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Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide
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We present an analytical bond-order potential for silicon, carbon, and silicon carbide that has been optimized
by a systematic fitting scheme. The functional form is adopted from a preceding[®byls. Rev. B65,
195124(2002] and is built on three independently fitted potentials for-8i, C—C, and Si—C interaction.

For elemental silicon and carbon, the potential perfectly reproduces elastic properties and agrees very well with
first-principles results for high-pressure phases. The formation enthalpies of point defects are reasonably
reproduced. In the case of silicon stuctural features of the melt agree nicely with data taken from literature. For
silicon carbide the dimer as well as the solid phases B1, B2, and B3 were considered. Again, elastic properties
are very well reproduced including internal relaxations under shear. Comparison with first-principles data on
point defect formation enthalpies shows fair agreement. The successful validation of the potentials for con-
figurations ranging from the molecular to the bulk regime indicates the transferability of the potential model
and makes it a good choice for atomistic simulations that sample a large configuration space.

DOI: 10.1103/PhysRevB.71.035211 PACS nun®er02.70.Ns, 34.20.Cf

I. INTRODUCTION and Smith>16 (DS) employed the Brenner potential scheme

Silicon carbide is a compound semiconductor, which is ofi© derive parameter sets fitted to reproduce the properties of
fundamental and technological interest, because of its ele@mall molecules and surfaces. Modified versions of Tersoff’s
tronic as well as mechanical propertfe&lt features extreme Potential that were optimized for specific applications have
hardness, chemical resistivity, excellent mechanical propefeen published, e.g., by Gao and Wéband by Devanathan
ties at high-temperature, large thermal conductivity, ancet al® Although these potentials are well suited for certain
high-temperature semiconductivity? applications, like modeling of surfaces, molecul&$; or

Over the last decades, atomistic computer simulationstructural transformation'$, they are of limited use if the
based on molecular dynami¢dD), molecular statics, or respective application requires a more extended sampling of
Monte Carlo(MC) methods have evolved as invaluable toolsconfiguration space. This holds equally true for a Keating-
in condensed-matter physics, chemistry, and materials sciype potential proposed by Chatterjeal 2° and Shimojoet
ence. Typical problems in these fields often require compute®l.X® that was complemented by electrostatic contributions
simulations that involve a large number of atoms on ex-for studying the sintering of nanocrystalline silicon carbide
tended time scales. Subjects of interest can, for example, @nd structural transformations under pressure.
dislocations, grain boundaries and interfaces, disordered In this study, we are mainly interested in developing a
phases, liquids, or amorphous materials. Moreover, modelingotential for atomic scale simulations of processes which in-
of materials processes can include condensation process&ojve transitions between widely different atomic configura-
grain growth, bulk and surface diffusion, thin-film growth, tions, such as those encountered, for instance, during the
cluster deposition, sintering, and crack growth, to name onlynert gas condensation of silicon-carbon nanoparti€ids.

a few. In order to treat such problems in a computationallyin the course of this work we have derived parameters for the
efficient manner, while maintaining atomic resolution, ana-Si—C interaction, but also revisited established parametri-
lytical potential models that deliver realistic energies and in-zations for silicon and carbon and finally refined the param-
teratomic forces are an indispensable tool for bridging theeter sets for the Si-Si and G—C interaction, too. Using a
gap between quantum-mechanical methods and mesoscogigstematic fitting approach our model follows the same
continuum models. However, modeling covalently bondedscheme that was previoulsy applied to GaAs and &ai.
materials by means of analytical potentials is a very chal-

lenging task. In the past, numerous potential mod&igor

semiconductors have been proposed including cluster poten- II. METHODOLOGY

tials or cluster functionals of Keating- or bond-order type.

However, none of them has emerged as being clearly supe- Bond-order potentiafé are approximations of the mo-
rior to the others. ment expansion within the tight-binding schefhand there-

By far the most widely employed potential for silicon fore close relatives to the embedded-atom mefid8The
carbide is the bond-order potent{@0P) by Tersoff3 (T89). functional form used in the present work has been success-
The pair parameters are obtained by averaging the paranfully applied for modeling of semiconductdfs?23 and
eters for the elements, while the three-body parameters d@roven to be suitable for the description of metals and metal
pend only on the type of the pivot atom. Tersoff’s parametercarbides, tod? Therefore only the basic formulas are given
sets have been supplemented by Beardmore and Brioth here. The cohesive energy is written as a sum over individual
enable atomistic modeling in the-SiC—H system. Dyson bond energies,
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TABLE |. Parameter sets for silicon, carbon, and silicon carbide as derived in this work. The parameter
set Si-l is recommended for simulations with SiC while Si-l yields an improved description of elastic and

thermal properties of elemental silicon.

Si-l C Si—C Si-1l
Dy (eV) 3.24 6.00 4.36 3.24
ro (A) 2.232 1.4276 1.79 2.222
S 1.842 2.167 1.847 1.57
B (A 1.4761 2.0099 1.6991 1.4760
y 0.114354 0.11233 0.011877 0.09253
C 2.00494 181.910 273987 1.13681
d 0.81472 6.28433 180.314 0.63397
h 0.259 0.5556 0.68 0.335
2u (A 0.0 0.0 0.0 0.0
R (A) 2.82 2.00 2.40 2.90
D (A) 0.14 0.15 0.20 0.15
c? c?
E= Efc(rij) VR(rij) - Z%bﬂvA(rij) 9(6) = 7<1 + @ - a2+ [h+ 0030]2) . (7)
i>j
5; (1) The three-body interactions are determined by the param-

eters 4, v, ¢, d, andh, which leads in total to up to nine

with the pairwise attractive and repulsive contributions given@diustable parameters, all of them depending on the type of
by atomsi andj. The parameter set for every interaction type is
fitted independently using our fitting cod®NTIFIX.?”

The parameter optimization proceeds as follows: First, the
pair parameters are adjusted to the dimer prope(bgsry,
) and the slope of the Pauling pl#). Thereafter, the three-
body parameters are fitted to the cohesive energies and bond
lengths of several high-symmetry structures as well as to the
elastic constants of the ground structures. The transferability
of the potential is enforced by including a variety of differ-
ently coordinated structures in the fitting database. Further

details regarding the fitting procedure can be found in Refs.
whereDg andr are the dimer energy and bond length. The12 and 23_ g gp

parameteys can be deterr_nined frqm th? grognd—state oscil- e parameter sets used in this study are compiled in

lation frequency of the dimé#, while S is adjusted to the  apje | For simulations in the context of silicon carbide, it is

slope of the Pauling plot. The cutoff function recommended to use the parameter set Si-l which has been
extensively tested for this purpose. The alternative parameter

Vel = 22 exif- y28(r - 19)] @

and

VA1) = o2 exif- VIS - o)) 3

1 r<R-D set Si-Il provides an improved description of the elastic and
1 (#r—-R thermal properties of elemental silicon.
fe(r)=yz—-zsinl-—— | |[R-r|sD 4
=1 2-2an 7=F) R-n @
0 R+D<r

I1l. SILICON

restricts the interactions to the first neighbor shell. The pa- For silicon there are various well tested potentials avail-
rameterskR and D specify the position and the width of the able in literature(e.g., Refs. 7, 9, and 2&nd therefore yet
cutoff region. The bond-order is given by another potential seems to be redundant. Bond-order poten-
tials for silicon, however, that are compatible with our for-
malism have only been proposed by Ter$bfis well as
Dyson and Smitd® While the parameter set given by
with Tersoff® suffers from an underestimation of the dimer bind-
ing energy and therefore is not satisfactory for the descrip-
= . S 3 tion of small molecules, the silicon parameter set derived by
Xi kg‘,j) To(riexrl2u(r = o Jo(és © Dyson and Smitt® is not optimized for bulk properties.
Therefore we decided to newly adjust parameters for the
Si—Si interaction.

by = (1 + ;)2 (5

and the angular function
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TABLE II. Silicon dimer properties: Experiment data in com- binding enters directly into the new parameter sets for Si,
parison with the new bond-order potential and the potentials bywhile r, and 8 are chosen to closely reproduce the experi-
Dyson-Smith(DS), Tersoff(T3), and Stillinger-WebefSW). Dy is mental data.
the binding energyt, the equilibrium bonding distance, akdhe
wave number of the ground stat®is the slope parameter.

B. Bulk properties

Expt. This work Other potentials

Silicon like several other covalently bonded materials
(GaAs, Sig exhibits a negative Cauchy discrepancy
(C1o—C44<0). When the diamond lattice is sheared, internal
relaxation occurs by displacement of the two fcc sublattices

DS T3 SW

Ref. 29  Si-l Si-ll Ref. 15 Ref. 28 Ref. 30

ro (A) 2246 2232 2222 2197 2295 2352 with respect to each other along tk&ll) direction. The
Dy (eV) 3.24 3.24 324 3.39 2.67 2.32  Kleinman parametef measures the displacement in units of
k (cm™?) 511 522 556 532 471 462  the nearest-neighbor distarde33 The shear modulug), of
S 1.9% 1.84 157 1.41 1.43 the unrelaxed structure can only be obtained from first-

principles calculations. The difference between the relaxed
alI.:itted to bond length and energy of the dimer and silicon in the(c44) and unrelaxecﬂc&) shear moduli is related to the trans-
diamond structure, cf. Ref. 24. verse optical phonon frequency at thepoint33

Bazantet al3* introduced figures of merit for the descrip-
tion of the elastic constants by analytical potentials. They are
defined as

ay = (7Cq1 + 2C1)C44/3(C11 + 2C1)(C11 — C10) (8

A. Dimer properties

For the silicon dimer the binding enerd@,, the equilib-
rium bonding distance, and the wave numbek of the
ground-state oscillation, which can be directly related to the
potential parametes, are experimentally knovéfiand could and
be directly taken as potential parameters. However, sce _ 0
andr, also affect the energy-volume curves of the bulk struc- g = (4C11 + 5C12)/9Cy,. ©
tures, minor adjustments @f andr, were necessary in order For the experimental datay, and ag are close to 1. The
to improve the agreement with experimental data. corresponding values are included in Table Ill, which sum-

A compilation of dimer properties for the parameter setsmarizes the properties of silicon in its equilibrium structure.
presented in this workSi-l, Si-ll) with experimental data The parameter set Si-l provides an excellent description
and the potentials by Dyson-SmitBS), Tersoff (T3), and  of the properties of the diamond lattice with the single ex-
Stillinger-Weber(SW) is given in Table II. The correct dimer ception of a somewhat larger deviation dg, leading to a

TABLE Ill. Properties of silicon in its equilibrium structure from experiment, quantum-mechat@sl) methods such as density-
functional theory(DFT), as well as tight bindingdTB) calculations and for various analytical potentiflsS: Dyson and SmittiRef. 15,
LSA: Lenoskyet al. (Ref. 39, EDIP: Bazantt al. (Ref. 9, SW: Stillinger and WebefRef. 7), T3: Tersoff(Ref. 28]. ay: lattice constant;
Ec: cohesive energyB andB': bulk modulus and its pressure derivative, respectivejy;elastic constants;24: static (unrelaxedl shear
modulus;ay and ag: figures of merit(see text for definition and discussjod: Kleinman parameter.

Expt. QM methods This work Other analytical potentials
DFT B DS LSA EDIP SW T3
Ref. 36 Ref. 37  Ref. 38 Si-l Si-ll Ref. 15 Ref.35 Ref.9 Ref.30 Refs. 28 and 30
ag (A) 5.429 5.400 5.429 5429 5429 5.432 5.430 5.430 5.431 5.432
E. (eV/atom -4.63 -4.62 -4.63 -4.63 -4.63 -4.61 -4.65 -4.63 -4.63
B (GPa 99 93 100 99 99 98 110 99 108 98
B’ 4.20 3.8 4.43 4.36 2.93 4.30
ci1 (GPa 168 159 167 167 167 109 165 175 162 143
c1» (GPa 65 61 67 65 65 93 82 62 82 75
c44 (GPa 80 85 75 60 72 38 72 71 60 69
024 (GPa 111 105 111 119 112 117 119
C1o—Cy44 (GP3 -15 -24 -8 5 -7 55 10 -9 22 6
ay 1.14 1.27 1.08 1.02 1.03 2.55 1.15 0.94 1.00 1.34
ag 0.98 0.94 1.06 0.99 0.88 1.00 1.00 0.89
4 0.54 0.53 058 052 0.91 0.63 0.67

844 and ¢ calculated at an elastic strain ¢gF=0.001.

bCalculated in the present work.
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0.65 - - y sets for silicon an increase of the internal strain parameter is
found with increasing uniaxial strain, which is in line with
theoretical results obtained by density-functional theory
calculations’ although slight deviations of the slope have to

=
‘% be acknowledged.
S 055t
g C. Coordination
= Silicon exhibits a plethora of high-pressure phases with
E . very small energy differences, and the corresponding region
g | T 21:{1 of the phase diagram is still not fully understod*: Many
....... first-principles calculation (DFT) different crystalline phases in the pressure range up to
0.45 * * 248 Gpa have been predicted, which are partly metasable at

—0.08 004 0 atmospheric pressures. If transition paths are considered, the
uniaxial strain situation becomes even more intricate. In fact, some phases
FIG. 1. Strain dependence of the Kleinman parameter in com@e only accessible after a certain squence of temperature and
parison to DFT resultéRef. 36. pressure treatments. With increasing pressure the respective
equilibrium phases exhibit larger coordinations and behave
positive Cauchy difference;;,—c44. The negative Cauchy increasingly metallic. The description of these structurs im-
discrepancy is correctly reproduced by the Si-Il parametrizaposes a stringent test on the transferability of the potential
tion while maintaining the excellent agreement with themodel presented in this work.
other elastic properties. Table IV presents a compilation of structural data from
We have also evaluated the strain dependence of thaensity-functional theoryDFT) calculations in comparison
Kleinman parameter as shown in Fig. 1. With both parametewith several analytical potentials. The energetic ordering of

TABLE V. Properties of several experimentally observed and hypothetical structures of silicon. DIA: diamond, SH: simple hexagonal,
SC: simple cubic, BCC: body-centered cubic, FCC: face-centered dthicohesive energyAE: energy difference with respect to diamond
structure;a: lattice constantc/a: axial ratio for noncubic structures; internal parameter of thbc8 structure. Energies are given in
eV/atom, lattice constants in A. Structures marked with an astéfjskere included in the fitting database.

QM methods This work Other analytical potentials
DFT DS LSA EDIP SW T3
Refs. 9, 30, 42, and 43 Si-l Si-Ill Ref. 15 Ref. 35 Ref. 9 Ref. 30 Ref. 30
DIA" (A4) E. -4.670/-4.650 -4.630 -4.630 -4.634 -4.612 -4.650 -4.630 -4.630
a 5.451/5.43 5.429 5.429 5.431 5.429 5.430 5.431 5.432
BC8 AE 0.130/0.085 0.230 0.250 0.080 0.201 0.245
a 6.67/6.577 6.625 6.655 6.591 6.644
X 0.100 0.101 0.099 0.103 0.102 0.101
B-TIN (A5) AE 0.266/0.210 0.412 0.444 0.760 0.310 0.67 0.213 0.327
a 4.822/4.730 4.856 4.896 4.810 4.597 4.760 4.969 4.905
cl/a 0.552 0.527 0.525 0.543 0.555 0.550 0.561 0.524
SH (Ay) AE 0.293 0.476 0.515 0.64 0.230 0.403 0.469
a 2.639 2.659 2.670 2.69 2.544 2.833 2.699
cl/a 0.940 0.965 0.986 0.99 0.925 0.918 0.967
SC (Ap) AE 0.348 0.397 0.537 0.339 0.290 0.532 0.293 0.318
a 2.528 2.525 2.553 2.546 2.404 2.503 2.612 2.544
BCC' (A2) AE 0.525 0.503 0.431 0.629 0.720 1.594 0.300 0.432
a 3.088 3.043 3.063 3.107 3.135 3.243 3.245 3.084
FCC (A1) AE 0.566 0.587 0.575 1.08 0.700 1.840 0.423 0.761
a 3.885 3.940 3.989 3.91 4.008 4.081 4.147 3.897

aThese values for the cohesive energy and the lattice constant have been obtairied 2vih A andD=0.15 A. If the values from Table
| are used the bond length intersects the cutoff region whence the cohesive energy is reduced and the structure becomes unstable.
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FIG. 2. Pauling plot(top) and energy-volume curve®ottom
for the parameter set Si-I in comparison with experime(fRafs.
29 and 3% and data from density-functional theof@FT) calcula-

tions (Ref. 49.
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the structures is very difficult to reproduce due to the ex-
tremely small energy differences between the competing
structures. Our first parametrizati¢8i-1) for the silicon po-
tential, however, provides a good overall description of the
structural properties of the higher-coordinated structures as
illustrated by the Pauling plot and the energy-volume curves
shown in Fig. 2. With respect to the high-pressure phases it is
therefore comparable to or even better than alternative po-
tentials from literature.

D. Thermal properties

The experimental melting point of silicon is 1687°K.
The liquid phase is denser than the crystalline phase at the
melting point and the solid-liquid phase transition is accom-
panied by an increase in average coordination. There are
several methods to determine the melting point from
molecular-dynamics simulation&f. Refs. 45 and 46, and
references therejnIn this work we have set up a system
comprising a liquid and a crystalline phase separated by a
sharp(100) interface. The system was equilibrated at various
temperatures using a Berendsen-type thermostat, while the
pressure was kept at 0 kbar by employing a Berendsen-type
barostat’ Steady-state conditions were assumed when the
potential energy fluctuated about a constant value. The melt-
ing point is the temperature at which the interface is stable
with the liquid and crystalline phases in equilibrium. This
method avoids hysteresis effects which occur when the melt-
ing and solidification of a single phase system is simulated.

The melting temperature has been determined as
2450+50 K for the Si-I parameter set and 2150+25 K for
the Si-ll parameter set. These values are considerably higher
than the experimental melting point of 1687 K, but better
than 2550+50 K obtained by us and 2547+22 K reported by
Cook and Clanc¥ for Tersoff’s bond-order potential. The
overestimation of the melting point, however, appears to be a
general problem inherent to bond-order potentials for semi-
conductors(see, e.g., Ref. 22 while in case of elemental
metals, like Pt(Ref. 12 and Zn? perfect agreement with
experimental results was achieved using the same bond-order
formalism.

TABLE V. Thermal properties of several analytical silicon potentials in comparison with experimgnt.
melting point;AH,,; transition enthalpy of meltingAH,_.: enthalpy difference between the material in the
crystalline state at 0 K and the molten material at the melting ppjnis: density of the liquid and solid
phase at the melting poinip: relative change of density upon melting defined\as=(p,;—ps)/ ps.

Expt2 Si-l Si-ll T3 SwW
T (K) 1687 2450+50 2150+25 2547+22 1688+26
AH,, (kJ/mole 50.2 49.5+0.2 48.4+0.2 40.8+0.2 31.3
AH,_¢ (kJ/mole ~93.4 82.4 78.9 73.7 88.7
p (g/cn?) 2.51 2.30 2.40 2.28 2.47
ps (g/cn?) 2.30 2.25 2.26 2.25 2.29
Ap (%) 9.1 2.2 6.2 1.3 8.1

aReference 35.

bReference 46.

‘Reference 49.
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"neutron diffraction data —— ture is a result of the steep cutoff function between the first
Si-1, T=3000K ----- and second nearest-neighbor shé&l. (6)] which leads to

Si~II, T=2800K «----+- "y . .

T3, T=3000K —-=-— strong forces on atoms within the cutoff region. However, it
SW,T=1800K == can hardly be avoided without compromising other potential

properties.

In contrast to the radial distribution functions, a more di-

_____________________________ verse behavior is displayed by the angular distributions.

First-principles calculatiort8 predict two distinct maxima at
: . ~60° and~90°. In agreement with previous studigshe
Sor eI e bond-order potentials for silicon reproduce this feature while
S0 the SW potential exhibits only a shoulder at about 60° but no
i A T T T e vt maximum. Although the melting point is overestimated, the
;o e Tersoff-type as well as our silicon potentials realistically de-
) RN scribe the structure of the molten phase.
E - T Finally, we estimated the linear thermal-expansion coeffi-
J ) . ) cient close to the melting point to hg =5+2 uK™* which
2 3 4 5 6 compares well with the value af, =4.66 uK ™' obtained by
interatomic distance (&) extrapolation of experimental data to the melting péht.
@) Again, the good agreement with experimental and first-
principles data(with the exception of the melting point
" Car-Partinello MD (DFT), To1800K —— gives further_ hindsight fo_r the transferability of the _bond-
Si-I, T=3000K =----- order potential scheme, since none of these properties were
Si-Il, T=2800K  ------- considered during the fitting process.

T3, T=3000K =:=-—
SW, T=1800 K ="

radial distribution function (a.u.)

E. Point defects

Point defects in silicon have been extensively studied,
o~ et Sa. both experimentally and theoretically, over the last
KA e, Tl decades§!®? Since energetic and structural properties of
Ce T point defects are experimentally difficult to assess, quantum-
mechanical total-energy calculations have been an invaluable
tool in resolving the situation. Strain fields around point de-
e ~. fects, various charge states, and intricate electronic interac-
-, ’ tions render such calculations a nontrivial tasee, e.g.,
e e Refs. 51 and 58 By now, there is consensus that the dumb-
' —— bell (110 interstitial has the lowest formation energy fol-
. . . . . T~ lowed by the hexagonal and tetrahedral configurati@tes.
40 60 80 100 120 140 160 180 51 and references thergir-or these investigations quantum-
bond angle (deg) mechanical calculations have been performed at zero tem-
() perature and pressure. The situation at nonzero temperatures
is even more difficult to resolve, because the ordering can
FIG. 3. Radial(left) and angularright) distribution functions change completely due to different vibrational properties of
from experimentRef. 36 and first-principles calculatiori®ef. 49  the various point defect configurations and the related con-
in comparison with analytical potentials. tributions to entropy.
It has turned out to be very difficult to capture the results
The melting and other thermal properties are summarizedf quantum-mechanical calculations in analytical potential
in Table V together with experimental data. Most promi- models. Recently, a potential model has been proposed that
nently, the transition enthalpy and the relative change of thés optimized for point defects and amorphous structures
density are in very good agreement with experimental dat4EDIP),° but exhibits deficiencies as it comes to the descrip-
for the parametrization Si-1l. Here it should be noted thattion of higher coordinated structuré¥able 1V). An over-
none of these properties have been part of the reference deiew of the formation energies of the point defects in silicon
tabase which gives evidence for the transferability of theis given in Table VI. Among the established analytical po-
potential. tentials only the EDIP and the SW potentials reproduce the
Next, the structure of the molten phase was characterizedumbbell, while the silicon potentials presented in this work
by calculating the radial and angular distribution functions agavor the tetrahedral position. By varying the cutoff distances
shown in Fig. 3. The radial distribution functions for all ana- within the parameter set Si-I, however, the picture is slightly
lytical potentials considered here are in good agreement witbhanged and the hexagonal position becomes the lowest en-
experiment. The most notable difference is the dip betweerrgy configuration.
the first and second coordination shell observed for the new The structural stability of the dumbbell configuration was
parameter sets as well as for the Tersoff potential. This featested in molecular dynamics runs over 0.5 ns at various

JOSL ST

angular distribution function (a.u.)
: \
Ay
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TABLE VI. Formation energi€sin units of eV for relaxed point defects froab initio and tight-binding calculations in composition with
analytical potentialsV: vacancy;ly: hexagonal interstitialt: tetragonal interstitiall 5: (1100 dumbbell interstitial.

QM methods This work Other analytical potentials
DFT B EDIP SW T3 LSA
Ref. 51 Ref. 54 Ref. 38 Si-l Se| Si-ll Ref. 9 Ref. 30,34,82 Ref. 30,82 Ref. 35
\Y, 2.8-4.1 3.17 3.68 3.2 3.2 3.2 3.22 2.82 3.70 3.30
It 4.0 3.75 3.5 4.4 3.2 4.05 5.25 3.45 3200
Iy 3.8 3.31 4.03 4.0 4.1 3.3 4.16 6.95 4.61 3.21
Ip 3.7 3.31 3.46 4.4 4.7 3.9 3.35 4.68.9 4.4 3.13

aThe defect formation enthalpies for the new potential have been calculated by allowing full, i.e., internal and volume relaxations, while in
the DFT calculations typically only internal relaxations are taken into account.

bwith modified cutoff,R=2.90 A andD=0.15 A.

‘Relaxed configuration with interstitial atom displaced from the tetragonal towards the hexagonal interstitial site. The formation enthalpy is
3.11 eV if the symmetry is fixed.

dextended split-interstitial configuration.

temperatures. We observed the dumbbell interstitial configudimer parameters of the Brenner potential while at the same
ration to be metastable up t6400 K. At temperatures above time delivers a description of the bulk phases which is com-
this threshold it dissembled into the hexagonal interstitialparable to the Tersoff potentizl.
configuration.

Keeping in mind that the present potential has not been _ )
optimized for point defects, reasonable agreement with the A. Dimer properties
results of quantum-mechanical calculations is obtained, al- The dimer properties are summarized in Table VII. The
though the dumbbell interstitial is not the most stable interdimer energyD, and wave numbek for the new carbon
stitial defect. The cutoff parameters are found to have amotential are very similar to the second parametrization of
immediate effect on the formation energies. A systematic inthe original Brenner potentidt. The bond length is some-
vestigation of this interplay is recommended if the optimiza-what longer, which turned out to be necessary in order to
tion of this potential for simulations of points defects is in- gbtain a better model for the bulk phases. The Tersoff poten-

tended. tial underestimates the dimer energy by about 14%, similar
to the case of silicon. All potentials yield a somewhat too
F Conc|usive remarks on the S| parametrization IOW wave numbek, as Compal’ed tO the eXperImenta| Value

For the potentials considered this deficiency cannot be over-

The newly parametrized bond-order potentials for silicon,ome \without accepting a considerable deviation in the elas-
(Si-I'and Si-1)) provide excellent models for the elastic prop- i moduli of the bulk phases.

erties of the diamond phase and reproduce structure and en-
ergetics of the dimer as well as high pressure phases very
well. For the liquid-solid transition, both enthalpy and den- B. Bulk properties
sity changes are properly reproduced and even the angular

distribution function of the molten phase is in agreementmoigrggzc?ﬁgsra:gv(\iﬁii %r?hg;{:) emgr;[gl; dass Ff:V\;]elLrai‘(j-dla-
with predictions from first-principle calculations. There is ' y

obvious disagreement, however, if formation enthalpies mlzed‘ reSEFCtR’elyaAt amk()j|enth0()r]ndg!?fns grap_h|teh IS sllhght_ly
point defects are compared with results based on firstO'€ sta ?th an diamond wit ; e d ererrllce u;t e;:o e\?we
principles calculations. Other properties, like one- and two-""1€T9IeS O the two structures being on the order of meV.
dimensional defects, were not tested in this work, but might _ _ _ )
be an interesting subject for further studies. TABLE VII. Carbon dimer properties: Experimental data in
comparison with the new bond-order potentidlis work) and the
potentials by Brenngiparameter set Il in Ref. 2land TersoffDg is
IV. CARBON the binding energyt, the equilibrium bonding distance, akdhe

The carbor(C— C) parameter sets proposed by Brerther wave number of the ground stateis the slope parameter.

allow for a good description of the properties of hydrocarbon

Expt. This work Brenner-1l  Tersoff

molecules, however, they yield only a mediocre model for Ref. 29 Ref. 11 Ref. 55
the bulk phases of carbon. In particular, the elastic constants

of diamond are poorly reproduced. Thus we decided to deb, (eV) 6.21 6.00 6.00 5.17
rive C—C parameters that properly predicts the elastic propr, (A) 1.243 1.428 1.390 1.447
erties, while maintaining most of the features of the originaly (cpy1 1855 1482 1548 1343

parametrization. The new parameter set almost retains the
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TABLE VIII. Properties of diamond and graphite calculated with the new carbon parametrization in
comparison with experiment, density-functional theory calculati@isT) and the potentials by Brenner
(parameter set Il in Ref. }land Tersoff.AE: energy difference with respect to graphite modificatian;
lattice constan{in plane lattice constant in the case of graphi#& Zener anisotropy ratioA=2c44/(C11
—Cyp). For the interpretation of the remaining symbols see Table III.

Expt. DFT This work Brenner-I| Tersoff

Ref. 44 Refs. 56 and 57 Ref. 11 Ref. 55
Graphite(A9)
a(A) 2.46 2.440-2.47 2.555 2.513 2.530
E. (eV/atom -7.374 -9.027--9.001 -7.374 -7.376 -7.396
B (GPa 286-319 236-319 232 258 225
B’ 3.57, 3.58 4.00 3.97 3.83
Cubic diamondA4)
a(A) 3.567 2.528-3.55 3.566 3.558 3.566
AE (eV/atom -0.0028—-+0.0004 0.0009 0.0524 0.0250
B (GPa 444 444-494 445 484 425
B’ ~4 2.60-3.67 4.15 4.06 3.92
c11 (GPa 1081 1100 1082 621 1067
1, (GPa 125 143 127 415 104
c44 (GPQ 579 587 635 383 636
2, (GPa 673 642 671
4 0.107 0.21 0.76 0.22
ay 1.19 1.18 1.30 2.21 1.33
ap 0.82 0.79 0.79
A 1.21 1.23 1.33 3.72 1.32

8 valuated using the experimentala ratio to determine the atomic volume.

Graphite consists o6 bonded sheets which are held C. Coordination

together by van der Waals forces. Within the short-ranged pyrthmiilleret al. have presented an extensive work on
bond-order potential model these long-ranged interactiongye energetics and structure of various solid modifications of
are not properly accounted for, a deficit which can be fixeccarhon. Some of these structures entered our fitting database,
by adding a weak long-range pair potential. These interacyhile some served as tests for the transferability of the po-
tions are crucial for reproducing the layer separation and theéential. The cohesive energies and structural parameters are
elastic response of the material perpendicular to the layergompiled in Table IX.

but they have a negligible effect on the energetics and the The carbon potential provides a good overall description
atomic separations within the graphite sheets. As shown iof the low as well as high coordinated structures. Naturally,
Table VIII the carbon potential exactly reproduces the ex-particular attention has been paid to obtain exact agreement
perimental cohesive energy of the graphite structure. The lafor the graphite and diamond phases. The good agreement
tice constant is also in good agreement with experimentaivith experiment and DFT calculations is further demon-
observations. Since the energy difference between the graphtrated in the Pauling plot shown in Fig. 4 which illustrates
ite and diamond structures is not exactly known, we havéhe variation of the bond energy with bond length.

decided to employ an approximate value of 1 meV in the
fitting database, which is on the order of magnitude expected
from experimental and theoretical experience. This energy
difference as well as the lattice constants is properly de- Experimentally, the formation enthalpy of the carbon va-
scribed using the new carbon parametrization. Most imporeancy in diamond has not been determined yet, but there are
tantly, elastic constants are in very good agreement witla few theoretical studigsee Ref. 58 and references theyein
experiment fixing a problem of Brenner’s original parametri-A theoretical treatment of this defect is not trivial since
zation. In principle, the €&-C parameters should also work many-electron correlation, coupling between the defect and
together with the ©G-H parameters of Brenner’s original the surrounding bulk material as well as Jahn-Teller distor-
hydrocarbon potential. Here, however, we only tested theions have to be accounted for. Only recently a diffusion
overbinding corrections in the context of point defects asMonte Carlo(DMC) study has been performed by Hood and
discussed in Sec. IV D. co-worker§® who reported a vacancy formation energy of

D. Point defects
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TABLE IX. Properties of several experimentally observed and hypothetical structures of carbon. Results
obtained with the new carbon potential are compared with experiment, density-functional theory calculations
(DFT, Ref. 56, and the potentials by Brenn&econd parameterization, Ref.) Hind Tersoff(Ref. 59; AE:
energy difference with respect to graphite modification, GRA: graphite, see Table IV for the interpretation of
the remaining symbols.

Expt. DFT This work Brenner-l| Tersoff

Ref. 44 Ref. 56 Ref. 11 Ref. 55
GRA* (A9)
a(h) 2.46 2.440-2.47 2.555 2.513 2.530
E. (eV/atom -7.374 -9.027--9.001 -7.374 -7.376 -7.396
DIA* (A4)
a(h) 3.567 2.528-3.55 3.566 3.558 3.566
AE (eV/atom -0.0028-+0.0004 0.0009 0.0524 0.0250
BC8
a(A) 4.419-4.51 4.429 4.351 4.437
X 0.0943—-~0.1003 0.0963 0.1019 0.0965
AE (eV/atom) 0.689-0.691 0.772 0.446 0.775
B-TIN (A5)
a(A) 3.310 3.425 3.660 3.555
cla 0.390 0.435 0.380 0.436
AE (eV/atom 2.727-2.82 3.452 1.379 3.779
SC* (Ap)
a(h) 1.744-1.770 1.783 1.744 1.802
AE (eV/atom) 2.60-2.66 3.297 2.133 2.974
BCC* (A2)
a(h) 2.326-2.375 2.160 2.093 2.152
AE (eV/atom 4.24-4.351 3.964 3.037 3.771
FCC* (A1)
a(h) 3.021-3.078 2.859 1.863 2.728
AE (eV/atom 4.50-4.648 4.483 3.713 4.411

5.96+£0.34 eV. The vacancy formation enthalpy calculated V. SILICON CARBIDE

with the new carbon potential is 3.09 eV, which is consider-  gjjicon carbide occurs in more than 200 different poly-
ably lower than theb initio value. However, this deficiency types, which differ in the Stacking sequence of the—-§&

is clearly related to the missing overbinding correctionsbilayer$® and are classified as either culfic), hexagonal
which are needed in order to balance the coordination chang#1), or rhombohedralR). The most abundant polytypes are
in the first neighbor shell of the vacancy. In fact, a similarly 3C (zinc blendg¢, 6H, 4H, and H (wurtzite). The energy
low value is found for the Tersoff potential as well. If the differences between the different polytypes are extremely
overbinding corrections as originally parametrized by Bren-small. Parket al! determined the energetic ordering of the
ner are included, we obtain a vacancy formation enthalpy ofour most abundant types asi46H, 3C, and H and calcu-
5.24 eV in very good agreement with theory. lated a maximum energy difference of only 4.3 meV/atom.

The formation energies/enthalpies for interstitial defectstsh'gc\?aﬁglzsmoodletl 'Se;eztr:ffeguE%J'rsctaﬂﬁgthggr dligttierl;a[(jit;%nesci
in diamond are very largésee Table X DFT calculations POytyp 9 y 9 :

Lo However, this does not seem a severe restriction, because
suggest values of 16 eV and larger from which it has been gnirqnic contributions to the free enthalpy will dominate at
concluded that these defects are not relevant for the procesgnzero temperatures.
of diffusion in diamond® The new bond-order potential
yields reasonable values for the formation enthalpies of these A. Dimer properties
defects regardless whether overbinding corrections are in- The dimer properties are experimentally not well known.

cluded or not. Huber and Herzber§ report an upper limit for the dimer
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6o DO DFT & TABLE XI. Comparison of dimer properties of SiQ: bond
50t 20\ A9 (gra) NBOPI‘}‘II?D?: : i energy;ro: bond lengthk ground-state oscillation frequency.
i . o
40 A4 (dia) Expt. Ab initio This work  T89
3 30} - —
g Ref. 29 Ref. 62 Ref. 63 Ref. 13
> 20| . Do (eV) <464 436 4.36 4.20
4 s | 1 ro (A) ~1.82 1.726 1.726 1.79 1.77
g ’ k (cm™ 959 927 902 691
Q
T 10} 1
2 silicon carbide have not been consistently determined®et.
07 r ] Apparently, the best data at hand are the elastic constants
os | | given by Lambrechet al,’ which have been obtained by
’ ad transformation of experimental data for hexagonal polytypes.
12 1'4 1'6 1Is 2'0 2s These values have been employed in fitting the potential. In
’ ) : ) ) ) a recent theoretical study,which appears to be the most
bond length (A) ’

accurate to date, elastic constants in excellent agreement
FIG. 4. Pauling plot for the new carbon parameter set. TheWith the values determined by Lambreddtt al. have been
straight line indicates the Pauling relation. reported.
A compilation of published data is given in Table XII

binding energy of 4.64 eV and and a bond length of appI’OXi-inCIUdin,g results ob_tained with our SiC potential and with

mately 1.82 A. Ground-state frequencies of the dimer ar hree d|ffe_rent versions of _the Tersoff potent(di8g, ng’

given in a number ofab initio studies?>-®* The reported 94) for SIC and the potent|zil75 by Dyson and SmiDs),

values, however, vary appreciably, which in connection Withan(.j bY Gao and WebdGW). Obwpusly, the SiC param- .

the experimental data induces some degree of freedom | trization of our bond—orde.r pot_enual repr_oduces all elagtlc

adjusting the dimer parameters. constants very well, especially in comparison to alternative
Table XI summarizes the data from literature, our SiCSIC potentials.

parametrization, and the dimer properties of Tersoff's SiC

potential (T89). The latter yields a ground-state frequency C. Coordination

which is more than 25% lower than the values of quantum-

mechanical calculations, while the new SiC potential deliv-

ers a values that is very close to the reference data.

The high-pressure phase diagram of silicon carbide is nei-
ther as complex nor as extensively explored as for silicon. It
is well established that the zinc-blendB3) modification

B. Bulk properties transforms to the rocksalt (B1) structure under

, o _ _ compressioY’" and there is evidence for a similar transi-
Despite the large technological interest in the mechanicaly, in the case of B-SiC75 The transition pressures and

properties of silicon carbide, the elastic constants of CUbi‘baths are, however, still a matter of discussioh Ref. 76
_ _ _ _ with comments and repligs

TABLE X. Formation energie€DMC, DFT)/enthalpieganalyti- Only few theoretical investigations of higher-coordinated
cal potentialy of point defects in carbon in units of eV taken from stryctures have been published. Chang and C@hand
diffusion Monte Carlo(DMC, Ref. 58 and density-functional karch et al® conducted density-functional theolYpFT)
theory(DFT_, Refs. 58 and 39c_alculations in_ comparison with the calculations on the zinc-blend®3), rocksalt(B1), and ce-
new potential and the established potentials by Brersecond  gjm chioride(B2) structures, which were taken as reference
parameterization, Ref. 1Bnd Tersoff(Ref. 53. Values in brackets  qaa for the potential fitting in the present work. It has been
denote formation enthalpies obtained without overbinding correc ind impossible, however, to find a reasonable fit for all

tions. V¢! single vacancy|t: tetrahedral interstitialts: (100 split . . . - .
interstitial; Ig: bond-centered interstitigbee Ref. 59 for interstitial solid structures while leaving the description of the elastic

defect geometrigs properties unaffec_ted. As a compromise, a significant devia-
tion of the cohesive energy of the rocksél) structure
DMC DET This work  Brenner-ll Tersoff  [rom the theoretical value was accepted. Figure 5 shows the
Ref 58  Ref. 59 Ref 1P Ref. 58 Pauling plot including first-principles and experimental data,
while Table XIll summarizes the structural properties calcu-
Ve 5.96+0.34 6.98,7.2 52059 8.84(1.89 3.42 lated with the new SiC potential.
I+ 23.6  23.9023.69 9.08(9.09 19.42
IS 16.7 1021(958) 5.36 (39& 9.93 D. Point defects
Ig 158  16.06(14.90 9.15(9.47) 14.46

The number of point defect configurations for silicon car-
aThe formation enthalpies given here have been calculated in thbide which have been explored in the literature is quite large.
context of the present work. There are two types of vacancies, namely the C and the Si
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TABLE XII. Comparison of bulk properties ofG-SiC obtained from experiment, theory, and analytical potentials. The symbols have the
same meaning as in Table I anisotropy;A=2C,4/(C11—C12).

Expt. QM methods This work Other analytical potentials
DFT B
NFP  LAPWP  PWPP T8RP  T9O* T4 DS GW

Ref. 66 Ref. 65 Ref. 67 Ref. 68 Ref. 69 Ref. 70 Ref. 71 Ref. 71 Ref. 71 Ref. R8f. 17
ag (A) 4.3596 4.3367  4.360 4.344 4.36 4.359 4321 4307 4.280 4.349  4.360
E. (eV/atom) —6.340 -7.415 -6.340 -6.165 -6.210 -6.434 -6.340 -6.412
B (GPa 225 211 218  210/2%6 222/219 229 224 224 231 241 224 235
B’ 3.71 3.88 4.16
1 (GPa 390 352 385 384 390 372 382 437 426 447 243 254
c1» (GP3 142 140 135 132 134 157 145 118 134 134 215 225
s (GP3 256 233 257 241 253 280 311 280 293 62 66
9, (GPa 284 273 256 305
l 0.41 0.38 0.4%¢
ay 1.54 1.59 1.55 1.45 1.50 1.46 1.59 1.50 1.48 2.34 2.40
ag 0.87 0.91 0.99 0.83
A 2.06 2.20 2.06 1.91 1.98 1.98 1.68 1.92 1.87 4.43 4.55

ar89, T90, T94 refer to the three parameterizations of the-C interactions given by TersoffRefs. 13, 72, and 73 following the
nomenclature of Ref. 71.

BNFP: new full potential; LAPW: linear augmented plane waves; PWPP: plane-wave pseudopotential.

¢Calculated in the present work.

dThe first values have been obtained from a fit to the MurnagRaf 68 and the VinetRef. 69 equation of state, respectively, while the
second values have been calculated using the rel8to(t,,+2c;,)/3.

€44 and ¢ calculated at an elastic strain ¢f=0.001.

fGeometric average of three independently calculated values.

vacancies(Vg;, Vc), and also two types of antisite defects the (1000 dumbbell interstitial: G—C, Si—Si, or C—Si
(Sic, Cgj). Furthermore, various different self-interstitial de- pairs can share either a carbon or a silicon site
fect structures have been considefé@ A tetrahedrally co- (C*—Si(100, C*—C(100, Si*—C(100), Si*—Si100);
ordinated carbon interstitial can be surrounded either by fouthe plus sign indicates the extra atorithere are, further-
carbon(Crc) or four silicon atoms(Sirg) and equivalently more, two different (1100 dumbbell configurations
for silicon. Four possible configurations can be studied foC*—C(110), C*—Si(110)) which have been investigated.

In connection with the aggregation of carbon interstitials

>0 A N\ ' ' ' ' Gali et al®% have explored a configuration in which two car-
40 [ Gimer =179 A bon atoms share a silicon site,)s;
Dy=4.36 eV The formation enthalpy for a defect in a neutral charge
301 ) state can be written &1
-~ k=902 cm™
& 25t 1 bulk
< $=1.8475 Qp=Ep——(ng+n ;
T 20f D= Ep 2( si + nc)Msic
=3
f 1 bulk bulk
g 15| —5(’151—’%)(#51 —pe )
2
g —e— Pauling fit for potential f
g Lof (O  experimental data/DFT, dimer Ep
08 | &  experimental data/DFT, 3C-SiC {
/A Martin et al. (QC), dimer — = (Hes —
@ Karchet al. (DFT), B1, B2 z(nS‘ ne)Am, (10)
\v4 .Chang and.Cohen (DF.'I'), B1 ) )
°‘517 L8 19 5 21 23 23 whereE is the total energy of the system in the presence of
bonding distance (A) the defect; is the number of atoms of atom typeand u "

is the chemical potential of theure constituent. The mag-

FIG. 5. Pauling plot for silicon carbide. Experimental and first- nitude of Au is restricted to be lower or equal than the for-
principles data from Refs. 62, 69, and 77.

mation enthalpyAH;. At zero temperature the chemical po-

035211-11



P. ERHART AND K. ALBE PHYSICAL REVIEW B71, 035211(2005

TABLE XIll. Energies and lattice constants for the B1 and B2 structures of silicon carhieteenergy
difference with respect to the B3 structu@v/atom; ay: lattice constantA).

DFT This work T89
AE a AE N AE ay
Bl 0.70-0.72 4.046 1.92 4.244 1.49 4.239
B2 2.66 2.631 3.04 2.668 2.49 2.640
257 2.608

aThis value is obtained if the Si-Si cutoff is reduced such th&+D<2.63 A.

tentials of the bulk phases are given by the cohesive energidgve applied this correction to obtain the values in the first
ulik=—-463 eV/atom, u2*=-7.374 eV/atom, andu2%  and second columns of Table XIV.
=-12.68 eV/f.u. with the corresponding formation enthalpy The formation enthalpies for vacancies and antisite de-
of AH;=0.68 eV/f.u. fects predicted by the new potential are somewhat too low
In Table XIV point defect formation energi€gf) calcu-  but still in fair agreement with first-principles calculations.
lated with the new potentigkilicon parameter set S)-are  The situation regarding the interstitial defects is unclear. The
compared to first-principles calculatidAsand the original formation enthalpies calculated by Waagal.”® are consis-
version of the Tersoff potentialT89).1® The point defect tently higher than those given in Ref. 78. We find good
combinations included in the table preserve the stoichiomagreement with the former data but quite large deviations
etry, therefore the defect formation energies are independefftom the latter.
of Aw. Note that the formation enthalpies given in Refs. 17, In general, the agreement is at least fair as it comes to the
78, and 79 have been calculated neglecting the effect of thenergetic ordering. In comparison, the bond-order potential
variation of the chemical potential in the vicinity of the de- by Gao and Webéf which is based on the potential by
fect expressed by term in the second line of Erf)). We  Dyson and Smith® provides a better description of point

TABLE XIV. Formation energies of point defects silicon carb[d, in Eq. (10)] in units of eV. For the
new bond-order potential the first and second column show the values obtained with and without overbinding
corrections for the €&-C interaction, respectively.

DFT This work T89 GW

Ref. 78 Ref. 79 Ref. 80 w w/o Ref. 13 Ref. 17
Ve 5.11 4.5 4.2 1.90 1.93 1.39
Vi 8.01 8.2 8.1 455 455 4.67
Ve+Vsg; 12.12 12.7 6.99 7.02 7.4 6.48
Csi 4.06 3.8 3.4 2.42 2.19 4.43
Sic 4.46 4.6 2.48 2.36 5.05
Cgi+ Sic 8.52 8.4 4,90 455 7.2 9.48
Crc 7.78 12.4 12.63 12.68 6.02
Crsi 7.21 10.0 9.38 9.38 5.69
Sirc 4.80 13.3 17.55 17.35 2.60
Sirs; 7.34 13.6 17.30 18.15 5.40
Sitc+Crg; 12.01 23.3 26.93 26.78 22.6 8.29
Sitsi+ Cre 15.12 26.0 29.93 30.83 23.2 11.42
Cic+Crsi 0.57 2.4 3.25 3.30 3.0 0.33
C*—Si(100 4.96 8.31 8.24 4.80
C*—C(100 453 6.9 4.78 5.12 4.41
Si*—C(100 8.68 14.14 13.37 6.17
Si*—Si(100) 7.95 20.90 17.72 4.16
C*—C(100 4.69 9.89 10.64 4.67
C*—Si(100 4.65 4.81 5.12 5.32
(Cy)si 6.4 4.70 5.03
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defect properties in 3€-SiC, but since the pure silicon and scription of elastic properties of silicon carbide by the new
carbon structures parameters were modified, it is lacking thpotential is improved with respect to the potentials available
transferability our work is aiming for. In particular, it cannot in literature. Defect properties are only fairly reproduced but
be applied to model the pure phases and it yields an inapprdhe description is comparable to previously published poten-
priate description of the elastic properties as shown in Tabléals. The new potential enables modeling of processes which
XILI. involve widely different configurations and transitions
among these. In this spirit, it has been recently applied to the
modeling of the inert gas condensation of silicon-carbon
nanoparticles, representative for a transition from the mo-
lecular to the bulk regime.

VI. CONCLUSIONS AND OUTLOOK

New bond-order potentials for silicon and silicon carbide
have been derived, which allow atomic scale computer simu-
lations of processes involving a wide range of different
atomic configurations. Elastic, thermal, and point defect We would like to thank Professor M. Winterer, currently
properties are well reproduced. The description of higher coat University Duisburg-Essen, and Dr. M. Posselt for helpful
ordinated structures by the silicon and carbon parameter setiscussions. Financial support by the German foreign ex-
is comparable to the well established Tersoff potential, whilechange servefDAAD) through a bilateral travel program is
elastic, defect, and thermal properties are superior. The deratefully acknowledged.
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