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As a fully flexible basis function, the finite elementsFEd function was introduced for the representation of
the wave function in the molecular electronic state calculation within the density functional theory. The most
serious disadvantage, which hindered the extensive application of the FE basis function, was the excessive
computational cost for the representation of the core electron. In order to reduce this deficiency, the
Gaussian-FE mixed basis method was proposed. The cooperation with Gaussian basis functions was utilized
for representing the steeply varying part of the electronic wave function around the nuclei. Based on the results
of the calculations for a set of small molecules, it was confirmed that the augmentation of the FE basis function
using the Gaussian basis function allowed us to adopt a coarse uniform grid, and reduce the dependency on the
relative configuration of FE nodal positions and atomic positions. These features were desirable to carry out the
all-electron calculations of polyatomic molecules in the three-dimensional Cartesian coordinates while con-
serving the flexibility of the FE basis function.
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I. INTRODUCTION

In the electronic state calculation, electronic wave func-
tions are expanded in a set of one-electron functions. The
atom-centered basis function is feasible for the expansion
function because of the localized electron distributions of
atoms or molecules. Gaussian basis sets1 have been very suc-
cessfully used in quantum-chemistry calculations. The im-
provement for the representation of molecular electronic
wave functions is attained by the use of a large number of
Gaussian basis sets consisting of the split-valence bases or
functions of higher angular quantum numbers. However, in
practical calculations, the basis is usually far from complete.
Since the number of two-electron integrals rapidly grows as
N4, whereN is the number of basis functions, excessive com-
putational cost is required to obtain the basis-set limit for a
given level of theory. This basic deficiency may be remark-
ably improved by using more flexible basis functions.

As an alternative approach for the molecular electronic
state, the real-space grid method2–12 has recently attracted
increasing attention. The real-space grid method does not
suffer from the same inefficiency problem concerning the
number of two-electron integrals as the global basis sets be-
cause this method uses a strictly localized representation in
the discrete element smaller than the entire simulation region
for the electronic wave function. The finite-element method2

sFEMd has been regarded as one of the possible real-space
grid techniques to calculate electronic structures. In the
FEM, the calculated region is represented as an assemblage
of discrete elements interconnected at nodal points. The basis
functions are strictly localized within each element. The
main advantage of the FEM is its flexibility. The FEM can
systematically improve the accuracy to the individual real
space region by increasing the order of the basis function or
using many elements for any electronic state under an inho-
mogeneous external field or under a complex boundary con-
dition.

The finite difference methodsFDMd is a means of numeri-
cally solving partial differential equations by using a finite

value at the nodal points. The FDM for the electronic state
calculations11,12 has similar features to the FEM. Unlike
FDM, however, an eigenstate in the FEM is calculated ac-
cording to the variation principle. In the earliest examination,
the FEM was applied to one- or two-dimensional calcula-
tions for an atom or a diatomic molecule, in which the sym-
metry could be used to reduce the dimensionality.7–10 As a
result, the FEM was proven to be suitable for highly accurate
molecular orbital sMOd calculations. However, for three-
dimensional cases, the system size will be obviously limited
in this highly accurate MO calculation, since the number of
nodal points must be extremely large. The very sharp varia-
tion in the wave function near the nucleus forces this prob-
lem to be more serious. Therefore, the availability of the
FEM to practical electronic structure calculations essentially
depends on the expressibility of the wave function near the
nucleus.

Several efforts within the pure-FEM have been done to
reduce the earlier-mentioned difficulty. The adaptive coordi-
nate transformation,5 in which the appropriate local resolu-
tion was accomplished by varying the grid spacing, has been
adopted. However, the use of the mesh refinement technique
alone does not accurately express the core electron. The
pseudopotential technique combined with the mesh refine-
ment technique is usually used in order to reduce the com-
putational cost by the reduction of the explicitly treated or-
bital and by the availability of the coarse grid spacing.

On the other hand, the cooperation between the FE and
atomic orbital type basis functions easily improves the accu-
racy more than the pure-FE basis set, because of the spheri-
cal symmetry of the electron distribution in a core region.
Düsterhöftet al.10 combined a numerical atomic orbital with
a two-dimensional FEM and relativistically calculated the
electronic structure of the C2 molecule. This method showed
better convergence for the ground state than the pure-FEM
due to a better representation of the linear combinations of
atomic orbitalsLCAOd around the nuclei. It was an effective
approach for representing the core region electrons. Unfortu-
nately, full variational calculation in the combined basis
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space was not carried out. Füsti-Molnar13 divided the elec-
tronic wave function into the slowly and steeply varying
parts in a three-dimensional space, and represented a respec-
tive region using the plane wave and the Gaussian basis
function. The results of the calculations indicated that the
electronic structure using the plane wave basis alone was
sufficiently improved in the precision by combining the
Gaussian basis function for the electronic structure calcula-
tions of molecules. The FEM is expected to show a similar
behavior in combination with the Gaussian basis function.
The coarse and fine grid spacings are analogous to adopting
the low and high frequency terms of the plane wave, respec-
tively. If the Gaussian basis function correctly represents the
steeply varying part, the arrangement of the FEM can be set
regardless of the atomic positions. Such a construction of the
basis functions without a large number of grid points is ex-
pected to provide a simple procedure.

In order to make the FEM suitable for all-electron calcu-
lations of general molecules in three-dimensional Cartesian
coordinates, the Gaussian-FE mixed basis method14 was pro-
posed. This mixed basis is composed of the linear combina-
tion of Gaussian basis functions and three-dimensional poly-
nomials. This mixed method can be considered as the
extension of the pure-FEM calculation for the quantum-
chemistry calculations. The FE basis functions with a three-
dimensional uniform coarse grid system are combined with
the set of Gaussian basis functions, which are the compo-
nents with a larger exponent of usual contracted Gaussian
basis sets to correctly express wave functions near nuclei.
The present construction of the basis functions is expedient
in order to avoid considerable overlap between two different
types of basis functions. In the FEM, the contribution from
each element is assembled to construct the Fock matrix. The
exchange potential based on the density functional theory
sDFTd can be evaluated within each element. Therefore, the
sparsity of the Fock matrix is ensured. In contrast, the exact
Hartree-Fock exchange potential leads to the fully dense ma-
trix, for which much more computational resources are re-
quired. In order to avoid the excessive calculation costs, all-
electron calculations in the present investigation were carried
out within the DFT. The variational problem was solved in
this mixed-basis-function space.

In our previous work,14 the Gaussian FE mixed-basis
function method has examined as an electronic-state calcula-
tion technique for H2, AlH, Al 2, and the Al4H cluster. As a
result of these calculations, the FE basis functions were
found to automatically compensate for the part of the MO
which cannot be represented by the Gaussian basis functions
alone. Unfortunately, the effective construction of these
functions with quite different natures has not yet been clari-
fied. The objective of this work is to obtain the conditions
under which the Gaussian basis function efficiently compen-
sates the FE basis function without adversely affecting the
accuracy of the wave functions.

The outline of this paper is as follows. In Sec. II the main
characteristics of this mixed basis method are described. In
Sec. III A we obtain the conditions that the slowly varying
parts of the contracted Gaussian basis sets are successfully
replaced by the FE basis functions through the electronic
state calculations for H2 and CO. In Sec. III B the total elec-

tron energies and dipole moments are calculated for a set of
small test molecules using the derived condition. The accu-
racy and stability of this method are discussed in comparison
with the results of the generally used Gaussian basis sets.
The conclusions are given in Sec. IV, followed by the Ap-
pendix.

II. FORMULATION

The wave function was expanded as the linear combina-
tion of the Gaussian basis functionscG=swG1, . . . ,wGld and
the FE basis functionscF=swF1, . . . ,wFmd:

csr d = C · wsr d, s1d

where

C = sCG1, . . . ,CGl,CF1, . . . ,CFmd, s2d

w = scG,cFd = swG1, . . . ,wGl,wF1, . . . ,wFmd, s3d

and C is the expansion coefficient vector. The piecewise
polynomials of Lagrange type are defined as FE basis func-
tions. Here, the one-dimensional case is considered for sim-
plicity. The FE basis functions innth element are expressed
as

cF
sndsxd = o

a=1

k

Ca
sndSa

sndsxd, s4d

where

Sa
sndsxd = p

b=1

sbÞad

k
sx − xb

sndd
sxa

snd − xb
sndd

, s5d

and Sa
snd is the ath local basis function defined in thenth

element andxa
snd is the position of the nodal point with local

numbera. The global basis functionwF is generated by as-
sembling the local basis functionS according to the nodal
connectivity. As a result,wFi is defined for the element in-
volving the nodal point with global numberi. The FE basis
functions are adopted to represent the slowly varying part of
the wave function. Within this condition, high-order FE basis
functions are not necessarily required. The first- and second-
order interpolation polynomials, which corresponded to
k=2 andk=3 in Eq. s5d, respectively, were evaluated as the
FE basis functions. These functions are denoted by FEL1 and
FEL2 hereafter. Higher dimensional FE basis functions are
made by the product of the one-dimensional FE basis func-
tions. Figure 1 shows the configurations of the nodal points
in one element for each interpolation. The 20-nodal-point
element, generally called the “serendipity” element,15 was
used for the second-order interpolation. The number of ver-
tices of elements per dimension was 23. The grid spacings
were set to 0.7 bohr except for the outer two grid spacings,
which were set to 3.0 bohr. This calculating region was cubic
with the size of 24.6 bohr3. The Gaussian basis functions
used here were defined as several parts of the usual 6-311G
split valence type contracted Gaussian basis sets.16,17
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The coefficientC was determined by consistently solving
the following eigenvalue equation:

Ftotal ·C = «U ·C, s6d

where

Ftotal = Fkin + Fnucl + Fel + Fxc, s7d

Fkin = kcGu − ¹2ucG8l + kcGu − ¹2ucF8l + kcFu − ¹2ucF8l,

s8d

Fnucl = kcGuVnuclucG8l + kcGuVnuclucF8l + kcFuVnuclucF8l,

s9d

Fel = kcGuVelucG8l + kcGuVelucF8l + kcFuVelucF8l, s10d

Fxc = kcGuVxcucG8l + kcGuVxcucF8l + kcFuVxcucF8l, s11d

U = kcGucG8l + kcGucF8l + kcFucF8l, s12d

and « is the Lagrange multiplier. The integrations of each
potential term including the FE basis functions were evalu-
ated for every element. The contributions from all elements
were assembled to construct the Hamiltonian matrixFtotal
and the overlap matrixU. The kinetic energyFkin between
Gaussian basis functions, which is the first term on the right-
hand side of Eq.s8d, was analytically calculated using the
procedure of O-ohataet al.18 The second and third terms
were also analytically evaluated, since the three-dimensional
s3Dd integration for the FE basis functions reduced to the
combination of one-dimensionals1Dd integrations. The Cou-
lomb potentials of the electron and core charge were sepa-
rately calculated. The Coulomb potentialFnucl originating
from the core charge was evaluated by using different pro-
cedures for each term on the right-hand side of Eq.s9d. The
first term is similarly evaluated for the kinetic energy term
between Gaussian basis functions. In order to evaluate the
second and third terms of Eq.s9d, the potential within an
element was separated into two parts. If there was no atomic
center within an element, the Gauss-Legendre numerical in-
tegration gave a good result. The following relation3 was
used when a nucleus was located in the focused element:

kwFuVnucluwF8l =E wFsr d
Zn

ur − Rnu
wF8sr ddr =

2Zn

Îp
E 1

w2fxFF8g

3 fyFF8g 3 fzFF8gdw, s13d

where

fxFF8g =E wFx
sxdwFx8

sxdexps− sx − Xnd2/w2ddx, s14d

andZn is the atomic number of the atom andRn is the posi-
tion of the nucleus. The integrals in the square brackets can
be analytically evaluated. The integral with respect tow must
be numerically done.

In order to evaluate the Coulomb potentialFel originating
from the electron density, the Coulomb potentialVelsr d of
Eq. s10d is required. TheVelsr d was evaluated by solving a
Poisson’s equation

¹2Velsr d = − 4prsr d, s15d

where rsr d is an electron density. Here,Velsr d was repre-
sented by the Gaussian FE mixed basis functions in the fol-
lowing form:

Velsr d = o
i=1

l8+m

Diwi8sr d, s16d

where,Di is theith expansion coefficient, andwi8 is the basis
function for expressingVelsr d. The same second-order FE
basis functions as used for the electronic wave function, and
Gaussian basis functions with squared exponents were used.
In order to calculate Eq.s15d, it is necessary to specify
boundary conditions for the FE region. This was accom-
plished with a multipole expansion ofrsr d up to the quadra-
pole moments. OnceVelsr d is obtained,Fel is analytically
evaluated as triplet overlap integrals. All calculations de-
scribed in this paper were performed using the DFT func-
tional. The exchange functional proposed by Becke19 and the
correlation functional proposed by Lee, Yang, and Parr20

were adopted here. The exchange correlation potentialFxc
was evaluated by Gauss-Legendre numerical integration in
each element. The generalized eigenvalue problem of Eq.s6d
was solved by the conjugate-gradientsCGd method.21

III. RESULTS AND DISCUSSION

A. Electronic state of H2 and CO

The accuracy and stability of the Gaussian FE mixed ba-
sis method were investigated for the electronic states of the
H2 and CO molecules. The configurations of the grid systems
adopted for the calculations of H2 are shown in Fig. 2. The
numerical error originating from the adopted grid condition
was evaluated for two different arrangements of grid points
and atomic positions. The parameters of the Gaussian basis
functions used here are listed in Table IV in the Appendix. In
the mixed basis method, the FE basis functions show explicit
contributions to part of a wave function, which is expressed
by Gaussian components with a small exponent in a pure-
Gaussian calculation. If the FE basis functions can replace a

FIG. 1. Configuration of nodal points denoted by black dots in
one cubic element forsad the first order andsbd the second order
interpolation polynomials.
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part of the Gaussian basis set in the resultant electronic wave
functions, the condition can be accepted as one equivalently
accurate to the result from the pure-Gaussian procedure. The
expressibility of the FE basis function to a part of Gaussian
basis set was investigated by varying the value of the expo-
nent of the Gaussian basis function. Such an investigation
focused on an element involving a nucleus on a grid point.
The criterion was evaluated through the estimation of devia-
tions, which arose from the approximation for thes- and
p-type Gaussian functions with exponenta, fG

asr d, by the FE
function fFEsr d. The deviations were defined by

ssad =ÎE sfG
asr d − fFEsr dd2dr

E fG
asr d2dr

. s17d

Figure 3 shows the deviations as a function of the expo-
nent of the Gaussian functiona. The dependence ofs on the
order of the FE basis functions is also shown in Fig. 3. When
a cubic element with the width of 0.7 bohr is used, the ap-
proximation by the FEL2 produces a smaller deviation than
that by the FEL1. The deviations in the FEL1 and FEL2 clearly
arise wherea is larger than 0.5 and 1.0, respectively. Table I
shows the total electron energies for H2 using various com-
binations. The total electron energies using the Gaussian FE
basis set were compared with those using the 311G,
311+Gspd and augmented correlation consistent polarized
valence quadruple zetasaug-cc-pVQZd. The aug-cc-pVQZ
basis set has a sufficient quality to discuss the Gaussian basis
set limit. All calculations with the aug-cc-pVQZ basis set
were performed using theGAUSSIAN03 program.22 The accu-
racy of the energy is lost as the number of combined Gauss-
ian basis functions decreases. The increase in the deviations
in Fig. 3 obviously correlates with the loss of accuracy. The
FEL2 significantly improved the accuracy more than FEL1.

Figure 4 shows the relative contribution of each basis func-
tion to the electron density of H2 for various combinations.
The contributions of the FE basis functions decrease as those
of the Gaussian basis functions increase. In the case of FEL1,
the contribution ofcGauss

2 should be more than 80% in order
to reach a precision equivalent to the pure 311+Gspd. In
contrast, a Gaussian contribution of only 10% is required in
the case of the FEL2. As shown in Fig. 5, the contribution of
the FE basis functions in 311G-FEL2 still remains in the
middle of the H–H bond where the pure 311G cannot rep-
resent accurately. As a result, the 311G-FEL2 combination

TABLE I. The total electron energies for H2 located on the grid
point using various Gaussian FE basis sets and the conventional
Gaussian basis sets. The values for H2 located at the center of the
element are given in parentheses.

NG
b

Ea/Hartree

Gaussian FEL1 Gaussian FEL2

0 −1.8192s−1.7599d −1.8699s−1.8613d
1 −1.8196s−1.7806d −1.8718s−1.8745d
2 −1.8339s−1.8388d −1.8830s−1.8824d
3 −1.8758s−1.8758d −1.8841s−1.8840d
4 −1.8832s−1.8833d −1.8842s−1.8842d
5 −1.8835s−1.8834d −1.8842s−1.8842d

311G −1.8809

311+Gspd −1.8834

aug-cc-pVQZ −1.8844

aThe geometry parameter wasrsH–Hd=1.4 bohr.
bNumber of Gaussian basis functions combined with FE basis func-
tions, as shown in the Appendix.

FIG. 2. Relative configuration of grid lines and hydrogen atoms
denoted by gray circles. The atoms are locatedsad on grid points or
sbd at the centers of elements. The grid spacingx was set to
0.7 bohr.

FIG. 3. Deviationssad caused by the approximation of FE func-
tion for the Gaussian function with various exponentsa. Black and
gray lines denote the deviation for thes- andp-type Gaussian func-
tions, respectively. Dashed and solid lines are the values using first-
order FE basis functions and using the second-order FE basis func-
tions, respectively. The filled circles on each line of thes-type
function denote thessad’s at exponents of components of the 311G
basis set for the hydrogen atom. The grid spacing was set to
0.7 bohr.
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can reach a precision equivalent to the aug-cc-pVQZ. In or-
der to investigate the dependence of the stability of the cal-
culation on the arrangements of grid points and atomic posi-
tions, hydrogen atoms were located at the center of the
element as shown in Fig. 2. As shown in Table I, the accu-
racy does not depend on the position of the nucleus, if the FE
basis functions can replace a part of the Gaussian basis in a
condition with a small deviation. In contrast, the accuracy
fluctuated for the inadequate combinations.

The augmentation of FE basis functions using Gaussian
basis functions, which can secure an equivalent precision to
the pure-Gaussian basis set, was examined. For this purpose,
it is important that the FE basis can fully replace a part of the
Gaussian basis set in the electronic wave functions. The FEL2
can carry a much higher percentage of the contribution to the
molecular orbital than the FEL1.

The Gaussian FE mixed basis method was next applied to
the calculation of the dipole moment of the CO molecule in
order to investigate the expressibility of the FE basis func-
tion to Gaussian basis sets containing various components
besides thes-type function. The dipole moment was dis-
cussed as a function of the CO bond length. The FEL2 was
combined with the6-3G corresponding to a part of the
6-311G basis set. Under this condition, the largest exponent
of the replaced component in the 6-311G is about 0.48. As
for the FEL2 with the grid spacing of 0.7 bohr, the deviation
for the s- or p-type Gaussian function with this exponent
remains as the small value as shown in Fig. 3. Therefore, the
FEL2 is expected to have enough performance to represent
the replaced component in the 6-311G basis set. As shown in
Fig. 6, the calculation of the6-3G-FEL2 results in a dipole
moment equivalent to that of the 6-311+Gs2dd basis set al-
though the grid spacing is uniformly set regardless of the
atomic positions. Figure 7 shows the difference in the mo-
lecular orbital between the 6-311+Gs2dd and the 6-3G-
FEL2, and that between the 6-311G and the6-3G-FEL2. Fig-
ures 7sad and 7sbd show the contour maps for the difference:
Dc=cs6-3G-FEL2d-cs6-311Gd in the lowest-energy orbital
and the highest occupied molecular orbitalsHOMOd, respec-
tively, while Figs. 7scd and 7sdd show those for the differ-
ence:Dc=cs6-3G-FEL2d-cs6-311+Gs2ddd. The differences
in the lowest-energy orbitalfin Figs. 7sad and 7scdg are
smaller than those in the HOMOfin Figs. 7sbd and 7sddg. In
particular, the differences in the HOMO show a positive
value in the interatomic region, as shown in Figs. 7sbd and
7sdd. This is mainly because the FE basis functions improve
the expression of the wave function in the interatomic region
due to the flexibility of the function.

As for the region apart from the core, the difference in
Fig. 7sdd is smaller than that in Fig. 7sbd. In the calculation
with the 6-3G-FEL2, the contributions ofc6-3G

2 , cFE
2 , and

c6-3GcFE were 35.37%, 60.68%, and 3.95%, respectively.
Obviously, the FEL2 carried a much higher percentage of the
contribution to the molecular orbital than the Gaussian basis
functions, and the region except for the core region was al-

FIG. 4. Relative contributions of Gaussian and FE basis part for
various combinations: Dashed lines denote the results using first-
order FE basis functions, and solid lines denote those using second-
order FE basis functions. The symbolsj, P, andm correspond to
the contributions ofcFE

2 , cFEcG, andcG
2 , respectively.

FIG. 5. Molecular orbitalcsr d on a molecular axis of H2 using
full 311G-FEL2. The solid, dash-dot, and dashed line denote the
molecular orbital, the contribution of the Gaussian basis functions,
and the contribution of FE basis functions, respectively.

FIG. 6. Dipole moments for CO calculated withs, 6-311G;m,
6-311+Gs2dd; and h, 6-3G-FEL2. The solid line denotes the ex-
perimental dipole moment functionssee Ref. 23d. The 6-3G ex-
tracted from the 6-311G basis set for C and O was combined with
the second-order FE basis functions.
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most expressed by the FE basis functions. Therefore, the
decrease of the difference in this region as shown in Fig. 7sdd
is because the FEL2 basis functions successfully perform the
role of the polarization and diffuse functions in the 6-311
+Gs2dd basis set.

The FE basis functions can replace the various kinds of
Gaussian basis functions if the steeply varying part is cor-
rectly represented by the combined Gaussian basis functions.
The wideness of the part represented by the Gaussian basis
functions depends on the expressibility of the FE basis func-
tion determined by grid spacing and the order of the FE
function. The number of nodal points per dimension between
nuclei adopted here was at most three. In spite of such a
coarse grid, the FEL2 can carry a much higher percentage of
the molecular orbital than the Gaussian basis functions. Ac-
cordingly, the cooperation with the Gaussian basis functions
allows us to adopt a coarse uniform grid spacing.

B. Electronic state of H2O, NH3, and C6H6

The Gaussian-FE mixed basis method is applied to sev-
eral polyatomic molecules based on the conditions investi-
gated in the previous section. The 3G extracted from the
311G basis set used for H and the6-3G extracted from the
6-311G basis set used for N or O were combined with the
FEL2. Table II shows the total electron energies and dipole
moments in the6-3G-FEL2 for H2O and NH3. The accuracy

of the 6-3G-FEL2 is discussed in comparison with the results
of the pure-Gaussian basis sets. As shown in Table II, the
dipole moments of the lone pair molecules depend on the
basis set as compared with the experimental value and the
aug-cc-pVQZ results. The 6-311+ +Gsd,pd basis set is inad-
equate to represent the dipole moments of both molecules.
Although the 6-311+ +Gs2d,2pd basis set shows better re-
sults, the value is still large. In contrast, the dipole moment
of the 6-3G-FEL2 is close to the aug-cc-pVQZ results. These
tendencies are probably due to the molecular orbital repre-
sentation in the region apart from nuclei. The flexibility of
the FE basis functions is effective in improving the represen-
tation like the calculation for CO. Consequently, the6-3G-
FEL2 lowered the total electron energy more than 6-
311+ +Gs2d,2pd. The total electron energy of the6-3G-
FEL2, however, does not reach the value of aug-cc-pVQZ,
mainly because of the inadequacy of the6-3G component
representing the steeply varying part.

The calculation for C6H6 with the5-2G-FEL2 was carried
out in the off-grid-point condition of atoms. If the grid-point
condition applied here is insufficient for the accurate expres-
sion to the electronic state, the resulting wave functions must
have been distorted from the ideal distribution. Thus, the
numerical error in the calculated dipole moment is a good
quantity to check it. Table III shows the results of the total
electron energies and dipole moments for C6H6. The dipole
moment of the5-2G-FEL2 shows that there is no significant
distortion of the electron distribution in spite of the off-grid-

FIG. 7. Contour maps of the mo-
lecular orbital difference for COfat
rsC-Od=2.132 bohrg. In the four
figures, sad and sbd show the maps
of the lowest orbital and the
HOMO, respectively, for the differ-
ence fCs6-3G-FEL2d-Cs6-311Gdg,
while scd andsdd show those for the
difference fCs6-3G-FEL2d-Cs6-
311+Gs2dddg. The values on the left
hand side of each figure show the
varying range of the difference. The
solid and dashed lines indicate posi-
tive and negative values, respec-
tively. The increment of each con-
tour line is 0.001. The black dot on
the right-hand side in each inset de-
notes the position of the oxygen
atom, and that on the left-hand side
denotes the position of the carbon
atom. Grid lines denote the configu-
ration of each element.
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point condition of atoms. Figure 8 shows the contributions of
cG

2 , cFE
2 , and cGcFE to the electron density for C6H6. It is

clear that the5-2G-FEL2 can lower the total electron energy
more than the 6-311+ +G even if thecG

2 part has the remark-
able contribution only around the nuclei. Subsequently, the
overlap between the Gaussian basis functions belonging to
different atoms is not necessarily required to achieve the cal-
culation more accurate than the 6-311+ +G. In this condi-
tion, the largest exponent of the replaced component in the
6-311G is about 1.8. As shown in Fig. 3, this component
cannot be completely represented by FEL2 with the grid spac-
ing of 0.7 bohr. It is easily expected that further improve-
ment of the accuracy can be obtained by adopting finer grid
spacings.

This mixed basis method shows three advantages through
the present examinations in contrast with the mesh refine-
ment techniques within the pure FEM. First, the excessive
degree of freedom of the FE basis functions for expressing

the wave function near the nucleus can be avoided by the
benefit of the Gaussian basis functions. Second, the increase
in the number of atoms does not directly lead to the increase
in the number of FE basis functions, since there is no neces-
sity to connect the position of a nodal point and an atom.
This is a desirable feature in order to apply this mixed basis
method to the large-scale electronic structure problem. The
last is the unneccessariness of the pseudopotential. The core
electron is explicitly expressed in this method by the benefit
of the combination of Gaussian basis functions. Unfortu-
nately, the suitability to the parallel computing of this mixed
basis method is lower than that of the pure FEM because of
the nonlocality of the Gaussian basis functions. However, a
serious deficiency can be avoided by not using the broadly
spreading Gaussian basis functions. In this context, the num-
ber of integrations between the Gaussian basis functions in
this method is proportional to the number of atoms, because
of no significant overlap between the Gaussian basis func-
tions belonging to different atoms. In the view of the present
author, the present method is expected to reduce the basis set
superposition error, which frequently appears in the calcula-
tion of a molecular interaction. The reason for this fortunate
expectation originates from the fact that the superposition of
the Gaussian basis functions of two different nuclei is ex-
tremely small under the present calculation conditions. As an
additional application of this mixed basis method, the
nuclear cusp is fairly expressible under the condition of
which dense nodal points are arranged near the area around
the nuclei. This fact can be naturally imagined through the
construction of a wave function near the nuclei by dense FE
basis functions.

IV. CONCLUSIONS

The flexibility of the FE basis functions is expected to be
suitable for both highly accurate calculations and large sys-
tems. However, explicit applications have been less pub-
lished because an excess degree of freedom is needed to

TABLE II. Total electron energies and dipole moments for H2O
and NH3 using the Gaussian FE basis set and the conventional
Gaussian basis sets. The 3G extracted from the 311G basis set for
H, and the 6-3G extracted from the 6-311G basis set were used for
N or O.

Basis set

H2O
a NH3

b

E/Hartree m/Debye E/Hartree m/Debye

6-3G-FEL2 −85.6409 1.801 −68.5158 1.476

6-311+ +Gsd,pd −85.6374 2.123 −68.5103 1.721

6-311+ +Gs2d,2pd −85.6408 1.924 −68.5140 1.563

aug-cc-pVQZ −85.6504 1.789 −68.5204 1.476

Experiment −85.5958c 1.855d −68.4568c 1.472e

aThe geometry parameters werersO-Hd=0.9572 Å andusHOHd
=104.5 deg in Ref. 24.
bThe geometry parameters werersN-Hd=1.0124 Å andusHNHd
=106.7 deg in Ref. 25.
cThese values are the sum of atomic energies in Ref. 26, nuclear
repulsion energies for the experimental geometrysin Refs. 24 and
25d, and experimental atomization energies in Ref. 27.
dReference 28.
eReference 29.

TABLE III. Total electron energy and dipole moment for C6H6

fThe geometry parameters werersC-Cd=2.619 bohr, andrsC-Hd
=2.033 bohr.g using the Gaussian FE basis set and the conventional
Gaussian basis sets. The 2G extracted from the 311G basis set for
H, and the 5-2G extracted from the 6-311G basis set for C were
used.

Basis set E/Hartree m/Debye

5-2G-FEL2 −437.0038 0.000

6-311G −436.9516 0.000

6-311+ +G −436.9545 0.000

6-311+ +Gsd,pd −437.0095 0.000

6-311+ +Gs2d,2pd −437.0188 0.000

aug-cc-pVQZ −437.0512 0.000

FIG. 8. Electron equidensity surfacesat c2=1310−4d for
C6H6.
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represent the core electron. In order to propose an efficient
solution of this problem, the Gaussian FE mixed basis
method was proposed. The slowly varying part of the mo-
lecular orbital is represented by FE basis functions with a
uniform coarse grid spacing, and the steeply varying part
around a nucleus is represented by Gaussian basis functions,
which have a contribution only around nuclei. The various
conditions for combining the Gaussian basis functions with
FE basis functions were examined in this work. The augmen-
tation of the FE basis functions using Gaussian basis func-
tions allows us to adopt a coarse uniform grid, and reduces
the dependency of the FE nodal positions on atomic posi-
tions. The predominance over the pure FEM of this mixed
basis method is that the augmentation can reduce the excess
degree of freedom of the FE basis functions depending on

the atomic position. Since the increase in the number of at-
oms does not directly lead to an increase in the number of
the FE basis functions, this mixed basis method will provide
a further extension of the FE basis method toward the all-
electron calculation in a much larger system.

APPENDIX

As for the calculation of H2, uncontracted Gaussian basis
functions based on 311G were combined with FE basis func-
tions. In order to certify the effectiveness of the contribution
of the FE basis functions, Gaussian basis functions were un-
contracted and the components with smaller exponents were
excluded as shown in Table IV.
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