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Exact linear relations are found among different elements of the macroscopic conductivity tensor of a
three-dimensional, two-constituent composite medium with a columnar microstructure, without any further
assumptions about the forms of the constituent conductivities: Those can be arbitrary nonscalar, nonsymmetric,
and nonrealsi.e., complex valuedd tensors. These relations enable all the elements of the macroscopic conduc-
tivity tensor of such a system to be obtained, from a knowledge of the macroscopic conductivity tensor
components only in the plane perpendicular to the columnar axis. Exact linear relations are also found among
different elements of the macroscopic resistivity tensor of such systems. Again, these relations enable all the
elements of the macroscopic resistivity tensor of such a system to be obtained, from a knowledge of the
macroscopic resistivity tensor components only in the plane perpendicular to the columnar axis. We also
present simple exact expressions for all elements of the macroscopic conductivity tensor of a three-dimensional
composite medium with a parallel slabs or laminar microstructure and an arbitrary number of constituents,
again without making any assumptions about the forms of the constituent conductivities, which can be arbitrary
nonscalar, nonsymmetric, and nonreal tensors. The latter results were obtained previously, but their great
generality and extreme simplicity were not realized by most physicists.
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I. INTRODUCTION

In a composite medium, the relevant heterogeneity is al-
ways on a length scale that is much greater than any micro-
scopic length, e.g., atomic size, mean free path, Fermi wave-
length. Therefore the “microphysical properties” are those of
a continuous medium, and are characterized by “local val-
ues” of material parameters such as electrical conductivity
and electrical permittivity. On length scales that are even
much greater than these heterogeneity length scales, the re-
sponse of the medium can be characterized by “macro-
scopic” or “bulk effective” values of those same physical
parameters. To be more precise, the macroscopic or bulk
effective conductivity tensorŝe is defined as providing the
linear relation between the volume averaged electric field
kEl and current densitykJl,

kJl = ŝe · kEl. s1.1d

Since ŝe is independent of the precise boundary conditions
imposed on the electrical potential, we can choose those con-
ditions such that the average electric field is the unit vector
ea alongra. In that case the local potential, electric field, and

current density are denoted byfsadsr d, Esadsr d, andJsadsr d,
and we can write

sab
sed = kJa

sbdl = o
g=x,y,z

ksagEg
sbdl, s1.2d

where k l denotes averaging over the entire volume of the
composite medium. This definition is valid for the general
case where no restrictions are imposed on the form of the
local conductivity tensorŝsr d, i.e., it can be nonscalar and
nonsymmetric, and its elements can have arbitrary complex
values.

Perhaps the simplest possible microstructures for a com-
posite are the “parallel cylinders” and the “parallel slabs” or
“lowest-order laminate” microgeometries. In the case of
these microgeometries there exist very simple exact expres-
sions for the macroscopic conductivity and macroscopic re-
sistivity, respectively, if all the constituents are characterized
by scalar conductivities. The conductivity along the colum-
nar axisx, which is parallel to all the interfaces of the par-
allel cylinder microstructure, is given by the arithmetic vol-
ume average of the constituent scalar conductivitiesspi is the
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volume fraction of the constituent characterized by conduc-
tivity sid

sxx
sed = ksl = o

i

pisi . s1.3d

This result also holds for parallel slab microstructure, with
scalar conductivities in all constituents, ifx is any axis par-
allel to those flat slabs. For the latter type of systems, there is
also another exact result: The resistivity along the directionz
perpendicular to the parallel slabs is given by the arithmetic
or volume average of the constituent scalar resistivitiessri
denotes those resistivitiesd

rzz
sed = krl = o

i

piri . s1.4d

These exact results also provide upper bounds for the prin-
cipal values of conductivity/resistivity of any composite
made of the same constituents, when all the conductivities
and resistivities are real and positive—see, e.g., Ref. 1.

The parallel slab microstructure has received considerable
attention because it forms the basic building block for higher
rank laminates, which are stacks of parallel slabs made of
lower-rank laminates.2,3 For this reason it was natural to try
and generalize the exact results of Eqs.s1.3d ands1.4d to the
case where the constituent conductivities/resistivities are not
simple scalar quantities. Such generalizations were indeed
found—see Refs. 3 and 4. However, the simplicity and gen-
erality of these results have not been emphasized: In Ref. 3
the derivation appears to assume that the constituent conduc-
tivity tensors are all symmetric. In Ref. 4 no such assumption
is made, but it is difficult for a nonprofessional mathemati-
cian to appreciate the extreme simplicity of the results.
Therefore, in Sec. II below, we present those results once
again—they are in the form of simple explicit expressions
for all the components ofŝe, and are obtained without mak-
ing any assumptions about the constituent conductivities.
These expressions are always valid, even when the constitu-
ent conductivity tensors are nonsymmetric and have
complex-valued components. We also find some exact and
quite simple linear relations among the various components
of the macroscopic resistivity tensorr̂e=1/ŝe.

The parallel cylinder microstructure has also received
some attention recently, when it was found to exhibit surpris-
ing behavior in the presence of a magnetic field that is strong
enough to make the Hall-to-Ohmic resistivity ratio greater
than 1 in at least one of the constituents.5–20 Here, too, some
exact results were found earlier in special cases of columnar
microstructures made of two constituents—see Refs. 3 and
14. In Sec. III below we generalize those results to two-
constituent columnar composites where the constituent con-
ductivity tensors are entirely general, i.e., nonsymmetric and
complex. Our main results in that section are the following.
sad One can solve separately the two-dimensional conductiv-
ity problem in any planar section that is perpendicular to the
columnar axis of such a composite, and use that solution to
compute the planar components of the 333 conductivity
tensorŝe. sbd In the case of a two-constituent columnar com-
posite, all the other components of that tensor are simple
linear functions of its planar components and ofsalld the

components of the two constituent-conductivity-tensors
ŝ1,ŝ2. The forms of these functions are quite explicit, and
are independent of any microstructural details, apart from the
columnar aspect. All dependence on details of the micro-
structure comes in via the planar components ofŝe.

II. ONE-DIMENSIONAL OR PARALLEL-SLAB
MICROSTRUCTURES

A one-dimensional s1Dd microstructure of a three-
dimensionals3Dd composite medium means a stack of par-
allel slabs, which we take to be perpendicular to thez axis.
Each slab is characterized by a conductivity tensorŝi, which
relates the local electric current densityJsr d to the local elec-
tric field Esr d in the usual linear fashion forr inside one of
these slabs

Jsr d = ŝi ·Esr d for r P Vi .

This simple microstructure has often been considered for the
case where all theŝi are scalar tensors, or wherez is a
principal axis of all theŝi’s.1 In that case, the macroscopic
resistivity along thez axis, rzz

sed=1/szz
sed, is the simple arith-

metic average of thezz constituent resistivitiesrzz
sid=1/szz

sid

along that same axis,

rzz
sed =

1

szz
sed = o

i

pi

szz
sid = o

i

pirzz
sid =K 1

szz
L . s2.1d

In contrast with those discussions, which are very straight-
forward and lead to the simple result of Eq.s2.1d, we make
no assumptionsregarding the nature of the constituent con-
ductivity tensorsŝi. Thus, not only isŝi allowed to be non-
scalar, it is also allowed to be nonsymmetric, as when an
external magnetic field is applied to the system. Neverthe-
less, we will obtain exact expressions for all the components
of the macroscopic conductivity tensorŝe that are compara-
bly simple to Eq.s2.1d.

A. Explicit results for ŝe

We first note that, because the system of slabs is invariant
under arbitrary translations alongx or y, then under bound-
ary conditions that would result in a uniform electric field for
a uniform value of the local conductivity tensor, the field and
current densityEszd andJszd will be independent ofx andy.
From =3E=0 it then follows thatEx andEy are both uni-
form everywhere, while from= ·J=0 it follows thatJz is also
uniform everywhere. In a slab characterized by the conduc-
tivity tensor ŝi, we can write

Jz = szx
sidEx + szy

sidEy + szz
sidsEzdi ,

wheresEzdi denotes thez component of electric field in theŝi

material. Recalling thatEx, Ey, and Jz are uniform every-
where, we conclude thatEz, though nonuniform, has the
same constant value in all the slabs of typei. The same will
be true forJx andJy. In this case we can obtain exact explicit
expressions for all components of the macroscopic conduc-
tivity tensor ŝe, for a parallel slab microstructure with any
number of different constituent conductivity tensorsŝi.
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In the most general case, whenŝe as well as the constitu-
ent tensorsŝi are nonsymmetric second-rank tensors, the
macroscopic or bulk effective conductivity tensor is given
by1 snote that we adopt the unconventional convention that
E= =fd

sab
sed ; kJa

sbdl = o
g

ksagEg
sbdl = o

g
Ksag

]fsbd

]rg
L . s2.2d

As already explained in the Introduction, the superscriptsbd
in fsbd, etc., identifies quantities obtained under boundary
conditions that lead to a uniform electric field that is a unit
vector alongrb in the case of a uniform conductivity tensor.
Under such boundary conditions, the volume average field in
the actual composite structure also has that same value
kEsbdl=eb.

Consider first the componentszz
sed, which is given by

szz
sed = kJz

szdl ; o
a=x,y,z

kszaEa
szdl = kszzEz

szdl, s2.3d

where the last result follows from the fact thatEx
szd;Ey

szd

;0 everywhere. BecauseJz
szd is in fact uniform everywhere,

we can omit the volume averaging in Eq.s2.3d, writing in-
stead

szz
sed = Jz

szd = szz
sidsEz

szddi , s2.4d

wheresEz
szddi is the uniform value ofEz

szd in the slabs of type
i. Recalling that the average ofEz

szd is 1, sincekEszdl=ez, we
can write

1

szz
sed =

kEz
szdl

kJz
szdl

= o
i

pi

szz
sid =K 1

szz
L , s2.5d

wherepi are the constituent volume fractions.
This result is reminiscent of the well-known result of Eq.

s2.1d for the conductivity of a stack of parallel slabs of iso-
tropic conductors, or anisotropic conductors for whichz is a
principal axis. However, we have obtained this resultwithout
making any assumptions about the constituent conductivity
tensors. Indeed, in the general case whereŝi is nonscalar and
even nonsymmetric, 1 /szz

sid is not equal to the resistivity com-
ponentrzz

sid. Likewise, 1/szz
sed is usually not equal torzz

sed.
Now consider elements ofŝe of the form sza

sed, a=x,y.
These are given by

sza
sed = kJz

sadl = o
a=x,y,z

kszaEa
sadl = kszal + kszzEz

sadl,

sinceEb
sad=dab for a=x,y and b=x,y. SinceJz

sad is uniform
everywhere, we can again omit the volume averages in these
expressions,

sza
sed = Jz

sad = sza
sid + szz

sidsEz
saddi . s2.6d

Finally, using Eq.s2.5d, we can write

sza
sed

szz
sed =

Jz
sad

Jz
szd = o

i

pi

sza
sed

szz
sid = o

i

piFsza
sid

szz
sid + sEz

saddiG =Ksza

szz
L ,

s2.7d

where we used the fact thatkEz
sadl=0 for a=x,y to get the

final result.
Elements of the formsaz

sed, a=x,y are calculated as fol-
lows:

saz
sed = kJa

szdl = o
a=x,y,z

ksaaEa
szdl = ksazEz

szdl,

becauseEx
szd;Ey

szd;0. Using Eq.s2.4d we then get

saz
sed

szz
sed =

kJa
szdl

Jz
szd = o

i

pi

saz
sidsEz

szddi

szz
sed = o

i

pi

saz
sid

szz
sid =Ksaz

szz
L .

s2.8d

Finally, elements of the formsab
sed, a=x,y andb=x,y, are

calculated as follows:

sab
sed = kJa

sbdl = o
a=x,y,z

ksaaEa
sbdl = ksabl + ksazEz

sbdl,

becauseEb
sbd=1, and the only other nonvanishing component

of Esbd is Ez
sbd. Extracting sEz

sbddi from Eq. s2.6d, and using
this value in the last equation, we can now write

sab
sed = ksabl + o

i

pisaz
sidszb

sed − szb
sid

szz
sid

= ksabl +Ksaz

szz
Lszb

sed −Ksazszb

szz
L . s2.9d

This can also be rewritten in the following alternative forms:

sab
sed −

saz
sedszb

sed

szz
sed =Ksab −

sazszb

szz
L , s2.10d

ksabl − sab
sed =Ksaz

szz
sszb− szb

seddL s2.11d

=Kssaz− saz
seddsszb− szb

sedd
szz

L . s2.12d

Note that if any one of the two bracketed differences in the
numerator of the last line were omitted, i.e., replaced by 1,
then the right-hand side of Eq.s2.12d would be 0—this fol-
lows from Eqs.s2.5d, s2.7d, ands2.8d.

The expressions obtained forŝe in this section have been
known at least since 1979.4 They were also derived more
recently by Milton in a fashion that is valid for the general
case, where those tensors are nonsymmetric.3 However, the
latter aspect, which is important whenever a magnetic field is
present, because antisymmetric parts then appear in the con-
ductivity and resistivity tensors due to the Hall effect, has not
been emphasized in those previous derivations: In Ref. 4 the
results forŝe are not presented in a form that is very trans-
parent for most physicists, while the derivation in Ref. 3
seems at first sight to be limited to the symmetric case. Our
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derivation, though not essentially different from that of Ref.
3, emphasizes the general validity of the results for arbitrary
constituent conductivity tensors, and presents the results for
ŝe in a simple explicit form. It also emphasizes some of the
basic physical consequences of the laminar nature of the
microstructure—for example, the fact that all components of
both E and J have constant values in each type of slab,
irrespective of the properties of the different constituent con-
ductivity tensors.

The fact that Eq.s2.7d turns into Eq.s2.8d when we re-
place all the conductivity tensors by their transposes is a
special case of the following general theorem: If, in a het-
erogeneous medium, the local conductivity tensorŝsr d is
replaced at every point by its transposeŝtsr d, then the mac-
roscopic conductivity tensorŝe also gets replaced by its
transposeŝe

t :

ŝefŝtg = ŝe
t fŝg. s2.13d

Taking the inverse of both sides of this equation we get a
similar result for the macroscopic resistivity tensorr̂e as
functional of the transposed local resistivity tensorr̂tsr d:

r̂efr̂tg = r̂e
t fr̂g. s2.14d

These theorems are not widely known, and we have not
found them mentioned in any book or article. In fact, it is
possible that Eqs.s2.13d and s2.14d constitute a previously
unknown theorem that we have discovered. For this reason,
we present a proof of Eq.s2.13d in the Appendix. We note, in
passing, that this theorem can also be related to Onsager’s
theorem on the dependence of conductivity on an applied
magnetic fieldH:21

ŝs− Hd = ŝtsHd. s2.15d

Since this relation holds for the local conductivity tensor
ŝsr d, as well as for the macroscopic conductivity tensorŝe,
Eq. s2.13d follows as an inevitable conclusion. Notwithstand-
ing this remark, the proof, which is provided in the Appen-
dix, shows that Eqs.s2.13d and s2.14d are independent of
any symmetry considerations that characterize kinetic phe-
nomena and microphysics, such as invariance under time
reversal. Such symmetry considerations lie at the basis of
Onsager’s theorem.21

B. Exact relations among elements ofr̂e

If, instead of focusing on the conductivity tensorsŝi and
ŝe, we focus on the resistivity tensorsr̂i and r̂e, we can also
find some exact linear relations among the different compo-
nents ofr̂e. Although the existence of exact relations among
the elements ofr̂e can be expected from the exact results of
Sec. II A for ŝe, it is not obvious that there would exist
linear relationsof this type. These relations are not as nu-
merous as the ones we found forŝe; therefore they do not
enable us, in general, to compute the components ofr̂e.
However, their simplicity should make them useful some-
times. We start by recalling that, becauseEx andEy are uni-
form everywhere andEz is uniform in all slabs of the same
type, Jx andJy will also have uniform values in all slabs of
the same type.

In this section we will denote byJsJad andEsJad the local
current density and electric field that result when the bound-
ary conditions are such that the volume-averaged current
density is equal to the unit vectorea. We can then write the
following expression for an arbitrary component of the mac-
roscopic resistivity tensorr̂e:

rab
sed = kEa

sJbdl = o
g=x,y,z

kragJg
sJbdl. s2.16d

BecauseJz
sJxd;Jz

sJyd;0 everywhere andEx and Ey are uni-
form everywhere, whileJx andJy have uniform valuessJxdi,
sJydi in all the slabs of typei, we get from this

rab
sed = Ea

sJbd = o
c=x,y

rac
sidsJc

sJbddi, a = x,y, b = x,y.

Note that the volume averaging has been omitted here. If we
fix i, then these are two linear algebraic equations forsJx

sJbddi,
sJy

sJbddi, which can be solved to yield

sJa
sJbddi = o

c=x,y
fsr̂2D

sid d−1gacrcb
sed,

where r̂2D
sid is the 232 submatrix of thex,y components of

the full 3D resistivity matrixr̂i. This solution can be used in
the expression forrza

sed to get

rza
sed = kEz

sJadl = o
b=x,y

krzbJb
sJadl

= o
b=x,y

o
c=x,y

krzbsr̂2D
−1dbclrca

sed, a = x,y. s2.17d

Applying Eq.s2.14d to the last result, we can immediately
get a similar expression forraz

sed:

raz
sed = sr̂e

t fr̂gdza= sr̂efr̂tgdza

= o
b=x,y

o
c=x,y

ksr̂tdzbfsr̂2D
t d−1gbclsr̂efr̂tgdca

= o
b=x,y

o
c=x,y

rac
sedksr̂2D

−1dcbrbzl. s2.18d

We note that, in the general case when at least some of ther̂i
are nonsymmetric, these relations are independent of Eq.
s2.17d.

If we specialize Eq.s2.16d to the casea=x,y, b=z, re-
calling thatJz

sJzd=1 and thatEx,Ey are uniform everywhere,
while Jx,Jy are uniform in all slabs of the same typei, we get

raz
sed = Ea

sJzd = raz
sid + o

b=x,y
rab

sidsJb
sJzddi, a = x,y.

Note that we have omitted the volume averaging here. For
every i, this constitutes two coupled linear equations for
sJx

sJzddi, sJy
sJzddi, which can be solved to yield

sJa
sJzddi = o

b=x,y
fsr̂2D

sid d−1gabsrbz
sed − rbz

sidd.

This result can be used in the expression forrzz
sed
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rzz
sed = kEz

sJzdl = krzzl + o
b=x,y

krzbJb
sJzdl

to get

krzzl − rzz
sed = o

b=x,y
o

c=x,y
krzbsr̂2D

−1dbcsrcz− rcz
seddl,

= o
b=x,y

o
c=x,y

ksrzb− rzb
seddsr̂2D

−1dbcsrcz− rcz
seddl.

s2.19d

The last line results from the fact thatkJa
sJzdl=0, a=x,y.

Therefore, the last line vanishes if the first bracketsrzb

−rzb
sedd is omitted along with the sum overb:

o
c=x,y

ksr̂2D
−1dbcsrcz− rcz

seddl = 0. s2.20d

Applying Eq. s2.14d to this result shows that the last line of
Eq. s2.19d also vanishes if the last bracketsrcz−rcz

sedd is omit-
ted, along with the sum overc:

o
b=x,y

ksrzb− rzb
seddsr̂2D

−1dbcl = 0. s2.21d

III. TWO-DIMENSIONAL OR COLUMNAR
MICROSTRUCTURES

A two-dimensionals2Dd columnar microgeometry of a
three-dimensionals3Dd composite medium means that there
exists a fixed direction, which we take to be thex axis, such
that all planar sections perpendicular to that direction are
identical. Thus, the interfaces between different constituents
are surfaces that can be constructed by attaching a straight
line, parallel tox, at every point of every curve in that sec-
tion.

In a columnar microstructure, where the macroscopic di-
mensions are much greater than any of the heterogeneity
length scales, and the boundary conditions would result in
uniform values ofE and J if there were no microstructure
si.e., when the local conductivity tensor has a uniform value
everywhered, the local valuesEsy,zd andJsy,zd of the elec-
tric field and current density, like those of the local conduc-
tivity tensor ŝsy,zd, are uniform along the columnar axisx.
Furthermore, from the fact that=3E=0, it follows that the
columnar component of the local electric field in fact has a
uniform value everywhereEx;const. These properties are
examples of a fortunate situation wherein, in spite of the
heterogeneous microstructure, certain physical fields never-
theless have values that are independent of some of the co-
ordinates in each constituent, or even have uniform values
throughout the entire system volume. Such occurrences were
noted long ago and used, in the past, to obtain various types
of exact results.22–24 Those results and others are described
and reviewed in Chap. 5 of Ref. 3. In the case under consid-
eration here, the field properties decribed above are a conse-
quence of the columnar symmetry of the microstructure, and
they lead to some exact results for the macroscopic response.

These results were obtained before in special cases.14 We
now proceed to obtain them in the most general case, where
no assumptions are made on the form of the constituent con-
ductivity tensors. In this way, exact relations are found
among the components of the macroscopic conductivity ten-
sor ŝe for the case of a two-constituent composite. These
relations are very general, and hold regardless of the specific
form of the constituent conductivity tensors.

A. Relations among elements ofŝe

First of all, if we apply boundary conditions such that
Ex;0, then the electric potentialfsy,zd is also independent
of x and is the solution of a 2D conductivity problem involv-
ing the 232 submatrixŝ2D of y andz components ofŝ:

0 = =2D · ŝ2Dsy,zd · =2Dfsy,zd, =2D ; S ]

]y
,

]

]z
D .

s3.1d

Once this equation has been solved, the 232 submatrixŝ2D
sed

of y andz components of the full macroscopic conductivity
tensorŝe can be calculated in the usual fashion, using Eq.
s1.2d:

sab
sed = kJa

sbdl = o
c=y,z

Ksac
]fsbd

]rc
L, a = y,z. s3.2d

In the case of a two-constituent composite, the local conduc-
tivity tensor ŝsr d can be written in terms of the constituent
conductivity tensorsŝ1,ŝ2 and the characteristic or indicator
function u1sr d, which equals 1 whenŝsr d=ŝ1 and 0 other-
wise

ŝsr d = ŝ1u1sr d + ŝ2f1 − u1sr dg

= ŝ2 − dŝu1sr d, dŝ ; ŝ2 − ŝ1.

Using this language, we can write the following expression
for all the components ofŝe:

dsab
sed ; sab

s2d − sab
sed = o

g=x,y,z
dsagKu1

]fsbd

]rg
L . s3.3d

Whenb denotes a direction that is perpendicular tox, we
note that]fsbd /]x;Ex

sbd;0 snote that we again adopt the
unconventional convention according to whichE= =fd,
since the volume-averaged electric field satisfieskEsbdl=eb.
Therefore thesy,zd-plane components ofŝe depend only on
the four different volume averagesku1]fsbd /]ral, a=y,z,
b=y,z. These can be written in terms of the components of
the 232 sy,zd-plane submatricesdŝ2D, dŝ2D

sed of the full 3
33 matricesdŝ anddŝe:

Ku1
]fsbd

]ra
L = fsdŝ2Dd−1dŝ2D

sedgab,

and they can then be used to finddsxy
sed anddsxz

sed:
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dsxb
sed = o

c=y,z
dsxcKu1

]fsbd

]rc
L

= o
c=y,z

dsxcfsdŝ2Dd−1 · dŝ2D
sedgcb, b = y,z. s3.4d

We have thus been able to findsxy
sed and sxz

sed directly and
exactly from the results for they,z components ofŝe.

If we specialize Eq.s3.3d for the case whereb=x, and
note that]fsxd /]x;Ex

sxd;1 and thatku1l=p1 sp1 is the vol-
ume fraction of theŝ1 constituentd, we get

dsax
sed = p1dsax + o

b=y,z
dsabKu1

]fsxd

]rb
L , s3.5d

which can be rewritten as follows:

dsax
sed − p1dsax ; ksaxl − sax

sed = o
b=y,z

dsabKu1
]fsxd

]rb
L .

The two equations that this represents whena=y,z can be
solved forku1]fsxd /]ral, a=y,z, in terms ofsbx

sed, b=y,z:

Ku1
]fsxd

]ra
L = o

b=y,z
fsdŝ2Dd−1gabsksbxl − sbx

sedd. s3.6d

This can be used to provide an explicit expression forsxx
sed in

terms ofsyx
sed, szx

sed:

ksxxl − sxx
sed = o

a=y,z
dsxaKu1

]fsxd

]ra
L

= o
a=y,z

o
b=y,z

dsxafsdŝ2Dd−1gabsksbxl − sbx
sedd.

s3.7d

From Eq.s3.4d we can also get the following result:

dsxb
sed − p1dsxb ; ksxbl − sxb

sed

= o
c

dsxcfsdŝ2Dd−1 · sŝ2D
s2d − p1dŝ2D − ŝ2D

seddgcb

= o
c

dsxcfsdŝ2Dd−1 · skŝ2Dl − ŝ2D
seddgcb. s3.8d

Equationss3.4d for s3.8dg and s3.7d can be described, in
words, as giving the top row ofŝe in terms of its bottom two
rows by a linear transformation. This is enough to determine
sxy

sed andsxz
sed from thesy,zd-plane elements ofŝe, but we are

still unable to calculate the left column of elements ofŝe,
namelysax

sed, a=x,y,z.
Using the theorem of Eq.s2.13d on Eqs.s3.4d and s3.8d

we now get

sdŝe
t dxb = dsbx

sed = o
c

sdŝtdxcfsdŝ2D
t d−1 · sdŝ2D

seddtgcb

= o
c

fdŝ2D
sed · sdŝ2Dd−1gbcdscx, s3.9d

dsbx
sed − p1dsbx ; ksbxl − sbx

sed

= o
c

fskŝ2Dl − ŝ2D
sedd · sdŝ2Dd−1gbcdscx.

s3.10d

Using the last equation to substitute forksbxl−sbx
sed in Eq.

s3.7d, we get

ksxxl − sxx
sed

= o
a,b=y,z

dsxafsdŝ2Dd−1 · skŝ2Dl − ŝ2D
sedd · sdŝ2Dd−1gabdsbx,

s3.11d

which can also be written as

dsxx
sed = o

a,b=y,z
dsxafsdŝ2Dd−1 · dŝ2D

sed · sds2Dd−1gabdsbx

+ p1Sdsxx + o
a,b=y,z

dsxafsds2Dd−1gabdsbxD . s3.12d

These equations expresssxx
sed directly as a linear function of

the y,z elements ofŝe.
The results of Eqs.s3.9d ands3.10d are similar in form to

Eqs.s3.4d ands3.8d, respectively, but with the ordering of the
matrices and matrix indices reversed. We note that, while the
equation pairss3.4d, s3.8d and s3.9d, s3.10d are equivalent
when all the conductivity tensorssi, i =1,2,e are symmetric,
in the general case the two sets of equations are different and
independent of each other. When supplemented by Eq.s3.11d
or s3.12d, the resulting five independent equations express
the five elements in the first row and column of the 3D mac-
roscopic conductivity tensorŝe in terms of the other four
elements ofŝe. The latter are just the elements ofŝe in the
sy,zd plane, i.e., the 2D macroscopic conductivity tensor in
that planeŝ2D

sed.

B. Relations among elements ofr̂e

In some cases it is more convenient to express the exact
relations that follow from the columnar nature of the micro-
structure in terms of the elements of the macroscopic resis-
tivity tensorr̂e=1/ŝe. Since the transformation fromŝe to r̂e
is nonlinear, one might have expected that the linear relations
found above, among different elements ofŝe, would translate
into more complicated nonlinear relations among different
elements ofr̂e. Somewhat surprisingly, the relations among
different elements ofr̂e are also linear and quite simple in
form, as we now proceed to show.

In order to do this we first note thatr̂e satisfies relations
that are formally analogous to the relations satisfied byŝe
itself:

kEl = kr̂ ·Jl = r̂e · kJl s3.13d

dr̂e · kJl = dr̂ · ku1Jl, s3.14d

dr̂e ; r̂2 − r̂e, dr̂ ; r̂2 − r̂1. s3.15d

BecauseEx=const, we can omit the first two volume aver-
ages in thex component of Eq.s3.13d, and then replace them
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by averages over the subvolume of only one constituent. In
this way we get

o
a=x,y,z

rxa
sedkJal = Ex = o

a=x,y,z

rxa
s1d

p1
ku1Jal, s3.16d

wherep1 is the volume fraction of ther̂1 constituent. Solving
Eq. s3.14d for ku1Jl and substituting in Eq.s3.16d we get

o
a=x,y,z

rxa
sedkJal = o

a=x,y,z
o

g=x,y,z

rxg
s1d

p1
fsdr̂d−1 · dr̂eggakJal,

which must hold whatever the values ofkJal. Therefore

p1rxa
sed = o

g=x,y,z
rxg

s1dfsdr̂d−1 · dr̂egga

= fr̂1 · sdr̂d−1 · dr̂egxa, a = x,y,z. s3.17d

If we now apply Eq.s2.14d to the last result, we get

p1rax
sed = p1sr̂e

t dxa = fr̂1
t · sdr̂td−1 · dr̂e

t gxa

= fdr̂e · sdr̂d−1 · r̂1gax, a = x,y,z. s3.18d

Equations3.17d provides three equations that express each
element in the top row of the matrixr̂e as a linear function of
the other two elements in the same column of that matrix.
Similarly, Eq. s3.18d provides three equations that express
each element in the left column of that matrix as a linear
function of the other two elements in the same row.

It is straightforward to show that switching the roles of
the two constituents 1↔2 in Eqs.s3.17d ands3.18d does not
lead to independent new relations—in each case the sum of
the two equation sets is a set of three identitiessrecall that
under this switch, dr̂; r̂2− r̂1→−dr̂ and dr̂e; r̂2− r̂e
→dr̂e−dr̂d. For example, if we add to Eq.s3.17d the equa-
tion obtained by switching the roles of the two constituents,
we get

rxa
sed ; p1rxa

sed + p2rxa
sed

= fr̂1 · sdr̂d−1 · dr̂egxa − fr̂2 · sdr̂d−1 · sdr̂e − dr̂dgxa

; rxa
s2d − drxa

sed.

Clearly, the first and last expressions in this chain of equali-
ties are identical: They are always equal, irrespective of the
actual value ofrxa

sed, which depends on details of the micro-
structure.

IV. SOME SPECIAL CASES

A. Normal conductor/perfect insulator mixture

A special case where Eqs.s3.17d ands3.18d lead to simple
results is when the No. 2 constituent is a perfect insulator,
i.e., r̂2→`, but all elements ofr̂e remain finite. In that case
dr̂> r̂2 anddr̂e> r̂2, and we get

p1rxa
sed = rxa

s1d, p1rax
sed = rax

s1d, a = x,y,z. s4.1d

These results hold whenever the No. 1 constituent percolates
in the sy,zd plane. When that constituent does not percolate
in the sy,zd plane, then no macroscopic current can flow in

that plane. Consequently thesy,zd-plane components ofr̂e

diverge and the reduction of Eqs.s3.17d and s3.18d to Eq.
s4.1d must be done with care. When this is carried out, one
finds that Eq.s4.1d remains valid only fora=x. For a=y,z
we then find

p1rxa
sed = rxa

s1d − lim
r̂2→`

o
b=y,z

o
b=x,y,z

rxb
s1dsr̂2

−1dbbrba
sed for a = y,z,

s4.2d

p1rax
sed = rax

s1d − lim
r̂2→`

o
b=y,z

o
b=x,y,z

rab
sedsr̂2

−1dbbrbx
s1d for a = y,z.

s4.3d

In contrast with Eq.s4.1d, these last results depend on details
of the 2D microstructure and on the form ofr̂2, which deter-
mine the values of the two limits

lim
r̂2→`

sr̂2
−1 · r̂edba, lim

r̂2→`
sr̂e · r̂2

−1dab. s4.4d

Applied to this case, Eq.s3.4d leads to

sxa
sed = o

c=y,z
sxc

s1dfsŝ2D
s1dd−1 · ŝ2D

sedgca for a = y,z.

Applying Eq. s3.9d to this case, we get

sax
sed = o

c=y,z
fŝ2D

sed · sŝ2D
s1dd−1gacscx

s1d for a = y,z.

Finally, applying Eq.s3.11d to this case, we getsnote that
ŝ2=0d

p1sxx
s1d − sxx

sed

= o
a,b=y,z

sxa
s1dfsŝ2D

s1dd−1 · sp1ŝ2D
s1d − ŝ2D

sedd · sŝ2D
s1dd−1gabsbx

s1d.

s4.5d

From the above three equations it follows, as expected, that
all the elements ofŝe in the first row and the first column are
usually nonzero, except when thesy,zd-plane elements hap-
pen to vanish, due to nonpercolation of the nonzero conduc-
tor ŝ1. In that case,sxa

sed=sax
sed=0 for a=y,z, and only

sxx
sed = p1Hsxx

s1d − o
a,b=y,z

sxa
s1dfsŝ2D

s1dd−1gabsbx
s1dJ s4.6d

is nonzero. It can be verified that the last equation is also a
special case of Eq.s4.1d. However, while the form of Eq.
s4.1d remains valid forrxx

sed even when they,z elements ofŝe
are nonzero, Eq.s4.6d will revert to Eq.s4.5d in that case.

B. Normal conductor/perfect conductor mixture

Another special case occurs when the No. 2 constituent is
a perfect conductor, i.e.r̂2→0. In that casedr̂>−r̂1 and
dr̂e>−r̂e, and we get

p1rxa
sed = rxa

sed ⇒ rxa
sed = 0 for any value ofp1 , 1. s4.7d

In order to determine the other elements ofr̂e, we first
note that thesy,zd-plane elements ofŝe will all be finite if
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the perfect conductorr̂2 does not percolate in that plane.
Assuming that the inverse ofr̂2 an be written simply asŝ2

= limA→` AÎ+Ôs1d, whereÔs1d is an order 1 333 matrix,
Eq. s3.4d leads to

sxb
sed = sxb

s1d for b = y,z.

Turning to Eq.s3.9d we then find

sax
sed = sax

s1d for a = y,z.

Although the latter result is not very useful in practice, since
a finite electric field componentEx cannot be imposed in the
presence of perfectly conducting cylindrical inclusions, we
shall see immediately that it does lead to some other useful
results. To wit, Eq.s3.11d leads to

sxx
sed > p2sxx

s2d → `,

while all the other elements ofŝe are finite. Therefore, when
we invert ŝe to get r̂e, we find

rxa
sed = rax

sed = 0 for a = x,y,z, s4.8d

rab
sed = fsŝ2D

sedd−1gab for a = y,z andb = y,z. s4.9d

Equationss4.1d, s4.7d, and s4.8d were known before for
special forms ofr̂1—see Refs. 14 and 15. Here we have
obtained them in full generality, without any assumptions
regarding the form ofr̂1.

C. sxy„r …Æsxz„r …Æ0

Yet another special case is whensxy
sid=sxz

sid=0 in both con-
stituents i =1,2. It then follows from Eq.s3.4d that also
sxy

sed=sxz
sed=0. From these it follows thatrxy

sid=rxz
sid=0 andsxx

sid

=1/rxx
sid for i =1,2,e, and thatfsdr̂d−1gxy=fsdr̂d−1gxz=0 and

fsdr̂d−1gxx=1/drxx. It then follows from Eq.s3.17d that

p1rxx
sed = rxx

s1ddrxx
sed

drxx
⇒ sxx

sed = p1sxx
s1d + p2sxx

s2d = ksxxl.

s4.10d

Using Eq. s1.2d, it is easy to see that the resultssxy
sed=sxz

sed

=0 andsxx
sed=ksxxl remain valid for any number of constitu-

ents, if sxy
sid=sxz

sid=0 in all of them.

D. syx„r …Æszx„r …Æ0

A fourth special case is whensyx
sid=szx

sid=0 in both con-
stituentsi =1,2. Inthis case it is easy to see thatfsxd;x and
consequently thatEsxd;ex, i.e., Ex

sxd;1 and Ey
sxd;Ez

sxd;0
everywhere. Therefore

sax
sed = kJa

sxdl = o
g=x,y,z

ksagEg
sxdl = ksaxl = ksxxldax,

a = x,y,z.

It follows that ryx
sid=rzx

sid=0 andsxx
sid=1/rxx

sid for i =1,2,e, and
that fsdr̂d−1gyx=fsdr̂d−1gzx=0 andfsdr̂d−1gxx=1/drxx. It then
also follows from Eq.s3.17d that Eq.s4.10d is again valid.

For an arbitrary number of constituents, all of which satisfy
syx

sid=szx
sid=0, Eq. s1.2d again leads to the result thatsyx

sed

=szx
sed=0 andsxx

sed=ksxxl remain valid.

E. Other special cases

A subcase of the above two is the elementary case where
both s1 and s2 are scalar tensors, thenŝe is a symmetric
tensor andx is one of its principal axes, hencesxy

sed=syx
sed

=sxz
sed=szx

sed=0. It is well known that the conductivity along
the columnar axis is then given bysxx

sed=p1s1+p2s2, where
p1, p2=1−p1 are the volume fractions of the two constitu-
ents. In this special case too, the result forsxx

sed is easily
generalized to an arbitrary number of constituents, leading to
Eq. s1.3d. A similar generalization of the above exact results
to columnar composites made of more than two constituents
does not seem possible in the case of constituent conductiv-
ity tensors of a more general type than the ones considered
here.

A fifth special case is whenŝ1 andŝ2 both correspond to
isotropic conductors in the presence of a magnetic field that
is perpendicular to the columnar axis, and if that field lies
along a symmetry axis or principal axis of the planar micro-
structure, which we denote asz. In this case, the component
resistivities have the form

r̂i = 1r'
sid − rH

sid 0

rH
sid r'

sid 0

0 0 ri
sid 2, i = 1,2,

while the macroscopic resistivity has the form

r̂e = 1rxx
sed − rH

sed 0

rH
sed ryy

sed 0

0 0 ri
sed 2 ,

where the componentsrH
s1d, rH

s2d, rH
sed denote the constituent

and the macroscopic Hall resistivities, respectively.
Due to the symmetry of this problem, the only nontrivial

result from Eq.s3.4d is obtained whenb=y, which leads to

dsxy
sed =

dsxy

dsyy
dsyy

sed. s4.11d

Again, due to the symmetry of this problem, this result also
determines the value ofdsyx

sed=−dsxy
sed, and this can be used in

Eq. s3.7d to get

ksxxl − sxx
sed =

dsxy

dsyy
sksyxl − syx

sedd. s4.12d

These exact linear relations obviously suffice to determine
both sxx

sed and sxy
sed=−syx

sed;sH
sed from syy

sed, which is deter-
mined by solving the 2D problem in thesy,zd plane. When
these results are translated into results for the elements of
r̂e=1/ŝe, they reduce to the following linear relations among
rxx

sed, ryy
sed, andryx

sed=−rxy
sed;rH

sed:

0 = ss'
s2ddsH − sH

s2dds'dryy
sed

+ sks'lds' + ksHldsHdrH
sed − dsH, s4.13d
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0 = ss'
s2ddsH − sH

s2dds'drH
sed

− sks'lds' + ksHldsHdrxx
sed + ds'. s4.14d

Again, the linear character of these relations is noteworthy,
since the transformation from elements ofŝe to elements of
r̂e is nonlinear.

Equations3.17d with a=x provides a linear relation be-
tween rxx

sed and ryx
sed;rH

sed, which is the same as Eq.s4.14d,
while with a=y it provides a linear relation betweenrxy

sed

;−rH
sed and ryy

sed, which is the same as Eq.s4.13d, and with
a=z it becomes the trivial identity 0=0. The relations of
Eqs. s4.13d and s4.14d were first derived, from an equation
like Eq. s3.17d, in Ref. 14, where they appear, in a somewhat
different explicit form, as Eqs.s2.9d and s2.8d of that refer-
ence. This case has also been discussed in Milton’s book.3

A sixth special case is the 1D laminar microstructure,
which was the subject of Sec. II. In that case, there are two
perpendicular columnar axes, which can be chosen at will in
the laminar plane. This case will not be discussed any further
here.

V. SUMMARY

We obtained exact simple expressions for all components
of ŝe in the case of a parallel slab microstructure or lowest
order laminate. No assumptions are necessary regarding the
forms of the constituent conductivity tensors, which can be
nonscalar, nonsymmetric, and complex valued. The parallel
slab microstructure is the basic building block of higher-
order laminates.2,3 For this reason it is hoped that these ex-
pressions will have application in the further discussion of
such microstructures, especially in the presence of a mag-
netic field. We also obtained exact relations among different
elements ofŝe in the case of two-constituent columnar com-
posites. Again, no assumptions had to be made regarding the
forms of the constituent conductivity tensors. The relations
that were obtained suffice to determine all the elements ofŝe
andr̂e, once the 2D conductivity problem has been solved in
the plane perpendicular to the columnar axis and the corre-
sponding 2D components ofŝe have been computed. There-
fore, the exact relations among different elements ofŝe and
among different elements ofr̂e, in the case of two-
constituent columnar composites, will hopefully also be use-
ful in further studies of such microstructures, especially in
the presence of a magnetic field.
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APPENDIX: PROOF OF A THEOREM

Given a heterogeneous medium with local conductivity
tensor ŝsr d, the elements of the macroscopic conductivity
tensor ŝefŝg can be calculated once one knows the local
potential field under different boundary conditions—see Eq.
s1.2d. We note that Eq.s1.2d is valid whatever is the form of
ŝsr d. This includes matrices with complex elements, and
nonsymmetric as well as non-Hermitian matrices. Starting
from an expression that is equivalent to that equation, we
first obtain a more symmetric expression for the elements
of ŝe:

sab
sed = ea ·

1

V
E dVŝ · = fsbd =

1

V
E dV= f0

sad · ŝ · = fsbd.

sA1d

Here ea is the unit vector along the directiona, while
f0

sadsr d; ra is a linear potential function that satisfies the
same boundary conditions as the true potential function
fsadsr d. These functions have the following propertiess]V
denotes the system surfaced:

ea = = f0
sad = k=fsadl

fsadsr d = f0
sadsr d = ra for r P ]V.

The last integral in Eq.sA1d can be processed by using
Green’s theorem to transform back and forth from volume to
surface integration:

E
V

dV = f0
sad · ŝ · = fsbd

=E
V

dVf= · sf0
sad · ŝ · = fsbdd − f0

sad = · sŝ · = fsbddg

=R
]V

dA · f0
sad · ŝ · = fsbd −E

V

dVf0
sad = · sŝ · = fsbdd

=R
]V

dA · fsad · ŝ · = fsbd −E
V

dVfsad = · sŝ · = fsbdd

=E
V

dV= fsad · ŝ · = fsbd.

In line 4 we were able to replacef0
sadsr d by fsadsr d: In the

first integral this is due to the fact that these two functions
are the same on the system surface]V, while in the second
integral this is due to the fact thatfsadsr d is multiplied by the
vanishing expression

= · sŝ · = fsbdd = 0. sA2d

In this way we obtain the following symmetric expression
for sab

sed:

sab
sed =

1

V
E dV= fsad · ŝ · = fsbd. sA3d
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If we now replaceŝsr d everywhere by its transposeŝtsr d,
then the potential function, denoted byft

sadsr d, satisfies the
following partial differential equation and boundary condi-
tion:

= · sŝt · = ft
sadd = 0, sA4d

ft
sad = ra for r P ]V. sA5d

Although the boundary conditions onfsad and ft
sad are the

same, these two potential functions satisfy different partial
differential equations, namely, Eqs.sA2d andsA4d. Therefore
these two potential functions are different. Nevertheless, in
Eq. sA1d we can also replacef0

sad by ft
sad, after following a

back-and-forth Green-theorem procedure similar to the one
which leads from Eq.sA1d to Eq. sA3d. We can then write

E dV = fsad · ŝ · = fsbd

=E dV = ft
sad · ŝ · = fsbd

=E dV = fsbd · ŝt · = ft
sad

=E dV = ft
sbd · ŝt · = ft

sad,

from which it immediately follows that

sab
sedfŝg = sba

sedfŝtg,

which is the same as Eq.s2.13d. We note that this theorem
holds without any restrictions on the form of the variousŝ
matrices. In particular, they do not have to be symmetric or
hermitian or real.

We noted earlierssee Sec. II Ad the relation of this theo-
rem to Onsager’s theorem, which arises from invariance of
microscopic kinetic phenomena under time reversal. We
stress that, as proven here, Eq.s2.13d does not depend on any
symmetries of microphysical processes.
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