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We have investigated the electronic structure of Rashba spin-split quantum wires in a magnetic field. For our
numerical calculations, a harmonic confinement was assumed. We find that wire structures with several occu-
pied one-dimensional subbands still exhibit a beating pattern in the magnetoresistance. The wire width turns
out to strongly affect the magnetic field values at which nodes occur in the beating pattern. In the limit of
narrow wires, the beating pattern would vanish altogether because spin-split subbands become populated
equally.
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I. INTRODUCTION

Spin-dependent transport phenomena in semiconductor
structures have been studied extensively in recent years be-
cause of their potential for future electronic devices.1–4 In
these devices the spin degree of freedom is used for infor-
mation processing in addition to the electron charge. A num-
ber of devices have been proposed that promise higher
speed, lower power consumption, and a higher degree of
functionality.5–9 Many of these structures rely on the Rashba
effect,10,11 which allows one to control the spin orientation
by means of a gate electrode.

The Rashba spin-orbit coupling originates from a macro-
scopic electric field in a semiconductor quantum well. The
contribution of the Rashba effect to the single-electron
Hamiltonian of a two-dimensional electron gass2DEGd can
be expressed as

Hso=
aR

"
eWzfsW 3 spW − eAW dg. s1d

We have denoted the electron momentum bypW and the Pauli
spin matrices bysW . The magnitude of the Rashba spin-orbit
coupling is expressed by the coupling parameteraR. The
macroscopic electric field originating from the inversion
asymmetry in the quantum well is oriented parallel to the
growth direction, which is taken to be thez direction. Since
we will consider the more general case by including an ex-

ternal magnetic fieldBW , the kinetic momentumpW −eAW was

inserted into the Hamiltonian with the vector potentialAW de-

fined byBW =¹W 3AW .
The Rashba effect is found to be most pronounced in

two-dimensional electron gases comprising a low band-gap
channel layerse.g., InAs or InGaAsd. The value of the
Rashba coupling parameteraR can be extracted from the
characteristic beating pattern observed in the magnetoresis-
tance of the two-dimensional electron gas.12–15 It could be
demonstrated that by applying a voltage to a gate that covers
the 2DEG, the effective electric field in the conducting chan-
nel and thus the Rashba coupling parameter can be
controlled.16–20This property is an important prerequisite for
the implementation of the spin transistor proposed by Datta

and Das.5 However, soon it was realized that for an improved
performance of the spin transistor, a restriction to a one-
dimensional channel is desirable. In addition, many concepts
of spin electronic devices rely on a carrier transport restricted
to only one dimension.21–24

The effect of the Rashba spin-orbit coupling on the trans-
port in one-dimensional systems at zero magnetic field was
theoretically investigated by Moroz and Barnes25 and Mire-
les and Kirczenow.26 Experimentally it could be demon-
strated that similar to the case of a 2DEG the presence of the
Rashba effect leads to a characteristic beating pattern in the
magnetoresistance.27–30 However, for narrow wires it was
observed that the nodes in the beating pattern are shifted
with respect to the nodes observed in the Shubnikov–de Haas
oscillations of the corresponding two-dimensional reference
sample. Two mechanisms have been made out as possible
explanations for the shift of the nodes: first, an enhanced
Rashba spin-orbit coupling, due to a modified effective elec-
tric field in the quantum well, and, second, the effect the
carrier confinement potential has on the spectrum of the
magneto-subbands.29,30

In this paper we will demonstrate that the quantization
due to the carrier confinement in a one-dimensional system
with Rashba spin-orbit coupling results in a modification of
the beating pattern of the magnetorestistance, if compared to
the case of a 2DEG. The beating pattern is deduced from
numerical calculation of the subband spectrum of the wire as
function of the electron wave vector of an external magnetic
field. The lateral confinement of the quantum wire is mod-
eled by a parabolic potential. We will argue that for a wire
structure the number of nodes in the beating is determined by
the strength of the confinement potential. At moderate con-
finement potentials with several tens of sublevels occupied,
only a few nodes are expected. If the carrier confinement is
sufficiently strong so that only a few subbands are occupied,
the beating pattern in the magnetorestistance is even ex-
pected to vanish completely. This is in strong contrast to the
case of a high-mobility two-dimensional electron gas where
a large number of nodes is observed, with the appearance of
the highest-order node limited by the characteristic magnetic
field determined from the quantum scattering time.13,18,31

Below, we will first introduce our model describing the
Rashba spin-orbit coupling in a quantum wire. In Sec. III
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some general properties of the sublevel spectrum will be dis-
cussed, followed by simulations of the expected node posi-
tions in the magnetoresistance under different conditions
si.e., confinement potential, Fermi energy, and Rashba cou-
pling parameterd. Conclusions are presented in Sec. IV.

II. MODEL

We considered a system where the electrons are confined
in a quantum well, with a confining potential determined by
the layer sequence of a semiconductor heterostructuressee
Fig. 1, insetd. The growth direction is taken to be along thez
direction. For simplicity only the lowest subband of the
quantum well is assumed to be occupied. Regarding the de-
scription of the electron propagation we restrict ourself to the
xy plane. The magnetic field shall be oriented along the

growth directionBW =s0,0,Bd. Thus, in the Landau gauge the

corresponding vector potential can be expressed byAW

=BxeWy. The single-particle Hamiltonian is then given by
H2D=H0+Hso with

H0 =
1

2m*
fpx

2 + spy − eBxd2gs0 + Vsxds0 +
1

2
gmBszB,

s2d

Hso=
aR

"
fsxspy − eBxd − sypxg, s3d

wheres0 stands for the unit matrix. InH0 the first term is the
kinetic contribution withm* the effective electron mass. The
confining potential of the quantum wire is represented by
Vsxd, while the last term inH0 is the Zeeman energy splitting
with mB the Bohr magneton andg the gyromagnetic factor.
RegardingHso, the effect of an external magnetic field was

included by inserting the vector potentialAW , as defined
above. For the confinement of the quantum wire we choose a
parabolic potential expressed by

Vsxd = 1
2m*v0

2x2, s4d

with the oscillator frequency given byv0. For relatively nar-
row quantum wires with a surface depletion layer at the
edge, this should be a good approximation.32 In principle, the
lateral confining potential results in a second contribution to
the spin-orbit coupling in addition to the contribution arising
from the confining potential of the semiconductor hetero-
structure. However, for the situation considered here with
relatively wide wire structures and a weak parabolic confine-
ment potential, the resulting electric field is about three
orders-of-magnitude smaller than typical electric fields in
asymmetric quantum wells.18 This is in agreement to the es-
timates of Moroz and Barnes,25 who also found that for typi-
cal electric fields originating from the parabolic confinement
potentials, the corresponding spin-orbit coupling parameter
is considerably smaller thanaR. Thus for the situation ad-
dressed here, the spin-orbit coupling resulting from the con-
fining potential can be neglected.

With the ansatz

Csx,yd = fsxdexpsikyyd, s5d

the Schrödinger equation becomes separable inx and y.
Plane waves are taken along the wire, with wave numbersky
quantized in units of 2p /L. The quantityL is the wire length.
By applying the ansatz, as given by Eq.s5d, the Hamiltonian
H0 reduces to33–35

H0 = F−
"2

2m*

d2

dx2 +
1

2
m* v2sx − x0d2 +

v0
2

v2

"2ky
2

2m*
Gs0

+
1

2
gmBszB, s6d

with x0=svc/vd2s"ky/eBd the guiding-center coordinate for
the harmonic oscillator,vc=eB/m* the cyclotron frequency,
and v=svc

2+v0
2d1/2 the effective oscillator frequency. The

quantitym* sv /v0d2 can be interpreted as an effective mag-
netic mass of the one-dimensional system.35 The set of
eigenfunctions ofH0 obtained from the Schrödinger equation
for the system without spin-orbit couplingH0fnssxd
=Ens

s0dfnssxd is given by

fnssxd =
1
Îb

p−1/4

Î2nn!
HnSx − x0

b
DexpS−

sx − x0d2

2b2 Dxs,

n = 0,1,2, . . . , s = ± s7d

with b=Î" /m* v the characteristic length of the harmonic
oscillator.Hnsxd are the Hermite polynomials of integer order
n, while x+= s 1

0
d and x−= s 0

1
d are the spinors for up- and

down-spin projected in thez direction, respectively. The cor-
responding energy eigenvalues are given by

En±
s0d = F"vSn +

1

2
D +

"2

2m*

v0
2

v2ky
2 ±

1

2
gmBBG . s8d

With our plane wave ansatz for they direction, the spin-orbit
HamiltonianHso can be written as

FIG. 1. sColor onlined Energy dispersion of the spin-split sub-
bands atB=0 for weak spin-orbit coupling:Dso/"v0=0.01 sad and
for strong spin-orbit coupling forDso/"v0=1 sbd. The anticrossing
between the second and third subband is marked by a circle. The
quantityb0=Î" /m* v0 is the characteristic length scale of the har-
monic confinement potential. The inset shows the geometry of the
wire structure.
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Hso= aRFsxSky −
eB

"
xD + isy

d

dx
G . s9d

By expandingfsxd=Sn,sansfnssxd in the basis of the eigen-
functions, as given by Eq.s7d, the following equations are
found:

sEns
s0d − Edans + o

m,s8Þs

sHsodnm
ss8ams8 = 0, s10d

with the matrix elementssHsodnm
ss8=kfnsuHsoufms8l given by

sHsodnn
ss8 = − aRSvc

2

v2 − 1Dky, s11d

sHsod01
±7 =

aR

bÎ2
Svc

v
± 1D , s12d

sHsodnm
±7 =

aR

b
Svc

v
± 1DÎn + 1

2
dn,m−1

+
aR

b
Svc

v
7 1DÎn

2
dn,m+1, n ù 1. s13d

The matrix elementssHsodnn
ss8 couple opposite spins

within a given staten, whereassHsod01
ss8 andsHsodnm

ss8 couple
neighboring oscillator-level states with opposite spins. For a
given ky the energy eigenvalues for nonzero spin-orbit cou-
pling saRÞ0d are determined by numerically calculating the
roots of the set of equations defined by Eq.s10d.

Before the numerical results are presented in the follow-
ing section, we will give some general remarks about the
properties of Eq.s10d. We will also point out the differences
compared to the two-dimensional case. The matrix elements

sHsodnn
ss8 solely arise from the one-dimensional confinement

potential. For a two-dimensional systemsv0=0d, where the
eigenvaluesEns

s0d correspond to the Landau level energies, the

matrix elementssHsodnn
ss8 are zero. RegardingsHsod01

ss8 and

sHsodnm
ss8 only the terms with the prefactorsvc/v+1d lead to

a nonzero contribution in a 2DEG. In this case the energy
eigenvalue spectrum determined from Eq.s10d reduces to the
results calculated by Rashba for a two-dimensional system.10

At large magnetic fields, where the Landau energy is much
larger than the contribution due to the confinement potential

s"vc@"v0d, the levels of the wire effectively merge with the
Landau levels of a two-dimensional system.34

At zero magnetic field andky=0, the spin degeneracy is
preserved. However, as pointed out by Häusler36 and by
Governale and Zülicke,22 in the presence of Rashba spin-
orbit coupling the eigenenergies of the unperturbed system
determined from Eq.s10d are uniformly shifted downward
by Dso, with Dso=m* aR

2 /2"2 the characteristic Rasbha spin-
orbit energy.

III. SIMULATIONS

In order to illustrate to what extent the Rashba effect
modifies the energy dispersion in a one-dimensional struc-
ture, the energy-momentum relation was calculated for weak
sDso/"v0=0.01d and strongsDso/"v0=1d spin-orbit cou-
pling. In the first case, spin splitting due to the Rashba spin-
orbit coupling is observed within each subband with a de-
generacy point atky=0 fFig. 1sadg. However, owing to the
weak spin-orbit contribution the coupling between different
subbands can be neglected for the energy range considered
here. As shown in Fig. 1sbd, the situation changes completely
if a stronger spin-orbit coupling is assumed. Now, a signifi-
cant coupling between neighboring subbands is found, due to
the larger off-diagonal elementssHsodnm

±7. This leads to a pro-
nounced anticrossing, as can be seen in Fig. 1sbd scircled.22,25

As outlined above at the degeneracy points atky=0, the
Rashba effect results in an energy shift of the subbands by
Dso compared to the unperturbed system.

For the following discussion of the beating pattern in the
magnetoresistance information is needed about the modifica-
tion of the sublevel spectrum at finite magnetic fields. In Fig.
2 it is illustrated to what extent the sublevel spectrum is
affected by a magnetic field. For the curves shown here, a
moderate Rashba spin-orbit coupling strength ofDso/"v0
=0.1 was chosen. As can be seen in Fig. 2sad at zero mag-
netic field an anticrossing of the subbands occurs. However,
owing to the smaller ratioDso/"v0 the anticrossing is much
weaker compared to the case shown in Fig 1sbd. Applying a
magnetic field results in an increased subband separation,
which is now given by"v according to Eq.s6d, with v
=sv0

2+vc
2d1/2 instead ofv0 at zero field. The corresponding

level spectrum forky=0 as a function ofvc/v0 is shown in
Fig. 2sbd. By applying a magnetic field the time-reversal
symmetry is broken. As a consequence the Rashba effect

FIG. 2. sColor onlined sad Energy dispersion
at zero magnetic field. The inset shows a detail of
the anticrossing of the lower subbands. The rela-
tive strength of the Rashba spin-orbit coupling
Dso/"v0 was taken to be 0.1.sbd Energy spec-
trum at ky=0 as a function ofvc/v0. For the
Zeeman energy splittinggmBB, we assumed
−0.072"vc. scd Energy dispersion at a finite mag-
netic field s"vc=1.5"v0d.
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results in a lifting of the spin degeneracy atky=0. However,
the interplay between the Rashba spin-orbit coupling and the
Zeeman splitting leads to a rather complex level spectrum,
where at a given magnetic field the energy separation be-
tween the different subbands varies. As we will see below,
the variation of the level separation is the origin of the char-
acteristic beating pattern, which can be observed in the mag-
netoresistance. In Fig. 2scd the normalized energy versus
wave-vector dispersion is plotted at a finite magnetic field
svc=1.5v0d. In contrast to the zero field case, no anticrossing
of the subbands occur in the energy range considered here.
We attributed this to the enhanced effective oscillator energy
"v with reference toDso. Compared to the zero magnetic
field the slope of the dispersion is smaller which can be
interpreted as an increased effective mass.33,34

In order to be able to compare most directly to experimen-
tal results, we have to be more specific about the heterostruc-
ture. Here, we choose an In0.53Ga0.47As/ In0.77Ga0.23As/ InP
heterostructure, where a pronounced beating pattern due to
the Rashba spin-orbit coupling has been observed in the
magnetoresistance of the two-dimensional electron gas.17,18

As a typical sheet electron concentration we assumedn2D
=631011 cm−2, which corresponds to a Fermi energy of
EF,2D=39 meV withm* =0.037.37 For theg factor a value of
−4 was assumed.38 The value ofEF,2D was taken as the zero
field value of the quantum wire Fermi energyEF,1D, which
should be a good approximation for wire structures with a
larger number of occupied levels. In principle, the carrier
confinement in the wire can be characterized by the oscillator
frequency v0 if a harmonic confinement potential is as-
sumed. However, since we intend to relate our simulations to
the geometrical dimensions of the wire, we rather refer to the
effective wire widthw. By taking w as a given value, the
one-dimensional carrier density is determined by
n1D=wn2D.35 The oscillator frequencyv0 of the wire is de-
termined iteratively. Here, the subbands corresponding to an
assumed value ofv0 are filled with electrons untiln1D is
reached. The oscillation frequencyv0 is then adjusted itera-
tively until the Fermi energy resulting from the filling of the
subbands agrees to the target valueEF,1D.

As illustrated in Fig. 2, the energy-momentum relation of
the subbands is modified if an external magnetic field is ap-
plied. As a consequence, the Fermi energy for given values
of n1D and v also varies as a function of a magnetic field.
This is shown in Fig. 3, wherew=300 nm and a Rashba
coupling parameter ofaR=8310−12 eV m were assumed.
However, as can be seen here, in the magnetic field range in
which we are interestedsBø1 Td, the Fermi energy only
deviates by<1% from the zero field value. In order to sim-
plify the calculations, a constant Fermi energy fixed at the
zero field value was assumed in the following simulations.

The oscillations in the magnetoresistance of a quantum
wire are directly related to the periodic structure in the den-
sity of states.35 In order to clarify the origin of the character-
istic beating pattern in the magnetoresistance in the presence
of the Rashba effect, the density of states at the Fermi energy
as a function of the magnetic field was determined from the
subband dispersion. Figure 4sad shows the density of states
of a 500 nm wide wire. For the Rashba coupling parameter a
value of 8310−12 eV m was assumed. By increasing the

magnetic field, the magnetoelectric subbands are succes-
sively depopulated. Each time the bottom of a subbandsky

<0d crosses the Fermi energy, a peak is found in the density
of states. Note that at particular magnetic fields for a given
peak in the density of states, the distance to the neighboring
peaks on the left and right sides is almost identicalsi.e., at
B=0.17 T and 0.63 Td. At these magnetic field values a node
in the magnetoresistance oscillations is expected. The ap-
pearance of the beating pattern can directly be visualized if a
broadening of the energy levels due to scattering is included.
The density of states shown in Fig. 4sbd was obtained by
assuming a lifetime broadening described by Lorentz distri-
bution function with a scattering parameterG=0.4 meV.
Now a clear beating pattern in the density of states can be
observed with nodes appearing at about 0.17 T and 0.63 T.
A closer inspection of the oscillations nearB=0 T reveals an
increased oscillation period. This can be attributed to the
additional contribution of the confinement energy compared
to the bare Landau quantization. The oscillation amplitude is
relatively large because of the overlap of the two spin-split
peaks in the density of states. In general, the oscillations in
the magnetoresistance will qualitatively follow the oscilla-

FIG. 3. sColor onlined Fermi energy as a function of the mag-
netic field for a 300 nm wide wire. For the Rashba coupling param-
eter a value of 8310−12 eV m was assumed.

FIG. 4. sColor onlined sad One-dimensional density of states of a
500 nm wide wire as a function of a magnetic field at a fixed Fermi
energy of 39 meV. For the Rashba coupling parameter a value of
7.5310−12 eV m was assumed.sbd Density of states for a lifetime
broadened energy spectrum. For the scattering parameterG a value
of 0.4 meV was assumed.
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tions found in the density of states. However, a detailed cal-
culation of the magnetoresitance of a quantum wirese.g., as
outlined by Tso and Vasilopolous39d is omitted here for the
sake of simplicity.

By using the procedure outlined above we can now ad-
dress our main question of how the beating pattern in the
magnetoresistance is modified if the confinement in the wire
is varied. For this purpose the magnetoelectric-subband spec-
trum has been calculated for different effective wire widths.
For example, the subband spectra for two different wire di-
mensions, namely, 600 nm and 200 nm, are depicted in Figs.
5sad and 5sbd. The spectra are calculated atky=0 for aR
=7.5310−12 eV m. As explained above, the modulations in
the magnetoresistance of the quantum wire are determined
by the density of states at the Fermi level. A maximum in the
resistance is expected if an enhanced density of states is
found atEF,1D. This is the case if the bottom of a magneto-
electric subband atky<0, crosses the Fermi level. Since the
Fermi energy depends only negligibly on the magnetic field,
EF,1D was assumed to be constant in the following. As men-
tioned above, a node in the magnetoresistance is expected at
a magnetic field where the subbands crossing the Fermi level
are evenly spaced. For the 600 nm wide wire, this situation is
found at 0.18 T and 0.70 Tfindicated by arrows in Fig.
5sadg. In contrast, if two sublevels approach each other,
which is the case in between the node positionsfsee Fig.
5sadg, an enhanced modulation amplitude is expected in the
magnetoresistance. In contrast to a two-dimensional system,
only two nodes are found for the 600 nm wide wire. This can
be explained by the fact that at low magnetic fields the geo-
metrical confinement is the leading contribution to the level
spacing. However, even at higher fields the confinement po-

tential cannot be neglected. For the corresponding two-
dimensional electron gas, the first two nodes are expected at
0.77 T and 0.41 T, which deviate significantly from the val-
ues given above.

For the 600 nm wide wire, the corresponding sublevel
spacing"v0 is 0.9 meV, whereas for the 200 nm wide wire,
we determined a level separation of 2.9 meV. As can be seen
in Fig. 5scd, this enhanced confinement energy"v0 leads to a
situation where only a negligible spin splitting of the sublev-
els occurs. Consequently, no node in the modulation of the
magnetoresistance is expected. In Fig. 5sbd the position of
the nodes are plotted as a function of the wire width. It can
be seen that first the two nodes are shifted toward lower
magnetic fields if the wire width is reduced. At a wire width
of about 400 nm both nodes merge and are expected to dis-
appear if the wire width is reduced further.

The node positions strongly depend on the magnitude of
the Rashba coupling parameter. This is illustrated in Figs.
6sad–6scd, where for increasingaR the separation of the two
nodes enlarges and shifts toward larger magnetic fields, simi-
lar to the case of a two-dimensional electron gas. Although
the separation of the nodes increases for larger spin-orbit
coupling parameters, the number of oscillations in between is
decreasing. This, at first sight, peculiar behavior results from
the fact that the oscillations are approximately periodic in
1/B and that for larger values ofaR the first node already
appears at smaller values of 1/B. For larger values ofaR, the
beating pattern in the magnetoresistance should be observ-
able down to smaller wire widths because of the larger char-
acteristic energyDso relative to the confinement energy"v0.
In contrast, a variation of the Fermi energy by keepingaR at
a constant value does not significantly change the threshold
of the wire width where a beating pattern appearsfas can be
seen in Figs. 6sdd–6sfdg. The major effect of an increased
Fermi energy is an increase of the node separation.

IV. CONCLUSION

In conclusion, we have considered the effect of the
Rashba spin-orbit coupling on the energy dispersion of a

FIG. 5. sColor onlined sad and scd subband spectra atky=0 as a
function of the magnetic field for a 600 and 200 nm wide wire,
respectively. Here, a Rashba coupling parameter of 7.5
310−12 eV m was assumed.sbd The position of the nodes in the
magnetoresistance as a function of the wire width.

FIG. 6. sColor onlined sad–scd Expected node positions as a
function of wire width with EF,1D=39 meV for aR=5
310−12 eV m, 7.5310−12 eV m, and 10310−12 eV m, respec-
tively. sdd–sfd Node positions forEF,1D=26 meV, 32.5 meV, and
39 meV, respectively. The Rashba coupling parameter was kept at
7.5310−12 eV m.
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quantum wire structure. A harmonic potential was chosen to
model the lateral carrier confinement. We focused particular
attention on the effect of an external magnetic field on the
subband dispersion. In general, an external magnetic field
results in an increased effective oscillator frequency and,
thus, in an increased separation of the one-dimensional sub-
bands. As a consequence, the coupling between neighboring
subbands due to the Rashba effect is weakened. The spec-
trum at zero field gets strongly rearranged when a magnetic
field is switched on. For wider quantum wire structures with
many occupied subbands, a beating pattern is expected in the
magnetoresistance. However, the number of nodes of the
beating pattern is reduced, due to the effect of the geometri-
cal confinement at lower magnetic fields. Compared to a

two-dimensional electron gas, the node positions of the wire
structures are shifted. Therefore, care has to be taken when
extracting the Rashba coupling constant from the node posi-
tions because the methods used for two-dimensional struc-
tures cannot be applied directly.12–15 For very narrow wires,
the beating pattern in the magnetoresistance is expected to
vanish altogether.
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