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Real-space grid implementation of the projector augmented wave method
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A grid-based real-space implementation of the projector augmented (RAV¥) method of Blochl[Phys.
Rev. B 50, 17953(1994] for density functional theoryDFT) calculations is presented. The use of uniform
three-dimensional3D) real-space grids for representing wave functions, densities, and potentials allows for
flexible boundary conditions, efficient multigrid algorithms for solving Poisson and Kohn-Sham equations, and
efficient parallelization using simple real-space domain-decomposition. We use the PAW method to perform
all-electron calculations in the frozen core approximation, with smooth valence wave functions that can be
represented on relatively coarse grids. We demonstrate the accuracy of the method by calculating the atomi-
zation energies of 20 small molecules, and the bulk modulus and lattice constants of bulk aluminum. We show
that the approach in terms of computational efficiency is comparable to standard plane-wave methods, but the
memory requirements are higher.
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I. INTRODUCTION periodic boundary conditions. Although all three problems
24 ;
Density functional theod? (DFT) combined with the have been addressét?*the suggested solutions are not as

generalized gradient approximatiéBGA) for the exchange simple as for grid-based approaches where all three problems

and correlation functional has become a popular method foffave simple solutions. .
studying materials and molecules at the atomic scale. Re- AN @dvantage of a plane-wave representation for the wave

cently, there has been an increasing interest in using uniforffNctions is its compactness. The memory footprint of a

real-Space grids and finite-difference methods for doing DF¥WaVe function is typically 10 times larger in a real-space grid

calculations-16 Real-space grids give an unbiased descrip/€Presentation compared to a plane-wave representation of

tion of the wave functions, and the quality of the descriptionsimilar accuracy. For this reason it is important to use soft
can easily be controlled by changing the grid-point densitypseudo-wave-functlons that can be accurately represented on

Finite-difference operators are used because the Wav'coarse grids. To our knowledge, until now, all applications of
. per . ; ; rid-based electronic structure calculations have used norm-
function values are given on grid points in real space an

: f a basi doi I ! ; onserving pseudopotentials. One way to get smoother
not in terms of a basis set. By doing all operations in realqa\,qo-wave-functions is to relax the norm conservation of

Space, pqrallel1|7z?t|on can be done by simple domaife wave functions and use ultrasoft pseudopoteftidior
decompositiort: " 8 Furthermore, real-space methods canyne projector augmented wavBAW) method?”28 We have
make use of multigrid acceleration scheifder solving the  gecided to use the PAW method. The PAW method works
Kohn-Sham equatiofsand the Poisson equation. A further with soft-valence wave functions and, similar to the ultrasoft
advantage of real space methods is the possibility for impossseudopotential method, the wave functions need not be nor-
ing localization constraints on the wave functions, which ismalized. Contrary to the ultrasoft pseudopotential method,
the basis for linearly scaling electronic structure metfidls the PAW method is an all-electron method within the frozen
(orderN methods. core approximation, giving access to the true wave functions
Today, one of the most used methods for performing DFTand the full electron density. The PAW method has been
calculations is the pseudopotential method using periodic stimplemented for plane waves by several grotfp#
percells and plane-wave expansions for the pseudo-wave We see the combination of real-space grid-based methods
functions. This method shares with the grid-based methodand the PAW method as an important step toward enabling
the properties of unbiased representation of the wave fundarger calculations at a level of accuracy that is essentially
tions and simple control of the quality of a calculatifsy  all-electron in nature. There is a clear trend in electronic
changing the number of plane wayeslowever, there are structure theory toward larger and more complex systems as
three major difficulties with a plane-wave representation forfor example nanostructures, larg@o-)molecular complexes
the wave functionsi) Working with spatially localized wave and extended defects in real materials—systems that all
functions, which is important for ordéd-methods, is diffi-  quickly challenge present-day high-accuracy DFT codes,
cult with the extended nature of plane wavéis) Not all ~ which are typically limited to, at most, a few hundred atoms.
operations involving the wave functions, densities, and poThe great potential of the method presented here lies in the
tentials can be done directly in the plane-wave representgarallelization of the real-space algorithms. This makes it
tion, and Fourier transformations to and from real space mugtossible to make use of massively parallel computers as has
be carried out. Transformations between real and reciprocdleen demonstrated by several other grdiids@in this pa-
spaces are highly nonlocal operations and, therefore, difficulper, we focus on how to do accurate DFT calculations effi-
to parallelize (iii ) Due to the periodicity of plane waves, the ciently by using a real-space PAW method. We demonstrate
natural boundary conditions for a plane-wave calculation ighe accuracy of our grid-based PAW calculations by showing
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that we are able to reproduce results for atomization energies T=1+ ay _ Ay = 2
from all-electron DFT calculations. This very stringent test % 2,: (165 =1 B. @

shows that the methodology that we have developed is useful )
for real applications. The atom-centered all-electron wave functions are taken

The solution of the Poisson equation is straightforwardfom a calculation of a single atom with spherical symmetry:
using multigrid method$ (no Fourier transformations re- #;(1)=¢q,(NYL(7), where theY s are real-valued spherical
quired. Solving the Kohn-Sham equations using multigrid harmonics(L is a combined index fof andm).
methods is a much more difficult task; keeping the different A radial cutoff distancer¢, defining the atomic augmen-
eigenstates separated and orthogonal to each other can b&on sphere is chosen. This radius is similar to a cutoff
problem and representing the Hamiltonian on the coarséadius for a pseudopotential. The larger the augmentation
grids can also be problematic. We have decided to use théphere, the smoother the pseudo-wave-functions, but overlap
techniques typically used in state-of-the-art pseudopotentia¥ith neighboring augmentation spheres must be avoided.
plane-wave calculatiod$as they have been developed andN For El” all-electron valence states, smooth partial waves
improved over the the last few decades. For iteratively solv¢?(r)=¢3,(r)Y () are constructed. The partial waves must
ing the Kohn-Sham equations, we use Pulay mixing techmatch the corresponding all-electron wavesrforrg. In this
niques for obtaining the self-consistent dendtt§} subspace way, the correction in parenthesis in Q) is zero outside
diagonalizations, and the residual minimization mef68 e augmentation spheres and we will hakel in this re-
using preconditioning of the electronic gradients for itera-4ion Note that there are no norm-conservation requirements

tively Improving the wave functlons. _The precondlltlonllng to meet when choosing the shape?ﬁﬂ‘g(r) inside the aug-
operation is a single multigri¥f cycle using only the kinetic .
mentation sphere.

energy operator as an approximate Hamiltorfian. ) . .
In Sec. Il we will briefly summarize the PAW method. Smoo“.‘ prOJectgrafuncilgns must also be defined—one for
each partial wavep;(r)=pg.(r)Y_ (). They must be local-

Then, in Sec. Ill, we will go through the details of our grid- ~
based formulation of the PAW formalism. In Sec. IV, we ized inside the augmentation spheres and safigfy ¢{)
describe how we solve the Kohn-Sham equations, and the&iliz, which for the radial part gives

evaluation of atomic forces is discussed in Sec. V. Section VI a
describes generalizations of the method to periodic systems € 24=a (\7a -

with use of Brillouin zone sampling. In Sec. VII we apply J AP by (1) = o ®

the methodology that we have developed to a number of .

example systems and discuss approximations necessary féfith this construction we hav@?(r)=¢3(r).

realistic calculations. Finally, in Sec. VIII we discuss the In principle, an infinite number of projectors and partial
computational performance of our implementation. In thewaves are required for the PAW method to be exact. For
Appendices we provide explicit formulas needed for calcu-practical calculations, a high-accuracy data set will need only
lating the constants and functions that describe the atomione or two projector functions for each angular momentum

(o]

species. channel of importance. This is similar to an ultrasoft pseudo-
potential, where a comparable number of projectors is
Il. THE PROJECTOR AUGMENTED WAVE METHOD needed. One partial wave is usually taken as the bound va-

) ) __lence state, and additional waves can be taken from “excited
_The notation we use is close to the one used by Blochl ifstates”—solutions to the radial Kohn-Sham equation at dif-
his papers on the PAW methdd?® We have used Hartree ferent noneigenvalue energies. The construction of partial

atomic units(i=m=e=1) and we write the equations for the waves and projector functions is described in Appendix A.
case of a spin-paired and finite system of electrons.
The PAW method is based on a transformation between

smooth pseudo-wave-function},,,, and the true all-electron E the atomic f lect densi
Kohn-Sham wave functionsy,, (n is the band index The rom the atomic frozen-core electron densit(r), a
core states of the atom* " are frozen. Hera is an atom smooth-core electron densif§é(r) is constructed, which
: ; H a a ;
index and is a combination of principal, angular momentum Must be identical tong(r) for r>rc. There is no norm-
and magnetic quantum numbers, respectivaly¢, andm). conservation requirement to meet when choosing the shape
Given a smooth pseudo-wave-function, the correspondingf Tio(r) inside the augmentation sphere.

all-electron wave function, which is orthogonal to the set of The pseudoelectron density has contributions from the

acore orpitals, can be obtained through a linear transformawave functions and from the atom-centered smooth-core

tion electron densities

A. PAW densities

(1) = T (). 1) Ti(r) = 2 folyn(n)?+ 2 H(r - RY)), (4)

The transformation operatdf is given in terms of atom- \yhere thef,’s are occupation numbers afd is the position
centered all-electron wave functior$(r), the correspond- ¢ atoma.

ing smooth partial Waves?)?(r), and projector functions An atomic density matri{see Eq.(22) in Ref. 2§ is
Pr(r), as defined as
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Ill 2 <5|1|(//n>fn<’r/’n|p (5) L|1| —f drYL(r)r€[¢l (r)¢|2(r) ¢|l r)¢|2(r)] (15)
where and
PR = (Bflvn) = f drpi(r = R (). (6) Al= J dr Yoo(F)[- 228(r) + nd(r) -Ra(r)].  (16)
The PAW formalism defines atom-centered all-electron
and pseudoelectron densities as B. PAW total energy
n(r)=>, D2, ¢'1(r ¢| (r) +nd(r) (7) The PﬁW total energy is a function of the pseudo-wave-
i1i2 functions ¢,,(r) and the occupation numbefs. The energy
and can be divided into a “soft” contributioE and corrections
- for each atom(see Refs. 27 and 28
() = 2 Dfy 62 (1) g (r) + (), ®) . .
izl E=E+ D (E2-E9). (17)
respectively. By constructiom?(r —R?) is identical to the a
all-electron densityn(r), for |r-R3<rZ and H3(r-R? The soft energy contribution is

=T(r) for |[r —R? <r& (see Ref. 27 for detailsTherefore, the

true all-electron density can be obtained from the pseudo- E= Ef fdr?ﬁ;(r)(— }Vz)rﬁn(r) +l f drg™(r)p(r)
electron density 2 2

OO+ SR SRR (© FETO)+ [ a5 - R, (19

Again, the correction is zero outside the augmentatlothereU
spheres.
A neutral charge density(r), is obtained by adding com-

pensation chargeia(r), inside the augmentation spheres to

the pseudoelectron density. These charges compensate
the lack of norm-conservation and for the nuclear charge

H(r) is the pseudo-Hartree potential, satisfying the
Poisson equatiorV?H=~4mp, and E,; is an exchange-
correlation functional. Finallyy?(r) is an arbitrary localized
?tentlal vanishing for >rZ. The soft energy contributiol
o be evaluated on three dimensional grlds in real space.

The atomic corrections to the ener@y®- E?) are given

(1) =T(r) + 2, Z(r - R9). (100 by
Using localized functiong(r)=g%(r)Y,(f) normalized as E2= E J dr ¢ core(r)(_ —V2> $°r)
=
f drrgiOn =1, (1D + D7, J or ¢?1(r)(— %VZ) )

i I
the compensation charges are constructed with electrostatic e

multipole moment< . —Jdr f dr,[né‘(r) +Z3(r)][n?(r") + Z3(r")]
2

~ Ir=r’|
Z3(r) = 2 Q¥GR(r). (12)
L

+E[n*(r)] (19

The values to be used for the electrostatic multipole moand
mentsQ{' are found by requiring the pseudo-charge-density,

~ ~ 1 .\~
n?+Z72 to have the same electrostatic multipole moments as Ea= E DY, f dr ¢;”‘1(r)<— EVZ) ¢;”‘2(r)

the all-electron charge density®+Z? where Z3%r)= ii
—-Z35(r) is the nuclear charge densitg? is the atomic num- a a aryr a
ben. This requirement can be expressed as + Jd ,[A°(r) +Z (r|)][ﬁ (|r )+Z (r')]
r—r
drr{[R3(r) + Z2(r) - n?(r) = Z(r)]Y, (F) =0. (13
f [R%(r) +Z%(r) = n?(r) = Z%(r)JYL(P) (13 +Exc[ﬁa(r)]+fdrﬁa(r)5a(r). 20

Inserting Eqs(7), (8), and(12), we get -
The energy contributions foE? and E? are evaluated on

b= A% DR, + A%, (14)  radial grids inside the augmentation spheres.
ii2 By using Egs.(7), (8), (12), and(14) we can reduce the
where the constam‘zﬁﬁ‘ili2 andA? are given by atomic correctionF2—E?, to a function ofD;”‘l i
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a_TFa_ pa a na a ~a na per fine grid point, we get a more accurate sum
EP-E'=A" ?Iz B'1'2D'1'2+ %'32'4 D'1'2C'1'2'3'4 I3'4 _ _ _
a a UE bﬁ‘pnf = UE ﬁﬁE ltc¥he= VCE [(U/Vc)z Ibeiaf] e
+ AEXC({DiliZ})' (21) f f G G f
The constant#\*, BY; , andC?; i are evaluated in Appen- (24
dix C. Comparing the rightmost expression with E@3), we
The last term is an exchange-correlation correction identify the term in square brackets as the more accurate
2 . A expression fop,
AE {Diliz}) =E I n(r)] - ExR%(r)], (22)
~ v ~
which is a function ofD?; through Egs.(7) and (8). For Pic = 72 liaPi(re— R®). (25)
Cc

local and semilocal exchange-correlation functionals,

AE)‘?C({D?liZ}) is written as an integration inside the augmen-  This is equivalent to a restriction operation taking the lo-

tation sphere. There are several possibilities for the evalugalized function from the fine temporary grid to the coarse

tion of this term. We use radial integration along lines fromgrid (restriction is the opposite of interpolatiorNote that in

the center to a number of points distributed evenly on théEd. (23), the sum is over coarse grid points and no actual
surface of the augmentation sphé&té® We find that this interpolation of the extended function needs to be done. The
approach is the simplest for GGA functiondlsAlterna-  €valuation of the localized function on the temporary grid is

tively, one can expand the atomic densities in spherical har@ relatively inexpensive operation, with an operation count
monics, as described in Ref. 27 or use grid-freethat, for each atom, is independent of the system size.

approache339 W(_e use the dguble-grid technique to transfer localized
functions, such ap{(r), fig(r), andv®(r), to values on real-
space grid€pZ, n2s, andv?
I1l. UNIFORM 3D GRIDS p g Pic: N g/
In this section we give the details of our real-space grid- B. Real-space-grid formulation of the PAW method

based implementation of the PAW method. From now on, . . . .
wave functions, electron densities, and potentials are repre- | n€ formulas for densities, potentials, and energies, given

sented on three-dimensional uniform grids in real space. " Sec. Il, must be translated to a discretized form for use
with a discrete representation of wave functions, densities,

and potentials. The pseudoelectron dendfy. (4)] is calcu-
lated on a coarse grid as

In a grid representation, integrals over space are turned -
into sums over grid points. In the PAW method we often Ag = 2 folthal? + 2 . (26)
need to calculate the integral of a localized function, centered n a

on an atom, multiplied by a function extended over all of the smooth atomic core electron densities can be chosen
space. As an example, let us take a projector func®3r,  very soft, so that they can be added to the coarse grid.

A. Localized functions and the double-grid technique

—R?), centered on atona at positionR?, multiplied by an The pseudoelectron density on the coarse grid is interpo-
extended wave functionj,(r). lated to a finer gridgrid points indexed by)
In the following, we use the inde to index the grid _ _
points used for the wave functions. Transforming the integral Ng = > lgcNe- (27)
to a sum over grid point&, with V,; being the volume-per- G
grid point, we get We use a cubic interpolation fdgg, and the fine grid has
a o~ twice as many grid points as the coarse grid in each direc-
P3 = Vo2 Bt e (23)  tion. From the pseudoelectron density on the fine grid, one
¢ can obtain the neutral charge density{sse Eq.(10)],

where ,c=¥n(rg) andrg is the position of grid poiniG
(only the grid points in the localized region around atam
needs to be summed oVerFor P we could usepi(rg
~R®). However, this is not accurate enough, unless we use a Using our grid representation for wave functions, densi-
very fine grid, which would compromise efficiency. Insteadties, and potentials, we get f&

we use the elegant double-grid technique of Ono and

Hirose® Here, the extended function is interpolated to a  E= f v.>, ¥ > (-%LGG)@”G, +%Vf2537>g

finer grid with grid pointsf: ¢,;=2¢lic¥ne. The interpola- n G el g

tion operator ¢ takes the wave function from a coarse grid _

toa firF1)e grid.f'IG'ypicaIIy, a cubic interpolation is used andgthe + Exe{figh Vi) + sz ”gz Eg (29)

fine grid has five times more points in each direction as the ¢ @

coarse grid#“°The localized projector function is evaluated whereV, andV; are the volumes per grid point for the coarse
on a fine grid agf =p(ri—R?. With v being the volume wave-function grids and the fine density and potential grids,

Pg=Ty+ > Z2. (28)
a
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respectively, and.s¢ is a central finite-difference represen- a QL(r ) - g 2(r)

tation of the Laplacian. The discretization that we use for the op(r) = f dr’ .

Laplacian, uses a total of 12 neighbor points, giving an error

of the order ofh®, whereh:Vé’3 is the grid spacing. The first term in Eq.(34) is evaluated on the grid as
The pseudo-Hartree potenti@] is found by solving the VngngEau The transformation of the localized potential,

Poisson equatiory %" =-4ap, using a discretization for the a(r), and the localized compensation charZﬁ{r (both

Laplacian vanishing for > %) to values at grid pomts andZa is done
S ng@: =~ 4np,. (30) using the double grid technlqlﬁ%The last term |n Eq(34)

g is a pair potential with rangeﬁ‘+rC

(35

This equation is solved using the multigrid technique pio- C1 Z3(r -R)Z? (r' - R?)
neered by Brandt Solving the Poisson equation iteratively use =2 J dr f ' r=r']

on the finest grid will quickly reduce the short wavelength
errors, but errors with larger wavelengths compared to the Z3(r -RYZ¥(r' - Ra’)}
grid spacing are reduced only slowly. The multigrid tech- -

nigue introduces a series of coarser grids where the long
wavelength errors can be effectively reduced.

r=r]

_ = a
We use a Mehrstellen discretizatibnwhere Cyy E Q VEL‘L'QL" (36)
=(B™A)yy is expressed in terms of two short-range finite- 2u0
difference operatorgyy andBgyg where
2 Aggly = = 412, Byg Py . (31) ; (g - a)gL,(r -R¥)
¢ g ' Ir=r’|
For the coarse grids used in the multightcycle, simple a andl
nearest-neighbor central finite-difference Laplacians are ar(r —=ROGL(r' =R*)
used. - =] (37)
C. Soft compensation charges The pair potential termvff/, are functions of the difference

Adding the compensation charg%% to the pseudoelec- vectorsR2-R?.
tron density[Egs. (10) and (28)] will require a very fine
density grid in order to get an accurate description of the
charge. The problem is that the compensation charges must The orthogonality constraint of the all-electron wave
be Iocallzed inside the augmentation sphefd:)=0 forr  functions, (y|¢n)=35,y, can be expressed in terms of the
§7 Bléchl has described a method for plane-wave basipseudo-wave-functio$ as <¢/,n|o|¢n> 8., Where the
set that allows the use of softer compensation charges e
tending outside the augmentation spheres. We use the sa)ﬁAW overlap operatoO 's nonlocal
methc;d' for our grid-based approagh A cutoff radﬁ'pt.arger =1+> > |p;‘il>oa @lz (38)
thanr¢ is chosen. Soft compensation charges with the same a iy
electrostatic multipole moments as the localized compensa-

D. Orthogonality

tion charges are constructed with
Z2(r) = >, QRGA(r), (32) O, f dr[&f (N ¢ (r) - ¢.1(r)¢. (N]=4mAg, s
L
nar : . . aa (39
where g(r) is a soft function localized withim <tZ. The
soft functiongi(r) is normalized in the same way &8(r)  The discretized overlap operator looks like
[see Eq(1D)]. ~a
Equation(28) must now be replaced by Oger = doer + Ve 2 p'lG pizG” (40)
a gy
= 2 Z3=T,+ E 2 Qhar,, (33 and the orthogonality constraint of the pseudo-wave-
functions can be expressed as
and a correction must be addedEoThe correction idsee V E l/fnGOGGupn,G, = Sy (42)
Ref. 27 P
f dri(r) X 63(r - R®) + X, U, (34) IV. FINDING THE GROUND STATE
: ad In order to find the electronic ground state it is necessary
whereo?(r)=%, Qfoi(r) and to calculate the derivatives of the total energy with respect to

035109-5



MORTENSEN, HANSEN, AND JACOBSEN PHYSICAL REVIEW B1, 035109(2005

wave-function values. This “electronic gradient” can be ex-erations in order to converge. The problem is that the re-
pressed in terms of a Hamiltonidtc/, sidual vector is not necessarily parallel to the error vector
(which we do not know The purpose of preconditioning is

Vl fE =f,> HGG/://nG’- (42) to produceﬁ? direction that more accurately represents the
¢ o error vector:

We would get the optimal preconditioned residiR
The Hamiltonian is given as a sum of the kinetic energy 9 P P ]

operator and the local and nonlocal parts of the effective PR, by solving (H-&O)R,=R,. Instead of solving this
equation exactly, we solve approximately the simpler equa-

potential
1 tion —EVZRn—Rn. This is done using one multigrid cycle,
Herr = = =L + TeSarer + V. H2 B2 . where a nearest-neighbor discretization is used for the La-
6 2 ©¢ Uedss E 2P p'lG 1PizG placian on the coarse grifis.

a i I
1 (43) When all wave functions have been updated, the wave
functions are orthonormalized and the density is updated.

Explicit formulas for the local effective potentidl and the  From the new density, a new Hamiltonian is generdiggd
“atomic” Hamiltonian,H?, , are given in Appendix D.

iy and Hializ). Finally, a subspace diagonalization is performed,
The set of orthonormallzed ground-state wave functionsand the next iteration toward self-consistency can begin. For
that diagonalize the Hamiltonian  matrix Hp, each iteration a new input density is estimated using Pulay
:VCEGG’;Z’;GHGG"‘?/NG’ must satisfy the Kohn-Sham equa- mixing.34 Typ|caIIy three old densities are used. The atomic
tions density matrlcesD , are mixed as well. We start the itera-
tions from a good guess at the wave function: a linear com-

> (Hoe — €066) e = 0. (44)  bination of atomic orbitals.
GI
V. FORCES

A. Residual minimization method and Pulay mixing . . . .
The atomic force acting on an atom is defined as

o OE_E ( oE d¢nG+C.C')

drR* " R: 2\ g OR®

In order to locate the self-consistent ground state, we use
the residual minimization method of Wood and Zurigésee
also Ref. 33 The residuals are calculated as

Rc= 2> (Hoe ~ €0cc) the (45) ~ Y
G Ve e 2 OGG'( Unc aRr nalG*CC)
wheree, is the current estimate of the eigenvalue of tike "oocd
band. Using a preconditioning operat%r(to be discussed (48)

laten, we can improve the wave function by taking~a stePin the last line, we have used Eqg2) and (44). The varia-
along the direction of the preconditioned residudhs  tion of the wave function corresponding to a variation in the

+\PR,¢ (\ is the step length The optimal step length is Position can be found from Eq41)
found by minimizing the norm of the residual for the new

guess dRaE Qs thre = 0. (49)
~ ~ GG’
! :E(H = €,0 /)( r+ AP /)
ne o R Fuc Inserting into Eq.(48), we get
= r = ’ F ’ (9E OGG’~
Ru + )\g’ (Hoe = €061 )PRug - (46) Fa=- &?a + VCE fnGnE wnG dr? Yner
n GG’
Finding the optimal value fox amounts to finding the mini- dFe
mum of a second-order po!ynomial ln Having found the -V E o dRS VfE~HE QL dRa
optimal step length for the first step, we do the actual update
of the wave function by taking an additional step using the Ldo%,
same sEep length in the direction of the preconditioned re- -V, ng( s E Q dRLa)
sidual Ry 5
Une — Fno+ NPRig+ \PR 6. (47) - c% fn;f (Hf, - €Of)
12
For updating one wave function, one must apply the Hamil- . o
tonian twice and two preconditioning operations are re- ~ dv Viu
quired. X 2| heoa 4Ra (P ) +cc. -22Q qra QL
If we were to take steps along the resid(ehd not along ¢ a’ LL!
the preconditioned residyalwe would need very many it- (50)
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W
(=]

TABLE I. PBE and experimental atomization energiegperi-
mental geometries are usédef. 44, and zero point vibration en-
ergy has been removédrhe ground states of C, O, F, P, and Cl are
found to be nonsphericdRef. 45. All-electron and experimental
numbers are taken from Refs. 46 and 47.

[=3

force (€V/A)
s 8

)

Y
2
B PBE
g-
® L L L Molecule  PAW all-electrod all-electro®  Experiment
1.00 1.0 1.10 LI5
bond length (A) H, 4.52 4.54 4.53 4.75
FIG. 1. Energy and force for a CO molecule at different bondLiH 2.32 2.32 2.32 251
lengths calculated with=0.2 A. Bottom: The circles show the cal- CH, 18.17 18.20 18.18 18.18
culated energies and the curve shows a third-order polynomial filNH3 13.03 13.08 13.05 12.90
Top: The circles show the calculated forces according to(&@). OH 4.76 4.76 475 461

The curve is minus the derivative of the third-order polynomial fit

to the energies. H20 10.14 10.16 10.14 10.07

HF 6.27 6.16 6.14 6.11

As an example, we show in Fig. 1, the force along the"i2 0.89 0.86 0.85 1.06

bond of a CO molecule calculated using the analytical ex-F 6.16 6.01 6.05 6.02
pression above. Fitting a third-order polynomial to the enerBe; 0.35 0.42 0.41 0.13
gies and taking the negative of the derivative with respect t&,H, 17.95 17.99 17.91 17.58
the bond length is seen to give exactly the same force.  C,H, 24.75 24.78 24.73 24.40
HCN 14.10 14.14 14.07 13.53
VI]. GENERALIZATIONS CcO 11.58 11.66 11.60 11.24
_ _ _ N, 10.41 10.55 10.46 9.91
We have implemented the algorithms introduced above 738 745 736 6.63
and in addition we have made two extensiofsireatment ' ' ' '
of spin-polarized systems artil) treatment of periodic sys- 2 6.2 6.23 6.14 5.23
tems using Brillouin-zone sampling. The first extension isF2 2.28 2.32 2.25 1.67
straightforward. Wherk points are introduced in order to P2 5.18 5.25 5.08 5.09
treat periodic systems, we can work directly with the waveCl, 2.83 2.82 2.74 2.52

functions and use Bloch boundary conditiths *Reference 46,

Jeir +R) =X Ry (1), (51) bReference 47.

whereR is any Bravais lattice vector. This is different from Choice Of the augmentation Sphere radii is a Compromise be_
the plane-wave approach, where the periodic basis set forcggeen smooth pseudo-wave-functions and a low number of
one to work with the periodic part of the wave function and projector functions. A larger radius will allow us to have
the Hamiltonian becomes-point dependent. In our case, the smoother pseudo-wave-functions, but more projector func-
boundary conditions becomepoint dependent. tions will be needed for high accuracy. Furthermore, the ra-

It is only necessary to work with thle points in the irre-  gjys is limited by the requirement that the overlap between
ducible part of the Brillouin zone. Eadh point will have a  neighboring augmentation spheres should be small. The radii
specific weight, and densities, atomic density matrices, angle have chosen will give slight overlaps in some of the
forces should be appropriately symmetrized. molecular calculations.

For evaluating the GGA exchange-correlation energy and For the second-row atoms, the rbital is treated as a
potential, we use a finite-difference operator for calculatingcgre state and frozen, and for the third-row atoms, &4,
the gradient of the density. The exchange-correlation poterand 2 orbitals are frozen. For hydrogen, lithium, and beryl-
tial is calculated as the exact derivative of the discretiseqium, we use twes projectors and Onp projector, and for the
exchange-correlation energy with respectip(similar in  rest of the atoms tws projectors, twap projectors, and one
spirit to the method of White and Bitélused for plane-wave g projector are used. The compensation charges were taken
basis sets to be spherical. We calculate the atomic exchange-correlation
correction energy, Eq22), using 49 line integrations in each
sphere® All calculations are done using periodic boundary
conditions.

The first application of the algorithms described here is With these approximations we get excellent agreement
the calculation of atomization energies for the 20 small mol-with full all-electron calculationgsee Table)l. The average
ecules listed in Table | using the PBRef. 44 exchange- and maximum differences between our PAW atomization en-
correlation functional. The augmentation sphere radii usegérgies and the all-electron calculations of Kuehal*® are
and the number of projectors used are shown in Table 1l. Th8.05 eV and 0.15 eV, respectively, and comparing to the all-

VIl. APPLICATIONS
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TABLE Il. Augmentation sphere radii in atomic units and number of projectors.

Atom H Li Be C N o F Al Si P Cl

r2 (Bohr) 0.9 1.5 1.5 1.0 1.1 1.2 1.2 2.0 2.0 2.0 1.5
Number of projectors  s%p &p p fp4d fp4d fp4d fp4d £p’d gp’d £p’d gp’d

electron calculations of Zhanet al.,*” we get an average For the bulk aluminum calculatiolLDA (Ref. 49 and
difference of 0.05 eV and a maximum difference of 0.13 eVPBE (Ref. 44 results are shown in Table ]Jlwe use a cubic
(the two sets of all-electron calculations differ by 0.05 eV inunit cell containing four aluminum atoms and usex100
average and 0.17 as maximurie find that all atomization x 10 k points. Again, we get good agreement with exact
energies are converged to within 0.03 eV/atom at a gridg|l-electron calculations for both the lattice constant and bulk

spacing of 0.1875 A. ~ modulus(the bulk modulus is calculated at the theoretical
Interestingly, we find the convergence of total energiegattice constant

with respect to grid spacing to be very systematic. Figure 2
shows the atomization energy of nitrogen as a function of the VIll. PERFORMANCE
fourth power of the grid spacing. It is seen that for snimall

all points fall exactly on a straight line, which allows us to . C
P y g code to a highly optimized ultrasoft plane-wave cég&?

extrapolate energies to the limit of an infinitely dense grid ) . ;
— . The ground state of 64 Si atoms in the diamond structure was
(h=0). The PAW numbers presented in Table I have beer}ound using both codes. For the plane-wave calculation,

extrapolated tdh=0. A similarly transparent convergence of X e .
DFT calculations was recently observed by Daylaival *8 plane waves with kinetic energies up to 100 eV were used
) gnd the size of the real-space grid for fast Fourier transforms

for wavelet-based calculations. A quartic convergence is t ; L
be expected because all approximations are accurate to ord&f> 36x 3636 po_mts. The same ar id Slze was used fo_r the
at leasthd. real-space codeéh=0.30 A). After finding the electronic

Figure 3 shows the variation of the energy as a hydroge round state, one atom was displaced by 0.1 A, and the time

atom is displaced from one grid point to a neighboring grid or conv%rgt!ng to the nzelw g(rjo;gd ;ta]:ce \;vhas r1|1easured. Thg
point. Ideally, there should be no variatidqwe are using measured imes were 21 an min for the plane-wave an

periodic boundary conditionsIn practice, we have to make rgal-spacehpodes\,/ rﬁspectwf_ly, tog t?1 P((jant|um-4f 2.6 GHz
sure that this energy variation and the corresponding forcel'sInux machine. YWe have estimate € degree ot conver-

are acceptably small. For hydrogen, the variation is belowp€Nce of the two c_odes by calculating the pohesive energy of
0.15 meV(full line in Fig. 3). The energy varies periodically silicon. The cohesive energy calculated with the plane-wave
with period h. Note that there is also a modulation of the code and a plane-wave cutoff of 100 eV was converged to

energy with a period ofi/5. This stems from the Ono-Hirose within 40 meV of the fuIIAy converged value. With the real-
restriction of the projector functions; the localized projectorSp""Ce d (;ode.tﬁ_ndig 0'33 %;[rr]\;_cghesllve %r:.ergy dW"’!S .(I:on-
functions are evaluated on a fine grid with a grid spacing of/€r9€ed 10 Within 5 Mev o — v value. This and simiiar

h/5 and then restricted to a coarse grid with the same griaes_ults for other calculations that we ha_ve performed seem to
density as the wave functions. The oscillations give rise tdnd|cate that the real-space code abtains a somewhat hetter

forces up to 0.006 eV/A in magnitude, which is acceptableconvergence at the same grid spacing as the plane-wave

for most applications. The forces can be reduced further ei(-:gde' furthefrmore, Lhe ria}l-space COd? can, kr]nost Illkel3_{[,htalge
ther by using a finer grid for the wave functions or by usinga vantage of a number of Improvements, such as aigorithmic

a finer grid for the Ono-Hirose restriction of the projector improvements and optimizations of floating point operations

functions. If the projectors are evaluated directly on theand memory access. The plane-wave code has already ben-

coarse grid, then the variation of the energy iseﬁted from optimizations of this sort.

55 meV—more than two orders of magnitude lar@gashed

We have compared the performance of the real-space

e . . 038 . T .
line in Fig. 3. This clearly demonstrates the importance of o6l 1
. S } p—rr I
the Ono-Hirose restriction. o4 1
1042 . % 02f ]
~104f & oo T ]
 joaf 8 09 ™. 7
% g -0.2f . o 4
- g 102 5 AN L
3 10,411 “aoaf g -04r e - ]
B ! o7 02 -0.6p ]
2 0] L L L
5 000 005 00 N 0.5 020
10401 i displacement (A)
0.0600 0501 570002 FIG. 3. Energy variation as a hydrogen atom is displaced from

(A% one grid point to a neighboring grid point fa=0.2 A. The full and
dashed curves show the result with and without using the double-
FIG. 2. Atomization energy of a nitrogen molecule as a functiongrid technique(note that the dashed curve has been multiplied by
of h*. The inset shows the atomization energy as a function. of ~ 0.01).
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TABLE III. Lattice constant and bulk modulus for fcc bulk from the Materials Research Program of the Danish Research
aluminum. All-electron and experimental numbers are taken fromagency(Grant No. 5020-00-003)2and the Danish Center for

Ref. 46. Scientific Computing.
a(R) B (GPa
XC PAW  allelectron  PAW  all-electron APPENDIX A: CONSTRUCTION OF PARTIAL WAVES
AND PROJECTOR FUNCTIONS
LDA 3.987 3.983 83.6 84.0
PBE 4.043 4.039 777 773 A DFT calculation for the atom is performed using radial
. grids for the wave functions, densities, and potentials. The

experiment 4.050 77.3

radial Kohn-Sham equation gives us a set of radial all-
electron wave functions, normalized ds’dr[¢3,(r)]>=1.
-wavd he core states are only used for constructing a frozen-core
0elec:tron density

Regarding the memory requirements, the plane
code is clearly more economic. The memory required t

store one wave function for the 64 atom silicon system is core
36°=46 656 floating point numbers for the real-space code na(r) = 2> —[¢ﬁ'€°°f9(r)]2_ (A1)
and 2897 floating point numbéfsfor the plane-wave code. ne AT

The smooth partial wave functions are chosen as
IX. DISCUSSION

3

Using the techniques described in this paper, an important (1) => cr?, (A2)

step in every electronic structure calculation, namely, the ap- i=0

plication of the Hamiltonian to all wave functions, can be

done in O(N?) operations. This is a more optimal scaling

than theO(N?logN) scaling, which can be achieved with
. . . as

plane-wave basis sets and fast Fourier transforms. Operations

such as orthogonalization and subspace diagonalization of _ 1, - a \~a

the wave functions scale &N?). Luckily, the prefactors for Pre(r) ={ - EV +(r) = €n¢ | Prer). (A3)

theseO(N®) operations are very low, so that very large sys-

tem sizes are required before tfN?) terms become the The projector functions must be orthonormalized as de-

bottleneck* In the limit whereO(N®) terms start to domi-  Scribed by Blochf” The potentialv® is chosen so that the

nate, plane-wave methods will, in principle, have an advanlocal effective potentialp =5"+7,.+v? has the following

tage because the number of plane-wave coefficients will typishape forr <r¢ in the atomic reference state

cally be less than the number of grid points used in real- ~N oA ha2 a

space grid-based calculations. However, we believe that, for o(n) =at+ b, r<r. (A4)

those very large systems, efficient parallelization on masThe constant@® and b? are found by requiring that(rg)

sively parallel computers and use ©fN) methods are cru- =0 and dv_(r)/drl,:rzg:O.

cial.

Currently, we have a single-processor implementation of

our PAW real-space algorithn®.This limits us to study APPENDIX B: COMPENSATION CHARGES

rather small systems. Obviously a parallelization using real-

space domain decomposition is needed. For the small sys-

for r<r, and the coefficients; are chosen so thitﬁg joins
&3, smoothly atr=rZ. The projector functions are calculated

For the compensation charges we use Gaussians

tems that we have studied thus far, charge sloshing is less of £ -

a problem, but it may become a problem when we move on ) = ?—'(4a"")“3/2r€e‘“ " (B1)
to larger systems. It will therefore be necessary to improve VA (2¢+1)!

on our mixing of the density. A preconditioning, that will gng

damp the long wavelength changes to the density, such as

that proposed by Kerkéf, should be considered. Another ian 1 ! n o 43)2 0 a2
improvement would be to use a special metric, which gf(r)_ﬁ(zg+1)!(4a) re- . (B2)

weights long wavelength errors higher than short wavelength _ _ _ _
errors, for estimating the norm of the difference betweenWith this choice for the compensation charges, the integral

input and output densities in the Pulay metdddhese im- Vfi in Eq. (37) can be evaluated analyticafiyWe choose
provements to the density mixing are easily implemented e s so thate?(r8)2=9.0 anda?(73)2=22.0.
reciprocal space, but may be challenging to do in real space. ¢ ¢
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E*- Ea_ Fo+ E D'al' G'al I2 E Diliz '1'2i3'4D'34
i1in i1isigia
+ 2 QR+ X X Dfy QFKT + X QPRI MY
igip L L’
+ AEZ({D?; )). (cD)

The integrals=2, GY;

110’ I1I2I3I

a a a H
L Ko andM,, are given
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l'2L f fd ' ¢|1( )¢|2( ) (C8)

and

N7, =- Jdrfdr )"gﬁ, (r). (C9)

The potential®)? i (r) andvi(r) are defined as

below and need only be computed once for each type of

atom.
Inserting Eq.(14) into Eq. (C1) leads us to Eq(21),
where

A= F2+ A%KGo + (A%)?Ngo,00

E ALI Ji Ka+AaM| 1is oot 22 AL| 1in S0,0(Aa
Cial'2'3'4_ iyigigig E M'l'ZL Ligia * EAL' d NLL,AL,
(C2
We use the symmetrize@?®,
1i2isly’
c?, 1c_a___ +C2 ) (C3
igigigia 2 Tlilalgly T gl

The integrals foF?, G2, | 12,

I ' I1I2I3I4

a a a
I0 KL andM/ , are

J R - BB
v,, (r)= 10
Ir=r’|
and
v3(r) = f dr’ a(r/) F'a(r). (C11)

It is advantageous to decompas”ng(r) into angular mo-
mentum contributions as

vf (1) = 2 vf (DY), (C12
and solve
V(DY) == 4aGp | YL (F) X [d7 ¢ (N0, (1)
= & (N, D], (C13
where

(all integrals are limited to inside the augmentation spheres

Fa-E Jdr¢a°°re(r)<—%V2>¢ia'°°re(r)—fdrnCT(r)Za
+% J drod(r)[nd(r) +Ha(r)] - J drig(nov®(r), (C4)
1 ~ ~
5,="5 f dr [, (V20 (1) = &7, (N V20 ()]

+ f dr v, (NNe(r) + v B (1) B (1)]

SN o
- f dr ———*— 2% f dr (1) B (03(r),

(CH

g = fdrv.lz(r)[da (NG + B NF ],
(Co)
Kﬁ:—fd fd’| g )|~§() (C7)

™ 2w
Gll:lL2 = f sin 9d0f deYL(6, )Y (6,)YL,(0,9)
0 0

(C14)

is a Gaunt coefficient.

APPENDIX D: HAMILTONIAN

The discretized Hamiltonialeq. (43)] depends o and
H?liz. The local effective potential on the coarse grig;
=(Vi/Vo)Zglyavg, is a restriction of the local effective poten-
tial on the fine grid

1 JE
~ _~H ~a -a XC
Ua=10 +Ev +EU + — s (Dl)
g g 2 ¢} 2 ¢} Vf Jﬁg
and the atomic Hamiltonial=r|f‘1i2 is
aAEa
H'a'z_EA'-'l'z é ?(C+Ba +22C123' iglg?
I112
(D2)
where
W =

=Vi X TG, + VfE g+ 2 2 Vi Ql-
g

a’ L’

QL
(D3)
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