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We propose a spin manipulation technique based entirely on electric fields applied to acceptor states in
p-type semiconductors with spin-orbit coupling. While interesting on its own, the technique can also be used
to implement fault-resilient holonomic quantum computing. We explicitly compute adiabatic transformation
matrix (holonomy) of the degenerate states and comment on the feasibility of the scheme as an experimental
technique.
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The physical realization of quantum computing rests on
the ability to reversibly manipulate two level systems called
qubits. While the promise of high computational power is
certainly a tantalizing one, the intrinsic challenges associated
with decoherence, adiabatic evolution, control, and noise er-
rors in quantum gate operations are still to be mastered.

One ingenious way to overcome quantum noise errors is
the use of non-Abelian holonomic(geometric) quantum
computation schemes.1 Through the slow tuning of some ex-
ternal parameters such as applied magnetic or electric fields,
the qubit evolves adiabatically(with constant energy) around
a path that changes its eigenstate from an initial to a final
state. Generically, this quantum evolution is free of dynami-
cal factors and is geometric in nature, depending only on the
path in parameter space. Geometric holonomy could consti-
tute a fault-tolerant way to perform quantum computation.2,3

However, it is fair to say that its actual robustness against
different kinds of noise is still under investigation, being the
subject of a debate.5 Although some experimental systems
that would exhibit such behavior have been proposed,4,6 ho-
lonomic quantum computing overall still lacks the variety of
concrete application proposals that conventional quantum
computation enjoys.

In this paper we propose using electric fields to manipu-
late the spin of acceptor states in semiconductors with spin-
orbit coupling such as Ge, GaAs, and Si. The acceptor im-
purity ion will bind a p hole from the spin 3/2 valence band
of the semiconductor7 and the full Hamiltonian of the impu-
rity system in an electric field is given by the linear or qua-
dratic Stark effect.8 Spin-orbit coupling is essential to the
existence of the Stark effect in these semiconductors. There
are two doubly degenerate Kramer states for any value of the
electric field and slowly rotating the electric field induces
SU(2) rotations in the degenerate eigenstates of each energy
level. When the electric field swaps over a cycle and returns
to its initial orientation the holonomy matrix is dependent on
the geometry of the swap only. Consistent with prior theo-
retical analysis, we take these holonomies to represent quan-
tum gate transformations.9 Previous work involving holono-
mies in semiconductors is found in Ref. 10.

We begin by a short introduction of the main idea of
holonomic quantum computing. We then introduce the
Hamiltonian of the acceptor states in an electric field and
show how any SU(2) holonomy can be obtained by changing
the field’s orientation adiabatically, hence providing the basis

for a set of gate operations. We discuss the viability of such
a scheme and the experimental challenges involved. We
close by proposing an alternative scheme, using external
uniaxial strain, which can be used to achieve spin manipula-
tion in the absence of any external field. The holonomic qu-
bits discussed here are based on a principle similar to the
dissipationless spin current in hole doped semiconductors.11

The individual qubits can therefore be coupled to each other
by a quantum bus architecture based on the dissipationless
spin current, offering exciting new possibilities towards the
realization of an all solid-state holonomic quantum com-
puter.

In holonomic quantum computing, quantum information
is encoded in ann-fold degenerate Hilbert space of a Hamil-
tonianHl dependent on some external “control” parameters
(fields) l.9 Upon a cyclical change of these parameters
around a loopC during timeT such thatlin=lout, the system
will evolve between the initial state(n vector) uclin into
uclout=eie0TGsCduclin, where e0 is the initial eigenvalue
Hlin

uclin=e0uclin. The first factor is just the dynamical phase,
and will be omitted, while the second factor is the non-
Abelian Wilczeck-Zee12 curvature connection(matrix)

GsCd = PerCAmdlm, Aij
m =KcisldU ]

]lm
Uc jsldL , s1d

wherei, j =1, . . . ,n and whereP represents the path ordering
due to the fact that the gauge connectionAm is now a matrix
acting on the degenerate space of Hamiltonian eigenstates(m
denotes the different control parameters). The degenerate
Hilbert space of the Hamiltonian encodes the quantum infor-
mation where the eigenstates are the codewords while the
nontrivial holonomies associated with it represent the unitary
transformations or “computations” over the code. Zanardi
and Rasetti1 showed that this prescription is sufficient to
implement quantum computation on single qubit holonomic
gates. In subsequent papers4,6,9,13,14several schemes for real-
izing holonomic computation have been proposed. The
schemes involve geometric manipulation of trapped ions,14

charge pumping within Josephson junction networks,4 and
Josephson charge qubits.6 Controlled manipulation of U(1)
holonomies(Berry phases) using nuclear magnetic resonance
on a system of weakly coupled H1 and C13 nuclei has been
experimentally achieved with great accuracy by Joneset al.15
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It would be of great advantage to have a conventional
solid-state system where holonomic computation can be
implemented by using only electric fields. In this paper we
are concerned only with single qubit holonomy, leaving mul-
tiqubit ones for a later publication.16 We look atp-type cubic
symmetry semiconductors such as Ge, GaAs, and Si. The
strong spin-orbit coupling in these systems breaks up the
valence bands into two doubly degenerate bands of spin 3/2
with helicity ±1/2 and ±3/2. The double degeneracy is noth-
ing else than Kramers degeneracy and is guaranteed byT
invariance. This is maintained even when acceptor impurities
(B, Al, Ga, In) are introduced in the semiconductors. The
holes that bind to these impurities will maintain a certain
symmetry subgroup of the original cubic symmetry of the
valence bands they came from. Let us now consider the ef-
fect of an applied external electric fieldE on the acceptor-
bound hole state. For large electric fields, the field distortion
near the impurity ion can be safely neglected and the
acceptor-hole state has the cubic symmetry of the crystal
Td3 I, giving rise to a quadratic Stark effect8

HE2 = −
p0

2

«i
HaE2I + bFEx

2Sx
2 + Ey

2Sy
2 + Ez

2Sz
2 −

5

4
E2IG

+
2
Î3

dsEyEzhSy,Szj + EzExhSz,Sxj + ExEyhSx,SyjdJ ,

s2d

where«i is the ionization energy,p0=er̄ the dipole moment

(r̄ being the mean radius of the ground state), andSW are the
spin-3/2 matrices, describing the valence band states, which
essentially haveP3/2 character. We have also definedhA,Bj
=sAB+BAd /2. Readers familiar with semiconductor theory
will recognize in the form ofHE2 the Luttinger Hamiltonian

structure, with the substitutionkW→EW . This is no coincidence
since the symmetry group of both Hamiltonians is the same.
For small applied electric field, we must take into consider-
ation the local field of the ions, thereby the symmetry lowers
from Td3 I to Td and giving rise to a linear Stark effect8

HE =
2px

Î3
sExhSy,Szj + EyhSz,Sxj + EzhSx,Syjd, s3d

where p=eaB with aB the Bohr radius. The constants
a ,b ,d ,x , r̄ are given in Table I, although the estimates forx
in the literature vary considerably(x=0.26 according to
Kopf and Lassman17 so the value in Table I should be taken
as a lower limit). We want to mention that the donor and
acceptor Hamiltonians and physics are essentially different,
with the donors undergoing only a quadratic Stark shift as

opposed to the acceptor combination of the above linear and
quadratic shifts.

Although for some fieldE the acceptor Hamiltonian will
be a weighted sum of linear and quadratic Stark effects, we
prefer, without any loss of generality, to work in either of the
two regimes and not in the intermediate one. Each of the
Hamiltonians above has two doubly degenerate Hilbert
spaces, roughly corresponding to values of thez component
of the spin Sz being either ±1/2 or ±3/2(this would be
exactly true if the Hamiltonians were isotropic). The “con-

trol” parameters are the components of the electric fieldEW .
We must now show we can achieve “quantum computations
over the code.” These are represented by SU(2) holonomies
over each degenerate Hilbert space(equivalently, we must
show we can move within an energy subspace by adiabati-

cally changingEW ).
Such holonomies do indeed exist in our system. We now

give an explicit generic procedure to calculate them. While
we could just brute-force diagonalize the Hamiltonians
above and treat each of them separately, we prefer to use a
more elegant approach that reveals more of the Hilbert space
structure. This was developed in Ref. 18 in the context of the
SO(5) theory of high-Tc superconductivity, and extended by
Ref. 19 to the case of hole band in semi-conductors. Out of
the spin-3/2 matricesSx, Sy, Sx we can define the new
434 matrices G1=s2/Î3dhSy,Szj, G2=s2/Î3dhSz,Sxj, G3

=s2/Î3dhSy,Sxj, G4=s1/Î3dsSx
2−Sy

2d, G5=Sz
2− 5

4I434, which
satisfy the SO(5) Clifford algebraGaGb+GbGa=2dabI434. Ex-
plicitly,

Gi = S 0 isi

− isi 0
D, G4 = S0 I

I 0
D, G5 = S I 0

0 − I
D ,

wheresi, i =1,2,3 are theusual Pauli matrices andI is the
identity matrix(232 in this case). The HamiltoniansHE and
HE2 can now be cast into a new clean form

HE = dE
0I + dE

aGa, HE2 = dE2
0 I + dE2

a
Ga, s4d

wherea=1, . . . ,5,I is the 434 identity matrix and

dE
0 = dE

4 = dE
5 = 0, dE

1 = pxEx, dE
2 = pxEy, dE

3 = pxEz,

dE2
0 = −

p0
2

«i
aE2, dE2

1 = −
p0

2

«i
dEzEy, dE2

2 = −
p0

2

«i
dEzEx,

dE2
3 = −

p0
2

«i
dExEy, dE2

4 = −
p0

2

«i

Î3

2
bsEx

2 − Ey
2d,

dE2
5 = −

p0
2

«i

1

2
bs2Ez

2 − Ex
2 − Ey

2d. s5d

We brought the linear and quadratric Stark Hamiltonians to
the same symbolic form. We now manipulate them together
and only substitute for the values ofda at the end of the
calculation. The deep physical reason as to why the two ap-
parently different Hamiltonians are actually very similar is
the unbrokenT invariance of the system that leads to Kram-
ers degeneracy. The eigenvalues aree±=d0±d, where d

TABLE I. Values of the coefficients in the linear and quadratic
Stark Hamiltonians(Ref. 8).

a b d x r̄sÅd

Ge 1 −0.3 −0.36 0.7310−3 91

Si 1 −0.2 −0.42 1310−2 34.4
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=Îdada and they depend on the electric field. For the linear
Stark effect explicit substitution shows us that the split is

independent on the direction of the electric fieldEW while for
the quadratic case, it strongly depends on its orientation. The
Clifford matricesGa have two eigenvalues, each twofold de-
generate(this is obvious from the form ofG5). The gauge
connection then represents SU(2) adiabatic changes on the
twofold degenerate subbands6 hence the total gauge group
is SUs2d−3SUs2d+=SOs4d. Identical to Ref. 19, we define
the projection operators into the two energy subspacesH
=e+P++e−P−:

P+ =
1

2
S1 +

da

d
GaD, P− =

1

2
S1 −

da

d
GaD . s6d

Adiabatic rotation of the fieldEW implies moving within one
of the subspaces of energy«. We can define a covariant
gauge field strength

Aa = iF ]P+

]da ,P+G = iF ]P−

]da ,P−G = −
1

2d2dbGab, s7d

where Gab=s1/2idfGa,Gbg are the generators of the SO(5)
algebra. The fieldAa lives in the space of theda’s but our
control parameters are the electric field componentsEi. We
do a “coordinate transformation” and obtain

Ai =
]da

]Ei
Aa = −

1

2d2db]da

]Ei
Gab. s8d

which gives us a holonomy computation when the electric

field is varied betweenEW initial =EW final over an arbitrary(closed)
curveC

GsCd = P expSR AidEiD = P expS− R 1

2d2db]da

]Ei
GabdEiD .

s9d

Let us, without any loss of generality, momentarily focus on
thee+ subspace. By choosing specific rotations(specific con-
tours C) of the field Ei we can change an initial stateuclin
=s1,0,0,0d into the degenerate state within the same energy
level, i.e., uclout=GsCduclin=s0,1,0,0d. In fact, in the gen-
eral case, starting from an arbitraryuclin we can reach,
through carefully choosing the contourC, any other eigen-
state within the degenerate subspace by electric field ma-
nipulation. In a physical intuitive picture, the spin within the
e+ subspace will follow the electric field as it tries to stay
within the energy subspace. By choosing an appropriate pair
of loops C1 and C2, two noncommuting holonomiesG1
=GsC1d and G2=GsC2d can be enacted. By combining them
in all possible ways, the whole unitary group SU(2) can be
obtained. We show this explicitly in the case of the quadratic
Stark effect, the more experimentally viable of the two. In
this way, every unitary transformation over the computa-
tional space can be realized in terms of holonomies. We have
achieved spin manipulation with electric fields and showed
that holonomic computation is possible in semiconductors
with spin-orbit coupling.

In general, due to the non-Abelian nature ofAi, the path

ordered integral has to be done numerically, over infinitesi-
mal segments in parameter space and taking into account that
different components ofA do not commute with each other.
While this is more of a nuisance than an intellectual chal-
lenge, it is comforting to know that for certain curves the
expression can be simplified and path ordering can be easily
implemented while still maintaining the full capability to
transform the eigenstates into one another. We give such ex-
amples for both the linear and the quadratic Stark effect be-
low.

For the linear Stark effect, again working in thee+ energy
subspace the expression for the holonomyGEsCd becomes
particularly simple:

GEsCd = P expS−
1

2
R 1

E2ei jkskEjdEiD , s10d

where thesk are the three Pauli matrices. In polar coordi-

nates EW =sE sinu cosf ,E sinu sinf ,E cosud for contours
C which keep constant the absolute value of the electric field,
we find that spherical triangles between the pointsA su
=0,f=f1d, B su=p /2 ,f=f1d, and C su=p /2 ,f=f2d are
particularly easy to path order. Since we are changing only
one angle at a time achieving this technologically should be
easier than trying to implement variations in both angles(al-
though, as Zee points out, there is a bit of confusion on how
to go “around the corners”20).

For the case of the quadratic Stark effect things are more
complicated. While finding a nice form for the holonomy
factors in the general case is almost impossible due to the
anisotropy in the HamiltonianHE2, we can look at the ideal-
ized spherical symmetric situation for whichb=d /Î3. This
does not introduce large errors, as the anisotropy in these
materials, although significant, is still small enough so that
the spherical approximation works well. In this case we find,

in units of −p0
2/«i: dE2

a Ga=bsEW ·SWd2−5/4bE2I434. The ho-
lonomy structure resides exclusively in the first term. In fact,
with the electric field replaced by a magnetic field, this is
exactly the Hamiltonian studied by Zee20 in explaining a
pioneering experiment by Tycko.23 The gauge field in polar
coordinates is Af=cosus3/2−sinus1 and Au=s2. For
spherical triangles starting atu=0 going to some valueu on
an arc of fixedf1 (which we can choose to be zero for
convenience) then going at fixedu on an arc to some nonzero
f and then back to the north pole along constant longitude,
the holonomy readsGE2sCd=W1

−1VW20 where

W1
−1 = expf− iuscosfs2 − sinfs1dg, W= expsis2ud,

V = expS− i
f

2
s3DexpSi

f

2
scosus3 − 2 sinus1dD . s11d

Also, for the Zee connection of constant but differentui, i
=1,2 we have Gi =Gsuid=expfi2pscosuis3−sinuis1dg. For
generic u1Þu2 we have fG1,G2g= ihexpf−i2pscosu2

+sinu1dg+expfi2pscosu1−sinu2dg−expfi2pscosu2

−sinu1dg−expf−i2pscosu1+sinu2dgjs2 thereby generating
other unitary transformations.

We now turn to the problem of the feasibility of the
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scheme proposed for spin manipulation by the Stark effect.
We need that the coherence time of spins of bound holes be
larger than the time in which we can adiabatically rotate the
electric field. New experiments showed that the coherence
time is larger than 1 ms,21,22 justifying the use of acceptor-
bound-hole wave functions as qubits. It is indeed difficult to
perform experiments which probe non-Abelian phase factors.
The original work of Tycko23 and subsequently the more
complete experiment by Zwanziger, Koenig, and Pines24 on
nuclear magnetic quadrupole resonance proved the existence
of the Wilczeck and Zee non-Abelian transport of degenerate
states. Instead of rotating the applied fields and keeping the
sample fixed, these experiments kept the applied field fixed
and rotated the sample, which is an equivalent procedure.
The rotation frequencies were of the order of a few kHz
(2020 Hz in Zwanzigeret al.). Imagining an electric-field
version of this experiment, the rotation period of the field is
already less than the bound hole spin coherence time, but
further improvement may be necessary for a realistic mea-
surement. We also need to guarantee, during the field rota-
tion, that the adiabatic approximation is accurately main-
tained and that the acceptor impurity is not ionized. The
ionization energies for acceptor states are of the order
10–60 meV(see Table II). The splitting between the two
levels e+ and e− can be computed from our expressions for
their energies(using the constants in Table I) and are of the
order 10 meV for Ge in a field of 106 V/m. Hence the ion-
ization and splitting energies are roughly the same size and
much larger than the applied electric field frequecy of rota-
tion. The frequencies required for varying the electric field
are hence low enough as to cause neither ionization of the
impurity-hole system nor a breakdown of adiabaticity. The
variation of dynamical phases over the sample volume,
which usually leads to extensive dephasing can be overcome
by an electric field variant of the double-sweep spin-echo
techniques which refocus inhomogeneities in the dynamical
phase but double the effect of the geometric phase.15

In a future work,16 we explore the idea of different qubits
communicating via a bus architecture based on the dissipa-
tionless spin current.11 The application of an electric field on
p-doped cubic semiconductors with spin-orbit coupling gen-
erates a spin current with polarization and direction of flow
perpendicular to the electric field. The spin conductivity is an
invariant of the SU(2) symmetry group of the heavy and

light hole bands in the semiconductor and has a nice topo-
logical formula.19 It is identical, up to a coordinate transfor-
mation with the field strengthAa in the two bands. The spin
current couples with the spins of the bound hole in our sys-
tem and hence mediates the interqubit interaction. Due to the
topological nature of the coupling, the two-qubit gate will be
holonomic in nature, without dynamical factors. There is,
however, one difficulty: as the electric field is swapped, both
the spin of the acceptor and the spin of the spin current tend
to follow the electric field. This does not give an independent
control parameter, unless we build a quantum computer in
the manner of Kane, where the single and two qubit gates are
controlled by the separate application of independent electric
fields. However, there is a much more elegant and practical
way to solve the problem, involving the use of strain to fun-
damentally control the spin current polarization direction.
Strain is a second order perturbation for the acceptor
states,7,8 being around ten times weaker than the electric field
term, but it is a first order perturbation for the spin current. It
can fundamentally modulate the structure and magnitude of
the spin conductance. However, it does not spoil its topologi-
cal nature, since the strain term still maintains Kramer’s de-
generacy and hence the SU(2) structure of light and heavy
hole bands. Hence strain can be used as an independent con-
trol parameter for the interqubit interaction. A detailed expo-
sition of these ideas and calculations are forthcoming.16

In conclusion, this paper presents a way to manipulate the
spins of acceptor impurity-bound hole states inp-type semi-
conductors with strong spin-orbit coupling using electric
fields. Depending on its magnitude, the electric field couples
both linearly and quadratically to the spin of the acceptor
state through the Stark effect, but although apparently oppo-
site, the two effects still maintain theT invariance of the
underlying semiconductor. The spin manipulation is com-
pletely geometric and realizes, in a practical solid-state sys-
tem, the theoretical proposal for holonomic quantum com-
puting. We have obtained an explicit and general form for the
holonomy matrix which transforms adiabatically transports
degenerate eigenstates. While our analysis is specific to spin
3/2 it is trivially generalized for any spin, provided the Stark
effect is present. We have also briefly analyzed the experi-
mental feasibility of the scheme.

Note added. In the closing stages of this work, we noticed
the independent, recent work by Yuri Serebrennikov which
presents similar ideas to the ones exposed here.25
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TABLE II. Ionization energies in meV for different acceptor
impurities (B, Al, Ga) in Si and Ge.

B Al Ga

Ge 10.4 10.2 10.8

Si 45.0 57.0 65.0
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