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We study a recently introduced Hilbert space transformation from a nonorthogonal basis to an orthogonal
basis, with an emphasis on the physical interpretation of the new Hilbert space. We find that the new Hilbert
space may be interpreted as an orthogonal basis in the samephysical space, wherein the basis overlap is
formally transferred to the hopping matrix elements in the orthogonal system. The result is a standard tight-
binding system in an orthogonal basis, with long-range hopping. The procedure is illustrated using an infinite
one-dimensional hopping system with nearest-neighbor overlap. We also use the formal procedure to solve for
the transmission characteristics of an impurity site coupled with semi-infinite leads, as an example of the
interpretive power of the ordinary tight-binding formalism in the case of transport in the presence of basis-
overlap effects: the antiresonances are produced, in the orthogonal space, by the presence of second-nearest-
neighbor hopping.
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I. INTRODUCTION

The physics of quantum mechanical problems in which
the natural physical basis is not orthogonal have proven to be
remarkably rich. In order to solve problems using standard
techniques and interpretations, many orthogonalization
schemes and tensorial methods have been formulated,1–5 and
the effects of the overlap are diverse and in many cases sur-
prising. Some examples where the overlap of basis states
provides important physics include band structure calcula-
tions in a variety of solids,6–8 molecular electronic
structure,9–11 and transport problems in molecular and
weakly-coupled nanoscale structures.5,12 Of particular inter-
est for the present paper is the recent work of Emberly and
Kirczenow sEKd,5 in which the transport properties of mo-
lecular wire systems were investigated. In this casesand in
many cases where tight-binding models are applicabled, the
natural basis consists of atomic orbitals localized to atomic
sites. The basis is not orthogonal, and in this case, neglecting
the orbital overlap causes the essential transport effects to be
missed. The method adopted by EK is not an orthogonaliza-
tion scheme per se, but rather a transformation to a new
Hilbert space with an orthogonal basis. A brief review of the
method will be given below. The keys to the Hilbert space
transformation aresid that the expansion coefficients of a
general system state are the same as those in the original
nonorthogonal basis, andsii d the effective Hamiltonian in the
new space has explicit dependence on the energy eigenvalues
associated with the state. The equivalence of the expansion
coefficients provides a bridge between the eigenstates of the
new space and the scattering states in the physical basis,
while the energy dependence of the Hamiltonian provides a
natural mathematical connection between the basis function
overlap and the physical phenomena in question, namely the
transmission antiresonances in molecular wire systems.5,13

The anti-resonance effects have also been studied via more
orthodox general tensorial methods.12

In this paper, we present an interpretation of the new
orthogonal-basis Hilbert space which provides an explicit

context for ordinary tight-binding theory: we will show that
the new basis can be interpreted via the usual orthogonal
LCAO method treated via the standard Hamiltonian, wherein
the overlap has been shifted to the hopping matrix elements.
The notion of shifting the overlap to the hopping integrals
has been alluded to previously in the context of one-
dimensional chains,8 but in the current paper we will provide
an exact derivation of the form of the hopping integrals, with
an emphasis on the equivalence to the Hilbert space transfor-
mation of EK. We will derive explicit forms of the hopping
terms for the infinite chain problem, in order to compare with
analytical results for the energy dispersion in the presence of
basis overlap, but the method is quite general and opens new
possibilities for the treatment of systems in which the over-
lap of basis states is important. As an example of the power
of the method, we will calculate the exact transmission char-
acteristics of a sing-impurity wire: an impurity site coupled
on each side to semi-infinite homogeneous leads. The trans-
mission of the system is calculated via straightforward stan-
dard methods, once the proper transformation to the equiva-
lent orthogonal space is performed. Many of the interesting
aspects of the transmission antiresonance induced solely by
the basis function overlap will be illuminated by examining
the equivalent tight-binding problem, including the physical
constraints on the occurrence of antiresonances. Most impor-
tantly, the overlap effects are explicitly transferred to the
hopping terms, and the antiresonance effects become explic-
itly dependent upon second-nearest-neighbor hopping from
the impurity site to the leads.

The rest of the paper is organized as follows. In the next
section, we review the formalism introduced by EK, and
outline the general procedure for transferring to a Hilbert
space defined by an orthogonal basis with long-range hop-
ping. In Sec. III we apply the general method to a specific
example problem: the one-dimensional linear chain with
nearest-neighbor overlap, and compare the solution to the
analytical solution obtained directly in the nonorthogonal ba-
sis. In Sec. IV, we solve for the transmissivity of the single-
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impurity molecular wire via the orthogonal tight-binding for-
malism. Finally, our results are summarized in Sec. V.

II. THEORY

In order to provide context for what follows, we will
briefly review the Hilbert space transformation of EK. We
start with the Schrödinger equation

Hucl = Eucl. s1d

Expanding the stateucl in a nonorthogonal physical basisunl
representing a single-particle state localized on atomn, we
find

ucl = o
n

anunl, s2d

Ho
n

anunl = Eo
n

anunl. s3d

The Schrödinger equation reduces to a difference equation
by acting withkmu on both sides of the equation:

o
n

Hmnan = o
n

ESmnan, s4d

whereHmn=kmuHunl, and kmunl=Smn is the overlap matrix.
Adding the identity matrixsmultiplied by Ed to both sides
and moving the matrixS to the left-hand side gives

o
n

sHmn− EsSmn− dmnddan = Eam. s5d

EK proposed that Eq.s5d is now in the form of an eigen-
value problem formulated in anorthogonal basishun8lj. The
goal now is to diagonalize a new energy dependent Hermit-
ian operatorHE with

Hm8n8
E = Hmn− EsSmn− dmnd. s6d

Here we must emphasize thatHm8n8
E are matrix elements in

the new orthogonal basis, whereas the matrix elements on
the right-hand side are written in terms of the nonorthogonal
physical basis. This connection is made more formally be-
low.

In the new basis, there exists a stateuc8l which is an
eigenvector ofHE with eigenvalueE, and which may be
written in the orthogonal basis asuc8l=onanun8l. Here the
expansion coefficientsan are the same as those in Eq.s3d.

To formally prove that the new Hilbert space exists and
that it has the desired properties, let us investigate a linear
transformationT that maps an orthogonal basis from an ar-
bitrary separable Hilbert space,A, to the basis of our physi-
cal Hilbert space,B.

T:A → B,

Tun8l = unl. s7d

Thus we may rewrites3d as

Ho
n

anTun8l = Eo
n

anTun8l. s8d

Multiplying both sides byT† we find, with some manipula-
tion, that Eq.s8d becomes

sT†HT − ET†T + EIdo
n

anun8l = Eo
n

anun8l, s9d

where I is the identity operator. By acting with ankm8u on
both sides of the equation and noting that

km8uT†Tun8l = kmunl = Smn,

km8uT†HTun8l = kmuHunl = Hmn,

and remembering the orthogonality of the new basis,
km8 un8l=dm8n8, we see that Eq.s9d is exactly the same as Eq.
s5d. The present formulation also makes explicit the space in
which matrix elements are defined, i.e.,S is defined only in
the nonorthogonal physical basissnotation such asSm8n8 is
not validd, and likewise matrix elements ofHE above are
only defined in the orthogonal basis. In addition, since
throughout this process we did not change anything about the
expansion coefficientsan, i.e., when we modified Eq.s3d we
replaced only the basis kets and not the amplitudes, we have
the desired property that the expansion coefficients are ex-
actly the same as in the nonorthogonal basis.

In general, sinceA was chosen as an arbitrary separable
Hilbert space, we are free to choose anyphysicalspace cor-
responding to the new Hilbert space. Mathematically, we
have established an orthogonal basis solely by choosing aT
such thatsT†Tdm8n8=km8uT†Tun8l=kmunl=Smn. Therefore, we
make the interpretation that the spaceA is the samephysical
space asB, but defined by the orthogonal basisun8l. The
interpretation we use for this is that the overlap between two
nonorthogonal basis elements in spaceB is spread over a
number of orthogonal basis elements inA. Any general prob-
lem in the nonorthogonal space may then be reformulated in
the orthogonal space, with the usual interpretations of the
basis, etc. The effects of overlap are then formally trans-
ferred to the hopping integrals of a standard tight-binding
Hamiltonian. The general procedure will be mapped out be-
low, and an example system will be studied in detail.

Given an appropriate Hilbert space transformationT, the
generalsformald procedure for transforming to the orthogo-
nal space is to write out the Hamiltonian matrix elements in
the new basis, using the well-known tight-binding Hamil-
tonian, and equate matrix elements from the orthogonal sys-
tem to those of the nonorthogonal system. The result is a
recursion relation between the hopping elements in the new
system, with boundary conditions linking them to the hop-
ping elements and on-site energies in the original system.

We consider a one-dimensional hopping chain and assume
basis function overlap to extendN atoms, thus14

knun + jl = Snsn+jd = sj for 1 ø j ø N = 0 otherwise.

We then assume the existence of an appropriate transforma-
tion T, such that
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sj = kn8uT†Tusn + jd8l

= o
k

Tk8n8kk8uo
m

Tm8sn + jd8um8l

= o
m

Tm8n8Tm8sn + jd8. s10d

Now, the matrix elements of the Hamiltonian in the original
nonorthogonal basis may be written, for nearest-neighbor
hopping, as

knuHunl = e,

knuHun ± 1l = t,

knuHun ± jl = 0 for j ù 2. s11d

Using this Hamiltonian, a formal connection to the matrix
elements of the Hamiltonian in the orthogonal basis is made
term-by-term, as follows:

Hnsn+jd = o
k

o
m

Tk8n8Tm8sn + jd8kk8uHum8l. s12d

The matrix elements on the right-hand side are in the or-
thogonal basis; we now interpret the new orthogonal basis as
a chain of sites withorthogonalbasis states which, as usual,
represent the amplitude to be on a given site. With this inter-
pretation the standard tight-bindingsTBd Hamiltonian may
used,

HTB = o
j

e0u j8lk j8u + o
i,j

ti j u j8lki8u, s13d

where thetij are hopping energies, and thee0 is the on-site
energy, all to be determined. To do so, the matrix elements in
the nonorthogonal basis are written in terms of the tight-
binding elements from Eq.s12d as

Hnsn+jd = o
k

o
m

Tk8n8Tm8sn + jd8se0dk8m8 + tk8m8d. s14d

Equations14d produces, forj ùN+1, a recursion relation for
the tk8m8, which together with the boundary conditions ob-
tained by combining equationss11d ands14d, fix the hopping
and site energies in the orthogonal basis to the physical quan-
tities e and t from the nonorthogonal basis. In the next sec-
tion, we will illustrate the procedure using a specific ex-
ample. The resulting energy spectrum will be compared to
the exact answer obtained in the original basis.

III. THE CASE OF NEAREST-NEIGHBOR OVERLAP

To make the general procedure clear, we will apply it to
the simple problem of an infinite one-dimensional hopping
chain with nearest-neighbor overlap. In this case,Snn=1,
Snsn±1d=s, andSmn=0 otherwise. The first task is to find an
appropriateT. We choose aT such that

unl = Tun8l = cosuun8l + sinuusn + 1dl

with cosu sinu = s. s15d

It is a simple matter to demonstrate that this choice forT
reproduces only nearest-neighbor overlap. It is also interest-
ing that the magnitude of the overlaps is limited to usu
ø1/2. It should be noted that the restriction ofs is consistent
with the physical solution space for the problem. This prob-
lem is solvable in closed form in the original basis. It may be
shown that the energy dispersion for the infinite chain with
nearest-neighbor overlap is given by8

E =
e + 2t coskl

1 + 2scoskl
. s16d

where l is the lattice spacing. Note thatusuù1/2 produces
singular behavior in the dispersion. In addition, it may be
shown in general that forusuù1/2 the matrixS is noninvert-
ible, which renders the problem insolvable. Therefore, the
definition of T above is appropriate for the problem at hand.

To continue, because the system is translationally invari-
ant, we may assume that the hopping energies appearing in
Eq. s13d are given bytij = tui−j u for all i and j . In other words,
the hopping energy associated with moving from sitei to site
j only depends on the number of sites separatingi and j . All
that remains is to use the basis transformation to fix thetui−j u.
Equating the matrix elements ofH explicitly, i.e., using Eqs.
s12d and s14d, we find

e = knuHunl = kn8uT†HTun8l

= scosukn8u + sinuksn + 1d8udHTB

3scosuun8l + sinuusn + 1d8ld

= cos2 ue0 + cosu sinut1 + cosu sinut1 + sin2 ue0

= e0 + 2st1, s17d

t = knuHun + 1l = kn8uT†HTusn + 1d8l

= scosukn8u + sinuksn + 1d8udHTB

3scosuusn + 1d8l + sinuusn + 2d8ld

= cos2 ut1 + cosu sinue0 + cosu sinut2 + sin2 ut1

= t1 + sse0 + t1d, s18d

0 = knuHusn + jdl = kn8uT†HTusn + jd8l

= scosukn8u + sinuksn + 1d8udHTB

3scosuusn + jd8l + sinuusn + j + 1d8ld

= cos2 ue0 + cosu sinut1 + cosu sinut1 + sin2 u

= tj + sstj−1 + tj+1d for j ù 2. s19d

We now have a second order difference equation for the
hopping elements in the orthogonal system. As stated above,
the first two equations combine to give us one boundary
condition ont1. In addition, we require limn→` tn=0 for the
system to be physically meaningful. The solution to the dif-
ference equation, subject to the boundary conditions, is
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tn = Ag n,

e0 = e − 2Ag, s20d

where

A =
t − se

g + sg2 − 2s2g

and

g = SÎ1 − 4s2 − 1

2s
D .

So we have an infinite sequence of hopping energies corre-
sponding to the fact that each orthogonal basis element con-
tains all of the nonorthogonal vectors. Recalling that then
= ui − j u we note thatg n decays rapidly with increasing site
separation. Therefore, for many circumstances, it may be
sufficient to approximate the overlap problem by a tight
binding system with next-nearest-neighbor hopping.15

To demonstrate the equivalence of the current treatment to
the original problem in the nonorthogonal basis, we replace
the hopping elements into the original Hamiltonians13d, and
write the Schrödinger equation for a general state,

So
j

se − 2Agdu j8lk j8u + o
i,j

Ag jusi + jd8lki8uDo
n

anun8l

= Eo
n

anun8l.

Taking the inner product of both sides of this equation with
an arbitrary orthogonal elementkm8u generates the difference
equation

se − 2Agdam + o
j=1

`

sAg jam+j + Ag jam−jd = Eam. s21d

Assuming solutions of the forman=einkl leads immediately
to the energy eigenvalues

E = se − 2Agd + o
n=1

`

2Ag n cossnkld. s22d

The second term in the energy is a Fourier series. The con-
vergence of the Fourier series is guaranteed, note that for
usu,1/2 we haveugu,1. ReplacingA and g with their ap-
propriate values, we see that the Fourier series converges to

E =
e + 2t coskl

1 + 2scoskl
s23d

which is exactly the solution we get from solving via the
original difference equation formulated from the nonorthogo-
nal basis. We also note that the Fourier coefficients are in
fact twice the hopping energies in the orthogonal chain. As
noted earlier, previous authors have noted the existence of a
Fourier series result for the infinite homogeneous one-
dimensional system with nearest-neighbor overlap.12 The
analytical result for the hopping energies as the Fourier co-
efficients, and the overall general procedure, are new results

from the current work, that provide a general procedure for
problems involving basis function overlap.

IV. TRANSMISSION ANTIRESONANCE

In this section, we will again utilize the general methods
described above, but we will focus on the problem of trans-
mission through an impurity site in an otherwise homoge-
neous linear chain. We will study the most basic impurity
structure which gives rise to the transmission antiresonance
due solely to basis function overlap,5 a single impurity at site
n=0 which is coupled to semi-infinite leads. The hopping
elements to and from the impurity site,t, are different from
the hopping energies in the leadst, and we assume that the
basis function overlap existsonly between the leads and the
impurity.16 The overlap matrix in this case is given by

S0,±1 = k0u ± 1l = s,

Sm,n = knuml = dm,n, otherwise, s24d

The site energy of the impurity is the same as that of the
leadssan assumption that is not necessary, but it simplifies
the descriptiond. A schematic of the geometry in shown in
Fig. 1sad. We will proceed by demonstrating that the trans-
formation of GK will produce an antiresonance at a specific
energy; we then find the appropriateT for the model system
and connect the nonorthogonal physical space with the or-
thogonal space, wherein we show that the current model sys-
tem is equivalent to an ordinarysorthogonald tight-binding
chain with both nearest- and next-nearest-neighbor hopping
elements from the impurity site to the leads. We show that
the transmission antiresonance in the orthogonal space is
controlled by the ratio of the nearest- and next-nearest-
neighbor hopping energies.

Using the transformation of GK, we find that the matrix
Hm,n

E has energy-dependent off-diagonal hopping terms due
to the impurity given byH0,±1

E =t−sE. The great utility of the
transformation is then apparent, since the hopping is clearly
cut off at E=t /s. Any calculation of the transmission of
waves incident on the impurity from one of the leads will

FIG. 1. sad The geometry of the physical space, with an impurity
at site n=0, coupled to homogeneous leads via hoppingstd and
basis overlapssd. The hopping elements are shown schematically.
sbd The geometry in the orthogonal space, where the overlap has
been replaced with effective nearest- and second-nearest-neighbor
hoppingst1 and t2, respectivelyd.
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consequently show an antiresonance at this energy, due en-
tirely to the existence of the overlaps.5,12The drawback is in
the interpretation of the physical effects of the overlap, as
viewed in a physical basis where the usual interpretations
cannot apply.

The same situation may be studied using the methods de-
scribed above, with the advantage that the problem may be
cast in an ordinary tight-binding framework where the essen-
tial physics may be illuminated via standard approaches. To
proceed, we first find a transformation which satisfies the
relationkm8uT†Tun8l=Smn with the matrixS given above. An
appropriateT is given by

Tu08l = ssu− 18l + u18ld + Î1 − 2s2u08l,

Tun8l = un8l, otherwise. s25d

The form of T given in Eq.s25d is not unique, but pro-
vides a simple framework on which to proceed. The next
task is to once again utilize Eqs.s12d and s14d to equate
matrix elements of the Hamiltonian explicitly. The connec-
tions thus obtained are

e = k0uHu0l = 2s2e + 4sÎ1 − 2s2t1 + s1 − 2s2de0,

t = k1uHu0l = se + Î1 − 2s2t1,

0 = k2uHu0l = st+ Î1 − 2s2t2. s26d

Wheret1 and t2 are the hopping elements from the impu-
rity to the first and second near neighbors, respectively, and
e0 is the site energy atn=0 in the orthogonal basissi.e.,
k08uHTBu08ld. We note that further relationships simply repro-
duce the result that the remaining hopping elements are all
equivalent between the bases, i.e.,tn,n+1= t for nù1. The
formal connections between the bases are thus given by

e0 =
4st − e − 2s2e

2s2 − 1
,

t1 =
t − se

Î1 − 2s2
,

t2 =
− st

Î1 − 2s2
. s27d

We note that in the limits→0 these behave as expected,
e0→e, t1→t, andt2→0.

Given the connectionss27d, we may study thesequiva-
lentd case of a tight-binding system with a single impurity
coupled to the leads via nearest- and next-nearest-neighbor
hopping. We note that this is the simplestorthogonalscheme
which gives rise to an antiresonance. The geometry for this
case is sketched in Fig. 1sbd.

Recalling the Schrödinger equation for a general state in
the orthogonal system,onHmnan=Eam, we find, for second-
nearest-neighbor hopping atn=0,

t2sa−2 + a2d + t1sa−1 + a1d + e0a0 = Ea0,

t1a0 + ea1 + ta2 = Ea1,

ta−2 + ea−1 + t1a0 = Ea−1. s28d

We then make the usual substitution for waves incident
from the left-hand side, vis.

an =

einkl + ae−inkl for n , 0,

a0 for n = 0,

beinkl for n . 0 for n , 0,

s29d

By inserting Eq.s29d into Eq.s28d to produce three equa-
tions in the unknownsa, b, and a0, we find, after lengthy
algebra, that the transmission coefficient is given by

b =

2it1t2S t1t

t2
+ E − eDsinskld

e2iklsE − teikl − edA
s30d

with A=Ese0+e+ teikl −Ed+s2t1t2− te0deikl +2t1
2−ee0. So we

see the transmission coefficient will vanish at the energy
EA=e−st1t / t2d, note that substitution of the connectionss27d
into this expression for the energy immediately reproduces
the result for the antiresonance energy in the nonorthogonal
basis,EA=t /s.

It is quite instructive to study the total transmission in the
orthogonal basis, where standard interpretation of the basis
states simplifies the description. In the leads, far from the
impurity, the energy dispersion is given by the usual single-
band resultE=e+2t cosskld. Using this, we can find the
point in the band where the antiresonance occurs. Equating
this energy with the antiresonance energy, we find that, fork
in the Brillouin zone, antiresonance occurs forkAl =p
−cos−1st1/2t2d. Therefore, the ratiot1/ t2 must satisfy −2
ø t1/ t2ø2 for antiresonance to occur. In the original physi-
cal basis, this corresponds to −2ø sse−td /stø2. As an ex-
ample of the restrictiveness of the constraint, consider the
casee=0 sa simplifying assumption which does not influ-
ence the outcomed and look at the range oft sin units of the
lead hoppingtd. In this case,utuø2s. Sinces is restricted to
usu,0.5 ssee aboved, then utu,1, and antiresonance in the
band is only possible for coupling of the impurity to the
leads that isweaker than that within the leads. This impor-
tant result follows directly from the utility of the transforma-
tion to the orthogonal space, where the usual methodology
applies.

The energy dispersion may be substituted into the trans-
mission coefficients30d, and the total transmission is found
via T= ubu2. Numerical examples for the transmission under
different parameters will be examined next.

In Fig. 2 we show the transmission as a function of the
wave vector for the case wheree=0, s=0.15, andt=0.25. In
all cases,t=1 sthe other hopping elements are in units oftd.
We note that the current choice represents weak overlap,
which forces a relatively weak coupling of the impurity to
the leads. The corresponding parameters in the orthogonal
basis aree0=−0.6283,t1=0.2558, andt2=−0.1535. We note
that in the new basis, the direct coupling is weak, with the
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second-nearest-neighbor hopping weaker still. The transmis-
sion antiresonance is prominent in the graph, at the value
kl=p−cos1st1/2t2d=0.584. A transmission resonance occurs
near the center of the band, and is independent of overlap in
all cases where the overlap is small and the coupling to the
leads is stronger,t.s.

In contrast, Fig. 3 depicts the transmission as a function of
kl for the case of strong overlap,s=0.45, and very weak
coupling,t=0.15. In this case, the corresponding orthogonal-

space parameters aree0=−3.025, t1=0.1945, and t2
=−0.5834.sNote that the effective on-site energy of the im-
purity represents a relatively deep well.d So we see that, in
this case, the second-nearest-neighbor hopping dominates,
and the antiresonance occurs near the center of the band at
kl=1.402. The transmission characteristics of the weakly
coupled case are strongly influenced by the overlap, the ana-
logue of which in the orthogonal tight-binding scheme is
domination by long range hopping.

V. SUMMARY

We have studied a Hilbert space transformation intro-
duced in conjunction with the investigation of electronic
transport in molecular wires. The purpose of the transforma-
tion is to solve for eigenvalues and eigenvectors of a system
sfor which the physical basis is not orthogonald in terms of a
system with an orthogonal basis and which preserves the
expansion coefficients for a general wave function. We dem-
onstrate that in general the transformation matrix may be
defined in terms of the general overlap matrix. Once the
transformation matrix is defined, we interpret the new Hil-
bert space as being in the same physical space as the original
problem, but described by an orthogonal basis. The problem
may then be treated via the usual tight-binding formalism,
where the effects of overlap have been formally transferred
to the hopping matrix elements. The effects of overlap are
then studied in the context of long-range hopping. We have
demonstrated the formal equivalence of the orthogonal basis/
long-range hopping system and the original system via the
example of a one-dimensional hopping system with nearest-
neighbor overlap. The analytic forms of the energy eigenval-
ues calculated via the different bases are shown to be equiva-
lent. We have further demonstrated that the transmission
properties of molecular wire systems may be calculated more
easily via the orthogonal tight-binding interpretation. The
transmission of a single-impurity system was solved exactly,
and the antiresonance effect that is induced by basis function
overlap occurs in the orthogonal system via the presence of a
second-nearest-neighbor hopping term.
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FIG. 2. The transmission as a function ofkl for the casee=0,
t=0.25, ands=0.15. Note the antiresonance atkl=0.584.

FIG. 3. The transmission as a function ofkl for the casee=0,
t=0.15, ands=0.45. This case represents weak coupling and strong
overlap; the antiresonance here requires strong second-nearest-
neighbor hopping from the impurity, as discussed in the text.
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The assumption in the text implies a cutoff imposed on the de-
cay.

15In addition, for many cases of experimental interest, the value of
s itself is very small, and the decay of the hopping terms is quite
rapid. For example, ifs=0.1, and for typical values oft ande,
si.e., t in the range 2 to 5 eV, ande of order 10 eVd the hopping
energies will drop off by a factor of 10 fromn=1 ton=2, and by
a factor of 100 fromn=1 to n=3.

16This assumption reduces the problem to the most fundamental
level where basis overlap influences the physics. In addition, it is
reasonable from the point of view of metallic leads coupling
molecular systems, since an orthogonal tight-binding scheme is
reasonable for leads. The molecular orbital structures can rea-
sonably be modelled via the assumption of overlapseven in the
case of weak couplingd, since the bonding is via a different
mechanism.
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