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A grid-based real-space implementation of the projector augmented wavesPAWd method of BlöchlfPhys.
Rev. B 50, 17953s1994dg for density functional theorysDFTd calculations is presented. The use of uniform
three-dimensionals3Dd real-space grids for representing wave functions, densities, and potentials allows for
flexible boundary conditions, efficient multigrid algorithms for solving Poisson and Kohn-Sham equations, and
efficient parallelization using simple real-space domain-decomposition. We use the PAW method to perform
all-electron calculations in the frozen core approximation, with smooth valence wave functions that can be
represented on relatively coarse grids. We demonstrate the accuracy of the method by calculating the atomi-
zation energies of 20 small molecules, and the bulk modulus and lattice constants of bulk aluminum. We show
that the approach in terms of computational efficiency is comparable to standard plane-wave methods, but the
memory requirements are higher.
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I. INTRODUCTION

Density functional theory1,2 sDFTd combined with the
generalized gradient approximationsGGAd for the exchange
and correlation functional has become a popular method for
studying materials and molecules at the atomic scale. Re-
cently, there has been an increasing interest in using uniform
real-space grids and finite-difference methods for doing DFT
calculations.3–16 Real-space grids give an unbiased descrip-
tion of the wave functions, and the quality of the description
can easily be controlled by changing the grid-point density.
Finite-difference operators are used because the wave-
function values are given on grid points in real space and
not in terms of a basis set. By doing all operations in real
space, parallelization can be done by simple domain
decomposition.6,17,18 Furthermore, real-space methods can
make use of multigrid acceleration schemes19 for solving the
Kohn-Sham equations2 and the Poisson equation. A further
advantage of real space methods is the possibility for impos-
ing localization constraints on the wave functions, which is
the basis for linearly scaling electronic structure methods9,17

sorder-N methodsd.
Today, one of the most used methods for performing DFT

calculations is the pseudopotential method using periodic su-
percells and plane-wave expansions for the pseudo-wave
functions. This method shares with the grid-based methods
the properties of unbiased representation of the wave func-
tions and simple control of the quality of a calculationsby
changing the number of plane wavesd. However, there are
three major difficulties with a plane-wave representation for
the wave functions.sid Working with spatially localized wave
functions, which is important for order-N methods, is diffi-
cult with the extended nature of plane waves.sii d Not all
operations involving the wave functions, densities, and po-
tentials can be done directly in the plane-wave representa-
tion, and Fourier transformations to and from real space must
be carried out. Transformations between real and reciprocal
spaces are highly nonlocal operations and, therefore, difficult
to parallelize.siii d Due to the periodicity of plane waves, the
natural boundary conditions for a plane-wave calculation is

periodic boundary conditions. Although all three problems
have been addressed,20–24 the suggested solutions are not as
simple as for grid-based approaches where all three problems
have simple solutions.

An advantage of a plane-wave representation for the wave
functions is its compactness. The memory footprint of a
wave function is typically 10 times larger in a real-space grid
representation compared to a plane-wave representation of
similar accuracy. For this reason it is important to use soft
pseudo-wave-functions that can be accurately represented on
coarse grids. To our knowledge, until now, all applications of
grid-based electronic structure calculations have used norm-
conserving pseudopotentials. One way to get smoother
pseudo-wave-functions is to relax the norm conservation of
the wave functions and use ultrasoft pseudopotentials25,26 or
the projector augmented wavesPAWd method.27,28 We have
decided to use the PAW method. The PAW method works
with soft-valence wave functions and, similar to the ultrasoft
pseudopotential method, the wave functions need not be nor-
malized. Contrary to the ultrasoft pseudopotential method,
the PAW method is an all-electron method within the frozen
core approximation, giving access to the true wave functions
and the full electron density. The PAW method has been
implemented for plane waves by several groups.27–32

We see the combination of real-space grid-based methods
and the PAW method as an important step toward enabling
larger calculations at a level of accuracy that is essentially
all-electron in nature. There is a clear trend in electronic
structure theory toward larger and more complex systems as
for example nanostructures, largesbio-dmolecular complexes
and extended defects in real materials—systems that all
quickly challenge present-day high-accuracy DFT codes,
which are typically limited to, at most, a few hundred atoms.
The great potential of the method presented here lies in the
parallelization of the real-space algorithms. This makes it
possible to make use of massively parallel computers as has
been demonstrated by several other groups.6,17,18 In this pa-
per, we focus on how to do accurate DFT calculations effi-
ciently by using a real-space PAW method. We demonstrate
the accuracy of our grid-based PAW calculations by showing
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that we are able to reproduce results for atomization energies
from all-electron DFT calculations. This very stringent test
shows that the methodology that we have developed is useful
for real applications.

The solution of the Poisson equation is straightforward
using multigrid methods19 sno Fourier transformations re-
quiredd. Solving the Kohn-Sham equations using multigrid
methods is a much more difficult task; keeping the different
eigenstates separated and orthogonal to each other can be a
problem and representing the Hamiltonian on the coarse
grids can also be problematic. We have decided to use the
techniques typically used in state-of-the-art pseudopotential
plane-wave calculations33 as they have been developed and
improved over the the last few decades. For iteratively solv-
ing the Kohn-Sham equations, we use Pulay mixing tech-
niques for obtaining the self-consistent density,33,34 subspace
diagonalizations, and the residual minimization method33,35

using preconditioning of the electronic gradients for itera-
tively improving the wave functions. The preconditioning
operation is a single multigridV cycle using only the kinetic
energy operator as an approximate Hamiltonian.6

In Sec. II we will briefly summarize the PAW method.
Then, in Sec. III, we will go through the details of our grid-
based formulation of the PAW formalism. In Sec. IV, we
describe how we solve the Kohn-Sham equations, and the
evaluation of atomic forces is discussed in Sec. V. Section VI
describes generalizations of the method to periodic systems
with use of Brillouin zone sampling. In Sec. VII we apply
the methodology that we have developed to a number of
example systems and discuss approximations necessary for
realistic calculations. Finally, in Sec. VIII we discuss the
computational performance of our implementation. In the
Appendices we provide explicit formulas needed for calcu-
lating the constants and functions that describe the atomic
species.

II. THE PROJECTOR AUGMENTED WAVE METHOD

The notation we use is close to the one used by Blöchl in
his papers on the PAW method.27,28 We have used Hartree
atomic unitss"=m=e=1d and we write the equations for the
case of a spin-paired and finite system of electrons.

The PAW method is based on a transformation between

smooth pseudo-wave-functions,c̃n, and the true all-electron
Kohn-Sham wave functions,cn sn is the band indexd. The
core states of the atomsfi

a,core are frozen. Herea is an atom
index andi is a combination of principal, angular momentum
and magnetic quantum numbers, respectivelysn, ,, andmd.

Given a smooth pseudo-wave-function, the corresponding
all-electron wave function, which is orthogonal to the set of
fi

a,core orbitals, can be obtained through a linear transforma-
tion

cnsr d = T̂c̃nsr d. s1d

The transformation operatorT̂ is given in terms of atom-
centered all-electron wave functionsfi

asr d, the correspond-

ing smooth partial wavesf̃i
asr d, and projector functions

p̃i
asr d, as

T̂ = 1 +o
a

o
i

sufi
al − uf̃i

aldkp̃i
au. s2d

The atom-centered all-electron wave functions are taken
from a calculation of a single atom with spherical symmetry:
fi

asr d=fn,
a srdYLsr̂ d, where theYL’s are real-valued spherical

harmonicssL is a combined index for, andmd.
A radial cutoff distance,rc

a, defining the atomic augmen-
tation sphere is chosen. This radius is similar to a cutoff
radius for a pseudopotential. The larger the augmentation
sphere, the smoother the pseudo-wave-functions, but overlap
with neighboring augmentation spheres must be avoided.

For all all-electron valence states, smooth partial waves
f̃i

asr d=f̃n,
a srdYLsr̂ d are constructed. The partial waves must

match the corresponding all-electron waves forr . rc
a. In this

way, the correction in parenthesis in Eq.s2d is zero outside

the augmentation spheres and we will haveT̂=1 in this re-
gion. Note that there are no norm-conservation requirements
to meet when choosing the shape off̃n,

a srd inside the aug-
mentation sphere.

Smooth projector functions must also be defined—one for
each partial wave,p̃i

asr d= p̃n,
a srdYLsr̂ d. They must be local-

ized inside the augmentation spheres and satisfykp̃i1
a u f̃i2

a l
=di1i2

, which for the radial part gives

E
o

rc
a

r2drp̃n,
a srdf̃n8,

a srd = dnn8. s3d

With this construction we haveT̂f̃i
asr d=fi

asr d.
In principle, an infinite number of projectors and partial

waves are required for the PAW method to be exact. For
practical calculations, a high-accuracy data set will need only
one or two projector functions for each angular momentum
channel of importance. This is similar to an ultrasoft pseudo-
potential, where a comparable number of projectors is
needed. One partial wave is usually taken as the bound va-
lence state, and additional waves can be taken from “excited
states”—solutions to the radial Kohn-Sham equation at dif-
ferent noneigenvalue energies. The construction of partial
waves and projector functions is described in Appendix A.

A. PAW densities

From the atomic frozen-core electron densitync
asrd, a

smooth-core electron densityñc
asrd is constructed, which

must be identical tonc
asrd for r . rc

a. There is no norm-
conservation requirement to meet when choosing the shape
of ñc

asrd inside the augmentation sphere.
The pseudoelectron density has contributions from the

wave functions and from the atom-centered smooth-core
electron densities

ñsr d = o
n

fnuc̃nsr du2 + o
a

ñc
asur − Raud, s4d

where thefn’s are occupation numbers andRa is the position
of atoma.

An atomic density matrixfsee Eq.s22d in Ref. 28g is
defined as
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Di1i2
a = o

n

kp̃i1
a uc̃nlfnkc̃nup̃i2

a l, s5d

where

Pni
a = kp̃i

auc̃nl =E dr p̃i
asr − Radc̃nsr d. s6d

The PAW formalism defines atom-centered all-electron
and pseudoelectron densities as

nasr d = o
i1i2

Di1i2
a fi1

a sr dfi2
a sr d + nc

asrd s7d

and

ñasr d = o
i1i2

Di1i2
a f̃i1

a sr df̃i2
a sr d + ñc

asrd, s8d

respectively. By construction,nasr −Rad is identical to the
all-electron densitynsr d, for ur −Rau, rc

a and ñasr −Rad
= ñsr d for ur −Rau, rc

a ssee Ref. 27 for detailsd. Therefore, the
true all-electron density can be obtained from the pseudo-
electron density

nsr d = ñsr d + o
a

fnasr − Rad − ñasr − Radg. s9d

Again, the correction is zero outside the augmentation
spheres.

A neutral charge density,r̃sr d, is obtained by adding com-

pensation charges,Z̃asr d, inside the augmentation spheres to
the pseudoelectron density. These charges compensate for
the lack of norm-conservation and for the nuclear charge

r̃sr d = ñsr d + o
a

Z̃asr − Rad. s10d

Using localized functionsg̃L
asr d= g̃,

asrdYLsr̂ d normalized as

E dr r,g̃L
asr dYLsr̂ d = 1, s11d

the compensation charges are constructed with electrostatic
multipole momentsQL

a

Z̃asr d = o
L

QL
ag̃L

asr d. s12d

The values to be used for the electrostatic multipole mo-
mentsQL

a are found by requiring the pseudo-charge-density,

ña+Z̃a, to have the same electrostatic multipole moments as
the all-electron charge density,na+Za, where Zasr d=
−Zadsr d is the nuclear charge densitysZa is the atomic num-
berd. This requirement can be expressed as

E dr r,fñasr d + Z̃asr d − nasr d − Zasr dgYLsr̂ d = 0. s13d

Inserting Eqs.s7d, s8d, ands12d, we get

QL
a = o

i1i2

DLi1i2
a Di1i2

a + Dad,0, s14d

where the constantsDLi1i2
a andDa are given by

DLi1i2
a =E drYLsr̂ dr,ffi1

a sr dfi2
a sr d − f̃i1

a sr df̃i2
a sr dg s15d

and

Da =E drY00sr̂ df− Zadsr d + nc
asrd − ñc

asrdg. s16d

B. PAW total energy

The PAW total energy is a function of the pseudo-wave-

functionsc̃nsr d and the occupation numbersfn. The energy

can be divided into a “soft” contributionẼ and corrections
for each atomssee Refs. 27 and 28d:

E = Ẽ + o
a

sEa − Ẽad. s17d

The soft energy contribution is

Ẽ = o
n

fnE dr c̃n
*sr dS−

1

2
¹2Dc̃nsr d +

1

2
E dr ṽHsr dr̃sr d

+ Excfñsr dg +E dr ñsr do
a

v̄asur − Raud, s18d

where ṽHsr d is the pseudo-Hartree potential, satisfying the
Poisson equation¹2ṽH=−4pr̃, and Exc is an exchange-
correlation functional. Finally,v̄asrd is an arbitrary localized

potential vanishing forr . rc
a. The soft energy contributionẼ

is to be evaluated on three-dimensional grids in real space.

The atomic corrections to the energysEa−Ẽad are given
by

Ea = o
i

core E drfi
a,coresr dS−

1

2
¹2Dfi

a,coresr d

+ o
i1i2

Di1i2
a E drfi1

a sr dS−
1

2
¹2Dfi2

a sr d

+
1

2
E dr E dr 8

fnasr d + Zasr dgfnasr 8d + Zasr 8dg
ur − r 8u

+ Excfnasr dg s19d

and

Ẽa = o
i1i2

Di1i2
a E dr f̃i1

a sr dS−
1

2
¹2Df̃i2

a sr d

+
1

2
E dr E dr 8

fñasr d + Z̃asr dgfñasr 8d + Z̃asr 8dg
ur − r 8u

+ Excfñasr dg +E dr ñasr dv̄asrd. s20d

The energy contributions forEa and Ẽa are evaluated on
radial grids inside the augmentation spheres.

By using Eqs.s7d, s8d, s12d, and s14d we can reduce the

atomic correction,Ea−Ẽa, to a function ofDi1i2
a
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Ea − Ẽa = Aa + o
i1i2

Bi1i2
a Di1i2

a + o
i1i2

o
i3i4

Di1i2
a Ci1i2i3i4

a Di3i4
a

+ DExc
a shDi1i2

a jd. s21d

The constantsAa, Bi1i2
a , andCi1i2i3i4

a are evaluated in Appen-
dix C.

The last term is an exchange-correlation correction

DExc
a shDi1i2

a jd = Excfnasr dg − Excfñasr dg, s22d

which is a function ofDi1i2
a through Eqs.s7d and s8d. For

local and semilocal exchange-correlation functionals,
DExc

a shDi1i2
a jd is written as an integration inside the augmen-

tation sphere. There are several possibilities for the evalua-
tion of this term. We use radial integration along lines from
the center to a number of points distributed evenly on the
surface of the augmentation sphere.29,36 We find that this
approach is the simplest for GGA functionals.37 Alterna-
tively, one can expand the atomic densities in spherical har-
monics, as described in Ref. 27 or use grid-free
approaches.38,39

III. UNIFORM 3D GRIDS

In this section we give the details of our real-space grid-
based implementation of the PAW method. From now on,
wave functions, electron densities, and potentials are repre-
sented on three-dimensional uniform grids in real space.

A. Localized functions and the double-grid technique

In a grid representation, integrals over space are turned
into sums over grid points. In the PAW method we often
need to calculate the integral of a localized function, centered
on an atom, multiplied by a function extended over all of
space. As an example, let us take a projector function,p̃i

asr
−Rad, centered on atoma at positionRa, multiplied by an

extended wave function,c̃nsr d.
In the following, we use the indexG to index the grid

points used for the wave functions. Transforming the integral
to a sum over grid pointsG, with Vc being the volume-per-
grid point, we get

Pni
a = Vco

G

p̃iG
a ,c̃nG, s23d

where c̃nG=c̃nsr Gd and r G is the position of grid pointG
sonly the grid points in the localized region around atoma
needs to be summed overd. For p̃iG

a we could usep̃i
asr G

−Rad. However, this is not accurate enough, unless we use a
very fine grid, which would compromise efficiency. Instead
we use the elegant double-grid technique of Ono and
Hirose.40 Here, the extended function is interpolated to a

finer grid with grid pointsf: c̃nf=oGI fGc̃nG. The interpola-
tion operatorI fG takes the wave function from a coarse grid
to a fine grid. Typically, a cubic interpolation is used and the
fine grid has five times more points in each direction as the
coarse grid.14,40The localized projector function is evaluated
on a fine grid asp̃if

a = p̃i
asr f −Rad. With v being the volume

per fine grid point, we get a more accurate sum

vo
f

p̃if
a c̃nf = vo

f

p̃if
ao

G

I fGc̃nG = Vco
G
Fsv/Vcdo

f

I fGp̃if
aGc̃nG.

s24d

Comparing the rightmost expression with Eq.s23d, we
identify the term in square brackets as the more accurate
expression forp̃iG

a ,

p̃iG
a =

v
Vc

o
f

I fGp̃i
asr f − Rad. s25d

This is equivalent to a restriction operation taking the lo-
calized function from the fine temporary grid to the coarse
grid srestriction is the opposite of interpolationd. Note that in
Eq. s23d, the sum is over coarse grid points and no actual
interpolation of the extended function needs to be done. The
evaluation of the localized function on the temporary grid is
a relatively inexpensive operation, with an operation count
that, for each atom, is independent of the system size.

We use the double-grid technique to transfer localized
functions, such asp̃i

asr d, ñc
asrd, and v̄asrd, to values on real-

space gridssp̃iG
a , ñcG

a , and v̄g
ad.

B. Real-space-grid formulation of the PAW method

The formulas for densities, potentials, and energies, given
in Sec. II, must be translated to a discretized form for use
with a discrete representation of wave functions, densities,
and potentials. The pseudoelectron densityfEq. s4dg is calcu-
lated on a coarse grid as

ñG = o
n

fnuc̃nGu2 + o
a

ñcG
a . s26d

The smooth atomic core electron densities can be chosen
very soft, so that they can be added to the coarse grid.

The pseudoelectron density on the coarse grid is interpo-
lated to a finer gridsgrid points indexed bygd

ñg = o
G

IgGñG. s27d

We use a cubic interpolation forIgG, and the fine grid has
twice as many grid points as the coarse grid in each direc-
tion. From the pseudoelectron density on the fine grid, one
can obtain the neutral charge density asfsee Eq.s10dg,

r̃g = ñg + o
a

Z̃g
a. s28d

Using our grid representation for wave functions, densi-

ties, and potentials, we get forẼ

Ẽ = o
n

fnVco
G

c̃nG
* o

G8

S−
1

2
LGG8Dc̃nG8 +

1

2
Vfo

g
ṽg

Hr̃g

+ Excshñgj,Vfd + Vfo
g

ñgo
a

v̄g
a, s29d

whereVc andVf are the volumes per grid point for the coarse
wave-function grids and the fine density and potential grids,
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respectively, andLGG8 is a central finite-difference represen-
tation of the Laplacian. The discretization that we use for the
Laplacian, uses a total of 12 neighbor points, giving an error
of the order ofh6, whereh=Vc

1/3 is the grid spacing.
The pseudo-Hartree potentialṽg

H is found by solving the
Poisson equation,¹2ṽH=−4pr̃, using a discretization for the
Laplacian

o
g8

Cgg8ṽg8
H = − 4pr̃g. s30d

This equation is solved using the multigrid technique pio-
neered by Brandt.19 Solving the Poisson equation iteratively
on the finest grid will quickly reduce the short wavelength
errors, but errors with larger wavelengths compared to the
grid spacing are reduced only slowly. The multigrid tech-
nique introduces a series of coarser grids where the long
wavelength errors can be effectively reduced.

We use a Mehrstellen discretization,6 where Cgg8
=sB−1Adgg8 is expressed in terms of two short-range finite-
difference operatorsAgg8 andBgg8

o
g8

Agg8ṽg8
H = − 4po

g8

Bgg8r̃g8. s31d

For the coarse grids used in the multigridV cycle, simple
nearest-neighbor central finite-difference Laplacians are
used.

C. Soft compensation charges

Adding the compensation chargesZ̃a to the pseudoelec-
tron densityfEqs. s10d and s28dg will require a very fine
density grid in order to get an accurate description of the
charge. The problem is that the compensation charges must
be localized inside the augmentation spheres:g̃L

asr d=0 for r
. rc

a. Blöchl has described a method for plane-wave basis
sets27 that allows the use of softer compensation charges ex-
tending outside the augmentation spheres. We use the same
method for our grid-based approach. A cutoff radiusr̂c

a larger
than rc

a is chosen. Soft compensation charges with the same
electrostatic multipole moments as the localized compensa-
tion charges are constructed

Ẑasr d = o
L

QL
aĝL

asr d, s32d

where ĝL
asr d is a soft function localized withinr , r̂c

a. The
soft function ĝL

asr d is normalized in the same way asg̃L
asr d

fsee Eq.s11dg.
Equations28d must now be replaced by

r̃g = ñg + o
a

Ẑg
a = ñg + o

a
o
L

QL
aĝLg

a , s33d

and a correction must be added toẼ. The correction isssee
Ref. 27d

E dr ñsr do
a

v̂asr − Rad + o
aa8

Uaa8, s34d

wherev̂asr d=oLQL
av̂L

asr d and

v̂L
asr d =E dr 8

g̃L
asr 8d − ĝL

asr d
ur − r 8u

. s35d

The first term in Eq.s34d is evaluated on the grid as
Vfogñgoav̂g

a. The transformation of the localized potential,

v̂asr d, and the localized compensation chargeẐasr d sboth

vanishing forr . r̂c
ad to values at grid pointsv̂g

a andẐg
a is done

using the double-grid technique.40 The last term in Eq.s34d
is a pair potential with ranger̂c

a+ r̂c
a8

Uaa8 =
1

2
E dr E dr 8F Z̃asr − RadZ̃a8sr 8 − Ra8d

ur − r 8u

−
Ẑasr − RadẐa8sr 8 − Ra8d

ur − r 8u
G

=
1

2o
LL8

QL
aVLL8

aa8QL8
a8 , s36d

where

VLL8
aa8 =E dr E dr 8S g̃L

asr − Radg̃L8
a8sr 8 − Ra8d

ur − r 8u

−
ĝL

asr − RadĝL8
a8sr 8 − Ra8d

ur − r 8u
D . s37d

The pair potential termsVLL8
aa8 are functions of the difference

vectorsRa−Ra8.

D. Orthogonality

The orthogonality constraint of the all-electron wave
functions, kcnucn8l=dnn8, can be expressed in terms of the

pseudo-wave-functions27 as kc̃nuÔuc̃n8l=dnn8, where the

PAW overlap operatorÔ is nonlocal

Ô = 1 +o
a

o
i1i2

up̃i1
a lOi1i2

a kp̃i2
a u, s38d

with

Oi1i2
a =E dr ffi1

a sr dfi2
a sr d − f̃i1

a sr df̃i2
a sr dg = Î4pD00i1i2

a .

s39d

The discretized overlap operator looks like

OGG8 = dGG8 + Vco
a

o
i1i2

p̃i1G
a Oi1i2

a p̃i2G8
a , s40d

and the orthogonality constraint of the pseudo-wave-
functions can be expressed as

Vco
GG8

c̃nG
* OGG8c̃n8G8 = dnn8. s41d

IV. FINDING THE GROUND STATE

In order to find the electronic ground state it is necessary
to calculate the derivatives of the total energy with respect to
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wave-function values. This “electronic gradient” can be ex-
pressed in terms of a HamiltonianHGG8,

1

Vc

]E

]c̃nG
*

= fno
G8

HGG8c̃nG8. s42d

The Hamiltonian is given as a sum of the kinetic energy
operator and the local and nonlocal parts of the effective
potential

HGG8 = −
1

2
LGG8 + ṽGdGG8 + Vco

a
o
i1i2

p̃i1G
a Hi1i2

a p̃i2G8
a .

s43d

Explicit formulas for the local effective potentialṽG and the
“atomic” Hamiltonian,Hi1i2

a , are given in Appendix D.
The set of orthonormalized ground-state wave functions

that diagonalize the Hamiltonian matrix Hnn8
=VcoGG8c̃nG

* HGG8c̃n8G8, must satisfy the Kohn-Sham equa-
tions

o
G8

sHGG8 − enOGG8dc̃nG8 = 0. s44d

A. Residual minimization method and Pulay mixing

In order to locate the self-consistent ground state, we use
the residual minimization method of Wood and Zunger35 ssee
also Ref. 33d. The residuals are calculated as

RnG = o
G8

sHGG8 − enOGG8dc̃nG8, s45d

whereen is the current estimate of the eigenvalue of thenth

band. Using a preconditioning operatorP̂ sto be discussed
laterd, we can improve the wave function by taking a step

along the direction of the preconditioned residual:c̃nG

+lP̂RnG sl is the step lengthd. The optimal step length is
found by minimizing the norm of the residual for the new
guess

RnG8 = o
G8

sHGG8 − enOGG8dsc̃nG8 + lP̂RnG8d

= RnG + lo
G8

sHGG8 − enOGG8dP̂RnG8. s46d

Finding the optimal value forl amounts to finding the mini-
mum of a second-order polynomial inl. Having found the
optimal step length for the first step, we do the actual update
of the wave function by taking an additional step using the
same step length in the direction of the preconditioned re-
sidualRnG8

c̃nG ← c̃nG + lP̂RnG + lP̂RnG8 . s47d

For updating one wave function, one must apply the Hamil-
tonian twice and two preconditioning operations are re-
quired.

If we were to take steps along the residualsand not along
the preconditioned residuald, we would need very many it-

erations in order to converge. The problem is that the re-
sidual vector is not necessarily parallel to the error vector
swhich we do not knowd. The purpose of preconditioning is
to produce a direction that more accurately represents the
error vector.41

We would get the optimal preconditioned residualR̃n

= P̂Rn by solving sĤ−enÔdR̃n=Rn. Instead of solving this
equation exactly, we solve approximately the simpler equa-

tion −1
2¹2R̃n=Rn. This is done using one multigridV cycle,

where a nearest-neighbor discretization is used for the La-
placian on the coarse grids.6

When all wave functions have been updated, the wave
functions are orthonormalized and the density is updated.
From the new density, a new Hamiltonian is generatedsṽG
andHi1i2

a d. Finally, a subspace diagonalization is performed,
and the next iteration toward self-consistency can begin. For
each iteration a new input density is estimated using Pulay
mixing.34 Typically three old densities are used. The atomic
density matricesDi1i2

a are mixed as well. We start the itera-
tions from a good guess at the wave function: a linear com-
bination of atomic orbitals.

V. FORCES

The atomic force acting on an atom is defined as

Fa = −
dE

dRa = −
]E

]Ra − o
nG
S ]E

]c̃nG

dc̃nG

dRa + c.c.D
= −

]E

]Ra − Vco
n

fneno
GG8

OGG8Sc̃nG8
* dc̃nG

dRa + c.c.D .

s48d

In the last line, we have used Eqs.s42d ands44d. The varia-
tion of the wave function corresponding to a variation in the
position can be found from Eq.s41d

d

dRa o
GG8

c̃nG
* OGG8c̃n8G8 = 0. s49d

Inserting into Eq.s48d, we get

Fa = −
]E

]Ra + Vco
n

fneno
GG8

c̃nG
*

dOGG8

dRa c̃nG8

= − Vco
G

ṽG

dñcG
a

dRa − Vfo
g

ṽg
Ho

L

QL
adĝLg

a

dRa

− Vfo
g

ñgS dv̄g
a

dRa + o
L

QL
adv̂Lg

a

dRaD
− Vco

n

fno
i1i2

sHi1i2
a − enOi1i2

a d

3 o
G
Fc̃nG

dp̃i1G
a

dRa sPni2
a d* + c.c.G − o

a8
o
LL8

QL
a
dVLL8

aa8

dRa QL8
a8 .

s50d
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As an example, we show in Fig. 1, the force along the
bond of a CO molecule calculated using the analytical ex-
pression above. Fitting a third-order polynomial to the ener-
gies and taking the negative of the derivative with respect to
the bond length is seen to give exactly the same force.

VI. GENERALIZATIONS

We have implemented the algorithms introduced above,
and in addition we have made two extensions:sid treatment
of spin-polarized systems andsii d treatment of periodic sys-
tems using Brillouin-zone sampling. The first extension is
straightforward. Whenk points are introduced in order to
treat periodic systems, we can work directly with the wave
functions and use Bloch boundary conditions42

c̃nksr + Rd = eik·Rc̃nksr d, s51d

whereR is any Bravais lattice vector. This is different from
the plane-wave approach, where the periodic basis set forces
one to work with the periodic part of the wave function and
the Hamiltonian becomesk-point dependent. In our case, the
boundary conditions becomek-point dependent.

It is only necessary to work with thek points in the irre-
ducible part of the Brillouin zone. Eachk point will have a
specific weight, and densities, atomic density matrices, and
forces should be appropriately symmetrized.

For evaluating the GGA exchange-correlation energy and
potential, we use a finite-difference operator for calculating
the gradient of the density. The exchange-correlation poten-
tial is calculated as the exact derivative of the discretised
exchange-correlation energy with respect toñg ssimilar in
spirit to the method of White and Bird43 used for plane-wave
basis setsd.

VII. APPLICATIONS

The first application of the algorithms described here is
the calculation of atomization energies for the 20 small mol-
ecules listed in Table I using the PBEsRef. 44d exchange-
correlation functional. The augmentation sphere radii used
and the number of projectors used are shown in Table II. The

choice of the augmentation sphere radii is a compromise be-
tween smooth pseudo-wave-functions and a low number of
projector functions. A larger radius will allow us to have
smoother pseudo-wave-functions, but more projector func-
tions will be needed for high accuracy. Furthermore, the ra-
dius is limited by the requirement that the overlap between
neighboring augmentation spheres should be small. The radii
we have chosen will give slight overlaps in some of the
molecular calculations.

For the second-row atoms, the 1s orbital is treated as a
core state and frozen, and for the third-row atoms, the 1s, 2s,
and 2p orbitals are frozen. For hydrogen, lithium, and beryl-
lium, we use twos projectors and onep projector, and for the
rest of the atoms twos projectors, twop projectors, and one
d projector are used. The compensation charges were taken
to be spherical. We calculate the atomic exchange-correlation
correction energy, Eq.s22d, using 49 line integrations in each
sphere.36 All calculations are done using periodic boundary
conditions.

With these approximations we get excellent agreement
with full all-electron calculationsssee Table Id. The average
and maximum differences between our PAW atomization en-
ergies and the all-electron calculations of Kurthet al.46 are
0.05 eV and 0.15 eV, respectively, and comparing to the all-

FIG. 1. Energy and force for a CO molecule at different bond
lengths calculated withh=0.2 Å. Bottom: The circles show the cal-
culated energies and the curve shows a third-order polynomial fit.
Top: The circles show the calculated forces according to Eq.s50d.
The curve is minus the derivative of the third-order polynomial fit
to the energies.

TABLE I. PBE and experimental atomization energiesfexperi-
mental geometries are usedsRef. 44d, and zero point vibration en-
ergy has been removedg. The ground states of C, O, F, P, and Cl are
found to be nonsphericalsRef. 45d. All-electron and experimental
numbers are taken from Refs. 46 and 47.

Molecule

PBE

ExperimentaPAW all-electrona all-electronb

H2 4.52 4.54 4.53 4.75

LiH 2.32 2.32 2.32 2.51

CH4 18.17 18.20 18.18 18.18

NH3 13.03 13.08 13.05 12.90

OH 4.76 4.76 4.75 4.61

H2O 10.14 10.16 10.14 10.07

HF 6.27 6.16 6.14 6.11

Li2 0.89 0.86 0.85 1.06

LiF 6.16 6.01 6.05 6.02

Be2 0.35 0.42 0.41 0.13

C2H2 17.95 17.99 17.91 17.58

C2H4 24.75 24.78 24.73 24.40

HCN 14.10 14.14 14.07 13.53

CO 11.58 11.66 11.60 11.24

N2 10.41 10.55 10.46 9.91

NO 7.38 7.45 7.36 6.63

O2 6.27 6.23 6.14 5.23

F2 2.28 2.32 2.25 1.67

P2 5.18 5.25 5.08 5.09

Cl2 2.83 2.82 2.74 2.52

aReference 46.
bReference 47.
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electron calculations of Zhanget al.,47 we get an average
difference of 0.05 eV and a maximum difference of 0.13 eV
sthe two sets of all-electron calculations differ by 0.05 eV in
average and 0.17 as maximumd. We find that all atomization
energies are converged to within 0.03 eV/atom at a grid
spacing of 0.1875 Å.

Interestingly, we find the convergence of total energies
with respect to grid spacing to be very systematic. Figure 2
shows the atomization energy of nitrogen as a function of the
fourth power of the grid spacing. It is seen that for smallh,
all points fall exactly on a straight line, which allows us to
extrapolate energies to the limit of an infinitely dense grid
sh=0d. The PAW numbers presented in Table I have been
extrapolated toh=0. A similarly transparent convergence of
DFT calculations was recently observed by Daykovet al.48

for wavelet-based calculations. A quartic convergence is to
be expected because all approximations are accurate to order
at leasth3.

Figure 3 shows the variation of the energy as a hydrogen
atom is displaced from one grid point to a neighboring grid
point. Ideally, there should be no variationswe are using
periodic boundary conditionsd. In practice, we have to make
sure that this energy variation and the corresponding forces
are acceptably small. For hydrogen, the variation is below
0.15 meVsfull line in Fig. 3d. The energy varies periodically
with period h. Note that there is also a modulation of the
energy with a period ofh/5. This stems from the Ono-Hirose
restriction of the projector functions; the localized projector
functions are evaluated on a fine grid with a grid spacing of
h/5 and then restricted to a coarse grid with the same grid
density as the wave functions. The oscillations give rise to
forces up to 0.006 eV/Å in magnitude, which is acceptable
for most applications. The forces can be reduced further ei-
ther by using a finer grid for the wave functions or by using
a finer grid for the Ono-Hirose restriction of the projector
functions. If the projectors are evaluated directly on the
coarse grid, then the variation of the energy is
55 meV—more than two orders of magnitude largersdashed
line in Fig. 3d. This clearly demonstrates the importance of
the Ono-Hirose restriction.

For the bulk aluminum calculationfLDA sRef. 49d and
PBE sRef. 44d results are shown in Table IIIg, we use a cubic
unit cell containing four aluminum atoms and use 10310
310 k points. Again, we get good agreement with exact
all-electron calculations for both the lattice constant and bulk
modulus sthe bulk modulus is calculated at the theoretical
lattice constantd.

VIII. PERFORMANCE

We have compared the performance of the real-space
code to a highly optimized ultrasoft plane-wave code.50–52

The ground state of 64 Si atoms in the diamond structure was
found using both codes. For the plane-wave calculation,
plane waves with kinetic energies up to 100 eV were used
and the size of the real-space grid for fast Fourier transforms
was 36336336 points. The same grid size was used for the
real-space codesh=0.30 Åd. After finding the electronic
ground state, one atom was displaced by 0.1 Å, and the time
for converging to the new ground state was measured. The
measured times were 21 and 26 min for the plane-wave and
real-space codes, respectively, on a Pentium-4 2.6 GHz
Linux machine. We have estimated the degree of conver-
gence of the two codes by calculating the cohesive energy of
silicon. The cohesive energy calculated with the plane-wave
code and a plane-wave cutoff of 100 eV was converged to
within 40 meV of the fully converged value. With the real-
space code andh=0.30 Å, the cohesive energy was con-
verged to within 3 meV of theh=0 value. This and similar
results for other calculations that we have performed seem to
indicate that the real-space code obtains a somewhat better
convergence at the same grid spacing as the plane-wave
code. Furthermore, the real-space code can, most likely, take
advantage of a number of improvements, such as algorithmic
improvements and optimizations of floating point operations
and memory access. The plane-wave code has already ben-
efited from optimizations of this sort.

FIG. 3. Energy variation as a hydrogen atom is displaced from
one grid point to a neighboring grid point forh=0.2 Å. The full and
dashed curves show the result with and without using the double-
grid techniquesnote that the dashed curve has been multiplied by
0.01d.

TABLE II. Augmentation sphere radii in atomic units and number of projectors.

Atom H Li Be C N O F Al Si P Cl

rc
a sBohrd 0.9 1.5 1.5 1.0 1.1 1.2 1.2 2.0 2.0 2.0 1.5

Number of projectors s2p s2p s2p s2p2d s2p2d s2p2d s2p2d s2p2d s2p2d s2p2d s2p2d

FIG. 2. Atomization energy of a nitrogen molecule as a function
of h4. The inset shows the atomization energy as a function ofh.
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Regarding the memory requirements, the plane-wave
code is clearly more economic. The memory required to
store one wave function for the 64 atom silicon system is
363=46 656 floating point numbers for the real-space code
and 2897 floating point numbers53 for the plane-wave code.

IX. DISCUSSION

Using the techniques described in this paper, an important
step in every electronic structure calculation, namely, the ap-
plication of the Hamiltonian to all wave functions, can be
done in OsN2d operations. This is a more optimal scaling
than theOsN2 log Nd scaling, which can be achieved with
plane-wave basis sets and fast Fourier transforms. Operations
such as orthogonalization and subspace diagonalization of
the wave functions scale asOsN3d. Luckily, the prefactors for
theseOsN3d operations are very low, so that very large sys-
tem sizes are required before theOsN3d terms become the
bottleneck.54 In the limit whereOsN3d terms start to domi-
nate, plane-wave methods will, in principle, have an advan-
tage because the number of plane-wave coefficients will typi-
cally be less than the number of grid points used in real-
space grid-based calculations. However, we believe that, for
those very large systems, efficient parallelization on mas-
sively parallel computers and use ofOsNd methods are cru-
cial.

Currently, we have a single-processor implementation of
our PAW real-space algorithms.55 This limits us to study
rather small systems. Obviously a parallelization using real-
space domain decomposition is needed. For the small sys-
tems that we have studied thus far, charge sloshing is less of
a problem, but it may become a problem when we move on
to larger systems. It will therefore be necessary to improve
on our mixing of the density. A preconditioning, that will
damp the long wavelength changes to the density, such as
that proposed by Kerker,56 should be considered. Another
improvement would be to use a special metric, which
weights long wavelength errors higher than short wavelength
errors, for estimating the norm of the difference between
input and output densities in the Pulay method.33 These im-
provements to the density mixing are easily implemented in
reciprocal space, but may be challenging to do in real space.
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APPENDIX A: CONSTRUCTION OF PARTIAL WAVES
AND PROJECTOR FUNCTIONS

A DFT calculation for the atom is performed using radial
grids for the wave functions, densities, and potentials. The
radial Kohn-Sham equation gives us a set of radial all-
electron wave functions, normalized aser2drffn,

a srdg2=1.
The core states are only used for constructing a frozen-core
electron density

nc
asrd = 2o

n,

core
2, + 1

4p
ffn,

a,coresrdg2. sA1d

The smooth partial wave functions are chosen as

f̃n,
a srd = o

i=0

3

cir
2i , sA2d

for r , rc
a, and the coefficientsci are chosen so thatf̃n,

a joins
fn,

a smoothly atr =rc
a. The projector functions are calculated

as

p̃n,
a srd = S−

1

2
¹2 + ṽsrd − en,

a Df̃n,
a srd. sA3d

The projector functions must be orthonormalized as de-
scribed by Blöchl.27 The potentialv̄a is chosen so that the
local effective potential,ṽ= ṽH+ ṽxc+ v̄a, has the following
shape forr , rc

a in the atomic reference state

ṽsrd = aa + bar2, r , rc
a. sA4d

The constantsaa and ba are found by requiring thatv̄src
ad

=0 andudv̄srd /drur=rc
a=0.

APPENDIX B: COMPENSATION CHARGES

For the compensation charges we use Gaussians

g̃,
asrd =

1
Î4p

,!

s2, + 1d!
s4aad,+3/2r,e−aar2

sB1d

and

ĝ,
asrd =

1
Î4p

,!

s2, + 1d!
s4âad,+3/2r,e−âar2

. sB2d

With this choice for the compensation charges, the integral

VLL8
aa8 in Eq. s37d can be evaluated analytically.57 We choose

the a’s so thataasrc
ad2=9.0 andâasr̂c

ad2=22.0.

APPENDIX C: ATOMIC CONSTANTS

By inserting Eqs.s7d, s8d, and s12d into Eqs. s19d and

s20d, we can reduceEa−Ẽa to

TABLE III. Lattice constant and bulk modulus for fcc bulk
aluminum. All-electron and experimental numbers are taken from
Ref. 46.

a sÅd B sGPad
XC PAW all-electron PAW all-electron

LDA 3.987 3.983 83.6 84.0

PBE 4.043 4.039 77.7 77.3

experiment 4.050 77.3
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Ea − Ẽa = Fa + o
i1i2

Di1i2
a Gi1i2

a + o
i1i2i3i4

Di1i2
a I i1i2i3i4

a Di3i4
a

+ o
L

QL
aJL

a + o
i1i2

o
L

Di1i2
a QL

aKi1i2L
a + o

LL8

QL
aQL8

a MLL8
a

+ DExc
a shDi1i2

a jd. sC1d

The integralsFa, Gi1i2
a , I i1i2i3i4

a , JL
a, Ki1i2L

a , andMLL8
a are given

below and need only be computed once for each type of
atom.

Inserting Eq.s14d into Eq. sC1d leads us to Eq.s21d,
where

Aa = Fa + DaK00
a + sDad2N00,00

a

Bi1i2
a = Ji1i2

a + o
L

DLi1i2
a KL

a + DaMi1i2,00
a + 2o

L

DLi1i2
a N00,00

a Da

Ci1i2i3i4
a = Ji1i2i3i4

a + o
L

Mi1i2L
a DLi3i4

a + o
LL8

DLi1i2
a NLL8

a
DL8i3i4

a .

sC2d

We use the symmetrizedCi1i2i3i4
a ,

Ci1i2i3i4
a ← 1

2
sCi1i2i3i4

a + Ci3i4i1i2
a d. sC3d

The integrals forFa, Gi1i2
a , I i1i2i3i4

a , JL
a, Ki1i2L

a , andMLL8
a are

sall integrals are limited to inside the augmentation spheresd

Fa = o
i

core E drfi
a,coresr dS−

1

2
¹2Dfi

a,coresr d −E dr
nc

asrd
r

Za

+
1

2
E drvc

asrdfnc
asrd + ñc

asrdg −E dr ñc
asrdv̄asrd, sC4d

I i1i2
a = −

1

2
E dr ffi1

a sr d¹2fi2
a sr d − f̃i1

a sr d¹2f̃i2
a sr dg

+E dr fvi1i2
a sr dncsrd + vc

asrdf̃i1
a sr df̃i2

a sr dg

−E dr
fi1

a sr dfi2
a sr d

r
Za −E dr f̃i1

a sr df̃i2
a sr dv̄asrd,

sC5d

Ji1i2i3i4
a =

1

2
E drvi1i2

a sr dffi3
a sr dfi4

a sr d + f̃i3
a sr df̃i4

a sr dg,

sC6d

KL
a = −E dr E dr 8

g̃L
asr 8d

ur − r 8u
ñc

asrd, sC7d

Mi1i2L
a = −E dr E dr 8

g̃L
asr 8d

ur − r 8u
f̃i1

a sr df̃i2
a sr d, sC8d

and

NLL8
a = −

1

2
E dr E dr 8

g̃L
asr 8d

ur − r 8u
g̃L8

a sr d. sC9d

The potentialsvi1i2
a sr d andvc

asrd are defined as

vi1i2
a sr d =E dr 8

fi1
a sr 8dfi2

a sr 8d − f̃i1
a sr 8df̃i2

a sr 8d

ur − r 8u
sC10d

and

vc
asrd =E dr 8

nc
asr8d − ñc

asr8d
ur − r 8u

. sC11d

It is advantageous to decomposevi1i2
a sr d into angular mo-

mentum contributions as

vi1i2
a sr d = o

L
vi1i2,

a srdYLsr d, sC12d

and solve

¹2fvi1i2,
a srdYLsr̂ dg = − 4pGL1L2

L YLsr̂ d 3 ffn1,1

a srdfn2,2

a srd

− f̃n1,1

a srdf̃n2,2

a srdg, sC13d

where

GL1L2

L =E
0

p

sinuduE
0

2p

dfYLsu,fdYL1
su,fdYL2

su,fd

sC14d

is a Gaunt coefficient.

APPENDIX D: HAMILTONIAN

The discretized HamiltonianfEq. s43dg depends onṽG and
Hi1i2

a . The local effective potential on the coarse grid,ṽG

=sVf /VcdogIgGṽg, is a restriction of the local effective poten-
tial on the fine grid

ṽg = ṽg
H + o

a
v̂g

a + o
a

v̄g
a +

1

Vf

]Exc

]ñg

, sD1d

and the atomic HamiltonianHi1i2
a is

Hi1i2
a = o

L

DLi1i2
a WL

a +
]DExc

a

]Di1i2
a + Bi1i2

a + 2o
i3i4

Ci1i2i3i4
a Di3i4

a ,

sD2d

where

WL
a =

]Ẽ

]QL
a = Vfo

g
ṽg

HĝLg
a + Vfo

g

ñgv̂Lg
a + o

a8
o
L8

VLL8
aa8QL8

a8 .

sD3d
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