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Gaussian finite-element mixed-basis method for electronic structure calculations
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As a fully flexible basis function, the finite elemef®E) function was introduced for the representation of
the wave function in the molecular electronic state calculation within the density functional theory. The most
serious disadvantage, which hindered the extensive application of the FE basis function, was the excessive
computational cost for the representation of the core electron. In order to reduce this deficiency, the
Gaussian-FE mixed basis method was proposed. The cooperation with Gaussian basis functions was utilized
for representing the steeply varying part of the electronic wave function around the nuclei. Based on the results
of the calculations for a set of small molecules, it was confirmed that the augmentation of the FE basis function
using the Gaussian basis function allowed us to adopt a coarse uniform grid, and reduce the dependency on the
relative configuration of FE nodal positions and atomic positions. These features were desirable to carry out the
all-electron calculations of polyatomic molecules in the three-dimensional Cartesian coordinates while con-
serving the flexibility of the FE basis function.
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I. INTRODUCTION value at the nodal points. The FDM for the electronic state

X X ) i 12 Ho. H
In the electronic state calculation, electronic wave func-calculations**2 has similar features to the FEM. Unlike

tions are expanded in a set of one-electron functions. ThEDM, however, an eigenstate in the FEM is calculated ac-
atom-centered basis function is feasible for the expansio ording to the variation principle. In the earliest examination,
function because of the localized electron distributions of'® FEM was applied to one- or two-dimensional calcula-

atoms or molecules. Gaussian basis'setse been very suc- tions for an atom or a diatomic molecule, in which the sym-
cessfully used in quantum-chemistry calculations. The imMetry could be used to reduce the dimensiondfityAs a

provement for the representation of molecular electronicresu't' the FEM was proven to be suitable for highly accurate

waue uncions is atained b the use of a lrge rumber o ACCEY SVIZIVD, cAealEns: Houerer o e,
Gaussian basis sets consisting of the split-valence bases % this highly accurate MO calculation, since the number of

funct[ons of hlghgr angular quantum numbers. However, hodal points must be extremely large. The very sharp varia-
practical calculations, the basis is usually far from completetion in the wave function near the nucleus forces this prob-

Sane the number of two-electron integrals rapidly grows a§em 1o he more serious. Therefore, the availability of the
N*, whereN is the number of basis functions, excessive COMtg\ to practical electronic structure calculations essentially
putational cost is required to obtain the basis-set limit for agepends on the expressibility of the wave function near the
given level of theory. This basic deficiency may be remark-nycleus.
ably improved by using more flexible basis functions. Several efforts within the pure-FEM have been done to
As an alternative approach for the molecular electronideduce the earlier-mentioned difficulty. The adaptive coordi-
state, the real-space grid metfiod has recently attracted nate transformatiof,in which the appropriate local resolu-
increasing attention. The real-space grid method does naion was accomplished by varying the grid spacing, has been
suffer from the same inefficiency problem concerning theadopted. However, the use of the mesh refinement technique
number of two-electron integrals as the global basis sets belone does not accurately express the core electron. The
cause this method uses a strictly localized representation ipseudopotential technique combined with the mesh refine-
the discrete element smaller than the entire simulation regioment technique is usually used in order to reduce the com-
for the electronic wave function. The finite-element method putational cost by the reduction of the explicitly treated or-
(FEM) has been regarded as one of the possible real-spatital and by the availability of the coarse grid spacing.
grid techniques to calculate electronic structures. In the On the other hand, the cooperation between the FE and
FEM, the calculated region is represented as an assemblag&gmic orbital type basis functions easily improves the accu-
of discrete elements interconnected at nodal points. The basiacy more than the pure-FE basis set, because of the spheri-
functions are strictly localized within each element. Thecal symmetry of the electron distribution in a core region.
main advantage of the FEM is its flexibility. The FEM can Diisterhoftet all® combined a numerical atomic orbital with
systematically improve the accuracy to the individual reala two-dimensional FEM and relativistically calculated the
space region by increasing the order of the basis function oglectronic structure of the molecule. This method showed
using many elements for any electronic state under an inhdsetter convergence for the ground state than the pure-FEM
mogeneous external field or under a complex boundary cordue to a better representation of the linear combinations of
dition. atomic orbitalLCAO) around the nuclei. It was an effective
The finite difference methodDM) is a means of numeri- approach for representing the core region electrons. Unfortu-
cally solving partial differential equations by using a finite nately, full variational calculation in the combined basis
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space was not carried out. Fiisti-Moltadivided the elec- tron energies and dipole moments are calculated for a set of
tronic wave function into the slowly and steeply varying small test molecules using the derived condition. The accu-
parts in a three-dimensional space, and represented a respesey and stability of this method are discussed in comparison
tive region using the plane wave and the Gaussian basigith the results of the generally used Gaussian basis sets.

function. The results of the calculations indicated that the’rhe conclusions are gi\/en in Sec. IV, followed by the Ap-
electronic structure using the plane wave basis alone wasendix.

sufficiently improved in the precision by combining the
Gaussian basis function for the electronic structure calcula-
tions of molecules. The FEM is expected to show a similar
behavior in combination with the Gaussian basis function.
The coarse and fine grid spacings are analogous to adopting The wave function was expanded as the linear combina-
t_he low and high fr_equenc_y terms of the plane wave, respeaion of the Gaussian basis functiogg=(¢g;, ... ,¢g) and
tively. If the Gaussian basis function correctly represents théhe FE basis functionge= (¢, . .. ,@rm):
steeply varying part, the arrangement of the FEM can be set
regardless of the atomic positions. Such a construction of the Y(r)=C - ¢(r), (D
basis functions without a large number of grid points is ex-
pected to provide a simple procedure. where

In order to make the FEM suitable for all-electron calcu- -
lations of general molecules in three-dimensional Cartesian C=(Cou - Co1Cra - Cen), @
coordinates, the Gaussian-FE mixed basis méthwes pro- _ _
posed. This mixed basis is composed of the linear combina- ¢ = (. ¥) = (961, --- el PF1, - PFm). )
tion of Gaussian basis functions and three-dimensional polyand C is the expansion coefficient vector. The piecewise
nomials. This mixed method can be considered as th@olynomials of Lagrange type are defined as FE basis func-
extension of the pure-FEM calculation for the quantum-tions. Here, the one-dimensional case is considered for sim-
chemistry calculations. The FE basis functions with a threeplicity. The FE basis functions inth element are expressed
dimensional uniform coarse grid system are combined withas
the set of Gaussian basis functions, which are the compo-
nents with a larger exponent of usual contracted Gaussian
basis sets to correctly express wave functions near nuclei. ¢(Fn)(x) = %Cgﬂgan)(x)’ (4)
The present construction of the basis functions is expedient “
in order to avoid considerable overlap between two differenwhere
types of basis functions. In the FEM, the contribution from K "
each element is assembled to construct the Fock matrix. The s = I1 (x=xz") 5)
exchange potential based on the density functional theory « =1 (Xgﬁ_xgﬂ)’
(DFT) can be evaluated within each element. Therefore, the (Ba)
sparsity of the Fock matrix is ensured. In contrast, the exact
Hartree-Fock exchange potential leads to the fully dense maand S(;) is the ath local basis function defined in theth
trix, for which much more computational resources are re€lement and<5:) is the position of the nodal point with local
quired. In order to avoid the excessive calculation costs, allnumbera. The global basis functiogg is generated by as-
electron calculations in the present investigation were carriedembling the local basis functiod according to the nodal
out within the DFT. The variational problem was solved in connectivity. As a resultgr; is defined for the element in-
this mixed-basis-function space. volving the nodal point with global numbér The FE basis

In our previous work? the Gaussian FE mixed-basis functions are adopted to represent the slowly varying part of
function method has examined as an electronic-state calculthe wave function. Within this condition, high-order FE basis
tion technique for H, AlH, Al,, and the AlH cluster. As a functions are not necessarily required. The first- and second-
result of these calculations, the FE basis functions wererder interpolation polynomials, which corresponded to
found to automatically compensate for the part of the MOk=2 andk=3 in Eqg.(5), respectively, were evaluated as the
which cannot be represented by the Gaussian basis functiofi€ basis functions. These functions are denoted hy BRd
alone. Unfortunately, the effective construction of theseFE , hereafter. Higher dimensional FE basis functions are
functions with quite different natures has not yet been clariinade by the product of the one-dimensional FE basis func-
fied. The objective of this work is to obtain the conditions tions. Figure 1 shows the configurations of the nodal points
under which the Gaussian basis function efficiently compenin one element for each interpolation. The 20-nodal-point
sates the FE basis function without adversely affecting thelement, generally called the “serendipity” elem&ntyas
accuracy of the wave functions. used for the second-order interpolation. The number of ver-

The outline of this paper is as follows. In Sec. Il the maintices of elements per dimension was 23. The grid spacings
characteristics of this mixed basis method are described. Iwere set to 0.7 bohr except for the outer two grid spacings,
Sec. Il A we obtain the conditions that the slowly varying which were set to 3.0 bohr. This calculating region was cubic
parts of the contracted Gaussian basis sets are successfulith the size of 24.6 bofir The Gaussian basis functions
replaced by the FE basis functions through the electronitised here were defined as several parts of the usual 6-311G
state calculations for JHand CO. In Sec. lIl B the total elec- split valence type contracted Gaussian basis8éfs.

II. FORMULATION

k
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b Z, 2z, (1
(=) i <‘PF|VnucI|§DF/>=f svp(r)mqop(f)df =\—7:f W[XFF’]
* X [yee] X [zer Jdw, (13)
b > where
. [Xerr]= f e () opr(0exp(— (x = Xp)w?)dx,  (14)

FIG. 1. Configuration of nodal points denoted by black dots in
one cubic element fo(a) the first order andb) the second order
interpolation polynomials.

andZz, is the atomic number of the atom aRy is the posi-
tion of the nucleus. The integrals in the square brackets can
be analytically evaluated. The integral with respeatvtmust
be numerically done.
The co_efficientC was determ_ined by consistently solving |y order to evaluate the Coulomb potentfal originating
the following eigenvalue equation: from the electron density, the Coulomb potentia|(r) of
Eq. (10) is required. TheV,(r) was evaluated by solving a

Frow - C=2U - C, ®  poisson's equation
where V(1) = = 4ap(r), (15
Fiotal = Fiin + Fruai+ Fei + Fxer (7)  wherep(r) is an electron density. Her&/(r) was repre-
sented by the Gaussian FE mixed basis functions in the fol-
lowing form:
Fin= (el = Vi) + (sl = V2 iher) + (el = V2 s, g
(8) I"+m ,
Velr) = 2 Digf (1), (16)
i=1

Fruct = (Yl Vol 1) + (el Vel ) + Yl Vel ), where,D; is theith expansion coefficient, ang/ is the basis

9 function for expressingV/g(r). The same second-order FE

basis functions as used for the electronic wave function, and
For= (YiaVal o) + (W Vel ) + (UelVel ), (10) Gaussian basis functions with sql_Jared exponents were used.

In order to calculate Eq(15), it is necessary to specify

boundary conditions for the FE region. This was accom-
Fue=(WalVyd o) + (We|Vid e ) + (¥elVod ey, (11)  plished with a multipole expansion pfr) up to the quadra-
pole moments. Onc&,(r) is obtained,F, is analytically
evaluated as triplet overlap integrals. All calculations de-
scribed in this paper were performed using the DFT func-
tional. The exchange functional proposed by Békad the

U = (yolther) + (ol + (el e, (12

and ¢ is the Lagrange multiplier. The integrations of each lation functional d by L v 4P
potential term including the FE basis functions were evalyLorrelation functional proposed by Lee, yang, and tarr

ated for every element. The contributions from all elementg"/€'¢ adopted here. The exchange correla}non.poteﬁp.@l .
were assembled to construct the Hamiltonian makii, was evaluated by Gauss-Legendre numerical integration in

and the overlap matri}J). The kinetic energyF,,, between each element. The generalized eigenvalue problem oftq.

Gaussian basis functions, which is the first term on the right\—’vas solved by the conjugate-gradi¢®iG) method:*
hand side of Eq(8), was analytically calculated using the

procedure of O-ohatat all® The second and third terms [ll. RESULTS AND DISCUSSION

were also analytically evaluated, since the three-dimensional
(3D) integration for the FE basis functions reduced to the
combination of one-dimensionélD) integrations. The Cou- The accuracy and stability of the Gaussian FE mixed ba-
lomb potentials of the electron and core charge were sepais method were investigated for the electronic states of the
rately calculated. The Coulomb potentig), originating H, and CO molecules. The configurations of the grid systems
from the core charge was evaluated by using different proadopted for the calculations of,Hare shown in Fig. 2. The
cedures for each term on the right-hand side of @y.The  numerical error originating from the adopted grid condition
first term is similarly evaluated for the kinetic energy termwas evaluated for two different arrangements of grid points
between Gaussian basis functions. In order to evaluate thend atomic positions. The parameters of the Gaussian basis
second and third terms of E@9), the potential within an functions used here are listed in Table IV in the Appendix. In
element was separated into two parts. If there was no atomithe mixed basis method, the FE basis functions show explicit
center within an element, the Gauss-Legendre numerical incontributions to part of a wave function, which is expressed
tegration gave a good result. The following relafiomas by Gaussian components with a small exponent in a pure-
used when a nucleus was located in the focused element: Gaussian calculation. If the FE basis functions can replace a

A. Electronic state of H, and CO
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(b)

100

FIG. 3. Deviations(a) caused by the approximation of FE func-
tion for the Gaussian function with various exponeats8lack and

gray lines denote the deviation for teeandp-type Gaussian func-

FIG. 2. Relative configuration of grid lines and hydrogen atomstions, respectively. Dashed and solid lines are the values using first-
denoted by gray circles. The atoms are locd&dn grid points or  order FE basis functions and using the second-order FE basis func-
(b) at the centers of elements. The grid spacingvas set to  tions, respectively. The filled circles on each line of thype
0.7 bohr. function denote the(a)’s at exponents of components of the 311G

basis set for the hydrogen atom. The grid spacing was set to
part of the Gaussian basis set in the resultant electronic wavg7 bohr.
functions, the condition can be accepted as one equivalently
accurate to the result from the pure-Gaussian procedure. TiFgure 4 shows the relative contribution of each basis func-
expressibility of the FE basis function to a part of Gaussiartion to the electron density of Hor various combinations.
basis set was investigated by varying the value of the expofhe contributions of the FE basis functions decrease as those
nent of the Gaussian basis function. Such an investigatiodf the Gaussian basis functions increase. In the case qf FE
focused on an element involving a nucleus on a grid pointthe contribution ofy3,,.sshould be more than 80% in order
The criterion was evaluated through the estimation of deviato reach a precision equivalent to the pure 311p)GIn
tions, which arose from the approximation for teeand  contrast, a Gaussian contribution of only 10% is required in
p-type Gaussian functions with exponentfg(r), by the FE  the case of the FE. As shown in Fig. 5, the contribution of
function feg(r). The deviations were defined by the FE basis functions in 311G-EEstill remains in the
middle of the H—H bond where the pure 311G cannot rep-
resent accurately. As a result, the 311G-fEombination

f(fg(r) ~ fee(r))?dr
S(a) = . (17 TABLE I. The total electron energies for,Hocated on the grid
ff“(r)zdr point using various Gaussian FE basis sets and the conventional
G Gaussian basis sets. The values forlbtated at the center of the
element are given in parentheses.

Figure 3 shows the deviatiahas a function of the expo-

nent of the Gaussian functian The dependence sfon the E3Hartree

order of the FE basis functions is also shown in Fig. 3. When

a cubic element with the width of 0.7 bohr is used, the ap- b . .

proximation by the FE produces a smaller deviation than Ne Gaussian Fi Gaussian

that by the FE;. The deviations in the Rk and FE clearly 0 -1.8192(-1.7599 -1.8699(-1.8613

arise wherex is larger than 0.5 and 1.0, respectively. Table | 1 -1.8196(-1.7806 -1.8718(-1.8745

shows the total electron energies fos Hsing various com- 5 ~1.8339(~1.8388 ~1.8830(~1.8824

binations. The total electron energies using the Gaussian FE 3 ~1.8758(~1.8758 ~1.8841(~1.8840

basis set were compared with those using the 311G,

311+@p) and augmented correlation consistent polarized 4 ~1.8832(-1.8833 ~1.8842(-1.8843
5 -1.8835(-1.8834 -1.8842(-1.8842

valence quadruple zet@ug-cc-pVQZ4. The aug-cc-pVQZ
basis set has a sufficient quality to discuss the Gaussian basis 3115 ~1.8809
set limit. All calculgtlons with the aug-cc-p\zleZ basis set 311+Qp) _1.8834
were performed using theAUSSIANO3 program<< The accu-

racy of the energy is lost as the number of combined Gauss- 249-6¢-PVQZ ~1.8844
ian basis functions decreases. The increase in the deviatioreThe geometry parameter wagH—H)=1.4 bohr.

in Fig. 3 obviously correlates with the loss of accuracy. The?Number of Gaussian basis functions combined with FE basis func-
FE, , significantly improved the accuracy more than EE tions, as shown in the Appendix.
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FIG. 6. Dipole moments for CO calculated with, 6-311G;A,
6-311+@2d); and [, 6-3G-FE,. The solid line denotes the ex-

FIG. 4. Relative contributions of Gaussian and FE basis part foperimental dipole moment functiosee Ref. 2B The 6-3G ex-
various combinations: Dashed lines denote the results using firstracted from the 6-311G basis set for C and O was combined with
order FE basis functions, and solid lines denote those using seconthe second-order FE basis functions.

order FE basis functions. The symbdiis @, and A correspond to ) ) ) )
the contributions o2, e, and ¥, respectively. The Gaussian FE mixed basis method was next applied to

the calculation of the dipole moment of the CO molecule in
order to investigate the expressibility of the FE basis func-
tion to Gaussian basis sets containing various components

Number of Gaussian basis

can reach a precision equivalent to the aug-cc-pVQZ. In or
der to investigate the dependence of the stability of the cal=-" . . ) :
culation on the arrangements of grid points and atomic posit’eSIdeS thes-type _funct|on. The dipole moment was dis-
tions, hydrogen atoms were located at the center of thgusse_d as a_funct|0n of the CO bon_d length. The,Rkas
element as shown in Fig. 2. As shown in Table I, the accu_combmed V‘."th the6-3G co.rrespor)(.jmg fo a part of the
racy does not depend on the position of the nucleus, if the F£-311G basis set. Under this condition, the largest exponent

basis functions can replace a part of the Gaussian basis ino:i the replaced component in the 6-311G is about 0.48. As

condition with a small deviation. In contrast, the accuracyfor the R, with the grid spacing of 0.7 bohr, the deviation

fluctuated for the inadequate combinations. for th_e § or p-ype Gaussian functio_n W.ith this exponent
The augmentation of FE basis functions using Gaussia emains as the small value as shown in Fig. 3. Therefore, the

basis functions, which can secure an equivalent precision t B |s|expéacted to havg ego%gglq(gfgrmgnce tAo feﬁfesef“

the pure-Gaussian basis set, was examined. For this purpodB€ réplaced component in the 6- asis set. As shown in

it is important that the FE basis can fully replace a part of th 9. 6, the calctjlation Cr’]f thi'ie'g%ﬂe‘;éltsbin a dipolle
Gaussian basis set in the electronic wave functions. The FE Moment equivalent to that of the 6-31148) basis set al-

can carry a much higher percentage of the contribution to thfudh the grid spacing is uniformly set regardless of the
molecular orbital than the FE atomic positions. Figure 7 shows the difference in the mo-

lecular orbital between the 6-311«2l) and the 6-3G-
FE, ,, and that between the 6-311G and §#8G-FEg,. Fig-
ures 7a) and 1b) show the contour maps for the difference:
Ay=(6-3G-FE,)-(6-311Q in the lowest-energy orbital
and the highest occupied molecular orb{tdOMO), respec-
tively, while Figs. 7c) and 7d) show those for the differ-
ence:Ay=y(6-3G-Fg,)-(6-311+Q32d)). The differences
in the lowest-energy orbitalin Figs. 7@ and 7c)] are
smaller than those in the HOMfIn Figs. 4b) and 7d)]. In
particular, the differences in the HOMO show a positive
value in the interatomic region, as shown in Figé&)7and
7(d). This is mainly because the FE basis functions improve
; the expression of the wave function in the interatomic region
0 due to the flexibility of the function.
4 4 =2 0 2z 4 6 As for the region apart from the core, the difference in
7 (bohr) Fig. 7(d) is smaller than that in Fig.(B). In the calculation
with the 6-3G-FE,, the contributions of/Z . ¥2z and
FIG. 5. Molecular orbitaki(r) on a molecular axis of Husing  ¥s-3ct/re Were 35.37%, 60.68%, and 3.95%, respectively.
full 311G-FE_,. The solid, dash-dot, and dashed line denote theObviously, the FIg, carried a much higher percentage of the
molecular orbital, the contribution of the Gaussian basis functionsgontribution to the molecular orbital than the Gaussian basis
and the contribution of FE basis functions, respectively. functions, and the region except for the core region was al-

05
04 r
03 r
S 02

o1 r
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(a) (c)

FIG. 7. Contour maps of the mo-
0.005 TN 0.003 A lecular orbital difference for CQat
< r(C-0)=2.132 boht. In the four
A figures, (@) and (b) show the maps
RO NS of the lowest orbital and the
-0.005 - -0.005 - HOMO, respectively, for the differ-
ence [V(6-3G-Fg,)-¥(6-311G],
while (c) and(d) show those for the
difference [V (6-3G-FE,)-¥(6-
311+@2d))]. The values on the left
hand side of each figure show the
(b) (d) varying range of the difference. The
. - - solid and dashed lines indicate posi-
b tive and negative values, respec-
tively. The increment of each con-
tour line is 0.001. The black dot on

0.022 0.008 # T ; ? /S VT the right-hand side in each inset de-
f:~‘ ({‘ : S '»5,@’,, \.',—, ; notes the position of the oxygen
: g RO ¥ @t=-f-o1— atom, and that on the left-hand side
] N AW (e NN denotes the position of the carbon
@[ D! - .
0,020 -0.008 e . *Lg (C :Z'\J v atom. Grid lines denote the configu-
’ ’ % [\ ) ration of each element.

1.4 bohr

most expressed by the FE basis functions. Therefore, thef the 6-3G-FE, is discussed in comparison with the results
decrease of the difference in this region as shown in Kid). 7 of the pure-Gaussian basis sets. As shown in Table II, the
is because the RE basis functions successfully perform the dipole moments of the lone pair molecules depend on the
role of the polarization and diffuse functions in the 6-311basis set as compared with the experimental value and the
+G(2d) basis set. aug-cc-pVQZ results. The 6-311+ «€ p) basis set is inad-
The FE basis functions can replace the various kinds ofguate to represent the dipole moments of both molecules.
Gaussian basis functions if the steeply varying part is corAlthough the 6-311+ +@d, 2p) basis set shows better re-
rectly represented by the combined Gaussian basis functiong!//ts, the value is still large. In contrast, the dipole moment
The wideness of the part represented by the Gaussian ba§sthe 6-3G-FE; is close to the aug-cc-pVQZ results. These
functions depends on the expressibility of the FE basis funciendencies are probably due to the molecular orbital repre-
tion determined by grid spacing and the order of the pESentation in the region apart from nuclei. The flexibility of

. : ; ; he FE basis functions is effective in improving the represen-
function. The number of nodal points per dimension between € FE .
nuclei adopted here was at most three. In spite of such fion like the calculation for CO. Consequently, BSG-

coarse grid, the RE can carry a much higher percentage of B, lowered the fotal electron energy more than 6-
the molecular orbital than the Gaussian basis functions. Ac§1l++q2d’2p)' The total electron energy of the-3G-

cordingly, the cooperation with the Gaussian basis function%%%’lyh%\gg;ﬁ;’edgf tshgoi;;?jimégi c\)/]? ltg(;g ;un%cocr;gxtQZ,
allows us to adopt a coarse uniform grid spacing.

representing the steeply varying part.

The calculation for @Hg with the 5-2G-FE , was carried
out in the off-grid-point condition of atoms. If the grid-point
condition applied here is insufficient for the accurate expres-

The Gaussian-FE mixed basis method is applied to sewsion to the electronic state, the resulting wave functions must
eral polyatomic molecules based on the conditions investinave been distorted from the ideal distribution. Thus, the
gated in the previous section. The 3G extracted from thewumerical error in the calculated dipole moment is a good
311G basis set used for H and tBe3G extracted from the quantity to check it. Table 1ll shows the results of the total
6-311G basis set used for N or O were combined with theelectron energies and dipole moments fgHg. The dipole
FE ,. Table Il shows the total electron energies and dipolemoment of the5-2G-FE, shows that there is no significant
moments in thes-3G-FE , for H,O and NH;. The accuracy distortion of the electron distribution in spite of the off-grid-

B. Electronic state of H,O, NH3, and CgHg
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TABLE II. Total electron energies and dipole moments faxCH 2

and NH; using the Gaussian FE basis set and the conventional WYird
Gaussian basis sets. The 3G extracted from the 311G basis set for i
H, and the 6-3G extracted from the 6-311G basis set were used for NS |y
N or O. ;
H,0? NH,® \
Basis set E/Hartree u/Debye E/Hartree u/Debye : :_':_: :
6-3G-FE» -85.6409 1.801 -68.5158 1.476
6-311++Qd,p) —85.6374 2.123 -68.5103 1.721 N T
6-311++QG2d,2p) -85.6408 1.924 -68.5140 1.563 N N
aug-cc-pvVQZz -85.6504 1.789 -68.5204 1.476 / N o
Experiment -85.5958 1.855' -68.4568 1.472 y /;/ =l a4

aThe geometry parameters weré0-H)=0.9572 A andg(HOH)
=104.5 deg in Ref. 24.

bThe geometry parameters weréN-H)=1.0124 A andd(HNH)
=106.7 deg in Ref. 25. _ o FIG. 8. Electron equidensity surfac@at y2=1x10%) for
‘These values are the sum of atomic energies in Ref. 26, nucleg He.

repulsion energies for the experimental geomeinyRefs. 24 and

25), and experimental atomization energies in Ref. 27. . .
dR)eferencep28_ J the wave function near the nucleus can be avoided by the

eReference 29. benefit of the Gaussian basis functions. Second, the increase
in the number of atoms does not directly lead to the increase
fjn the number of FE basis functions, since there is no neces-
sity to connect the position of a nodal point and an atom.
This is a desirable feature in order to apply this mixed basis
clear that the>-2G-Fk., can lower the total electron energy method to the large-scale electronic structure problem. The

more than the 6-311++G even if tmé part has the remark- last is the unneccessariness of the pseudopotential. The core
able contribution only around the nuclei. Subsequently, the P P :

overlap between the Gaussian basis functions belonging t%lectron is explicitly expressed in this method by the benefit

different atoms is not necessarily required to achieve the caf?f the combmanp_n of Gaussian basis fupcnons._Unf_ortu-
nately, the suitability to the parallel computing of this mixed

culation more accurate than the 6-311++G. In this condiy asis method is lower than that of the pure FEM because of
tion, the largest exponent of the replaced component in th . . 1€ pure
e nonlocality of the Gaussian basis functions. However, a

6-311G is about 1.8. As shown in Fig. 3, this component_ . defici b ided b ina the broadl
cannot be completely represented by f&ith the grid spac- serious deficiency can be avoided by not using the broadly
ing of 0.7 bohr. It is easily expected that further improve—Spreadmg Gaussian basis functions. In this context, the num-

ment of the accuracy can be obtained by adopting finer gri er of mtegratlons be;ween the Gaussian basis functions in
spacings his method is proportional to the number of atoms, because

%f no significant overlap between the Gaussian basis func-

This mixed basis method shows three advantages throuq ) ) )
A . . . “1ions belonging to different atoms. In the view of the present
the present examinations in contrast with the mesh refine-

ment techniques within the pure FEM. First, the excessivéﬁumor’ the_ present met.hod Is expected to redupe the basis set
degree of freedom of the FE basis functions for expressin§lJperpOSItlon error,_wh|ch frequently appears in _the calcula-
on of a molecular interaction. The reason for this fortunate
expectation originates from the fact that the superposition of
the Gaussian basis functions of two different nuclei is ex-

=2.033 bohr] using the Gaussian FE basis set and the (:onventionatremely small under the present calculation conditions. As an

Gaussian basis sets. The 2G extracted from the 311G basis set f%gd't'onal appllcatlpn of this .m|xed basis metho_d_, the
H, and the 5-2G extracted from the 6-311G basis set for C weré1uc|ear cusp is fairly expressible under the condition of

2.0 bohr

point condition of atoms. Figure 8 shows the contributions o
Y&, Re, and Y to the electron density for ¢lg. It is

TABLE lll. Total electron energy and dipole moment foghdg
[The geometry parameters wer€C-C)=2.619 bohr, and(C-H)

used. which dense nodal points are arranged near the area around
the nuclei. This fact can be naturally imagined through the
Basis set E/Hartree u/Debye construction of a wave function near the nuclei by dense FE
basis functions.
5-2G-Fgk, -437.0038 0.000
6-311G -436.9516 0.000
6-311++G -436.9545 0.000 V. CONCLUSIONS
6-311++Gd,p) -437.0095 0.000 The flexibility of the FE basis functions is expected to be
6-311++G2d,2p) -437.0188 0.000 suitable for both highly accurate calculations and large sys-
aug-cc-pvVQz —437.0512 0.000 tems. However, explicit applications have been less pub-

lished because an excess degree of freedom is needed to

035113-7



SHUNSUKE YAMAKAWA AND SHI-AKI HYODO PHYSICAL REVIEW B 71, 035113(2009

TABLE IV. Gaussian basis functions combined with FE basis functions.

Number of combining Exponents of combining

Gaussian basis functions Gaussian basis functions
0
1 33.8650
2 5.09479, 33.8650
3 1.15879, 5.09479, 33.8650
4 0.325840, 1.15879, 5.09479, 33.8650
5 0.102741, 0.325840, 1.15879, 5.09479, 33.8650

represent the core electron. In order to propose an efficierihe atomic position. Since the increase in the number of at-
solution of this problem, the Gaussian FE mixed basisoms does not directly lead to an increase in the number of
method was proposed. The slowly varying part of the mothe FE basis functions, this mixed basis method will provide
lecular orbital is represented by FE basis functions with a further extension of the FE basis method toward the all-
uniform coarse grid spacing, and the steeply varying parelectron calculation in a much larger system.

around a nucleus is represented by Gaussian basis functions,

which have a contribution only around nuclei. The various

conditions for combining the Gaussian basis functions with APPENDIX

FE basis functions were examined in this work. The augmen-

tation of the FE basis functions using Gaussian basis func- As for the calculation of B uncontracted Gaussian basis
tions allows us to adopt a coarse uniform grid, and reducegunctions based on 311G were combined with FE basis func-
the dependency of the FE nodal positions on atomic positions. In order to certify the effectiveness of the contribution
tions. The predominance over the pure FEM of this mixedof the FE basis functions, Gaussian basis functions were un-
basis method is that the augmentation can reduce the excessntracted and the components with smaller exponents were
degree of freedom of the FE basis functions depending oexcluded as shown in Table IV.
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