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We study a recently introduced Hilbert space transformation from a nonorthogonal basis to an orthogonal
basis, with an emphasis on the physical interpretation of the new Hilbert space. We find that the new Hilbert
space may be interpreted as an orthogonal basis in the pagsical space, wherein the basis overlap is
formally transferred to the hopping matrix elements in the orthogonal system. The result is a standard tight-
binding system in an orthogonal basis, with long-range hopping. The procedure is illustrated using an infinite
one-dimensional hopping system with nearest-neighbor overlap. We also use the formal procedure to solve for
the transmission characteristics of an impurity site coupled with semi-infinite leads, as an example of the
interpretive power of the ordinary tight-binding formalism in the case of transport in the presence of basis-
overlap effects: the antiresonances are produced, in the orthogonal space, by the presence of second-nearest-
neighbor hopping.
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I. INTRODUCTION context for ordinary tight-binding theory: we will show that

The physics of quantum mechanical problems in whichi® Néw basis can be interpreted via the usual orthogonal
the natural physical basis is not orthogonal have proven to beCAO method treated via the standard Hamiltonian, wherein
remarkably rich. In order to solve problems using standard® OVerlap has been shifted to the hopping matrix elements.
techniques and interpretations, many orthogonalizatior] "& notion of shifting the overlap to the hopping integrals
schemes and tensorial methods have been formutatesid ~ has been alluded to previously in the context of one-
the effects of the overlap are diverse and in many cases sufimensional chain$put in the current paper we will provide
prising. Some examples where the overlap of basis state? exact derivation of the form of the hopping integrals, with
provides important physics include band structure calculaan emphasis on the equivalence to the Hilbert space transfor-
tions in a variety of solid§;® molecular electronic mation of EK. We will derive explicit forms of the hopping
structure’™ and transport problems in molecular and terms for the infinite chain problem, in order to compare with
weakly-coupled nanoscale structupéd.Of particular inter-  analytical results for the energy dispersion in the presence of
est for the present paper is the recent work of Emberly antbasis overlap, but the method is quite general and opens new
Kirczenow (EK),® in which the transport properties of mo- possibilities for the treatment of systems in which the over-
lecular wire systems were investigated. In this ceém®d in  lap of basis states is important. As an example of the power
many cases where tight-binding models are appligalhe  of the method, we will calculate the exact transmission char-
natural basis consists of atomic orbitals localized to atomi@cteristics of a sing-impurity wire: an impurity site coupled
sites. The basis is not orthogonal, and in this case, neglectingn each side to semi-infinite homogeneous leads. The trans-
the orbital overlap causes the essential transport effects to lmission of the system is calculated via straightforward stan-
missed. The method adopted by EK is not an orthogonalizadard methods, once the proper transformation to the equiva-
tion scheme per se, but rather a transformation to a newent orthogonal space is performed. Many of the interesting
Hilbert space with an orthogonal basis. A brief review of theaspects of the transmission antiresonance induced solely by
method will be given below. The keys to the Hilbert spacethe basis function overlap will be illuminated by examining
transformation argi) that the expansion coefficients of a the equivalent tight-binding problem, including the physical
general system state are the same as those in the originanstraints on the occurrence of antiresonances. Most impor-
nonorthogonal basis, arii) the effective Hamiltonian in the tantly, the overlap effects are explicitly transferred to the
new space has explicit dependence on the energy eigenvalulespping terms, and the antiresonance effects become explic-
associated with the state. The equivalence of the expansiadtlty dependent upon second-nearest-neighbor hopping from
coefficients provides a bridge between the eigenstates of thee impurity site to the leads.
new space and the scattering states in the physical basis, The rest of the paper is organized as follows. In the next
while the energy dependence of the Hamiltonian provides aection, we review the formalism introduced by EK, and
natural mathematical connection between the basis functioautline the general procedure for transferring to a Hilbert
overlap and the physical phenomena in question, namely thepace defined by an orthogonal basis with long-range hop-
transmission antiresonances in molecular wire sysfefs. ping. In Sec. Il we apply the general method to a specific
The anti-resonance effects have also been studied via moexample problem: the one-dimensional linear chain with
orthodox general tensorial methots. nearest-neighbor overlap, and compare the solution to the

In this paper, we present an interpretation of the newanalytical solution obtained directly in the nonorthogonal ba-
orthogonal-basis Hilbert space which provides an explicitsis. In Sec. IV, we solve for the transmissivity of the single-
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impurity molecular wire via the orthogonal tight-binding for- HY a T’y = EY a TIn'). (8)
malism. Finally, our results are summarized in Sec. V. o o

Multiplying both sides byT" we find, with some manipula-

Il. THEORY tion, that Eq.(8) becomes

In order to provide context for what follows, we will

briefly review the Hilbert space transformation of EK. We (THT-ET'T+EN a,n) =EX a,n’), 9
start with the Schrodinger equation n n
_ wherel is the identity operator. By acting with am’| on
Hiy) = E|d). 1
[¥)=El) @) both sides of the equation and noting that
Expandmg the st_at|ep) ina _nonorthogonal_physwal basi® (! [T = (min) = S,
representing a single-particle state localized on atpmwe n
find
(m'|TTHTIN") = (M|H|n) = Hyyp,
) =2 ailn), 2 _ _ _
n and remembering the orthogonality of the new basis,

(m'|n"y=6,,v, We see that E(9) is exactly the same as Eq.
HS alm=E n. 3 (5)._ The present formulation also ma_kes_ expli_cit the space in
% ol % 8ln) & which matrix elements are defined, i.8.js defined only in
the nonorthogonal physical badisotation such a§,,, is
The Schrodinger equation reduces to a difference equatiofiot valid, and likewise matrix elements dfif above are

by acting with(m| on both sides of the equation: only defined in the orthogonal basis. In addition, since
throughout this process we did not change anything about the
> Hinen = 2 ESnin, (4)  expansion coefficienta,, i.e., when we modified Eq3) we
n n

replaced only the basis kets and not the amplitudes, we have
the desired property that the expansion coefficients are ex-
actly the same as in the nonorthogonal basis.

In general, sincéA was chosen as an arbitrary separable
Hilbert space, we are free to choose ahysicalspace cor-
responding to the new Hilbert space. Mathematically, we
have established an orthogonal basis solely by choosihg a
' _ ' such that ™), =(m’| TTT|n’)=(m| n) =S, Therefore, we

EK proposed that Eq5) is now in the form of an eigen-  make the interpretation that the spakés the samevhysical
value problem formulated in aorthogonal basig|n’)}. The space asB, but defined by the orthogonal bagis). The
goal now is to diagonalize a new energy dependent Hermitinterpretation we use for this is that the overlap between two

whereH,,=(m/H|n), and(m|n)=S,,, is the overlap matrix.
Adding the identity matrix(multiplied by E) to both sides
and moving the matrixs to the left-hand side gives

E (Hmn_ E(Smn_ 5mn))an =Eay, (5

ian operatoH® with nonorthogonal basis elements in spd&és spread over a
£ number of orthogonal basis elementAinAny general prob-
Hy e = Hinn = E(Spn = Omn)- (6) lem in the nonorthogonal space may then be reformulated in

. , . the orthogonal space, with the usual interpretations of the

Here we must emphasize thef, , are matrix elements in basis, etc. The effects of overlap are then formally trans-
the new orthogonal basis, whereas the matrix elements Ofgrred to the hopping integrals of a standard tight-binding
the right-hand side are written in terms of the nonorthogonaHamiltonian. The general procedure will be mapped out be-
physical basis. This connection is made more formally betow, and an example system will be studied in detail.
low. Given an appropriate Hilbert space transformafigrihe

In the new basis, there exists a sta#€) which is an  general(formal) procedure for transforming to the orthogo-
eigenvector ofH® with eigenvalueE, and which may be nal space is to write out the Hamiltonian matrix elements in
written in the orthogonal basis ag’')=a,|n’). Here the  the new basis, using the well-known tight-binding Hamil-
expansion coefficients, are the same as those in E8). tonian, and equate matrix elements from the orthogonal sys-

To formally prove that the new Hilbert space exists andtem to those of the nonorthogonal system. The result is a
that it has the desired properties, let us investigate a lineaecursion relation between the hopping elements in the new
transformationT that maps an Orthogonal basis from an ar-system’ with boundary conditions ||nk|ng them to the hop-
bitrary separable Hilbert spaca, to the basis of our physi- ping elements and on-site energies in the original system.
cal Hilbert spaceB. We consider a one-dimensional hopping chain and assume
basis function overlap to exterid atoms, thu¥

T.A— B,
(nn+j) = Synej) =5 for 1< j < N=0 otherwise.
TIn") =|n). (7 . .
We then assume the existence of an appropriate transforma-
Thus we may rewrité3) as tion T, such that
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s =(n'[T'T|(n+j)") Iny=T|n') = cosé|n’y + sin (n+ 1))
= Ek“ Tk’”'<k,|% T+ /M) with cosésind=s. (15
ST T _ (10) It is a simple matter to demonstrate that this choice Tor
=t T n e reproduces only nearest-neighbor overlap. It is also interest-

ing that the magnitude of the overlapis limited to |g|
Now, the matrix elements of the Hamiltonian in the original <Z1/2. It should be noted that the restrictionsi consistent

nonorthogonal basis may be written, for nearest-neighboyith the physical solution space for the problem. This prob-

hopping, as lem is solvable in closed form in the original basis. It may be
shown that the energy dispersion for the infinite chain with
(n[H|n) = ¢, nearest-neighbor overlap is givenéby
_ e+ 2tcoskl (16)
(nH|nx 1) =t, " 1+2scoskl’
. _ wherel is the lattice spacing. Note thé&=1/2 produces
(nHInxj)=0 forj=2. (11)  singular behavior in the dispersion. In addition, it may be

. _ o . . shown in general that fds|=1/2 the matrixSis noninvert-
Using this Hamiltonian, a formal connection to the matrixjhle, which renders the problem insolvable. Therefore, the
elements of the Hamiltonian in the orthogonal basis is madg@efinition of T above is appropriate for the problem at hand.

term-by-term, as follows: To continue, because the system is translationally invari-
ant, we may assume that the hopping energies appearing in
Hn(nej) = > Tirn T (n + <K [H[mM'). (12 Eq.(13) are given byt;=t;_; for all i andj. In other words,
k m

the hopping energy associated with moving from Bite site
. . ) . j only depends on the number of sites separatiagdj. All
The matrix elements on the right-hand side are in the orthat remains is to use the basis transformation to fixtthe

thogonal basis; we now interpret the new orthogonal basis ¥Bquating the matrix elements &f explicitly, i.e., using Egs.
a chain of sites witlorthogonalbasis states which, as usual, (12) and (14), we find

represent the amplitude to be on a given site. With this inter-

pretation the standard tight-bindin@B) Hamiltonian may e={(n|H|ny =(n’[TTHT|n’)
used, =(cos&n’| +sin&(n+1)'|)H+g
Hre = 2 el )'|+ 2 tyli i, (13) X (coséin’) +sind|(n+1)"))
! " = cog fey + COSA SN Bt; + COSH SN bt; + Sir? fe
where thet; are hopping energies, and thgis the on-site = gy + 25t (17
energy, all to be determined. To do so, the matrix elements in
the nonorthogonal basis are written in terms of the tight- ;- (NH|n+ 1y =(n'[THT|(n+ 1)")

binding elements from Eq12) as
=(cos&n’| +sin&(n+1)'|)H+g

Hn(n+j):2 ETk'n’Tm’(nﬂ)'(GO‘Sk’m’ +tk’m’)- (14) ><(cos¢9|(n+ 1)’>+sin 6|(n+ 2)'>)
k m
= co¢ 6t, + CoSH Sin fey + COSH Sin bt + Sir? 6t;
Equation(14) produces, fofj =N+ 1, a recursion relation for =t +S(eg+1ty), (18)

the t,v, Which together with the boundary conditions ob-
tained by combining equatiorié1) and(14), fix the hopping ) , -\,
and site energies in the orthogonal basis to the physical quan-  © =(n[H|(n+})) =(n'[T'HT|(n +})")
tities e andt from the nonorthogonal basis. In the next sec- =(cos&n’| +sin&(n+1)'|)Hg
tion, we will illustrate the procedure using a specific ex- ., . . ,
ample. The resulting energy spectrum will be compared to X(cosb|(n+])") +sing(n+j+1)"))

the exact answer obtained in the original basis. = co¥ fey + COSO Sin bt; + cosé sin bt; + sir? 6

= t] + S(tj—]_"' tj+l) for J =2. (lg)
Ill. THE CASE OF NEAREST-NEIGHBOR OVERLAP
We now have a second order difference equation for the

To make the general procedure clear, we will apply it tohopping elements in the orthogonal system. As stated above,
the simple problem of an infinite one-dimensional hoppingthe first two equations combine to give us one boundary
chain with nearest-neighbor overlap. In this caSg,=1,  condition ont,. In addition, we require lig... t,=0 for the
St =S, and §,,=0 otherwise. The first task is to find an system to be physically meaningful. The solution to the dif-
appropriatel. We choose & such that ference equation, subject to the boundary conditions, is
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th=AY", @ t © 1t t

€= €—2Ay, (20 . Wa .
where 3 2 -1 np=0 1 2 3

t—se b

= > t t t t

NEINEC. (b) L
and . .\mj‘ .

_<\,1_4Sz_1) t, t,

r= 2s '

FIG. 1. (a) The geometry of the physical space, with an impurity
So we have an infinite sequence of hopping energies corrét siten=0, coupled to homogeneous leads via hoppingand
sponding to the fact that each orthogonal basis element co®asis overlags). The hopping elements are shown schematically.
tains all of the nonorthogonal vectors. Recalling that the (b) The geometry in the orthogonal space, where the overlap has
=|i-j| we note thaty" decays rapidly with increasing site been_replaced with effect_lve nearest- and second-nearest-neighbor
separation. Therefore, for many circumstances, it may b8PPPIng(t andt, respectively.
sufficient to approximate the overlap problem by a tight
binding system with next-nearest-neighbor hoppihg. from the current work, that provide a general procedure for
To demonstrate the equivalence of the current treatment tproblems involving basis function overlap.
the original problem in the nonorthogonal basis, we replace
the hopping elements into the original Hamiltoni@?), and IV. TRANSMISSION ANTIRESONANCE
write the Schrédinger equation for a general state,
In this section, we will again utilize the general methods
(2 (e=2A9)|i")'| + > AY[( +j)’><i’|>2 a,n’) described above, but we will focus on the problem of trans-
i ] n mission through an impurity site in an otherwise homoge-
neous linear chain. We will study the most basic impurity
structure which gives rise to the transmission antiresonance
due solely to basis function overl&m, single impurity at site
Taking the inner product of both sides of this equation withn=0 which is coupled to semi-infinite leads. The hopping
an arbitrary orthogonal eleme(r’| generates the difference elements to and from the impurity site, are different from
equation the hopping energies in the leagsand we assume that the
basis function overlap existnly between the leads and the
impurity.® The overlap matrix in this case is given by

=EX a,n’).

©

(6= 2AY)an+ X (Aylam + Aylag ) =Eay.  (21)

= S4= (021 =s,
Assuming solutions of the forma,=€™! leads immediately
to the energy eigenvalues Snn=(nlm) =8y, otherwise, (24
* The site energy of the impurity is the same as that of the
E=(e-2Ay) + >, 2Ay" cognkl). (22 leads(an assumption that is not necessary, but it simplifies
n=1 the description A schematic of the geometry in shown in

The second term in the energy is a Fourier series. The cofg' 1(a). We will proceed by demonstrating that the trans-

vergence of the Fourier series is guaranteed, note that f Prmation of GK Wi" produce an antiresonance at a specific
ls/<1/2 we havely|<1. ReplacingA and y with their ap- energy; we then find the appropriakefor the model system

propriate values, we see that the Fourier series converges d connect the nono_rthogonal physical space with the or-
thogonal space, wherein we show that the current model sys-

€+ 2t coskl tem is equivalent to an ordinarprthogonal tight-binding
= 1+ 25 coskl (23) chain with both nearest- and next-nearest-neighbor hopping
elements from the impurity site to the leads. We show that

which is exactly the solution we get from solving via the the transmission antiresonance in the orthogonal space is
original difference equation formulated from the nonorthogo-controlled by the ratio of the nearest- and next-nearest-
nal basis. We also note that the Fourier coefficients are imeighbor hopping energies.
fact twice the hopping energies in the orthogonal chain. As Using the transformation of GK, we find that the matrix
noted earlier, previous authors have noted the existence ofra,in has energy-dependent off-diagonal hopping terms due
Fourier series result for the infinite homogeneous oneto the impurity given b)Hgﬂ:T—sE The great utility of the
dimensional system with nearest-neighbor ovetfafhe transformation is then apparent, since the hopping is clearly
analytical result for the hopping energies as the Fourier coeut off at E=7/s. Any calculation of the transmission of
efficients, and the overall general procedure, are new resultgaves incident on the impurity from one of the leads will
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consequently show an antiresonance at this energy, due en- ty(a,+ay) +ty(aq +a;) + 3y = Eay,

tirely to the existence of the overla? 1?2 The drawback is in

the interpretation of the physical effects of the overlap, as t,ay+ ea; +ta, = Eay,

viewed in a physical basis where the usual interpretations

cannot apply. ta,+ea ,+tap=Ea . (28)

The same situation may be studied using the methods de- o o
scribed above, with the advantage that the problem may be We then make the usual substitution for waves incident
cast in an ordinary tight-binding framework where the essenfrom the left-hand side, vis.

tial physics may bg illuminated via st'andard_ approgches. To ™ 4 ek forn<o0,
proceed, we first find a transformation which satisfies the _ f -0 29
relation(m’|T™T|n’)=S,,, with the matrixS given above. An = & . orn=0, (29
appropriateT is given by BeE™ forn>0 forn<O,

By inserting Eq.(29) into Eq.(28) to produce three equa-
tions in the unknownsy, B, anday, we find, after lengthy
algebra, that the transmission coefficient is given by

T0") =s(|-1') + 1) + V1 - 2570"),

Tn"y=|n’), otherwise. (25 it
o : : 2it t,| = + E - €sin(kl)
The form of T given in Eq.(25) is not unique, but pro- 2\,
vides a simple framework on which to proceed. The next B= PH(E— e - 9A (30)

task is to once again utilize Eg$l2) and (14) to equate _ _
matrix elements of the Hamiltonian explicitly. The connec-with A=E(ey+e+teX—E)+(2t;t,—tey) X+ 2t3—eep. So we

tions thus obtained are see the transmission coefficient will vanish at the energy
’ Exp=e€—(14t/t,), note that substitution of the connectidi2y)
€=(0[H|0) = 25%¢ + 4s\1 - 26°t; + (1 - 259 g, into this expression for the energy immediately reproduces
the result for the antiresonance energy in the nonorthogonal
7=(1|H|0) =se+ 1 - 25°t,, basis,Ex=17/s.

It is quite instructive to study the total transmission in the
- orthogonal basis, where standard interpretation of the basis
0 =(2|H|0) = st+ V1 - 25°,. (26)  states simplifies the description. In the leads, far from the
impurity, the energy dispersion is given by the usual single-
rity to the first and second near neighbors, respectively, anga.nd .resﬁlti_ E;mﬁos(kl)ﬁ Usmg this, we: can meIIE the_
€ is the site energy ab=0 in the orthogonal basi§.e., phqlnt n the .ar? hW ere the antiresonance OC?_ULS.h (lqku:ltlng
(0'|H+g|0’)). We note that further relationships simply repro-F Is energy with the antiresonance energy, we find thatk for

L : in the Brillouin zone, antiresonance occurs f&gl=m
duce the result that the remaining hopping elements are all

) . =cos(t,/2t,). Therefore, the ratict;/t, must satisfy -2
equivalent between the bases, ig.,=t for n=1. The (4/2t) e fy

. . =<t,/t,=<2 for antiresonance to occur. In the original physi-
formal connections between the bases are thus given by . 2™ .o corresponds to <Zse—7)/st<2. As an ex-

4ST— € — 22€ ample of the restrictiveness of the constraint, consider the
€= T o2oq casee=0 (a simplifying assumption which does not influ-
25 -1 ence the outcomend look at the range af (in units of the
lead hopping). In this case|7 < 2s. Sinces is restricted to

Wheret; andt, are the hopping elements from the impu-

T—Se |s|< 0.5 (see abovg then|7<1, and antiresonance in the
L= V1- 282’ band is only possible for coupling of the impurity to the
leads that isveaker than that within the lead$his impor-
tant result follows directly from the utility of the transforma-
t = —st 27) tion to the orthogonal space, where the usual methodology
2T \1-22 applies.

The energy dispersion may be substituted into the trans-

We note that in the limits— 0 these behave as expected, mission coefficien{30), and the total transmission is found
€— €, t1— 7, andt,— 0. via T=|8|?. Numerical examples for the transmission under

Given the connection§27), we may study thdequiva-  different parameters will be examined next.
lent) case of a tight-binding system with a single impurity  In Fig. 2 we show the transmission as a function of the
coupled to the leads via nearest- and next-nearest-neighbwsave vector for the case wheee 0, s=0.15, andr=0.25. In
hopping. We note that this is the simplesthogonalscheme  all casest=1 (the other hopping elements are in unitstpf
which gives rise to an antiresonance. The geometry for thi§Ve note that the current choice represents weak overlap,
case is sketched in Fig(H). which forces a relatively weak coupling of the impurity to

Recalling the Schrodinger equation for a general state ithe leads. The corresponding parameters in the orthogonal
the orthogonal systen® H.,.a,=Ea,, we find, for second- basis ares;=-0.6283,t;=0.2558, and,=-0.1535. We note
nearest-neighbor hopping at0, that in the new basis, the direct coupling is weak, with the
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space parameters are,=-3.025, t,=0.1945, andt,
o1 =-0.5834.(Note that the effective on-site energy of the im-
purity represents a relatively deep welo we see that, in
0.001 this case, the second-nearest-neighbor hopping dominates,
and the antiresonance occurs near the center of the band at
el kl=1.402. The transmission characteristics of the weakly
coupled case are strongly influenced by the overlap, the ana-
107 logue of which in the orthogonal tight-binding scheme is
domination by long range hopping.
10? V. SUMMARY

0 05 1 15 2 25 3 35
"] We have studied a Hilbert space transformation intro-
duced in conjunction with the investigation of electronic
FIG. 2. The transmission as a functionldffor the cases=0,  transport in molecular wires. The purpose of the transforma-
7=0.25, ands=0.15. Note the antiresonancekit0.584. tion is to solve for eigenvalues and eigenvectors of a system
(for which the physical basis is not orthogona terms of a
second-nearest-neighbor hopping weaker still. The transmigystem with an orthogonal basis and which preserves the
sion antiresonance is prominent in the graph, at the valugxpansion coefficients for a general wave function. We dem-
kl=m—cos(t,/2t,)=0.584. A transmission resonance occursonstrate that in general the transformation matrix may be
near the center of the band, and is independent of overlap i€finéd in terms of the general overlap matrix. Once the
all cases where the overlap is small and the coupling to thansformation matrix is defined, we interpret the new Hil-
leads is stronger>s. ert space as bemg in the same physical space as the original
In contrast, Fig. 3 depicts the transmission as a function oP"oPlem. but described by an orthogonal basis. The problem
Kl for the case of strona overlas=045 and very weak M&Y then be treated via the usual tight-binding formalism,
g % , y

. N . : where the effects of overlap have been formally transferred
coupling,7=0.15. In this case, the corresponding orthogonal-to the hopping matrix elements. The effects of overlap are

then studied in the context of long-range hopping. We have
demonstrated the formal equivalence of the orthogonal basis/
01l . long-range hopping system and the original system via the
example of a one-dimensional hopping system with nearest-

1 T T T T T

oot r i neighbor overlap. The analytic forms of the energy eigenval-
0.001 | ues calculated via the different bases are shown to be equiva-
= 0.0001 | | lent. We have further demonstrated that the transmission

properties of molecular wire systems may be calculated more
1 easily via the orthogonal tight-binding interpretation. The
transmission of a single-impurity system was solved exactly,
and the antiresonance effect that is induced by basis function
overlap occurs in the orthogonal system via the presence of a
second-nearest-neighbor hopping term.

10°

10° |

107
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The assumption in the text implies a cutoff imposed on the deX®This assumption reduces the problem to the most fundamental

cay. level where basis overlap influences the physics. In addition, it is
151n addition, for many cases of experimental interest, the value of reasonable from the point of view of metallic leads coupling

sitself is very small, and the decay of the hopping terms is quite  molecular systems, since an orthogonal tight-binding scheme is

rapid. For example, i§=0.1, and for typical values dfande, reasonable for leads. The molecular orbital structures can rea-
(i.e.,tin the range 2 to 5 eV, anédof order 10 eV the hopping sonably be modelled via the assumption of ovelleyen in the
energies will drop off by a factor of 10 from=1 ton=2, and by case of weak coupling since the bonding is via a different

a factor of 100 froorm=1 ton=3. mechanism.
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