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We investigate the nonequilibrium transport properties of a three-terminal quantum dot in the strongly
interacting limit. At low temperatures, a Kondo resonance arises from the antiferromagnetic coupling between
the localized electron in the quantum dot and the conduction electrons in source and drain leads. It is known
that the local density of states is accessible through the differential conductance measured at thesweakly
coupledd third lead. Here, we consider the multiterminal current-current correlationssshot noise and cross
correlations measured at two different terminalsd. We discuss the dependence of the current correlations on a
number of external parameters: bias voltage, magnetic field, and magnetization of the leads. When the Kondo
resonance is split by fixing the voltage bias between two leads, the shot noise shows a nontrivial dependence
on the voltage applied to the third lead. We show that the cross correlations of the current are more sensitive
than the conductance to the appearance of an external magnetic field. When the leads are ferromagnetic and
their magnetizations point along opposite directions, we find a reduction of the cross correlations. Moreover,
we report on the effect of dephasing in the Kondo state for a two-terminal geometry when the third lead plays
the role of a fictitious voltage probe.
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I. INTRODUCTION

The Kondo effect represents a distinguished example of
strong many-body correlations in condensed matter physics.1

Over the last 15 years, much effort has been made in under-
standing the implications of the Kondo effect on the scatter-
ing properties of phase-coherent conductors. Indeed, the
electric transport through a quantum dot connected to two
terminals becomes highly correlated when the temperatureT
is lowered below a characteristic energy scale given by
kBTK.2 At equilibrium, the Kondo temperatureTK depends on
the parameters of the system, i.e., the coupling of the dot to
the external leads due to tunneling, the dot onsite repulsion
scharging energyd and the position of the resonant level rela-
tive to the Fermi energyEF. All of them can be tuned in a
controlled way.3

In a quantum dot with a sufficiently large charging energy
sU@kBTd and a single energy level well belowEF, the dy-
namics of the quasilocalized electron becomes almost frozen.
Therefore, a quantum dot can be viewed as an artificial real-
ization sat the nanoscaled of a magnetic impurity with spin
S=1/2. At very low temperaturessT,TKd, charge fluctua-
tions in the dot are suppressed and there arises an effective
antiferromagnetic interaction between the electrons of the
reservoir and theS=1/2 localized moment. Remarkably, the
measured conductance reaches the maximum value for a
quantum channels2e2/hd and the dot appears to be perfectly
transparent when a small voltageeVsd is applied between the
source and the drain contacts. Nevertheless, the coherent cor-
related motion of the delocalized electrons forming the
Kondo cloud can be disturbed when either the bias voltage or
the temperature are of the order ofTK. In such a case, the
many-body wave function of the Kondo state is expected to
suffer fromdephasing, leading to a decrease in the conduc-
tance. This issue has recently attracted a lot of attention.4–6

In this work, we mimic, in a phenomenological way, the
effect of dephasing on the transport properties of a two-
terminal quantum dot in the Kondo regime by introducing a
fictitious voltage probe.

Now, in the absence of dephasing, the building block of
the Kondo resonance is a narrow peaksof width ,kBTKd
aroundEF in the local density of statessLDOSd of the dot.
However, full quantum-dot spectroscopy of the LDOScan-
not be accomplished with a two-terminal transport setup. In
particular, one cannot gain experimental access to the pre-
dicted large voltage induced splitting of the LDOS when
eVsd.kBTK.7–10 A way to circumvent this problem is by at-
taching a third lead, as demonstrated independently by Sun
and Guo11 and Lebanon and Schiller.12 In subsequent labo-
ratory work, De Franceschiet al.13 observed a split Kondo
resonance by employing a slightly modified technique—one
of the leads was replaced by a narrow wire driven out of
equilibrium where left and right moving carriers have differ-
ent electrochemical potentials.

Motivated in part by the works cited in the preceding
paragraph, we are concerned in this paper as well with the
nonequilibrium Kondo physics and the fluctuations of the
current through a quantum dot attached to three leads. As is
well known, the investigation of the current-current correla-
tions in mesoscopic conductors has been a fruitful area of
research.14 Nevertheless, there are still very scarce applica-
tions to strongly correlated systems as the shot noise is a
purely nonequilibriumproperty, and thus more difficult to
treat. Hershfield15 calculates the zero-frequency shot noise
using perturbation theory in the charging energysvalid when
the Kondo correlations are not large; e.g., atT.TKd.
Yamaguchi and Kawamura16 choose the tunneling part of the
Hamiltonian as the perturbing parameter. Ding and Ng17

study the frequency dependence of the noise by means of the
equation-of-motion methodsalso reliable forT.TKd. Meir
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and Golub18 perform an exhaustive study of the influence of
bias voltage in the shot noise of a quantum dot in the Kondo
regime. Dong and Lei19 discuss the effect on the shot noise
of both external magnetic fields and particle-hole symmetry
breaking. Avishaiet al.20 calculate the Fano factor when the
leads ares-wave superconductors whereas the case of
p-wave superconductivity is treated by Aonoet al.21 The
authors22 examine the behavior of the Fano factor at zero
temperature when the formation of the Kondo resonance
competes with the presence of ferromagnetic leads and spin-
flip processes. Lópezet al.23 make use of the two-impurity
Anderson Hamiltonian to address the shot noise in double
quantum dot systems. To the best of our knowledge, a study
of the current fluctuations in a multiprobe Kondo impurity is
still missing. This is the gap we want to fill here.

In mesoscopic conductors, Büttiker24 shows that the sign
of the current cross correlations depends on the statistics of
the carriers. It is positivesnegatived for bosonssfermionsd
due to statistical bunchingsantibunchingd. This statement is
based on a series of assumptionsse.g., zero-impedance ex-
ternal circuits, spin-independent transport, normal thermal
leadsd. Positive correlations can be found if these conditions
are not metssee Ref. 25 for references on this subjectd. Here,
we just mention a few studies based on structures involving
a quantum dot. Bagrets and Nazarov26 consider a Coulomb-
blockaded quantum dot attached to paramagnetic leads
whereas the ferromagnetic case and the spin-blockade case
are treated by Cottetet al.27 Börlin et al.,28 and Samuelsson
and Büttiker29 examine the cross correlations of a chaotic dot
in the presence of a superconducting lead. In the spin-
dependent case, Sánchezet al.30 find that the sign of the
cross correlations is affected by Andreev cross reflections. In
the context of quantum computation, measuring current cross
correlations have been shown31 to yield a indirect identifica-
tion of the existence of streams of entangled particles. There-
fore, the cross correlations are a valuable tool in characteriz-
ing the electron transport in phase-coherent conductors.

In this work, we consider electron transport through a
strongly interacting quantum dot attached to three leadsssee
Fig. 1d. Section II explains the theoretical frameworksslave-
boson mean-field theoryd we use to compute the conductance
and the current-current correlations. We show that the ex-
pressions for the cross correlations may be inferred from

scattering theory applied to a Breit-Wigner resonance with
renormalized parameters. Section III is devoted to the results.
First, we assume that the third lead is a fictitious voltage
probe and investigate the effect of dephasing with increasing
coupling to the probe. Then, we consider that lead as a real
electrode and relate the differential conductance measured at
one electrode with the local density of statessLDOSd of the
artificial Kondo impurity. We show next that the sign of the
cross correlations of the current is negative, as expected from
the fermionic character of the Kondo correlations at very low
temperature. Moreover, we discuss the effect of bias voltage,
external magnetic fields, and spin-polarized tunneling in the
cross correlations. We finish this section with an investiga-
tion of the effect of spin polarized transport in the shot noise.
Finally, Sec. IV contains our conclusions.

II. MODEL

We model the electric transport through the quantum dot
using the Anderson Hamiltonian in the limit of large onsite
Coulomb interactionU→`. This way we neglect double oc-
cupancy in the dot and the Hamiltonian is written in terms of
the slave-boson language32

H = o
kas

«kasckas
† ckas + o

s

«0sfs
† fs + o

kas

sVkackas
† b†fs + H.c.d

+ lSb†b + o
s

fs
† fs − 1D , s1d

whereckas
† sckasd is the creationsannihilationd operator de-

scribing an electronic statek with spin s=h↑ , ↓ j and energy
dispersion«kas in the lead a=h1,2,3j, «0s is the sspin-
dependentd energy level in the dot andVka is the coupling
matrix element. The original dot second-quantization opera-
tors have been replaced in Eq.s1d by a combination of the
pseudofermion operatorfs and the boson fieldb. Hopping
off the dot is described by the processckas

† b†fs: whenever an
electron is annihilated byfs, an empty state in the dot is
created byb†, and thenckas

† generates an electron with spin
s in the conduction band of contacta. The boson operatorb
sb†d may be regarded as a projection operator onto the
vacuumsemptyd state of the quantum dot. To make sure that
a state with double occupancy is never created, a constraint
with Lagrange multiplierl is added to the Hamiltonian.

The current operatorÎa that yields the electronic flow
from leada is given by

Îa =
ie

"
fN̂a,Hg, s2d

whereN̂a=oksckas
† ckas. The general form of the power spec-

trum of the current fluctuations reads33

Sabsvd = 2E dteivtkhdÎastd,dÎbs0djl

= 2E dteivtfkhÎastd, Îbs0djl − kÎalkÎblg, s3d

dÎa= Îa− Ia describing the fluctuations of the current away

FIG. 1. The system under consideration. The central island is a
resonant level coupled to three leads. The level may be shifted
through a capacitative coupling to a gate. In the limit of a vanish-
ingly small capacitance, double occupancy in the dot is forbidden
and Kondo effect can arise. The current-current cross correlations
are measured between leads 2 and 3.

D. SÁNCHEZ AND R. LÓPEZ PHYSICAL REVIEW B71, 035315s2005d

035315-2



from its average valueIa=kÎal. We are interested in the zero-
frequency limit of Sabsvd. Since the energy scalekBTK in
typical experiments is of the order of 100 mK, the frequen-
cies should bev&2.4 GHz. Moreover, we shall work atT
=0 ssee belowd so that the current will fluctuate due to quan-
tum fluctuations onlyswe disregard thermal fluctuationsd.

A. Mean-field approximation

The mean-field solution of the Hamiltonians1d consists of
considering the effect of the boson in an averaged way, re-
placing the true operatorbstd by its expectation valuekbstdl.
Within this approximation the Hamiltonian describes nonin-
teracting quasiparticles with renormalized couplings:

Vka
Îubu→ Ṽka. The theory is then suitable for studying the

Fermi-liquid fixed point of the Kondo problemsi.e., at T
!TKd in which the averaged occupation in the dot is always
1. The dominant fluctuations in the system are those associ-
ated to spin.

The stationary state of the boson field is determined from
the t→` limit of its equation of motion using the Keldysh
technique for systems out of equilibrium34,35

o
kas

ṼkaGfs,kas
, st,td = − ilubu2, s4d

where Gfs,kas
, st ,td= ikckas

† stdfsstdl is the lead-dot lesser
Green function. Next, we take into account the constraint

o
s

Gfs,fs

, st,td = is1 − ubu2d, s5d

Gfs,fs

, st ,td= ikfs
†stdfsstdl being the dot lesser Green function.

It yields the nonequilibrium distribution function in the dot.
In evaluating the above Green functions we need the cou-

pling strength given byGassed=pokuVkau2dse−«kasd. In the
wide band limit, one neglects the energy dependence ofG
and the hybridization width is taken asGas=GassEFd for
−Dø«øD sD is the high-energy cutoffd. We note that in the
presence of Kondo correlations the lifetime broadening be-

comes renormalizedGas→ G̃as=pokuṼkau2dse−«kasd and
the bare level«0s is shifted to«̃0s=«0s+l. We can now give
the full expression of the Fourier-transformed lesser Green
function

Gfs,fs

, sed = 2i
oa

G̃asfased

se − «̃0sd2 + G̃s
2

, s6d

where G̃s=oaG̃as is the total hybridization width per spin
and fased=usma−ed is the Fermi function at zero tempera-
ture of leada with electrochemical potentialma=EF+eVa.
On the other hand,Gfs,kas

, svd can be cast in terms of
Gfs,fs

, svd with the help of the equation of motion of the
operators and then applying the analytical continuation rules
in a complex time contour.34 Therefore, we obtain a closed
system of two nonlinear equationsfEqs. s4d and s5dg with
unknownsubu2 andl to be found self-consistently.

From the precedent arguments and Eq.s2d we can easily
establish an expression for the expectation value of the elec-
tric current

Ia =
e

h
o
bs
E deT̃ab

s sedffased − fbsedg, s7d

which has exactly the same transparent form as the
Landauer-Büttiker formula36 in the two channelsone per
spind case applied to a double-barrier resonant-tunneling sys-
tem

T̃ab
s sed =

4G̃asG̃bs

se − «̃0sd2 + G̃s
2

, s8d

which has a simple Breit-Wigner line shape. For the same
reason, the quasiparticle density of states is a Lorentzian
function centered around the Fermi levelsthe Abrikosov-
Suhl resonanced. This result is expected since we are dealing
with a Fermi liquid, but we stress that the physics it contains
shouldnot be confused with a noninteracting quantum dot
because:

sid T̃ depends implicitly onubu2 andl, and it must then be
self-consistently calculated for each set of parameters: con-
tact voltageshVgj, magnetic fieldDZ=«0↑−«0↓, gate voltage
«0sVgd, and lead magnetization.

sii d T̃ is renormalized by Kondo correlationssas the bare
G and«0 ared.

siii d T̃ has a nontrivial dependence on the bias voltage.
All these features give rise to a number of effects that are

not seen in a noninteracting resonant-tunneling diode. There
are many instances: regions of negative differential conduc-
tance in the current-voltage characteristics of a double quan-
tum dot,37 a crossover from Kondo physics to an antiferro-
magnetic singlet in the two-impurity problem,23 an
anomalous sign of the zero-bias magnetoresistance,22 etc.
Below, we discuss another example without counterpart in a
noninteracting Breit-Wigner resonance: When the Kondo
peak splits due to a large bias voltage.

B. Current-current correlations

We consider now the current fluctuations given by Eq.s3d
at zero frequencySabs0d. To simplify the notation we intro-
duce G0svd=Gfs,fs

svd as the dot Green function. After
lengthy algebra, we have

Sabs0d =
4e2

h
E deG̃aG̃bFG0

,G0
. − G0

aG0
.fa + G0

,G0
as1 − fbd

− G0
,G0

r s1 − fad + G0
r G0

.fb − G0
aG0

afas1 − fbd

− G0
r G0

r fbs1 − fad − i
dab

pG̃a

sG0
,s1 − fbd − G0

.fadG .

s9d

This formula sor variations of itd has been already em-
ployed in the literature. Weiet al.38 prove it using the Fisher-
Lee-Baranger-Stone relation39 to write the scattering matrix
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elements in terms of the retarded Green function of the dot,
G0

r . Dong and Lei,19 and Lópezet al.23 find it in Kondo
problems within a slave-boson mean-field framework. Actu-
ally, in Ref. 23 it is shown that the shot noise in a two-

terminal geometry readsS, T̃s1−T̃d, i.e., the well-known
result for the partition noise, but withrenormalizedtransmis-
sions. Souzaet al.40 calculate the noise of an ultrasmall mag-
netic tunnel junction by means of Eq.s9d within a Hartree-
Fock framework. In general, we can say that Eq.s9d is
consistent within mean-field theories. However, some cau-
tion is needed if one wishes to go beyond a mean-field level.
In deriving Eq.s9d, one needs to apply Wick theorem, which
is valid only for noninteractingsquasidparticles. More spe-
cifically, one finds terms that read

kckas
† stdfsstdckbs8

† s0dfs8s0dl

= kckas
† stdfsstdlkckbs8

† s0dfs8s0dl + kckas
† stdfs8s0dl

3kfsstdckbs8
† s0dl. s10d

The first term in the left-hand side corresponds to discon-

nected diagrams that cancel out the termkÎalkÎbl of Eq. s3d
whereas the second term contributes to Eq.s9d. Therefore,
the particular Hamiltonian has to be cast first in a quadratic
form. Zhu and Balatsky41 incorrectly state that Eq.s9d takes
into account the many-body effects. Also, it is not clear how
this formula is inferred within the equation-of-motion
method employed by Lü and Liu.42

In our case, the mean-field approximation is known to be
the leading term in a 1/N expansion,43 where N=2 is the
spin degeneracy. Therefore, we neglect the fluctuations of
both the boson fieldsdb=0d and the renormalization of the
resonant levelsdl=0d,19,32 which could be calculated in the
next order. This is valid as long as we restrict ourselves to
the Fermi-liquid fixed point of the Kondo problem. We are
not aware of real 1/N correction calculations of shot noise.
Although Meir and Golub18 perform a noncrossing approxi-
mationsNCAd, they just substitute the NCA propagators into
Eq. s9d, with the limitations exposed above.

The current-current correlations can be deduced either us-
ing Eq. s9d or using the scattering approach for the multiter-
minal casessee Ref. 24d. The latter formalism amounts to
replacing the bare parameters by the renormalized ones.23

We consider the illustrative case of having different electro-
chemical potentials in two leads,maÞmb se.g.,a=2 andb
=3d at zero temperature. We find

S23s0d = −
2e2

h
o
g,d
E deTrss2g

† s2ds3d
† s3gdsfg − fadsfd − fbd,

s11d

where sab is the renormalized scattering amplitude of a
Breit-Wigner resonance

sab
s sed = dab −

2iÎG̃asG̃bs

e − ẽ0s + iG̃s

. s12d

In Eq. s11d the trace Trs. . .d is over spin indices. The Fermi
functions fa and fb are arbitrary.24 Choosingfa= fb= f3, we
obtain

S23s0d = −
2e2

h
o
s
E dehT̃12

s T̃13
s ff1 − f3g2 + R̃22

s T̃32
s ff2 − f3g2

+ 2T̃12
s T̃23

s ff1 − f3gff2 − f3gj, s13d

where R22
s is the reflection probabilitysin generalRaa=1

−obTabd. Notice that, generally, one cannot write the multi-
lead current-current correlations only in terms of transmis-
sion probabilities as in Eq.s13d. This was pointed out by
Büttiker,44 suggesting the appearance of exchange effects in
noise measurements. Here, because we are dealing with a
srenormalizedd Breit-Wigner resonance, exchange correc-
tions due to phase differences do not play any role.

For completeness, we give now the formula for theshot
noise, i.e., the current-current correlations measured at the
same leadse.g., lead 1d. Following the way of reasoning that
led to Eq.s13d we obtain

S11s0d =
2e2

h
o
s
E dehT̃12

s R̃11
s ff1 − f2g2 + T̃13

s R̃11
s ff1 − f3g2

+ T̃12
s T̃13

s ff2 − f3g2j. s14d

III. RESULTS

In the following, we present results obtained by self-
consistently solving Eqs.s4d and s5d for each bias voltage.
The rest of the parameters is changed in Sec. III A–III E.
Throughout this work, we have checked that current conser-
vation sI1+ I2+ I3=0d is fulfilled.45

Tunneling effects are incorporated at all orders since at
equilibrium the Kondo temperature is found to be

kBTK
0 = G̃ = D exps− pue0u/2Gd, s15d

which is clearly a nonperturbative result. In Eq.s15d G
=oa=1

3 Ga is the total hybridization broadening. The reference
energy will be always set atEF=0 and the energy cutoff is
D=100G. The bare level is«0=−6G, deep belowEF to en-
sure a pure Kondo regime.

A. Dephasing

Before turning to the determination of current cross corr-
elators, we briefly discuss with an application the capabilities
of three-terminalsetups to illustrate some difficult aspects of
the physics of thetwo-terminalKondo effect. As mentioned
in the Introduction, we investigate the action of a fictitious
voltage probe46 ssay, lead 3d in order tosimulatedecoherence
effects on the formation of the Kondo resonance between
leads 1 and 2.47 These contacts play the role of source and
drain, respectively. The voltage probe model46 describes de-
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coherence because an electron that is absorbed into the probe
looses its coherence. The exiting electron is replaced by an
electronswith an unrelated phased injected by the probe.

At low temperatures the principal source of dephasing is
due to quasielastic scattering.48 We consider then a voltage
probe that preserves energy.49 The current through the volt-
age probe is zero at every energye. Thus, from Eq.s7d the
distribution function at the probe reads

f3sed =
T13sedf1sed + T23sedf2sed

T13sed + T23sed
. s16d

We have to insert this result into Eqs.s4d and s5d and solve

self-consistently for the hybridization couplingsG̃ and the
resonance level«̃0 in the presence of quasi-elastic scattering
for each value of the applied bias voltage. Then we compute
numerically the differential conductanceG=dI /dVsd, where
I = I1=−I2 andVsd=V1−V2.

Figure 2sad showsG for different values of the coupling
to the probeswe setG2=G1d. For G3=0 we obtain the well-
known zero-bias anomaly, which arises from the formation
of the Kondo resonance atVsd=0. As G3 increases we ob-
serve a quenching of the Kondo peak. The degree of the
conductance suppression depends on the coupling to the
probe. At each bias,m3 swhich has to be self-consistently
calculatedd adjusts itself to fulfill the condition of zero net
current at each energye. Hence,G3 is a phenomenological
parameter that includes dephasing processes present in the
quantum dot. To see this, we can write down the current
through, say, lead 1, using Eqs.s7d and s16d

I =
e

"

4G̃1G̃2

G̃1 + G̃2

E deA0sedff1sed − f2sedg, s17d

whereA0s«d=−Im G0
r s«d /p is the LDOS in the dot. Equation

s17d has the form of a formula for a two-terminal current50

with G0
r s«d=f«− «̃0+ isG̃1+G̃2+G̃3dg−1. It is straightforward to

show that a nonzeroG3 leads to deviations of Eq.s17d from
the unitary limit.

In Fig. 2sbd we plot the linear conductanceG=GsVsd=0d
as a function ofG3/G1 from the results found numerically. At

zero bias we can find from Eq.s17d an analytical expression
for the reduction of the peak

G =
2e2

h

2

2 + G3/G1
. s18d

It is shown in Fig. 2sbd sfull lined. In the limit of G3/G1!1 a
similar expression for the reduction of the peak was found by
Kaminskiet al.,4 the source of decoherence being an ac volt-
age applied to the dot level.

B. Multiterminal conductance

From now on, we consider lead 3 as a real electrode with
tunable voltageV3. We setV3=V2=0 and vary the tunneling
coupling G3. The self-consistent results of Eqs.s4d and s5d
are inserted in Eq.s7d to calculate the differential conduc-
tance through lead 1:G11=dI1/dV1. Figure 3sad showsG11 as
a function ofV1. At G3=0 the conductance atV1=0 achieves
the unitary limit as in the two-terminal case. With increasing
the coupling to third lead,G11s0d decreases. For equal tunnel
couplings sG1=G2=G3=G /3d, G11s0d does not reach 1sin
units of 2e2/hd but insteadG11s0d=8/9, in agreement with
Ref. 51. This is an immediate consequence of having three
leads with identical couplings. Interestingly, the Kondo tem-
perature of Fig. 3sbd doesnot vanish abruptly forV1=2TK

0, as
known in the two-terminal casessee the caseG3=0d. This is
an important result as it implies that Kondo correlations sur-
vive at large voltages. The effect is reminiscent of the situa-
tion found by Aguado and Langreth37 in tunnel-coupled
double quantum dots, though the physical origin is clearly
distinct.

C. Sign of current cross correlations: Comparison with a
noninteracting quantum dot

We now focus on the current-current correlations of the
current forV3=V2=0 and equal couplingsG1=G2=G3=G /3.
Later, we shall allow for nonzero voltage differences be-
tween leads 2 and 3. In Fig. 4sad, we show the cross cor-
relator S23s0d obtained from Eq.s13d. As expected,S23 is
zero forV1=0 and negative elsewhere. This reflects the fer-
mionic nature of the quasiparticles. For comparison, we plot
in Fig. 4sbd the correspondingS23 for a noninteracting reso-
nant double-barrier structure with the level atEF sof course,
for «0=−6G the spectrumS23 is always very small, as is the

FIG. 2. sad Differential conductanceG11 vs bias voltageV1 as a
function of the bare couplingG3 to the voltage probesreservoir 3d
for G1=G2 and «0=−6G. sbd Linear conductanceG11s0d showing
the reduction of the peak insad vs the coupling to the voltage probe.
The dots are numerical results where the line corresponds to an
analytical formulassee textd.

FIG. 3. sad Differential conductanceG11 vs bias voltageV1 for
«0=−6G sTK

0 =8310−3Gd. sbd Dependence of the Kondo tempera-
ture onV1.
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transmissiond. In this case, the physics is governed by the
bare couplingG sRef. 52d. On the contrary, in the Kondo
problem the dominating energy scale isTK. Qualitatively,
Figs. 4sad and 4sbd look the same untilV1,2TK. The cross
correlator in the Kondo case increases with voltage while in
the noninteracting caseS23 saturates at large voltages. It is
easy to show that the saturation value is given by −8p /81
.−0.31 sin units of 4e2G /hd. The reason for the increase of
S23s0d in Fig. 4sad is thatTK is voltage dependent unlike the
bareG, even in the wideband limit. In particular, the current-
voltage characteristics shows a region of negative differential
conductance in the Kondo casefsee Fig. 3sadg whereas it
reaches a constant value at large voltages for an noninteract-
ing quantum dot.

To avoid effects due to moderate biases, in what follows
we shall concentrate on a normalizedS23. We define the Fano
factor of S23 as

g23 =
S23

2eÎuI2uuI3u
. s19d

If the scattering region were a simple barrier of transmission
T, g23 would be simply −1. This number changes when the
system under consideration is a quantum dot. In Figs. 4sad
and 4sbd, we plot S23 for the Kondo and the noninteracting
case, respectively. Their corresponding Fano factors are
shown in Figs. 4scd and 4sdd. We see thatg23 has a minimum
at V1=0. Analytically, we findg23s0d=−4/9.−0.44, which
is in excellent agreement with the numerical result. Like-
wise, we can assess the limit ofg23 at very high voltages
sV1@TK

0d. We get g23=−2/9.−0.22. As observed, both
curves tend to this value, though for a noninteracting quan-
tum dot it is more quickly due to the independence ofG on
the bias voltage.

D. Effect of nonequilibrium splitting
on current-current correlations

Now we turn to an exciting case. Consider the bias con-
figurationV2=−V3Þ0 and determine the differential conduc-

tanceG11 as a function ofV1. The caseV2=−V3=0 has been
treated before. However, due to the fact that the boson field
never vanishes, we can study the situationDV;uV2−V3u
*2TK

0. As remarked in the Introduction, it has been
argued11,12and experimentally observed13 that in a three-lead
geometry the splitting of the Kondo resonance due to voltage
is visible, unlike the two-terminal case. Moreover, in Refs.
12 and 51 it has been noted that the conductanceG11 is not
sensitive to the strength of the coupling to the third lead,
showing always a two-peak structure. Of course, only when
the third lead is weakly coupled to the dotG11 is a measure
of the LDOS. But since we are interested in the transport
properties of the system, our choice of equal coupling con-
stants does not affect the results for the conductances and the
current-current correlations.

In Fig. 5 we plot the behavior of the differential conduc-
tanceG11. At DV=0 we obtain the zero-bias anomaly of Fig.
3sad. As DV increases,G11 is split atV2,TK

0. Both splitting
peaks lie atV1,V3 andV1,V2, i.e., when a pair of electro-
chemical potentials are aligned. It is also at those points
where the Kondo temperature is larger. We emphasize that
this effect hasno similitude in the electronic transport
through a noninteracting quantum dot. Still, a mean-field
theory of the Kondo effect as presented here is able to cap-
ture this physics. At the same time that the splitting inG11
develops, the height of the peaks decreases, suppressing the
zero-bias anomaly, although not so strongly as in the
experiment13 due to the absence of inelastic scattering in this
case.

We now use Eq.s13d to calculate the cross correlations
between leads 2 and 3. The results are presented in Fig. 6sad.
The dependence ofS23 on voltage is rather asymmetric, hin-
dering the observation of a clear indication due to the voltage
induced splitting. The asymmetry is caused by the third term
of the right-hand side of Eq.s13d, which is not symmetric
under the operationV1→−V1 whenDV.0. That is the rea-
son why we next consider the shot noise in lead 1S11, which
is an even function of the appliedV1.

In Fig. 6sbd we plot the results of Eq.s14d. We observe
thatS11 at V1=0 is nonvanishing with increasingDV, causing
a divergenceof the Fano factor. This is not related to the
Kondo physics but the lead 1 atV1=0 acts as a voltage probe
with zero impedance since the net current flowing through it
is zero. Including the fluctuations of the potentials would
probably cancel out the divergence. A consequence of Kondo

FIG. 4. sad Current-current cross correlation measured in leads 2
and 3,S23s0d, as a function of the bias voltage in the injecting lead
V1. Kondo correlations involve an increase ofS23s0d for voltages
larger than 2TK. sbd Same assad for a noninteracting quantum dot
with a resonant level exactly atEF. scd and sdd correspond to the
Fano factorg23 as a function of voltage for the interacting and
noninteracting case respectively.

FIG. 5. Differential conductanceG11 vs bias voltageV1 for dif-
ferent values of the voltage differenceDV;uV2−V3u*2TK

0.
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physics is that the minimum atV1=0 turns into a maximum.
This occurs when the splitting inG11 is sharply formedssee
Fig. 5d.

E. Spin-dependent transport and current cross correlations

So far we have assumed spin-independent transport. Let
us go back to the bias configuration of Secs. III B and III C
sV2=V3=0d and focus on the spin-dependent transport prop-
erties. It is customary in the theoretical studies of spin-
tronic transport to take into account the influence of external
magnetic fields and ferromagnetic electrodes, among other
parameters.53 First, we shall change the external Zeeman
field and then enable the presence of spin-polarized tunnel-
ing.

1. Magnetic field

We assume that the leads are paramagnetic and that the
magnetic field is applied only to the dot, resulting in a Zee-
man gap of the bare resonant level:DZ=«0↑−«0↓. It is well
known that, as a consequence, the Kondo resonance is split
whenDZ,TK

0.7

Figure 7sad shows the differential conductanceG11 for
different values of the Zeeman field. The conductance is split
and quenched with increasingDZ, as expected. In Fig. 7sbd,
we depict the Fano factor of the cross correlatorg23. It ex-
hibits a very interesting feature. Due to the splitting of the
Kondo peak, the minimum of the cross correlator atV1=0
becomes a local maximum, resulting from the suppression of

the Kondo effect. However, this change occursbefore the
splitting of the conductanceG11. Therefore, measuring the
shot noise providesadditional information in this case. The
presence of the splitting would be detected in an experiment
more precisely by means of the shot noise. The underlying
reason is that the form of Eq.s13d differs from that of the

current, which is basically proportional toT̃12 alone, see Eq.
s7d. As a result, the width of theG11 resonance is a bit larger
than theg23 antiresonance and the former is then more robust
than the latter against the application of magnetic fields.

2. Ferromagnetic leads

There has recently been considerable debate about the in-
fluence of ferromagnetic leads in the Kondo physics of a
quantum dot.54–57 In Sec.III E 1, it was clear that an external
magnetic field alters the real part of the quantum-dot self-
energy, breaking the spin degeneracy. In the case of spin
polarized tunneling, the situation is more subtle.57 When the
magnetic moments of the contacts are aligned along the same
direction, the density of states of the localized electron un-
dergoes a splitting if particle-hole symmetry is broken.58 Re-
cent transport experiments with C60 molecules and carbon
nanotubes have addressed this regime.59,60 However, in our
case the dot is in the strong coupling limit and the Kondo
effect is pure in the sense that no charge fluctuations are
allowed. Thus, no splitting is expected in the differential con-
ductance.

In Fig. 8sad, we show the cross correlatorg23 for different
values of the lead magnetization in the parallel case. This
means thatp1=p2=p3=p, wherepa is the spin polarization
of lead a. Ferromagnetism in the leads arises through spin-
dependent densities of statesnassed=okdse−«kasd. Hence,
the linewidths become spin dependent:Gas=s1±padGa,
where1s2d corresponds to up- andsdowndspins. We prefer
to restrictpa to small values as strong magnetizations would
require a proper treatment of the reduction of the bandwidth
D. We observe thatg23 is rather insensitive to changes inp in
the same fashion asG11 is in the Fermi-liquid fixed point.22

Only at moderate polarizationssp=0.6d we see that the dip in
g23 gets narrower because the Kondo temperature decreases
as p increases.56,57 In addition, g23 is always negative in
contrast to the results obtained in the Coulomb blockade re-
gime, whereg23 can take positive values.27 When the spin-

FIG. 6. sad Cross correlations of the current measured between
leads 2 and 3 for the case treated in Fig. 5.sbd Same assad for the
shot noise in lead 1.

FIG. 7. sad Differential conductanceG11 vs V11 as a function of
the Zeeman termDZ for V2=V3=0. sbd Same assad for the Fano
factor of the cross correlatorg23.

FIG. 8. Fano factor of the cross correlator,g23 vs V1/TK
0 for

different lead magnetization whenV2=V3=0. sad Parallel alignment
between the magnetizations of the leads with spin polarizations:
p1=p2=p3=p. sbd Antiparallel case withp1=−p2=−p3=p.
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flip scattering rate is smaller than the tunneling rate,g23 can
be positive. However, in the Kondo regime this condition is
never met because the rate of spin-flip scattering,1/TK is
always much larger than the tunneling rate,1/G. Figure
8sbd is devoted to the antiparallel case:p1=−p2=−p3=p. Ac-
cordingly, g23 is lifted with increasing lead polarization be-
cause the conductance peak decreases with increasingp
sroughly, with a factor 1−p2d.22

IV. CONCLUSION

In summary, we have investigated the Kondo temperature,
the differential conductance, and cross correlations of the
current when three leads are coupled to an artificial Kondo
impurity in the Fermi-liquid fixed point of the infinite-U
Anderson HamiltoniansT!TKd. We have performed a sys-
tematic study of the properties of the cross correlators when
dc bias, Zeeman splittings, and ferromagnetic leads influence
the nonequilibrium transport through the quantum dot. Our
most relevant result is the behavior of the shot noise when
there arises a voltage-induced splitting in the quantum dot.

In addition, we have studied the current of a two-terminal
quantum dot attached to a voltage probe. We have shown that
increasing the coupling with the probe induces a quenching
of the Kondo peak. Despite the simplicity of this approach, it
gives rise to results that are in agreement with more sophis-
ticated models,4,61 though the precise processes responsible

for the decoherence still need to be derived from a micro-
scopic model.

We have not exhausted all the possibilities that the model
offers and more complicated geometries with appealing re-
sults can be envisaged. One could address the situation with
two injecting and two receiving leads, which could give rise
to Hanbury Brown–Twiss-like effects.62 We expect that
phase related exchange terms will arise especially at higher
temperaturessT.TKd, when the singlet state between the
localized spin and the conduction electrons is not yet well
formed. We believe that in the presence of spin-polarized
couplings due to ferromagnetic leads, bunching effects will
be enhanced.63

Improvements of the model should go in the direction of
including fluctuations of the boson field and of the renormal-
ized level. However, we do not expect large deviations from
the results reported here whenT!TK. These fluctuations will
evidently become important as temperature approachesTK.
Experimentally, our predictions can be tested with present
technology, such as GaAs quantum dots13 or carbon-
nanotube nanostructures.64
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