap-
proaches give the same band structure near theG point.
However, the spurious crossing from the eight-bandk ·p
theory is not found in the EBOMs band structure. Here, we
adopted the parametrization by Loehr.24 For comparison, the
band structure of In0.5Ga0.5As by the empiricalsp3s* tight-
binding methodsETBMd19,20 is also plottedsdash linesd. It is
noted that the discrepancy between EBOM and ETBM is
much smaller than that between the eight-bandk ·p and
ETBM.

Compared with the single-band calculation, the multiband
methods gives more realistic confined states in SAQDs.
These states lack the symmetries, such as angular momentum
and spin, which are usually preserved in the single-band cal-
culation. These symmetries are important in the CI calcula-
tion because they substantially reduce the total number of
configurations. For disklike or lens-shape dots, the circular
symmetry would be broken due to the effects of shear strain
In addition, the total spinS and its projectionSz are not

FIG. 1. Band structure of In0.5Ga0.5As described by the eight-
band k ·p method sdotted linesd, the tight-bindinglike effective
bond-orbital methodssolid linesd, and the empiricalsp3s* tight-
binding methodsdashed linesd.
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conserved due to the spin-orbit interaction. However, we will
show that the multiband single-particle states are polarized
and the polarization can be used to define quasispin.

III. FORMULATION OF THE MULTIEXCITON PROBLEM

Our structure contains millions of atoms and, hence, mil-
lions of electrons. As long as the total system contains an
energy gap and a well defined ground state wave function,
the intractable million electron problem can be replaced by a
much smaller problem of pairs of excitations in the form of
quasielectrons and quasiholes. Formally, any electron state
can be expanded in terms of increasing number of pairs of
excitations

C = C0 + o
i,m

ci
mCi

m + o
i j ,mn

cij
mnCi j

mn+ ¯, s4d

whereC0 is the Hartree-Fock ground state with all valence
states occupied and conduction band empty.Ci

m is an excited
state formed by removing an electron from the statei in the
valence band and creating a “hole,” and moving it to the
statem in the conduction band, creating an “electron.”Ci j

mn

is a doubly excited state containing two electrons and two
holes, and so on. The number of electron-hole pairs is in
principle not conserved and this expansion can be used to
describe all excited states.42 However, in semiconductors, the
difference between the kinetic energies of different numbers
of pair excitations is proportional to the band gap, which is
much larger than the Coulomb interaction mixing them.
Therefore, different numbers of pair excitations are practi-
cally independent from each other.43–46

After solving the one electron problemfEqs.s1d–s3dg and
obtaining the single-particle eigenstatesfi and their energies
Ei, the Hamiltonian for the interacting electrons can be writ-
ten in second quantization as

Ĥ = o
i

Eici
+ci +

1

2o
i jkl

Vijklci
+cj

+ckcl . s5d

HereVijkl ’s are the Coulomb matrix elements

Vijkl =E E fi
*sr 1df j

*sr 2d
e2

4pesr 1,r 2d · ur 1 − r 2u
· fksr 2d

3flsr 1ddr 1dr 2, s6d

esr 1,r 2d is the dielectric function.36 We replace it with the
dielectric constante throughout the calculation. The method
for computation of these elements is given in the Appendix.
The Hamiltonian for many-exciton complex can be written
as32,41

Hex= o
i

Ei
eci

+ci − o
i

Ei
hhi

+hi − o
i jkl

Vijkl
he hi

+cj
+ckhl

+ o
i jkl
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+cj
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1
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i jkl

Vijkl
ee ci

+cj
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+
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2o
i jkl

Vijkl
hh hi

+hj
+hkhl . s7d

The electron-hole exchange interaction elements,Xijkl are de-
fined by

Xijkl =E E fi
*sr 1df j

*sr 2d
e2

4pesr 1,r 2d · ur 1 − r 2u
· fksr 1d

3flsr 2ddr 1dr 2. s8d

IV. EXCITION RECOMBINATION

In order to calculate the photoluminescence spectrum, one
needs to calculate eigenstates of bothN exciton andN−1
exciton systems. At low temperature, only the ground state
and a few excited states of theN exciton system are required.
However, in order to obtain the spectrum over a broad en-
ergy range, a larger number of eigenstates of theN−1 exci-
ton system has to be calculated. In general, about 1000–2000
eigenstates of theN−1 exciton system are required to cover
transitions occurring in thes andp shells.

Let us begin with recombination of noninteracting elec-
trons. The momentum matrix element between an electron
statefe=oncn

eun and a hole statefh=oncn
hun is given by

kfhue · p̂ufel = o
mn

kunue · p̂uumlkcn
hucm

e l + o
m

kcm
h ue · p̂ucm

e l.

s9d

Here,cn’s are the envelop functions and the basis functions
un’s are chosen as eight uncoupled spin-orbitals, i.e.,us↑ l,
ux↑ l, uy↑ l, uz↑ l, us↓ l, ux↓ l, uy↓ l, anduz↓ l. If we neglect the
contribution from the envelope-function part of the wave
function omkcm

h ue·pucm
e l,13 it can be further simplified as

kfhup̂xufel = iP0 · fkcx↑
h ucs↑

e l + kcx↓
h ucs↓

e ld − kcs↑
h ucx↑

e l

− kcs↓
h ucx↓

e lg,

kfhup̂yufel = iP0 · fkcy↑
h ucs↑

e l + kcy↓
h ucs↓

e l − kcs↑
h ucy↑

e l

− kcs↓
h ucy↓

e lg, s10d

where iP0=ksup̂xuxl=ksup̂yuyl denotes the coupling between
the conduction and valence bands. For circular polarization
s+ or s−, the momentum matrix element is then given by
phe

± =1/Î2skfhup̂xufel7 ikfhup̂yufeld.
In the single-band effective-mass method, the Bloch func-

tions for the heavy hole areuh↑=1/Î2sux↑ l+ i uy↑ ld for
j z=3/2 and uh↓=1/Î2sux↓ l− i uy↓ ld for j z=−3/2. Hence,
we have phe

− =kfh↑up̂−ufe↑l=kuh↑u1/Î2sp̂x+ ip̂ydus↑ lkchucel
=−iP0kchucel. It is straightforward to show thatphe

− =phe
+ .

The intensity of photoluminescence from the recombina-
tion of one electron-hole pair in aN-exciton state is defined
as34,41

Is±
shnd = o

i

fsEN
i do

f

ukCN−1
f uPs±

− uCN
i lu2 · dsEN

i − EN−1
f − hnd,

s11d

whereCN
i is the ith eigenstate of theN-exciton system. Note

that kCN−1
f uPs±

− uCN
i l coherently sums all the possible recombi-
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nations, therefore, the interference effect may play an impor-
tant role.

The probability function is defined asfsEN
i d=exp

3s−EN
i /kTd /o jexps−EN

j /kTd. The operatorPs±

− describes all
the possible electron-hole recombination, namely

Ps±

− = o
nm

pnm
± hncm. s12d

In the absence of magnetic field, we haveIs+
sEd= Is−

sEd.

V. RESULTS AND DISCUSSION

We now illustrate our method by a calculation for a model
structure of In0.5Ga0.5As/GaAs disklike SAQD characteristic
of SAQDs grown using In-flush method.47 The dot has diam-
eter 25.4 nm along the base and 2.3 nm height along the
growth direction and has a wetting layer of 0.6 nm. The
composition and dimensions of the dot are chosen such that
its emission spectrum is similar to the one observed in the
experiment of Raymondet al.48 We also adopt the virtual
crystal approximation in order to compare results from dif-
ferent models. The strain distribution is calculated by the
continuum elasticity theory18,49 on a large cubic finite-
difference mesh that has 120 nm along each dimension and
Dirichlet boundary condition on each side in order to ensure
that the strain is fully relaxed.

In Fig. 2, we show the probability density of the first six
electronsin the upper rowd and six hole statesslower rowd
calculated by the multibandk ·p method. The corresponding
energy levels are plotted in Fig. 3. The material parameters
used in the calculation are taken from Ref. 14.

The circular symmetry of the single-particle states is
found basically preserved due to the small shear strain and
weak piezoelectric potential in this intermixing quantum dot.
Hence, the states in the conduction band and valence bands
are seen to group into three shell, respectively. In the second
shell, the shear strain induces a small splitting of 1.3 meV
between the twop-like valence-band states. In the third shell,
the splitting is about 3 meV and the disklike geometry is
responsible for the splitting between the two 3d states and
the 2s state. It should also be noted that the ordering of the
electron states in this shell is different from that of the hole
states.

In the single-band effective mass calculation, the four ef-
fective mass parameters are chosen to fit the ground state
energies and the separations between the ground states and
first excited states that are obtained by thek ·p method,
which gives sin unit of free electron massm0d mi

e=0.060,

m'
e =0.070,mi

h=0.27, andm'
h =0.30. It is noted that the elec-

tron effective mass in the dot is larger than the bulk value
0.045 for In0.5Ga0.5As and approaches the value in bulk
GaAs. Compared with those in bulk InAs, the holes in the
dot are much lighter in the plane perpendicular to the growth
direction. Similar findings that the effective mass of elec-
trons in quantum dots exceeds the value in the corresponding
bulk dot material and approach that in the bulk matrix mate-
rial and the in-plane component of the effective mass of
holes becomes much lighter have been reported.5,50

In valence bands, the heavy hole and light hole are decou-
pled by the biaxial strain. For dots of small height, the biax-
ial strain is almost constant inside the structure, hence, the
low-lying states in valence bands are mostly heavy-hole
states. This is the reason why these states can be fitted by
using single-band approximation. For thick dots, the band
edges of heavy hole and light hole may cross each other due
to the fact that the biaxial strain changes its sign inside the
structure, which results in more light-hole components in the
hole states in these dots.

The energy levels calculated by EBOM differs from those
by thek ·p method, especially for the high-lying states. The
shell separations by EBOM are smaller than those by thek ·p
method. For example, in the conduction band,Es−p ssepara-
tion betweens andp shelld is 24.8 meV by EBOM and 27.3
meV by thek ·p method, respectively. The averaged separa-
tions Ep−d between different models are even larger, 30.6
meV from EBOM and 36.4 meV from thek ·p method.

As shown in Fig. 1, the band structure predicted by the
eight-bandk ·p method and EBOM match only in the region
close to theG point. Although the lateral dimensions of the
quantum-dot structure are large, it is smalls2.3 nmd along the
growth direction. Hence, the confined electron and hole
states include components with largekz, which results in dif-
ferent energies for these states. For dots with larger height,
there is very little discrepancy found between the two
methods.23

FIG. 2. Two-dimensional plot of the density of first six electron
sfirst rowd and holessecond rowd wave functions calculated by the
multibandk ·p method.

FIG. 3. Calculated energy levels of the In0.5Ga0.5As/GaAs self-
assembled quantum dot by the eight-bandk ·p sKPd method and
EBOM. Also shown are the energy levels fitted for the effective-
mass approximationsEMAd.
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A. Polarization of single-particle states

In the framework of the envelope function formalism, it is
possible to separate the components of an envelope function
into two groups when the spin-orbit interaction is not very
strong. One group consists of components for spin up basis
functions,us↑ l, ux↑ l, uy↑ l, anduz↑ l, and the other consists of
components for spin down basis functions. We define polar-
ization of statef as

p =E ucs↑sr du2 + ucx↑sr du2 + ucy↑sr du2 + ucz↑sr du2dr .

s13d

A state is polarized if eitherp<1 sa “spin” up stated or p
<0 sa spin down stated. Apparently, there is little overlap
between the polarized states with different polarization.

A careful examination of the calculated single-particle
states shows that all the single-particle states in the conduc-
tion band consist of less than 1% component from the split-
off band while for valence band states it is less than 5%.
Hence, the mixture between spin up and spin down compo-
nents in any of these states should be very small, i.e., they
are polarized.

However, in the absence of magnetic fields, all the single-
particle states calculated by thek ·p method and EBOM are
doubly degenerate due to the time-reversal symmetry.16 In-
stead of having two degenerate states, the numerical calcu-
lation can only give one state from a random linear combi-
nation of the two polarized and degenerate states. Because of
this degeneracy, most of the calculated single-particle states
are found not polarized. By applying a small magnetic field
s1 mTd along the growth direction, this time-reversal sym-
metry can be removed and polarized single-particle states are
recovered. The eight-bandk ·p Hamiltonian is modified51 to
include the effects of magnetic fields. For EBOM, we intro-
duce Peierls phase factor52 to include the magnetic field in
the Hamiltonian.

B. Electron-hole exchange interaction

The ground state of a single exciton is a dark doublet
separated from a bright doublet by the exchange energy. A
dark sbrightd exciton state is dominated by a configuration of
an electron and a hole in their respective ground state with
the oppositessamed spin. The bright doublet has a higher
energy due to the electron-hole exchange energy. Because of
the relatively large size of SAQDs, the electron-hole ex-
change interaction causes a very small correction to exciton
states. It can be measured from the fine structure of single
exciton recombination spectrum.53

An accurate calculation of the electron-hole exchange will
require knowledge of both electron and hole states and the
dielectric function at a microscopic level.36,37 However, for
SAQDs, the exchange energy can be estimated by using the
multiband k ·p theory or EBOM, where the electron-hole
exchange interaction arises from the mixing between the
conduction and valence bands. The calculation for our struc-
ture shows that the separation between the dark and bright
doublets of a single exciton is 74.6meV, which includes an

electron-hole exchange energy 63.2meV and the correlation
effect. It gives a fairly good agreement with the value de-
rived from the experiment53 on similar samples, considering
the approximation made in the theory, and the uncertainty in
the dot size, shape, and composition in the experiment. Be-
cause of the small contribution of the electron-hole exchange
interaction, we neglect it in the subsequent calculation.

C. Addition energies and hidden symmetry in multiexciton
complexes

Due to the presence of quasishell structure in the single-
particle energy spectrum, we chose the first 12 electron and
12 hole statesswith quasispinsd, which form the first three
shells in conduction and valence bands, respectively, to build
the multiexciton configurations.

In order to reduce the total number of configurations
which grows fatorially with the size of single-particle basis
set, we impose an additional constraint on the exciton con-
figurations, i.e., the sum of the electron quasispins should be
equal to that of the hole quasispins.41 We also apply a trun-
cation according to the Hartree-Fock energies of configura-
tions in order to limit the total number of the configurations
to less than 50 000.

Hidden symmetry8,33,34,41 is a good approximation in a
multiexciton system with degenerate single-particle states
and symmetric electron-electron, electron-hole, and hole-
hole interactions. It predicts that the chemical potential, i.e.,
the energy required to add an electron-hole pair to the sys-
tem, is independent of the number of excitons within a de-
generate shell.

The symmetry between electron-electron, electron-hole,
and hole-hole interactions is broken because the hole states
are usually more confined than the electrons in the conduc-
tion bands. Hence, the hole-hole interaction is generally
stronger than the electron-electron interaction. The cal-
culation by the multibandk ·p ssingle-band effective-
massd method shows V1111

ee =14.4s14.9d meV, V1111
hh

=16.7s19.4d meV, andV1111
he =15.4s16.6d meV. The EBOM

gives similar values, which are 13.9, 16.3, and 14.9 meV,
respectively. In the case of eitherk ·p or EBOM, the hole-
hole interaction is stronger than the electron-electron inter-
action by about 15%. The hole states from the single-band
calculation are found more confined than those from the two
multiband calculations.

Figure 4 plots the calculated addition energies for differ-
ent number of excitons. Both thek ·p method and EBOM
give similar result except that the EBOM predicts lower val-
ues. The result of the single-band effective-mass approxima-
tion is found very close to that by thek ·p method. A clear
plateau structure can be found associated with the shell struc-
ture, which is an apparent signature of hidden symmetry. The
fluctuation in the addition energies within the same shell is
not larger than that in the single-particle energies or the dif-
ference among the electronsholed-electron sholed interac-
tions. Thek ·p method gives the largest fluctuation, 1.4 meV
in thep shell and 4.5 meV in thed shell, while EBOM gives
1.7 and 2.7 meV, respectively. It is therefore seen that the
hidden symmetry in our structure is well preserved, and not
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sensitive either to the splitting ofp andd shells or the asym-
metric interactions.

D. Emission spectra

Figures 5, 6, and 7 show the emission spectra calculated
by the single-band effective-mass method, the eight-band
k ·p method, and EBOM, respectively, for up to six excitons.
As thek ·p method and EBOM are shown to give very simi-
lar results except for overall shifts in transition energies, we
will confine our attention to analyzing the difference between
the results by the single-band and the multibandk ·p calcu-
lations. It should be mentioned that the spectra in Figs. 5 and
6 are plotted in different scale, only the relative intensity
between the spectra in the same figure is relevant.

The difference between the single-band and multiband
calculations concentrates in thes shell as the emission peaks
in the p shell are found similar between Figs. 5 and 6. Com-
pared with the single-band calculation, the band-mixing ef-
fect enables more configurations from the multiband single-

particle states to be coupled through the Coulomb
interaction. It results in more possible yet weak transitions in
the low energy end of the spectra, as are found in Figs. 6 and
7 when the number of excitons is larger than 4.

This is illustrated in Fig. 8. In the emission spectra from
the three-exciton complexs3Xd, all the three methods give
one strong peak in thep-shell region and exhibit different
structure in thes-shell region. The single-band calculation
gives one peak with high intensity and three other small
peaks in thes-shell region while both thek ·p method and
EBOM show five peaks with visible intensities.

The initial state of the recombination from 3X is its
ground state and the final states associated with peaks found
in the s-shell region are excited biexcition states.34 As there
is little difference among the 3X ground states calculated by
different methods, it is the excited biexciton states that ac-

FIG. 4. Addition energy spectramsNd=EgsNd−EgsN−1d, calcu-
lated by the single-band effective-mass approximationstriangular
dotsd, the multibandk ·p methodscircular dotsd and EBOMssquare
dotsd for the In0.5Ga0.5As/GaAs disklike quantum dot.

FIG. 5. Excitonic emission spectra calculated by the single-band
effective-mass method.

FIG. 6. Excitonic emission spectra calculated by the multiband
k ·p method.

FIG. 7. Excitonic emission spectra calculated by EBOM.
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count for the different structure in the emission spectra.
In the single-band calculation, the emission peak with

high intensity in thes-shell region is associated with three
biexciton states where both the two electrons and the two
holes are in a triplet configurationsone in thes shell and the
other in thep shelld. In these states, the total spinSs=1d and
its z-componentSz of the two electrons are the same as those
of the two holes. As the spin-orbit interaction is absent in the
single-band calculation, these three biexciton states of differ-
ent Sz are degenerate and give rise to only one peak in the
s-shell region.

In the presence of spin-orbit interaction which is taken
into account in both thek ·p method and EBOM, the degen-
eracy among these three biexciton states is partially lifted,
i.e., the biexciton state ofuSzu=1 has a different energy from
that ofSz=0. It gives rise to two splitted peaks in thes-shell
region, as illustrated in Fig. 8. The three other smaller peaks
are associated with those excited biexciton states in singlet-
singlet or singlet-triplet configurations, which are less af-
fected by the spin-orbit interaction, and can be seen in the all
spectra.

VI. CONCLUSIONS

In conclusion, we have presented a multiband micro-
scopic theory of many-exciton complexes in self-assembled
quantum dots. Three methods: single-band effective-mass
approximation, the multibandk ·p method, and the tight-
binding-like EBOM, are used to obtain single-particle states.
We expand the many-body wave functions ofN electrons
andN valence holes in the basis of Slater determinants. The
Coulomb matrix elements are evaluated using statically
screened interaction and the correlatedN-exciton states are
obtained by the configuration interaction method. We apply
the theory to the excitonic emission spectrum in InAs/GaAs
self-assembled quantum dots and successfully compare the
results of the single-band effective-mass approximation with
those obtained by using the ofk ·p and tight-binding meth-
ods.
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APPENDIX A: COULOMB MATRIX ELEMENTS

In this appendix, we describe an efficient approach to cal-
culate Coulomb matrix elements numerically. In the configu-
ration interaction method, the properties of the system are
given by the single particle spectrum and by the Coulomb
matrix elements defined as two-electron integralsfsee Eq.
s6dg. One possible way to calculate these six-dimensional
integrals is to first solve Poisson equation, than calculate
reduced three-dimensional integrals.54 The calculation is re-
peated for each integrals. For the calculation involving 12
electron states and 12 hole states, the total number of inte-
grals is almost 10 000. Here we propose an algorithm that
does not require calculation for each integrals.

Within the envelope function formalism, the wave func-
tions of single-particle states are expressed as a linear com-
bination of Bloch sums

fisr d =
1

ÎN
o
n

o
R

cinsRdunsr − Rd, sA1d

wherecin is the nth component of the envelop functionci,
unsr −Rd is thenth atomic orbital localized at unit cellR and
1/ÎNonunsr −Rd is the corresponding Bloch function. If we
ignore the contribution from these localized atomic orbitals
and replacer 1−r 2 with R1−R2 in Eq. s6d, we have

Vijkl = o
R1,R2

o
m

cim
* sR1dclmsR1d ·

e2

4pe · uR1 − R2u

3o
n

c jn
* sR2dcknsR2d. sA2d

We further transform a three-dimensionals3Dd wave
functioncsRd into a column vectorcsrd by mapping the 3D
variableR onto a one-dimensional indexr, a six-dimensional
integral can be converted into a vector-matrix multiplication

Vijkl = So
m

cim
*

^ clmDT
·U · So

n

c jn
*

^ cknD , sA3d

where ^ is the direct multiplicationselement by elementd
operator between two vectors.U is the matrix with elements
Usr1,r2d=e2/ s4pe ·uR1−R2ud. The diagonal elements can be
obtained by the integration of 1/R over a unit cell.

In order to use the optimized Basic Linear Algebra Sub-
programssBLASd library,55 the above formulation can be
further vectorized as

J = FT ·U · F, sA4d

where Fr,hi j j=oncin
* srdc jnsrd is a matrix containing all the

possible pairs of two-particle wave functions. Due to the
large dimension of matrixU, we make use of domain decom-
position in the numerical calculation to divide it into a num-
ber of smaller matrices and sum up the result of all the indi-
vidual multiplications.

FIG. 8. Emission spectra from three-exciton complex calculated
by different methods.
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APPENDIX B: COMPANION CONFIGURARION
AND ADDITIVITY RULE

In this Appendix, we point out how to use the additivity
rule to construct configurations for multiexcitons. As a mul-
tiexciton complex contains two different particles, electrons
and holes, the total number of possible configurations is
much larger than for electrons or holes separately. To circum-
vent this difficulty, we use the following algorithm for con-
struction of multiexciton configurations.

The many-body Hamiltonian matrix constructed from the
CI method is a sparse matrix. For a given configuration,
there is only a small number of configurations interacting
with it, which are named as itscompanionconfigurations.
Let us first define the distance between configurationCi and
Cj, iCi ,Cji, as the total number of single-particle states that
the two configurations differ by. It is apparent that

kCiuĤuCjl = 0, if iCi,Cji . 2. sB1d

An exciton configuration consists of a part for electronssd
and the other part for holessd, i.e.,Ci

ex=hCi
e,Ci

hj. The distance
between two exciton configurations,Ci

ex andCj
ex, can be eas-

ily calculated by theadditivity rule, namely

Dij
ex= iCi

ex,Cj
exi = iCi

e,Cj
ei + iCi

h,Cj
hi = Dij

e + Dij
h . sB2d

One can calculate the distance matrixDe and Dh for the
electron and hole configurations, respectively, and then ob-
tain the matrixDex by using the additivity rule. When the
number of single particle statesseither electrons or holesd is
large, a cutoff is necessary to be applied to the total number
of electron or hole configurations. Depending on the memory
available for the computation, it is set to be between 5000
and 10 000. Once the distance matrixDex for the exciton
configurations is calculated, it is straightforward to construct
the configuration interaction matrix as the positions of all the
none-zero matrix elements are known.
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