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Exact linear relations are found among different elements of the macroscopic conductivity tensor of a
three-dimensional, two-constituent composite medium with a columnar microstructure, without any further
assumptions about the forms of the constituent conductivities: Those can be arbitrary nonscalar, nonsymmetric,
and nonreali.e., complex valuedtensors. These relations enable all the elements of the macroscopic conduc-
tivity tensor of such a system to be obtained, from a knowledge of the macroscopic conductivity tensor
components only in the plane perpendicular to the columnar axis. Exact linear relations are also found among
different elements of the macroscopic resistivity tensor of such systems. Again, these relations enable all the
elements of the macroscopic resistivity tensor of such a system to be obtained, from a knowledge of the
macroscopic resistivity tensor components only in the plane perpendicular to the columnar axis. We also
present simple exact expressions for all elements of the macroscopic conductivity tensor of a three-dimensional
composite medium with a parallel slabs or laminar microstructure and an arbitrary number of constituents,
again without making any assumptions about the forms of the constituent conductivities, which can be arbitrary
nonscalar, nonsymmetric, and nonreal tensors. The latter results were obtained previously, but their great
generality and extreme simplicity were not realized by most physicists.
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l. INTRODUCTION current density are denoted k) (r), E®(r), andJ@(r),

. . ... _and we can write
In a composite medium, the relevant heterogeneity is al-

ways on a length scale that is much greater than any micro- © @ @

scopic length, e.g., atomic size, mean free path, Fermi wave- o= = 2 (0,EP), (1.2)
length. Therefore the “microphysical properties” are those of yXY2

a continuous medium, and are characterized by “local val- ) )

ues” of material parameters such as electrical conductivity?here () denotes averaging over the entire volume of the
and electrical permittivity. On length scales that are everfomposite medium. This definition is valid for the general
much greater than these heterogeneity length scales, the €@S€ where no restrictions are imposed on the form of the
sponse of the medium can be characterized by “macrdocal conduc_tlwty tensorr(r), i.e., it can be nopscalar and
scopic” or “bulk effective” values of those same physical "OnSymmetric, and its elements can have arbitrary complex
parameters. To be more precise, the macroscopic or bulalues. _ . _

effective conductivity tensod, is defined as providing the ~ Perhaps the simplest possible microstructures for a com-
linear relation between the volume averaged electric fieldosite are the “parallel cylinders” and the “parallel slabs” or

(E) and current densityd), “lowest-order laminate” microgeometries. In the case of
these microgeometries there exist very simple exact expres-
(J)=06-(E). (1.1 sions for the macroscopic conductivity and macroscopic re-

sistivity, respectively, if all the constituents are characterized
Since o, is independent of the precise boundary conditionsby scalar conductivities. The conductivity along the colum-
imposed on the electrical potential, we can choose those comar axisx, which is parallel to all the interfaces of the par-
ditions such that the average electric field is the unit vectoallel cylinder microstructure, is given by the arithmetic vol-
e, alongr,. In that case the local potential, electric field, andume average of the constituent scalar conductivijes the
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volume fraction of the constituent characterized by conduceomponents of the two constituent-conductivity-tensors
tivity o) 0,,05. The forms of these functions are quite explicit, and
© — are independent of any microstructural details, apart from the
Oy —<U>—2 pio;. (1.3 columnar aspect. All dependence on details of the micro-
' structure comes in via the planar componentsof

This result also holds for parallel slab microstructure, with

scalar conductivities in all constituents,xfis any axis par- Il. ONE-DIMENSIONAL OR PARALLEL-SLAB

allel to those flat slabs. For the latter type of systems, there is MICROSTRUCTURES

also another exact result: The resistivity along the direction

perpendicular to the parallel slabs is given by the arithmetic A one-dimensional (1D) microstructure of a three-

or volume average of the constituent scalar resistivities dimensional(3D) composite medium means a stack of par-

denotes those resistivities allel slabs, which we take to be perpendicular to zheis.
Each slab is characterized by a conductivity terigprvhich
P =(p)= 2 Pip;. (1.4 relates the local electric current density) to the local elec-

tric field E(r) in the usual linear fashion far inside one of

These exact results also provide upper bounds for the prifhese slabs

cipal values of conductivity/resistivity of any composite

made of the same constituents, when all the conductivities

and resistivities are real and positive—see, e.g., Ref. 1. This simple microstructure has often been considered for the
The parallel slab microstructure has received considerablease where all theér, are scalar tensors, or wheeeis a

attention because it forms the basic building block for higherprincipal axis of all thes;’s.? In that case, the macroscopic

rank laminates, which are stacks of parallel slabs made dfesistivity along thez axis, p(e)—llaiez), is the simple arith-

lower-rank laminate$?2 For this reason it was natural to try metic average of thez constituent res|st|\/|t|e$)(l>—l/ (i)

and generalize the exact results of E(4s3) and(1.4) tothe  along that same axis,

case where the constituent conductivities/resistivities are not

simple scalar quantities. Such generalizations were indeed (e)_ 2 =S ppl) = 1 (2.1)

found—see Refs. 3 and 4. However, the simplicity and gen- <e> (') . Pipzz ' '

erality of these results have not been emphasized: In Ref. 3

the derivation appears to assume that the constituent condulé: contrast with those discussions, which are very straight-

tivity tensors are all symmetric. In Ref. 4 no such assumptiorforward and lead to the simple result of §g.1), we make

is made, but it is difficult for a nonprofessional mathemati-nN0 assumptionsegarding the nature of the constituent con-

cian to appreciate the extreme simplicity of the resultsductivity tensorso;. Thus, not only iso; allowed to be non-

Therefore, in Sec. Il below, we present those results oncgcalar, it is also allowed to be nonsymmetric, as when an

again—they are in the form of simple explicit expressionsexternal magnetic field is applied to the system. Neverthe-

for all the components o, and are obtained without mak- less, we will obtain exact expressions for all the components

ing any assumptions about the constituent conductivitiesof the macroscopic conductivity tensag that are compara-

These expressions are always valid, even when the constitily simple to Eq.(2.1).

ent conductivity tensors are nonsymmetric and have

complex-valued components. We also find some exact and A. Explicit results for &,

quite simple linear relations among the various components

of the macroscopic resistivity tenspg=1/0.

J(r)=0;-E(r) forr e V,.

i zZ

We first note that, because the system of slabs is invariant

The parallel cylinder microstructure has also receiveounder arbitrary translations alongor y, then under bound-
some attention recently, when it was found to exhibit surpris- ary conditions that would result in a uniform electric field for
ing behavior in the presence of a magnetic field that is stron@ uniform value of the local conductivity tensor, the field and

enough to make the Hall-to-Ohmic resistivity ratio greater urrent densn)E_(z) andJ() will be independent ok andy._
than 1 in at least one of the constitue® Here, too, some [ 0M VX E=0 it then follows thatE, andE, are both uni-
exact results were found earlier in special cases of columndP™™M €verywhere, while fronv -J=0 it follows thatJ, is also
microstructures made of two constituents—see Refs. 3 angiform everywhere. In a slab characterized by the conduc-
14. In Sec. Il below we generalize those results to two-IVity t€nsora;, we can write

constituent columnar composites where the constituent con- = oVE, + a')E + 0By,

ductivity tensors are entirely general, i.e., nonsymmetric and

complex. Our main results in that section are the following.where(E,); denotes the component of electric field in the;

(a) One can solve separately the two-dimensional conductivmaterial. Recalling thak,, E,, andJ, are uniform every-

ity problem in any planar section that is perpendicular to thewhere, we conclude thag,, though nonuniform, has the
columnar axis of such a composite, and use that solution teame constant value in all the slabs of typ&he same will
compute the planar components of the3 conductivity —be true forJ, andJ,. In this case we can obtain exact explicit
tensoro,. (b) In the case of a two-constituent columnar com-expressions for all components of the macroscopic conduc-
posite, all the other components of that tensor are simplévity tensor o, for a parallel slab microstructure with any
linear functions of its planar components and (afl) the ~ number of different constituent conductivity tensers
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In the most general case, whégas well as the constitu- o J<a> o U(i) @ Ora
ent tensorsg; are nonsymmetric second-rank tensors, the o~ @ ~ =2 (.) =2p +(E )i — /s
i I I i i 7z ‘J i i ZZ zz
macroscopic or bulk effective conductivity tensor is given
by! (note that we adopt the unconventional convention that (2.7
E=V o)

where we used the fact thaE(Za)>=0 for a=x,y to get the

oP final result.
o9 =3P = 2 (0,,EP) = E Tay o, |- 2.2 Elements of the formr'®, a=x,y are calculated as fol-
lows:

As already explained in the Introduction, the supersaiipt 0@ =02y = D (0a.E?)=(0,ED),

in ¢P, etc., identifies quantities obtained under boundary a=xy,z

conditions that lead to a uniform electric field that is a unit @_ @ _ .

vector along g in the case of a uniform conductivity tensor. because,” = E =0. Using Eq.(2.4) we then get

Under such boundary conditions, the volume average field in (,gez) <J(Z>> o (ED), gg; Oay

the actual composite structure also has that same value = 3 =2p (e) =2 o\ o

(EB)Y= eg. 0z % [ 0y i Oz Ozz
Consider first the component®, which is given by (2.9

Finally, elements of the forno® b =X,y andb=x,y, are
0= = 2 (0L.ED)=(0EP), (23 calculated as follows: A

a=X,y,z
0= = 2 (0aER) = (0w +(0uEL),

where the last result follows from the fact tth) (z) e axyz : w

=0 everywhere. Becauslé) is in fact uniform everywhere,

(b) —
we can omit the volume averaging in E@.3), writing in- becausdc, =1, and the onIy other nonvanishing component

of E® is E(b Extracting (E\")); from Eq. (2.6), and using

stead
this value in the last equation, we can now write
© = 32 = o) ED), (2.4) © _ )
' Ozb ~ 92p
ab - <0'ab> + E Pioa (I) : :
where(E(Z)I is the uniform value oE(Z in the slabs of type 752
i. Recalling that the average &’ is 1 since(E@)=e,, we oy + { )0 _ ( Ta 2.9
can write ab zb o ' '
o4 7z
1 <E(zz)> 2 < > This can also be rewritten in the following alternative forms:
— = = 2.5
(e) (2) (I) ’ ( (e) (e)
o. J o lopNdoz g
2 )5 2z O_g z;z-(e)zb —<0'ab_ Z_ZGZb>’ (2.10
wherep; are the constituent volume fractions. “ “
This result is reminiscent of the well-known result of Eq.
(2.1) for the conductivity of a stack of parallel slabs of iso- (o) — 09 = Taz((y - ) (2.11
tropic conductors, or anisotropic conductors for whidils a 2z
principal axis. However, we have obtained this restthout © ©
making any assumptions about the constituent conductivity (0az= 057) (020~ 03p) 2.12
tensors Indeed, in the general case whétes nonscalar and o i '

even nonsymmetrlc H 'S not equal to the resistivity com- Note that if any one of the two bracketed differences in the

(i) (e)
ponentpzz Likewise, 1/0 is usually not equalettpzz_. numerator of the last line were omitted, i.e., replaced by 1,
Now consider elements d¥, of the form Tzar @=X.Y- then the right-hand side of E¢R.12 would be 0—this fol-

These are given by lows from Egs.(2.5), (2.7), and(2.9).
The expressions obtained fot, in this section have been
oD == D (0,,ED) = (00 + (0, £D), known at least since 1979They were also derived more
a=xy.z recently by Milton in a fashion that is valid for the general

@ _ @ case, where those tensors are nonsymmetdowever, the
sinceE," =6, for a=x,y andb=x,y. SinceJ;,” is uniform |atter aspect, which is important whenever a magnetic field is
everywhere we can again omit the volume averages in thesfresent, because antisymmetric parts then appear in the con-

expressions, ductivity and resistivity tensors due to the Hall effect, has not
_ _ been emphasized in those previous derivations: In Ref. 4 the

0(22 = J(Za) = a(z';+ U(Z'Q(E(Za))i. (2.6) results foro, are not presented in a form that is very trans-

parent for most physicists, while the derivation in Ref. 3

Finally, using Eq.(2.5), we can write seems at first sight to be limited to the symmetric case. Our
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derivation, though not essentially different from that of Ref.  In this section we will denote by and EY® the local
3, emphasizes the general validity of the results for arbitrarcurrent density and electric field that result when the bound-
constituent conductivity tensors, and presents the results fary conditions are such that the volume-averaged current
o, in a simple explicit form. It also emphasizes some of thedensity is equal to the unit vectey,. We can then write the
basic physical consequences of the laminar nature of thillowing expression for an arbitrary component of the mac-
microstructure—for example, the fact that all components ofoscopic resistivity tensop,:
both E and J have constant values in each type of slab,
irrespective of the properties of the different constituent con- PG =EP)= 2 (padVP). (2.16)
ductivity tensors. XYz

The fact that Eq(2.7) turns into Eq.(2.8) when we re-
place all the conductivity tensors by their transposes is
special case of the following general theorem: If, in a het-
erogeneous medium, the local conductivity tensdgr) is
replaced at every point by its transpasér), then the mac-
roscopic conductivity tensof, also gets replaced by its
transposer;

?ecause](zjx)z\)(zjy)zo everywhere and, and E, are uni-
orm everywhere, while), andJ, have uniform values$J,);,
(Jy); in all the slabs of type, we get from this

— Wb — i Jb) — —
pH=EY”= > pl), a=xy, b=xy.

C=X,y

N At ALrA Note that the volume averaging has been omitted here. If we
ado’]=0da]. (213 fix i, then these are two linear algebraic equationgJgP),,
Taking the inverse of both sides of this equation we get a(J(bi))i, which can be solved to yield
similar result for the macroscopic resistivity tensar as
functional of the transposed local resistivity tenpir): @99, = X0 [(PSD) e,
(i)

c=X,y
pd p1=pdpl. (2.14 , .
wherep, is the 2< 2 submatrix of thex,y components of

. Tzefr? theorerps arg not Widsly |I(<nown,t. alnd |Wef h?v?[ NOfhe full 3D resistivity matrixp;. This solution can be used in
ound them mentioned in any book or article. In fact, it is : ©)
y the expression fop,, to get

possible that Eqs(2.13 and (2.14) constitute a previously
unknown theorem that we have discovered. For this reason, (© = (EVa)y = E ( b](Ja)>
we present a proof of E42.13 in the Appendix. We note, in Pza z Pzr’p

b=x,
passing, that this theorem can also be related to Onsager’s Y
theorem on the dependence of conductivity on an applied =2 2 (pulbdbors. a=xy. (217
magnetic fieldH :2 b=x,y c=xy
&(—H) = 6'(H). (2.15 Applying Eqg.(2.14) to the last result, we can immediately

_ . _ o get a similar expression fq;f,fz):
Since this relation holds for the local conductivity tensor

o(r), as well as for the macroscopic conductivity tenégr 09 = (PUpDza= (PdPD)za

Eq.(2.13 follows as an inevitable conclusion. Notwithstand- At foAt ln s rat

ing this remark, the proof, which is provided in the Appen- = 2 2 (A (050) o (P P Deca

dix, shows that Eqs(2.13 and (2.14 are independent of b=xy e=xy

any symmetry considerations that characterize kinetic phe- = > > PP oo - (2.18

nomena and microphysics, such as invariance under time b=x,y C=x,y

reversal. Such symmetry considerations lie at the basis of

Onsager’s theorerft. We note that, in the general case when at least some @ the

are nonsymmetric, these relations are independent of Eq.

B. Exact relations among elements of, (2.17).

If, instead of focusing on the conductivity tens@rsand If we speggﬂﬂze Eq(2.16 to the casex=x,y, B=z, re-
&., we focus on the resistivity tensopsand ., we can also  c2lling thatJ;“=1 and thatg,,E, are uniform everywhere,
find some exact linear relations among the different compoWhile Jx, Jy are uniform in all slabs of the same typave get

nents ofp.. Although the existence of exact relations amon 4 .

the elempgnts iR gan be expected from the exact results o? P =B =pl+ 2 I3 a=xy.

Sec. Il A for &, it is not obvious that there would exist bexy

linear relationsof this type. These relations are not as nu-Note that we have omitted the volume averaging here. For
merous as the ones we found fog; therefore they do not every i, this constitutes two coupled linear equations for
enable us, in ggnergl,_ to compute the componentpof (Jf(JZ))i, (J;JZ))i, which can be solved to yield

However, their simplicity should make them useful some-

times. We start by recalling that, becauseandE, are uni- (Jg\]z))i =3 [(’3% _1]ab(P(e) (i)

form everywhere and, is uniform in all slabs of the same bexy bz = Poz)-
type, J, andJ, will also have uniform values in all slabs of
the same type. This result can be used in the expressionﬁ@r

035120-4



MACROSCOPIC CONDUCTIVITY TENSOR OF A THREE- PHYSICAL REVIEW B 71, 035120(2005

PO =(EV = (o + S (pl?) These results were obtained before in special cési¢e
b=xy now proceed to obtain them in the most general case, where
no assumptions are made on the form of the constituent con-
to get ductivity tensors. In this way, exact relations are found
C a1 _© among the components of the macroscopic conductivity ten-
(P =p52 = 2 2 (palPa)oclpez = pE2)), sor &, for the case of a two-constituent composite. These

b=x,y c=x, ! o
e relations are very general, and hold regardless of the specific

. © form of the constituent conductivity tensors.
= E E (P20~ P20) (P2D)bcPez = Pz ) -

b=x,y c=x,y
A. Relations among elements ofr,
(2.19

) 32 First of all, if we apply boundary conditions such that
The last line results from the fact thad;")=0, a=x,y. g, =0, then the electric potentia(y,2) is also independent
Therefore, the last line vanishes if the first bracke,  of x and is the solution of a 2D conductivity problem involv-

—p(zi)) is omitted along with the sum ovér. ing the 2x 2 submatrixa,p of y andz components ofr:
> (zb)odpez= ) = 0. (220 . 3 9
C=xXy ’ 0=Vap-020(Y,2) - Vopd(y,2), Vop= (o’f_y’&_z)
Applying Eq. (2.14) to this result shows that the last line of (3.1)
Eq. (2.19 also vanishes if the last brackegt.,~ p(;)) is omit-
ted, along with the sum oven Once this equation has been solved, the2submatrixi'
(@Al \ of y andz components of the full macroscopic conductivity
b_zx: (P2~ Pzb) (P2p)bd = 0. (221 tensoré, can be calculated in the usual fashion, using Eq.
g (1.2):
(e) (b) v
Ill. TWO-DIMENSIONAL OR COLUMNAR Tab={Ja") = gz Tacy ~ [ BTIE (3.2

MICROSTRUCTURES
A two-dimensional(2D) columnar microgeometry of a In the case of a two-constituent composite, the local conduc-

three-dimensional3D) composite medium means that there tivity tensor a(r) can b? written in terms of the constituent
exists a fixed direction, which we take to be thaxis, such conductivity tensorsr, o, and the characteristic or indicator
that all planar sections perpendicular to that direction aréu_”Ct'On 6,(r), which equals 1 whew(r)=a and O other-
identical. Thus, the interfaces between different constituent%/S€
are surfaces that can be constructed by attaching a straight A R R
line, parallel tox, at every point of every curve in that sec- a(r) = 016,(r) + 05[1 - 64(r)]
tion. _~ ~ A~ A
. L. =0, 000.r), o60=0,—0y.

In a columnar microstructure, where the macroscopic di- 02~ 06y(r) MR
mensions are much greater than any of the heterogeneitysjng this language, we can write the following expression
Iength scales, and the bo_undary conditions yvould result ifgr all the components of:
uniform values ofE andJ if there were no microstructure

(i.e., when the local conductivity tensor has a uniform value (9¢(ﬁ)
everywherg the local value€(y,z) andJ(y,z) of the elec- S0 =0-0'%= 2 S0\ —— (3.3
tric field and current density, like those of the local conduc- y=XY2 I’y
tivity tensor a(y, 2), are uniform along the columnar axis Whenb denotes a direction that is perpendiculaxtave

Furthermore, from the fact that X E=0, it follows that the 5t thatﬁqb(b)/axsE(b)EO (note that we again adopt the
X

columnar component of the local electric field in fact has a,nconventional convention according to whi@=V ¢),
uniform value everywheré, = const. These properties are gince the volume-averaged electric field satisted)) =e;.
examples of a fortunate situation wherein, in spite of ther, . afore the(y,2)-plane components aF, depend only on
heterogeneous microstructure, certain physical fields Nevefr . tour differer;t volume averages a¢(b)e/(7r ), a=y,z
theless have values that are independent of some of the cp- : : ! ar 7
ordinates in each constituent, or even have uniform value =¥,z These can be written n tefms Ot }Qe components of
throughout the entire system volume. Such occurrences wefd€ 2X 2 (¥,2)-plane submatricesa,p, doyp of the full 3
noted long ago and used, in the past, to obtain various type& 3 matriceséo and doe:
of exact resultd2-24 Those results and others are described < e
61

ar,

and reviewed in Chap. 5 of Ref. 3. In the case under consid-
eration here, the field properties decribed above are a conse-
quence of the columnar symmetry of the microstructure, and
they lead to some exact results for the macroscopic responsand they can then be used to fiﬁdf(? and 6052:

> = [(8675p) L0553 Labs
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d’(b)
ore
= 2 50')«:[(5‘}2D)_1 : 5&(2%]%1

c=y,z

(e) = 2 50'xc< 0——

c=y,z

b=y,z. (3.9

We have thus been able to flmey and a(e) directly and
exactly from the results for the,z components ofr.

If we specialize Eq(3.3) for the case wherg=x, and
note thatdg®/ax=EX'=1 and tha6;)=p, (p; is the vol-
ume fraction of ther; constituen), we get

(X)
9% > (3.5

50—55)2 = pléa-ax + E 5O-ab< 01
b

b=y,z
which can be rewritten as follows:

d
0'(;)2— 2 50ab<01 ¢b >

b=y,z

50{2 - pl‘so-ax = <O-ax> -

The two equations that this represents whery,z can be
solved for(6,0¢¥/ar ), a=y,z in terms ofo', b=y,z

&ra
This can be used to provide an explicit expressmm@rm

o
terms ofayx,
PP >
dary

o
0')((?2 = 2 5a'xa< oO0h—

=2 2 60y (8520) a0 = o15)).
a=y,z b=y,z

= 2 [(6620) Nap{ om0 — oi)).

b=y,z

(3.6)

(00 ~

a=y,z

(3.7

From Eq.(3.4) we can also get the following result:

50' — P160y, = (0 —

=, 80, (805p) 7L (653 = PL66op = T5D) leo
(o}

O.Xb

=2 60,d (6520) - (G20 = 5] (3.8)
Cc
Equations(3.4) [or (3.8)]] and (3.7) can be described, in
words, as giving the top row af, in terms of its bottom two

rows by a linear transformation. This is enough to determine

0'¥ ando'® from the(y,2)-plane elements of,, but we are
Stlill unable to calculate the left column of elementsgf
namelyoax, a=X,Y,Z
Using the theorem of Eq2.13 on Egs.(3.4) and (3.9
we now get

(&}te)Xb_ 50—82 = E (5&t)xc[(5a't2D ( (e) t]cb

c

= 2> [86%3 - (8620) Mpeboex, (3.9
C

PHYSICAL REVIEW B71, 035120(2005

— P1601 = () — T

=2 [(Gap) -

55) - (8020) pedTex:

(3.10

© in Eq.

Using the last equation to substitute far,)— o,

(3.7, we get
<0'xx> -
= 2 03 (80) ™

a,b=y,z

- (Gpp) = 5%) - (8530) Tapd0y,

(3.1)

which can also be written as

508 = 3 80y (86yp) - 6653 - (80730) Oy
ab=y,z
+p1(6axx+ > 5oxa[(aazo)-1]ab&rbx). (3.12
a,b=y,z

These equations expree§f directly as a linear function of
they,z elements of..

The results of Eq93.9) and(3.10 are similar in form to
Eqgs.(3.4) and(3.9), respectively, but with the ordering of the
matrices and matrix indices reversed. We note that, while the
equation pairg3.4), (3.8 and (3.9), (3.10 are equivalent
when all the conductivity tensors, i=1,2 e are symmetric,
in the general case the two sets of equations are different and
independent of each other. When supplemented byZE#1)
or (3.12, the resulting five independent equations express
the five elements in the first row and column of the 3D mac-
roscopic conductivity tensod, in terms of the other four
elements ofo,.. The latter are just the elements @f in the
(y,2) plane, i.e., the 2D macroscopic conductivity tensor in

that planed’s.

B. Relations among elements op,

In some cases it is more convenient to express the exact
relations that follow from the columnar nature of the micro-
structure in terms of the elements of the macroscopic resis-
tivity tensorp.=1/0,. Since the transformation frod, to pe
is nonlinear, one might have expected that the linear relations
found above, among different elementsogf would translate
into more complicated nonlinear relations among different
elements ofp.. Somewhat surprisingly, the relations among
different elements of are also linear and quite simple in
form, as we now proceed to show.

In order to do this we first note that satisfies relations
that are formally analogous to the relations satisfiedohy
itself:

(BEy=(p-J)=pe-(J) (3.13
Spe - (J) = dp - (6:d), (3.14
0pe= P2~ Per 0P = P2~ P1. (3.19

BecauseE,=const, we can omit the first two volume aver-
ages in thex component of Eq(3.13), and then replace them
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by averages over the subvolume of only one constituent. Ithat plane. Consequently thg,z)-plane components g,

this way we get diverge and the reduction of Eg&.17 and (3.18 to Eq.
o (4.1) must be done with care. When this is carried out, one

> PESKJ y=E, = > pﬂ<01Ja>’ (3.16 finds that Eq.(4.1) remains valid only fora=x. For a=y,z

a=x,y,z a=x,y,z P1 we then find
wherep, is the volume fraction of thg, constituent. Solving P =pa - Im X X pl(p5) popt for a=y,z,
Eq. (3.14) for (#;J) and substituting in Eq(3.16) we get x Xa P2 b=y,z B=xy.z 2 pprba
p;l) (4.2
Y A= X X (D) Opelyalda)s
a= a= 1
e ey pps =pa — im 2 2 pS(p5 el for a=y,z.
which must hold whatever the values @f,). Therefore P2 b=y.z B=xy.z
(4.3
(e) — (1) (5A)—1 . 5h
Prva = T%Zp L(3p) pelya In contrast with Eq(4.1), these last results depend on details

_ of the 2D microstructure and on the form @f, which deter-
=[p1-(9P)7 Spehw  @=xy,2. (31D mine the values of the two limits

If we now apply Eq.(2.14 to the last result, we get Al A Al
Pply Eq(2.19 9 M G2 pdga M (e pNap (44)
PP = Pu(Pe)xa =[P4 - (5P 5Pt e P2
- ] A Applied to this case, Eq3.4) leads to
=[8he- (9 Y prlee a=xyiz. (318 e 14
Equation(3.17) provides three equations that express each 0&2 =2 Ug:)[(f}(zl) - (}(2% cafora=y,z.
element in the top row of the matrpx as a linear function of &Yz

the other two elements in the same column of that matrixapplying Eq. (3.9) to this case, we get
Similarly, Eq. (3.18 provides three equations that express
each element in the left column of that matrix as a linear o= [0
function of the other two elements in the same row. c=y.z

It is straightforward to show that switching the roles of ; :
the two constituents & 2 in Egs.(3.17) and(3.18 does not (I;m:ally, applying Eq.(3.11) to this case, we gefnote that
lead to independent new relations—in each case the sum of

(6'(21) l]aca' " fora=y,z

the two equation sets is a set of three identifiezall that Py — a')((x)
under this switch, p=p,—p;——- and &pe=p,r—pe
— 1 ~ (1 ~ 1 1
— 5pe—Sp). For example, if we add to Eq3.17) the equa- = 2 o657 (p105D — 65D) - (658) Hanoin
tion obtained by switching the roles of the two constituents, ab=yz
we get (4.5
p\9 = pp® + pypl® From the above three equations it follows, as expected, that
a1 . PR . all the elements o, in the first row and the first column are
=[p1- ()™ - MPelwa = [p2 - (p) " - (e = p) Jxa usually nonzero, except when thg, z)-plane elements hap-
= pg 5p. pen to vanish, due to nonpercolation of the nonzero conduc-
tor 0. In that casea(x;—a =0 for a=y,z and only
Clearly, the first and last expressions in this chain of equali-
ties are |dent|cal They are always equal, |.rrespect|ve.of the (,(XE;() = Dl{ Uxx - U&g [(U(zla) l]abff&)} (4.6)
actual value Opra, which depends on details of the micro- ab=y,z

structure. is nonzero. It can be verified that the last equation is also a

special case of Eq4. 1) However, while the form of Eq.
IV. SOME SPECIAL CASES (4.1 remains valid fop'? even when thg/,z elements of,

A. Normal conductor/perfect insulator mixture are nonzero, Eq4.6) will revert to Eq.(4.5) in that case.

A special case where Eq®8.17) and(3.18 lead to simple
results is when the No. 2 constituent is a perfect insulator,
i.e., p,—, but all elements op, remain finite. In that case Another special case occurs when the No. 2 constituent is
Sp=p, and Sp.= p,, and we get a perfect conductor, i.ep,— 0. In that casesp=-p; and

Ope=—pe and we get

Pl =P Po =Pl @=xyz. (4D o e
These results hold whenever the No. 1 constituent percolates
in the (y,2) plane. When that constituent does not percolate In order to determine the other elementspgf we first
in the (y,2) plane, then no macroscopic current can flow innote that the(y,z)-plane elements o, will all be finite if

B. Normal conductor/perfect conductor mixture

P =p'® 0 pl® =0 for any value ofp; < 1. (4.7)
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the perfect conductop, does not percolate in that plane.

Assuming that the inverse @k an be written simply as,
=limp_., Al+O(1), whereO(1) is an order 1 X 3 matrix,
Eqg. (3.4 leads to

0@ =0l forb=y,z.

Turning to Eq.(3.9) we then find

(Tg;) = O'ax fora=y,z.

PHYSICAL REVIEW B71, 035120(2005

For an arbitrary number of constituents, all of which satisfy
(i) =
ayx(e) —0 Eq (1.2 again leads to the result tha:ty
<=0 anda —<oxx) remain valid.

E. Other special cases

A subcase of the above two is the elementary case where
both o, and o, are scalar tensors, theh. is a symmetric
tensor andx is one of its principal axes, henoef(e):o(e)

= f(e)— ‘e>—0 It is well known that the conductrvrty along

Although the latter result is not very useful in practice, sincethe columnar axis is then given b?ix—pl(fﬁpz(fz' where

a finite electric field componert, cannot be imposed in the P1, P2=1-p; are the volume fractions of the two constitu-
presence of perfectly conducting cylindrical inclusions, weents. In this special case too, the result ﬁfﬁf( is easily
shall see immediately that it does lead to some other useﬂgeneralrzed to an arbitrary number of constituents, leading to

results. To wit, Eq(3.1]) leads to

(8) ~ (2)
Oyx = P20yx — %,

while all the other elements @, are finite. Therefore, when

we inverto, to getp,, we find

p@=p®=0fora=xy,z, (4.9

PO =[(6%) ], fora=y,zandb=y,z. (4.9

Equations(4.1), (4.7), and (4.8) were known before for

special forms ofp,—see Refs. 14 and 15. Here we have

Eg. (1.3). A similar generalization of the above exact results
to columnar composites made of more than two constituents
does not seem possible in the case of constituent conductiv-
ity tensors of a more general type than the ones considered
here.

A fifth special case is whe#r, and o, both correspond to
isotropic conductors in the presence of a magnetic field that
is perpendicular to the columnar axis, and if that field lies
along a symmetry axis or principal axis of the planar micro-
structure, which we denote asin this case, the component
resistivities have the form

obtained them in full generality, without any assumptions P(t') ‘Pg) 0

regarding the form op,.

C. oyy(N=0y,(r)=0

Yet another special case is whef)=¢'"=0 in both con-
stituentsi=1,2. It then follows from Eq (3.4) that also

(e _ (e)_ (i)~ (i)
o 0. From these it follows that.) y—pxz 0 ando,,

Xy

_1/pxl) for i=1,2., and that[(sp) Iy, =[(dp) *x,=0 and
[(8p) =1/ 8pyy. It then follows from Eq.(3.17) that

S (e)
© = (HPxx o

P1oyx XX 5p (e) = P10y (1) Rl I SE <Uxx>-
Pxx

(4.10
Using Eq (1 2), it is easy to see that the resuhﬁe)— (©

=0 ando'® —(c_rxx) remain valid for any number of constrtu-

(i)
ents, 'f‘fxy—(’xz

=0 in all of them.
D. 01 =0,(r)=0

A fourth special case is When(')— ZX—O in both con-

stituentsi=1, 2. Inthis case it is easy to see thﬂt‘)—x and

consequently thaE¥=e,, i.e, EX=1 andEy =g¥=0
everywhere. Therefore
=@ = 2 (0B = (000 = (0300 Fax,
Y=XY,Z
a=XY,Z.
It follows that p"=p (')—0 anday=1/p,) for i=1,2 e, and

that [(5p)” 1]yx fl(5p) 1x=0 and [(5[) _f xx_l/‘spxx It then
also follows from Eq.(3.17) that Eq.(4.10 is again valid.

p=lel P 0| =12,
0o 0 pf
while the macroscopic resistivity has the form
A —pS 0
pe=|p5 oy 0|,
0 0 pﬁ‘*>

where the componentrs4 , p(HZ), pH denote the constituent

and the macroscopic Hall resistivities, respectively.
Due to the symmetry of this problem, the only nontrivial
result from Eq.(3.4) is obtained wherb=y, which leads to

Sy
Sayy

S0'® =

© e S (e)

(4.1
Again, due to the symmetry of this problem, this result also
determines the value oife)— Xy, and this can be used in
Eq. (3.7) to get

oo
~ o) = ()~ o).
Oyy

These exact linear relations obviously suffice to determine
both af(‘;) and af(ey):—cr;ex)— oy, from oyy, which is deter-
mined by solving the 2D problem in tHg,z) plane. When
these results are translated into results for the elements of

Pe= 1/69, they reduce to the following linear relations among

Py P\ pyy. andp —p(xey) =py;"

0= (0'(2) Soy—

(o0 (4.12)

UH &TL)P;?

+ (o )d0, +(op)doy)p — soy, (413
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0= (0?50 - 0250 ,)pl® APPENDIX: PROOF OF A THEOREM

- (o, )60, +<UH>5UH)P(XEX)+ oo . (4.14) Given a heterogeneous medium with local conductivity
tensoro(r), the elements of the macroscopic conductivity

Again, the linear character of these relations is noteworthyl€nsor ado] can be calculated once one knows the local
since the transformation from elementséafto elements of ~Potential field under different boundary conditions—see Eqg.
p. is nonlinear. (Al.2). We note that Eq(1.2) is valid whatever is the form of
Equation(3.17) with a=x provides a linear relation be- 0(r)- This includes matrices with complex elements, and
tween p® and p'®=p®, which is the same as E@4.14, honsymmetric as well as non-Hermitian matrices. Starting
X yx  H Q“’f) from an expression that is equivalent to that equation, we
y

while with @=y it provides a linear relation betwe first obtai tri ion for the el i
E—pf_f) and p;e;, which is the same as E¢4.13, and with cl);s&g ain a more symmetric expression for the elements
~

a=z it becomes the ftrivial identity 0=0. The relations of
Egs. (4.13 and (4.14) were first derived, from an equation 1 1
like Eq.(3.17, in Ref. 14, where they appear, in a somewhat ¢'%=e, - = f dVo- V ¢P == f dVV ¢ o V ¢P.
different explicit form, as Eqs2.9) and (2.8) of that refer- v v
ence. This case has also been discussed in Milton’s Book. (A1)

A sixth special case is the 1D laminar microstructure,
which was the subject of Sec. Il. In that case, there are twdlere e, is the unit vector along the directior, while
perpendicular columnar axes, which can be chosen at will inbf)“)(r)zra is a linear potential function that satisfies the
the laminar plane. This case will not be discussed any furthesame boundary conditions as the true potential function
here. ¢'9(r). These functions have the following propertigd/

denotes the system surface

V. SUMMARY e, =V qg(()a) =(V ¢(a)>
We obtained exact simple expressions for all components
of &, in the case of a parallel slab microstructure or lowest r) = gg(r) =1, forr e ov.

order laminate. No assumptions are necessary regarding the . . )
forms of the constituent conductivity tensors, which can bel "€ last integral in Eq(A1) can be processed by using
nonscalar, nonsymmetric, and complex valued. The para”eqareen’s _theorem to transform back and forth from volume to
slab microstructure is the basic building block of higher-Surface integration:

order laminate$: For this reason it is hoped that these ex-

pressions will have application in the further discussion off dvV Vg oV ¢P

such microstructures, especially in the presence of a magv

netic field. We also obtained exact relations among different

elements o&e in the case of two-constituent columnar com- :f AV - (¢ - 5.V ¢B) = gDV - (5 V ¢P)]
posites. Again, no assumptions had to be made regarding the v

forms of the constituent conductivity tensors. The relations

that were obtained suffice to determine all the elements, of :3g dA - ¢\ - 5. V ¢P) - f AV vV (o V ¢P)
andp,, once the 2D conductivity problem has been solved in N v

the plane perpendicular to the columnar axis and the corre-

sponding 2D components of, have been computeg. There- :35 dA - ¢\ @ . 5. V P _f dVgp @V (5 V ¢P)
fore, the exact relations among different elementgoénd N Vv

among different elements op,, in the case of two-

constituent columnar composites, will hopefully also be use- :f dVV ¢ @ .5V ¢P,

ful in further studies of such microstructures, especially in v

the presence of a magnetic field.

In line 4 we were able to replacg”(r) by ¢'“(r): In the
first integral this is due to the fact that these two functions
are the same on the system surfasg while in the second
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If we now replaces(r) everywhere by its transpogé(r),
then the potential function, denoted bg?")(r), satisfies the
following partial differential equation and boundary condi-

deVd,(a).(}. V¢(ﬁ)

:deVd;(B)-&t- vV p
V(' V) =0, (A4)
:f dvV V¢l .ot v g,
H=r, forr e ov. (A5) from which it immediately follows that

061 = oS5,

which is the same as E@2.13. We note that this theorem

. () (a) holds without any restrictions on the form of the variaus
Although the boundary conditions o’ and ¢, are the  ayjces. In particular, they do not have to be symmetric or
same, these two potential functions satisfy different partiah,ormitian or real.

differential equations, namely, Eq#2) and(A4). Therefore  \ye noted earlietsee Sec. Il Athe relation of this theo-
these two potentlal functions are different. NeVertheIeSS, ||?em to Onsager's theorem, which arises from invariance of
Eg. (A1) we can also replaC¢g”) by ¢Ea), after following @  microscopic kinetic phenomena under time reversal. We
back-and-forth Green-theorem procedure similar to the onetress that, as proven here, E213 does not depend on any

which leads from Eq(Al) to Eq.(A3). We can then write  symmetries of microphysical processes.
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