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Holonomic quantum computing based on the Stark effect
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We propose a spin manipulation technique based entirely on electric fields applied to acceptor states in
p-type semiconductors with spin-orbit coupling. While interesting on its own, the technique can also be used
to implement fault-resilient holonomic quantum computing. We explicitly compute adiabatic transformation
matrix (holonomy of the degenerate states and comment on the feasibility of the scheme as an experimental
technique.
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The physical realization of quantum computing rests orfor a set of gate operations. We discuss the viability of such
the ability to reversibly manipulate two level systems calleda scheme and the experimental challenges involved. We
qubits. While the promise of high computational power isclose by proposing an alternative scheme, using external
certainly a tantalizing one, the intrinsic challenges associatedniaxial strain, which can be used to achieve spin manipula-
with decoherence, adiabatic evolution, control, and noise efjon in the absence of any external field. The holonomic qu-
rors in quantum gate operations are still to be mastered. pjts discussed here are based on a principle similar to the

One ingenious way to overcome quantum noise errors igissipationless spin current in hole doped semiconduétors.
the use of non-Abelian holonomiegeometrig quantum  Thg individual qubits can therefore be coupled to each other
computation schemésThrough the slow tuning of some ex- 4 quantum bus architecture based on the dissipationless

:ﬁrnal E_z?ramleters Z‘.JCQ zt;s alpp_I{Ed ma%nettlc or electric (];'eld@pin current, offering exciting new possibilities towards the
e qubit evolves adiabaticallyith constant energyaround o oji7ation of an all solid-state holonomic quantum com-
a path that changes its eigenstate from an initial to a fin luter

state. Generically, this quantum evolution is free of dynami- . . . .
In holonomic quantum computing, quantum information

cal factors and is geometric in nature, depending only on the

path in parameter space. Geometric holonomy could const|S encoded in am-fold degenerate Hilbert space of a Hamil-

tute a fault-tolerant way to perform quantum computaidn. tonianHt, gependent on some external “control” parameters
However, it is fair to say that its actual robustness againstfi€!ds) A.” Upon a cyclical change of these parameters
different kinds of noise is still under investigation, being theaf'Ound a loopC during tlme'T's',uch that\;, =gy, the system
subject of a debat®Although some experimental systems Will evolve between the initial statén vectop ¢}, into
that would exhibit such behavior have been propdsgdyp-  [¥)ou=€<'T(C)[¢h)in, where ¢ is the initial eigenvalue
lonomic quantum computing overall still lacks the variety of Hy_|#)in= €| #h)in. The first factor is just the dynamical phase,
concrete application proposals that conventional quanturand will be omitted, while the second factor is the non-
computation enjoys. Abelian Wilczeck-Ze# curvature connectiofmatrix)

In this paper we propose using electric fields to manipu-
late the spin of acceptor states in semiconductors with spin-
orbit coupling such as Ge, GaAs, and Si. The acceptor im-
purity ion will bind ap hole from the spin 3/2 valence band
of the semiconductdrand the full Hamiltonian of the impu- wherei, j=1, ... n and whereP represents the path ordering
rity system in an electric field is given by the linear or qua-due to the fact that the gauge connecthghis now a matrix
dratic Stark effec. Spin-orbit coupling is essential to the acting on the degenerate space of Hamiltonian eigengtates
existence of the Stark effect in these semiconductors. Them@enotes the different control paramejerfhe degenerate
are two doubly degenerate Kramer states for any value of thElilbert space of the Hamiltonian encodes the quantum infor-
electric field and slowly rotating the electric field induces mation where the eigenstates are the codewords while the
SU(2) rotations in the degenerate eigenstates of each energyontrivial holonomies associated with it represent the unitary
level. When the electric field swaps over a cycle and returngransformations or “computations” over the code. Zanardi
to its initial orientation the holonomy matrix is dependent onand Rasetti showed that this prescription is sufficient to
the geometry of the swap only. Consistent with prior theo-implement quantum computation on single qubit holonomic
retical analysis, we take these holonomies to represent quagates. In subsequent page&td134several schemes for real-
tum gate transformatiorfsPrevious work involving holono- izing holonomic computation have been proposed. The
mies in semiconductors is found in Ref. 10. schemes involve geometric manipulation of trapped #ns,

We begin by a short introduction of the main idea of charge pumping within Josephson junction netwdrlesid
holonomic quantum computing. We then introduce theJosephson charge qubft<ontrolled manipulation of (1)
Hamiltonian of the acceptor states in an electric field ancholonomiegBerry phasesusing nuclear magnetic resonance
show how any S(2) holonomy can be obtained by changing on a system of weakly coupled'tind C3 nuclei has been
the field’s orientation adiabatically, hence providing the basiexperimentally achieved with great accuracy by Jartes 1

I'(C) = Pefcldh, Al = <w’<x) z/fi(x)>, (1)
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TABLE I. Values of the coefficients in the linear and quadratic opposed to the acceptor combination of the above linear and

Stark HamiltoniangRef. 8. quadratic shifts.
Although for some fielcE the acceptor Hamiltonian will
@ B o X T(R) be a weighted sum of linear and quadratic Stark effects, we

prefer, without any loss of generality, to work in either of the
two regimes and not in the intermediate one. Each of the
Hamiltonians above has two doubly degenerate Hilbert
spaces, roughly corresponding to values of ztmmmponent
of the spinS, being either +1/2 or +£3/2Qthis would be

It would be of great advantage to have a conventional, a1y true if the Hamiltonians were isotropidhe “con-
solid-state system where holonomic computation can be

implemented by using only electric fields. In this paper wetrOI parameters are the componentsu of the electric Eld

are concerned only with single qubit holonomy, leaving muI—We must now fhow we can achieve “quantum computations
tiqubit ones for a later publicatiolf.We look atp-type cubic over the code.” These are representeq byZ3tolonomies
symmetry semiconductors such as Ge, GaAs, and Si. Th ver each degenerate. Hllbert spaeguivalently, we must
strong spin-orbit coupling in these systems breaks up thgnow We can move within an energy subspace by adiabati-
valence bands into two doubly degenerate bands of spin 3/gally changingg).

with helicity +1/2 and +3/2. The double degeneracy is noth- Such holonomies do indeed exist in our system. We now
ing else than Kramers degeneracy and is guarantee’ﬁ by give an explicit generic procedure to calculate them. While
invariance. This is maintained even when acceptor impuritieg/e could just brute-force diagonalize the Hamiltonians
(B, Al, Ga, In) are introduced in the semiconductors. The@bove and treat each of them separately, we prefer to use a
holes that bind to these impurities will maintain a certainmore elegant approach that reveals more of the Hilbert space
symmetry subgroup of the original cubic symmetry of thestructure. This was developed in Ref. 18 in the context of the
valence bands they came from. Let us now consider the eSQ(5) theory of highT, superconductivity, and extended by
fect of an apphed external electric fiel on the acceptor- Ref. 19 to the case of hole band in semi-conductors. Out of
bound hole state. For large electric fields, the field distortiorfhe spin-3/2 matricesS, §, S, we can define the new
near the impurity ion can be safely neglected and thetx4 matrices I''=(2/\3){S,S}, I'*=(2/\3){S,,S4, I'’®
acceptor-hole state has the cubic symmetry of the crystat(2/V3){S;,S¢, I'*=(1/\3)(S;-S)), I°=52-21,.,, which

Ge 1 -0.3 -0.36 0.x10°3 91
Si 1 -0.2 -0.42 K102 34.4

T4 X |, giving rise to a quadratic Stark efféct satisfy the S@) Clifford algebral I+ I'°I"3=28,] 4»c4. Ex-
5 plicitly,
__Po 2 2 2 4 E232 §E2I o
) -io’ 0 I 0 0 -1
+ E&EyEz{S/,SL}+ EEAS, St +EELS.SY (. whered', i=1,2,3 are thaisual Pauli matrices anidis the
N

identity matrix(2X 2 in this casg The Hamiltonian$ig and
(2 Hg2 can now be cast into a new clean form

whereg; is the ionization energyp,=er the dipole moment He= dgl +dil?, Hg= dgzl + dgzl“a, (4)
(r being the mean radius of the ground stasndS are the h _1
spin-3/2 matrices, describing the valence band states, whicf{1€"€a=+<, -
essentially havé®;,, character. We have also defingd, B} @=dt=d2=0, di=pyE, di=pyE, d3=pyxE
- . . , XExs PXEy, PXEz,

=(AB+BA)/2. Readers familiar with semiconductor theory EEE . i . Y . ‘
will recognize in the form oHgz the Luttinger Hamiltonian 2 2

; tUlioB E. This | e d=-ue2 dL=-PsEE, ,=-Pseg
structure, with the substitutiok— E. This is no coincidence E? N at’,  Ug e Oy e g Oz
since the symmetry group of both Hamiltonians is the same. ! ! !
For small applied electric field, we must take into consider-

.,5,1 is the 4X 4 identity matrix and

2 2 [
ation the local field of the ions, thereby the symmetry lowers d,=- &)5E E, db=- &EB(EZ -E2
from T4X | to T, and giving rise to a linear Stark efféct E g V E g 2 *
He= X (E/5,8) +E(S, S} +ES.Sh. (9 s POloame g
BT Y Y2 250 5), dg= =~ B(2E; - B;~ ). (5
I

where p=eg with ag the Bohr radius. The constants We brought the linear and quadratric Stark Hamiltonians to
a,B,8,x,r are given in Table I, although the estimates for the same symbolic form. We now manipulate them together
in the literature vary considerablyy=0.26 according to and only substitute for the values df at the end of the
Kopf and Lassma so the value in Table | should be taken calculation. The deep physical reason as to why the two ap-
as a lower limij. We want to mention that the donor and parently different Hamiltonians are actually very similar is
acceptor Hamiltonians and physics are essentially differenthe unbrokenT invariance of the system that leads to Kram-
with the donors undergoing only a quadratic Stark shift asers degeneracy. The eigenvalues ated°+d, where d
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=vyd?d? and they depend on the electric field. For the linearordered integral has to be done numerically, over infinitesi-
Stark effect explicit substitution shows us that the split ismal segments in parameter space and taking into account that
independent on the direction of the electric fi@ldvhile for ~ different components oA do not commute with each other.

the quadratic case, it strongly depends on its orientation. Th¥/hile this is more of a nuisance than an intellectual chal-
Clifford matricesI™® have two eigenvalues, each twofold de- I€nge, it is comforting to know that for certain curves the
generate(this is obvious from the form of'%). The gauge €XPression can be simplified and path ordering can be easily
connection then represents @ adiabatic changes on the implemented while still maintaining the full capability to
twofold degenerate subbandshence the total gauge group transform the eigenstates into one another. We give such ex-
is SU2)_ X SU(2),=S04). Identical to Ref. 19, we define amples for both the linear and the quadratic Stark effect be-

the projection operators into the two energy subspdtes low.

=€, Pt +e P For the linear Stark effect, again working in tagenergy
subspace the expression for the holonohyC) becomes
1 d? ) _ 1( a2 ) particularly simple:
t == +—Ta = — -—T2 .
P 2(1 r re), p > 1 q r (6)

1(1
FE(C) =P ex%_ 5 § E_zeijka-kEjdEi> , (10)

Adiabatic rotation of the fielE implies moving within one
of the subspaces of energy We can define a covariant

gauge field strength where thegy are the three Pauli matrices. In polar coordi-

. . nates E:(E sin 6 cos¢,E sin #sin¢,E cos#) for contours
A =i P Pl =i P~ p- :_idbrab (77 Cwhich keep constant the absolute value of the electric field,
@ ad?’ Jo’ 202 ' we find that spherical triangles between the poiatg 6

. =0,¢=¢,), B (0=7/2,p=¢p1), andC (6=7/2,=¢p,) are
where I'3=(1/2i)[T'3,T*] are the generators of the & . : .
algebra. The field, lives in the space of the®s but our particularly easy to path order. Since we are changing only

e one angle at a time achieving this technologically should be
contrgl parameters are the e_Iec,:trlc field componéitsve easier than trying to implement variations in both angéds
do a “coordinate transformation” and obtain

though, as Zee points out, there is a bit of confusion on how
e 1 pad® to go “around the corner#?).
A=—Ay=—o5d T (8) For the case of the quadratic Stark effect things are more
JE; 2d° JE; . o A .
complicated. While finding a nice form for the holonomy
which gives us a holonomy computation when the electridactors in the general case is almost impossible due to the

field is varied betweeR, iy = sy OVEr an arbitrarycloseg ~ anisotropy in the Hamiltoniahigz, we can look at the ideal-

curveC ized spherical symmetric situation for whige 5/13. This
does not introduce large errors, as the anisotropy in these
. 1 ad? materials, although significant, is still small enough so that
—_ I —_ - — b_ ab, ) ’ ]
rc=p exp(jg AdE‘) =P exp< jg 2d2d E; T dE')' the spherical approximation works well. In this case we find,

(9) in units of —pj/e;: dZI®=B(E-S2~5/48E 4cs The ho-

) ) ) lonomy structure resides exclusively in the first term. In fact,
Let us, without any loss of generality, momentarily focus onyith the electric field replaced by a magnetic field, this is
the e, subspace. By choosing specific rotatigsgecific con-  exactly the Hamiltonian studied by Zein explaining a
tours C) of the fieldE; we can change an initial stalé)i,  pioneering experiment by Tyckd.The gauge field in polar
=(1,0,0,0 into the degenerate state within the same energy.qordinates is A,=cosfos/2-sinfo; and Ay=c, For
level, i.e., [#)ou=T(C)[#)in=(0,1,0,0. In fact, in the gen-  gpherical triangles starting a0 going to some valué on
eral case, starting from an arbitrafy);, we can reach, an arc of fixed¢, (which we can choose to be zero for
through carefully choosing the conto@; any other eigen- conveniencethen going at fixed) on an arc to some nonzero
state within the degenerate subspace by electric field mas and then back to the north pole along constant longitude,

nipulation. In a physical intuitive picture, the spin within the the holonomy readEEz(C)=mq1VMF° where
e, subspace will follow the electric field as it tries to stay

within the energy subspace. By choosing an appropriate pair W' = exd—-i6(cos¢o, - singoy)], W= expio,6),
of loops C; and C,, two noncommuting holonomie$’;
=I'(Cy) andI',=I'(C,) can be enacted. By combining them ¢ ) ]
in all possible ways, the whole unitary group @Jcan be V=exp - 1503 |€X 'E(Cos‘g‘ffﬂ_ 2sinfay) |. (11)
obtained. We show this explicitly in the case of the quadratic
Stark effect, the more experimentally viable of the two. InAlso, for the Zee connection of constant but differeghti
this way, every unitary transformation over the computa-=1,2 we haveI';=T'(6)=exfi2m(coséo3~-sin6o1)]. For
tional space can be realized in terms of holonomies. We havgeneric 6,# 6, we have [I'y,I';]=i{exd-i2m(cos6,
achieved spin manipulation with electric fields and showedtsin 6;)]+exdi2m(cosf;, —sin 6,)]—exdi2mw(cosb,
that holonomic computation is possible in semiconductors-sin #;)]-exd-i2@(cosé,+sin 6,)]}o, thereby generating
with spin-orbit coupling. other unitary transformations.

In general, due to the non-Abelian natureAyf the path We now turn to the problem of the feasibility of the
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TABLE II. lonization energies in meV for different acceptor light hole bands in the semiconductor and has a nice topo-

impurities (B, Al, Ga) in Si and Ge. logical formula® It is identical, up to a coordinate transfor-
mation with the field strengtid, in the two bands. The spin

B Al Ga current couples with the spins of the bound hole in our sys-

Ge 10.4 10.2 10.8 tem and hence mediates the interqubit interaction. Due to the

topological nature of the coupling, the two-qubit gate will be
holonomic in nature, without dynamical factors. There is,
) ) _ however, one difficulty: as the electric field is swapped, both
scheme proposed for spin manipulation by the Stark effecthe spin of the acceptor and the spin of the spin current tend
We need that the coherence time of spins of bound holes bg follow the electric field. This does not give an independent
larger than the time in which we can adiabatically rotate the;gntrol parameter, unless we build a quantum computer in
electric field. New experiments showed that the coherencghe manner of Kane, where the single and two qubit gates are
time is larger than 1 m&;%?justifying the use of acceptor- controlled by the separate application of independent electric
bound-hole wave functions as qubltS It is indeed difficult tOfie|dS_ However, there is a much more e|egant and practica|
perform experiments which probe non-Abelian phase factorsyay to solve the problem, involving the use of strain to fun-
The original work of Tycké® and subsequently the more gamentally control the spin current polarization direction.
complete experiment by Zwanziger, Koenig, and Pihes  strain is a second order perturbation for the acceptor
nuclear magnetic quadrupole resonance proved the existenggytes'8 being around ten times weaker than the electric field
of the Wilczeck and Zee non-Abelian transport of degeneratgerm, but it is a first order perturbation for the spin current. It
states. Instead of rotating the applied fields and keeping thean fundamentally modulate the structure and magnitude of
sample fixed, these experiments kept the applied field fixeghe spin conductance. However, it does not spoil its topologi-
and rotated the sample, which is an equivalent procedurgg| nature, since the strain term still maintains Kramer's de-
The I’Otation fl’equencies were Of the Order Of a feW kHdeneracy and hence the 32» structure Of ||ght and heavy
(2020 Hz in Zwanzigeret al). Imagining an electric-field hole bands. Hence strain can be used as an independent con-
version of this experiment, the rotation period of the field istro| parameter for the interqubit interaction. A detailed expo-
already less than the bound hole spin coherence time, buition of these ideas and calculations are forthcomfng.
further improvement may be necessary for a realistic mea- |y conclusion, this paper presents a way to manipulate the
surement. We also need to guarantee, during the field rotapins of acceptor impurity-bound hole statesitype semi-
tion, that the adiabatic approximation is accurately maingonductors with strong spin-orbit coupling using electric
tained and that the acceptor impurity is not ionized. Thefields. Depending on its magnitude, the electric field couples
ionization energies for acceptor states are of the ordepoth linearly and quadratically to the spin of the acceptor
10-60 meV(see Table ). The splitting between the two state through the Stark effect, but although apparently oppo-
levels e, and e. can be computed from our expressions forsjte, the two effects still maintain th€ invariance of the
their energiegusing the constants in Tablg and are of the  ynderlying semiconductor. The spin manipulation is com-
order 10 meV for Ge in a field of 20//m. Hence the ion-  pietely geometric and realizes, in a practical solid-state sys-
ization and splitting energies are roughly the same size anfbm, the theoretical proposal for holonomic quantum com-
much larger than the applied electric field frequecy of rotappyting. We have obtained an explicit and general form for the
tion. The frequencies required for varying the electric fieldholonomy matrix which transforms adiabatically transports
are hence low enough as to cause neither ionization of thgegenerate eigenstates. While our analysis is specific to spin
impurity-hole system nor a breakdown of adiabaticity. Thez;2 it is trivially generalized for any spin, provided the Stark
variation of dynamical phases over the sample volumeeffect is present. We have also briefly analyzed the experi-
which usually leads to extensive dephasing can be overcomgental feasibility of the scheme.

by an electric field variant of the double-sweep spin-echo Note addedin the closing stages of this work, we noticed
techniques which refocus inhomogeneities in the dynamicahe independent, recent work by Yuri Serebrennikov which

phase but double the effect of the geometric phase. presents similar ideas to the ones exposed Here.
In a future work!® we explore the idea of different qubits

communicating via a bus architecture based on the dissipa- The authors wish to thank H.D. Chen, R.B. Laughlin, and
tionless spin currerit The application of an electric field on D.l. Santiago for many stimulating discussions and input.
p-doped cubic semiconductors with spin-orbit coupling gen-B.A.B. acknowledges support from Stanford University. This
erates a spin current with polarization and direction of flowwork is supported by the NSF under Grant No. DMR-
perpendicular to the electric field. The spin conductivity is an0342832 and the U.S. Department of Energy, Office of Basic
invariant of the S2) symmetry group of the heavy and Energy Sciences under Contract No. DE-AC03-76SF00515.
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