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Electron-electron interaction corrections to the thermal conductivity in disordered conductors
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We evaluate the electron-electron interaction corrections to the electronic thermal conductivity in a disor-
dered conductor in the diffusive regime. We use a diagrammatic many-body method analogous to that of
Altshuler and Aronov for the electrical conductivity. We derive results in one, two, and three dimensions for
both the singlet and triplet channels, and in all cases find that the Wiedemann-Franz law is violated.
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. INTRODUCTION Fs=«3a°In(D«35/T), as explained in the table caption. Each
The effect of the electron-electron interaction on the elec-term consists of two pieces: .the first piece _Ieads to violation
trical conductivity of disordered systems has been exten(-)f the \_Nleqemr?nn-!:rlanz E"W’ thle _second dplece c_JIoes no;c]._Tr?e
sively investigated both theoretically and experimentallygxCeptlon Is the triplet f annel in two |mﬁ-n3|pns, V‘;] Ic
over the past two decadé3.There are two main types of oehs not pcr)]ssessha violating piece. I\éOte t dat In eact] casle
corrections to the Drude electrical conductivity that can hav{hoet cgergt]:nta\?Zf;c?oSrzTr?aFerinc]j(iaftfg(r:en(tapen ences; itis only
similar magnitudes and temperature dependences: weak |o- o | Pt' s th : | ’ f th iqinal
calization and interaction effects. Weak localization is due to, o' ca&cu'ation IS he exact anaiog of the origina

interference between pairs of time-reversed scattering traje tshuler-Aronov calculation for  electrical conductivity. '
here have been several previous attempts at this

tories of electrons from impurities; this effect can occur in 8. alculation®®” however. these are in disaareement with each
noninteracting system. Interaction effects are due to the in- ' : ’ 9
ther, and we believe all of them to be incorrect. The fact

creased effective electron-electron interaction strength duett at it has taken so longpver 20 yearsto get the correct
incomplete screening by diffusively moving electrons. Ex- esult for the thermal conductivity is due to three inherent

perimentally the two effects can be distinguished by aIOFJIyInE{Jifficulties in the problem. First, the heat-current operator is

a magnetic field; weak localization is suppressed while inter- . ' : L .
action effects are not. not uniquely defined, and some choices of definition will be

In comparison there has been relatively little work done{ﬁgc:{;?_l'czfge?&/ éhzgtiﬂloatilecggi?el::tlzzzatlfoﬁr(ifcigon:r’it o
on the thermal conductivity, either theoretically or experi- P PP panty

mentally. This is largely because thermal conductivity is haronthe charge-current operator, which leads to the presence of an

to measure in low-dimensional systems at low temperatureext.ra .heat-d.rag diagram for the theff“a' conducy\{ny,
Which is vanishingly small for the electrical conductivity.

and it is difficult to separate the electronic and lattice contri- i i
butions. It is therefore doubly hard to observe the disorder£We use the term “heat-drag” by analogy to the Coulomb

driven corrections to the electronic thermal conductivity.(d]lrag %ﬁedc';) be;ween twg' Iaygr?r?f delectrqns, thl's e_fcht IS
Moreover, there have been theoretical predicidribat the escribed by the same diagr jrhird, spurious ultraviolet
Wiedemann-Franz law holds, which allows one to deduce thglvergenc_es. oceur in the diagrammatic approach to thefm_"’"
thermal conductivity, directly from the electrical conduc- conductivity; these can be understood and evaluated within
tivity, o, the framework o_f d|vergent_ series the&Pry(Fhe[r origin is

due to illegal series expansions in the derivation of the per-
k (kg turbation theory.
S E(E) T=LoT, (1) Before we proceed to the details of our calculation, we

present a short history of the field. We will first consider
wherekg is Boltzmann'’s constang is the electronic charge, effects that do not require interaction, such as weak localiza-
T is the temperature, arlg, is known as the Lorenz number. tion and the Anderson transition. Chester and Thefursgd
Clearly it is important to establish whether the Wiedemann-an exact eigenstate approach to show that the Wiedemann-
Franz law is valid in interacting disordered systems; if it is, Franz law should hold in a noninteracting disordered system,
there is nothing to be gained from measuring the thermaindependent of the strength of impurity scattering. Strinati
conductivity in addition to the electrical conductivity. and Castelladt used a Ward identity construction to argue

In this paper we evaluate the interaction corrections tdhat the Wiedemann-Franz law holds all the way to the

the thermal conductivity in one, two, and three dimensionsAnderson transition. Kearney and ButcHensed the exact
in both the singlet and triplet channels. We find that theeigenstates approach of Chester and Thellung to deduce the
Wiedemann-Franz law is violated in all cases. Our resultsveak localization correction to thermal conductivity. This
are presented in detail in Table I. We have not included a&ffect was later seen in the experiment of Bagotal,'®
result for the singlet channel in one dimension since this isvhich measured the electrical and thermal magnetoconduc-
just one third of the corresponding triplet channel result withtance, which were found to obey the Wiedemann-Franz law.
F replaced by an effective singlet channel interactionEnderby and Barné$later pointed out that the Wiedemann-
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TABLE I. Interaction corrections to the electronic thermal conductivity in one, two, and three dimensions in both the singlet and triplet
channels. In the above equatichss temperatureD is the diffusion constant is the effective interaction in the triplet channel, aggdis
the inverse screening length in two dimensions. Note =t andkg=1 in these calculations. We do not include a result for the singlet
channel in one dimension as it is just one third of that for the triplet channelfitiplaced by the effective interaction parameter for the
singlet channelFs= Kéazln(ch%/T), where ks is the inverse screening length in three dimensions,aiglthe wire width. The inverse
screening lengths in two and three dimensions are givenkf}bs&rN(O)e2 and k,=4wN(0)e?, whereN(0) is the single-spin electronic
density of states in the appropriate dimension.

Dimension Singlet term Triplet term

15[(4+7F)V1+F - (4+9F)]{(5/2) - 1622~ (2-F)V1+F]¢(1/2) T3

3 105¢(5/2) - 1672L(112) T3/2 > -
288\5773/2 D_1/2 96\2773/2F\1+F D]'/2
2
2 l %_ i _I1_£|1F|i)
12{'”( = ) 2|n(TT)] = n(1+F)|in T,
1 3{[(4+3F)V1+F—(4+5F)]-4n{(2+F)-2V1+F]}{(3/2)
— Tl/2Dl/2
8\2mF

Franz law is not obeyed at the Anderson transition—the prerenormalized by interaction;(b) the “heat drag” or

vious treatments all use the Sommerfeld expansion, which ifslamazov-Larkin-like diagram is omittedc) the final re-

not valid close to the Anderson transition. However, the onlysults are parametrically larger than those for electrical con-

effect is to decrease the constant in the Lorenz number frorductivity by factors of 1{T7)?, wherer is the elastic scatter-

m?/3~3.29 to 2.17 for a conductivity exponemt=1. The ing time, which appears to be due to incorrect treatment of

overall conclusion for the noninteracting effects is that therespuriously divergent terms, as will be described later. The

is no extra information in the thermal conductivity that is notaim of the present work is therefore to resolve the discrep-

present in the electrical conductivity. In the weak localizationancies between previous calculations and to present a consis-

regime the Wiedemann-Franz law holds; close to the Andertent calculation of the interaction correction to thermal con-

son transition it is only modified by a simple numerical fac- ductivity.

tor, so all critical properties are correctly predicted by it. The remainder of the paper is organized as follows: in
It would therefore seem that the only possibility of inter- Sec. Il we derive the Drude contribution to electronic ther-

esting behavior lies with the interaction corrections to thermal conductivity; in Sec. Ill we present an outline of the

mal conductivity. Castellaniet al® predicted that the calculation of the interaction corrections to thermal conduc-

Wiedemann-Franz law would hold even for the interactingtivity; finally in Sec. IV we analyse our results and draw

disordered system. These authors evaluated the dynamionclusions.

energy-energy correlation function in the interacting system

using a skeleton graph analysis, and derived the thermal con-

ductivity from this. Since their method of calculation is Il. DRUDE THERMAL CONDUCTIVITY AND THE

somewhat different from ours, it is not obvious to us why WIEDEMANN-FRANZ LAW

they obtain a different result. Livanost al® later directly

calculated the interaction corrections using a quantum kinetic Before we proceed to the calculation of the interaction

equation approach, and predicted that the Wiedemann-Framgorrections, we demonstrate the simplicity and elegance of

law is violated in all dimensions. They appear to have evaluthe Matsubara approach to evaluating thermal conductivity

ated some interaction contributions correctly, but to havedy deriving the Drude result. The thermal conductivity is

missed other contributions of the same order of magnitudegbtained from the imaginary time heat response kernel,

for example, in two dimensions, they predict a logarithmicQnr(i€2,), by analytic continuation from positive Bose Mat-

increase in«/T at low temperature rather than the correctsubara frequencie$),=2=Tp,

logarithmic decrease. We believe that the results obtained

initially from their diagrammatic formalism are correct, and )
that they have then erroneously thrown away some terms, T = lim Qnnli€2p) P
believing them to be smaller in magnitude. Anfierformed Q-0 p igp_,mio'

the equivalent calculation in the Matsubara formalism and

again found violation of the Wiedemann-Franz law. How-

ever, this calculation has errors relating to all three of theThe Feynman diagram for the Drude thermal conductivity is
difficulties referred to previously(a) the Matsubara form of shown in Fig. 1. The solid lines are disordered electron
heat current is used, but the heat current is then erroneousfyreen functions
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k, e+ ordered system with arbitrary disorder strength. For any dia-
grammatic contribution to electrical conductivitythere is a
corresponding contribution to thermal conductivity,More-
over, the corresponding expressions differ only in the form of
the current vertices, yielding a factérkge?/m? for o, and
koKali(€+Q,/2)12/m? for k. The only essential difference
betweenk ando then lies in the frequency sums; the ratio of
these two sums is independent of disorder and leads to the
FIG. 1. Feynman diagram for the Drude contribution to the heatViedemann-Franz ratio. In particular, the weak localization
response kernel. The black circles represent the Matsubara heat cgorrection to thermal conductivity is obtained directly from

k,g

rent vertex given in Eq(4). the Wiedemann-Franz law. Note that this proof relies on the
Sommerfeld expansion since we are linearizing our energy

1 integrals about the Fermi surface. Interaction effects can vio-

G(k,ig)) =- - , (3) late the Wiedemann-Franz law since the presence of an in-

i) = &+ (i127)sgn(ey) teraction line can alter the Matsubara frequencies at the two

where g=2xT(1+1/2) is a Fermi Matsubara frequency, CUrrent vertices.

&=Kk?/2m- u is the electronic excitation spectrum, ands

the elastic scattering time. The black dots represent heat- Ill. THE INTERACTION CORRECTIONS
current vertices, which are given by

k
in(K,epe +Qp) = 27i(2e) + L) (4)

In this section we calculate the interaction corrections
arising from the singlet and triplet interaction
channel®—we do not evaluate Cooperonic contributions
since these are expected to be small for a system with repul-
in the Matsubara frequency representation that we use. Th&ve interactions. In the singlet channel the dominant contri-

heat current kernel is then given by bution arises from small energy and momentum transfers be-
K Kk tween electrons. This is dominated by the bare Coulomb
Q) =2TX > 2 E[i(g+Qy2)]? interaction, which takes the form
E| k m m r
4me?
X G(k,ig)G(k i +iQy). (5) ;TZ . d=3
Performing thek integral, we only obtain a nonzero result if 272
the frequenciesg+(), and ¢ have opposite sign, which Vo(q) =9 —, d=2 9
means that the, is restricted to the range(};, <  <0. Upon q
i i i 1
changing the sign 0§ we obtain @ In(ﬂ), do1
. a9

Qi) =-47N(ODS,T X (6- QY27 (6)
0<g<Qp where d is the dimensionality, ané is a measure of the

whereN(0) is the single-spin electronic density of states atifansverse width in a quasi-one-dimensional wire. The
the Fermi surface. We see that the response function is is§liSorder-screened singlet interaction then takes the form

tropic, so we drop the spatial indices. We can then perform 1

the ¢ sum to obtain V(Q,iwp) = - —, (10
! - SN @ T T wp)
Qun=— 16mN(0)DT3D, (I + 1/2 —p/2)? where the polarization operatdl(q,iw,) is given by
1=0
. Dg?

4 TI(q,iwy) = 2N(0) =5 11
- _ ?N(O)DTa(pS _ p), (7) (q n) ( )qu + |wn| ( )

If any integrals we obtain involvingy/(q,iw,) are conver-
gent at small momentung, we can ignore th&/q(q)™* term
mNn7T in Eq. (10) in comparison td1(q,iw,); V«(q,1w,) then takes

and we finally extrack using Eq.(2) to get the Drude result

Ko = Zi2N(0)DT=

3 3 (8) the universal form
wheren is the electron number density and we have used the , Dg? + | wy|
Einstein relation R(0)D=n7/m. From the corresponding 2N(O)Ve(g,iwn) = DP (12)

Drude formula for electrical conductivityy,=ne’r/m, we

see that the Wiedemann-Franz law is obeyedte that In the triplet channel the dominant contribution arises from

fi=1 andkg=1 in our calculations momentum transfers of the order ok=2 and the unsceened
This diagrammatic technique offers a simple proof thattriplet interaction can be treated as a constant. The disorder

the Wiedemann-Franz law is obeyed for a noninteracting disscreened triplet interaction then takes the form
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* Details of the calculation of the contributions from dia-
grams (A)—(F) to the heat-current response function,
0 Qnr(iQ), are presented in the Appendimote that in the fol-
lowing we suppress the subscripts on Matsubara frequencies
(A) (B)

Q,=27Tpandw,=27Tnfor convenienck It is shown there
that Q,(0) vanishes, as it must for internal consistency, and

that kT may be written as the limit of the expression
T 8 D@ V(q,w)
iz: iii +4N(0)D—~ X Ew{l—— }
© (D) 0<ac0 q 3d (DG + w) | (D? + w)
(15

16 ,, T Dg?V(q, )
el S I S e
() (F)

>0 Qo<ws(2 q

(16)
FIG. 2. Feynman diagrams for the leading order interaction cor-
rections to the heat response kernel. Diagré#s{E) are identical 16 2Dq2V(q )
to those considered by Alshuler and Aronov for the electrical re- + —N(O)ZDTE > ol 2—
sponse; diagraniF) is the heat-drag contribution discussed in the d 0>0 q (Do + w)
ext V(g ») | DGPV(q,w)
+w > 4 (17)
D + ] dw (Dg* + w)
e B | o N
2N(0)Vi(a,iwy) = F(F + DG+ o] (13)  as tends to zero. As explained in the Appendix, this state-

ment is to be interpeted in the sense of first continuidgto

whereF=2N(0)V? and\? is the bare interaction in the triplet €@l frequencies, and then taking the limit of real frequency
channeft® Note thatF includes Fermi liquid corrections in going to zero. Ternf16) is just the interaction contribution to

the absence of disordéit is only unscreened with respect to 1€ €lectrical conductivity multiplied by the factar'T2/ 3¢

the disorder. F may be determined from the measured para-'” other words, this is the contribution ' predicted by the

magnetic spin susceptibility in the experimental system OI?M_edemann—Franz law. The other two terms thus lead to vio-
interest ation of the Wiedemann-Franz law if they yield a nonzero

result (as we indeed find that they doThe expressions in

2N(0) terms(15)—(17) may now be evaluated in one, two, and three
=— (14 dimensions for both the singlet and triplet interactions to
yield the results listed in Table I. Note that all terms
, L ) (15—(17) give results having the same parametric form but
If we first calculate_ the contribution fr_om the singlet chan_nel,with different constant prefactors; we must therefore evalu-
we can then obtal_n the correspondmg. regult for the trlplera\te all of them to get a correct final result. This statement is
channel by replacing/s by V; and multiplying by 3—the 4t quite true in two dimensions because of the presence of

extra factor of 3 arises because there are 3 times as maj garithmic terms, and we should keep the most singular
modes in the spin-one channel than in the spin-zero channq rms in this case’

Applying standard perturbation theory we find that the
leading order interaction corrections are given by the Feyn-
man diagrams shown in Fig. 2. These diagrams are identical
to those considered by Altshuler and Aronov for the electri-
cal conductivity? with the exception of diagrartF), which We have calculated the interaction corrections to thermal
we call the heat-drag term. The corresponding diagram foconductivity in the diffusive regime of a disordered conduc-
electrical conductivity is a factofT/Eg)? smaller than the tor. Our main result is that the Wiedemann-Franz law is vio-
other diagrams due to cancellation of electron and holdated in all dimensions; the predicted interaction results have
charge currents; the heat current has opposite electron-halbe expected parametric dependences, but different numeri-
parity and thus electron and hole heat currents reinforce eadtal coefficients. For example, in the singlet channel in two
other. Consequently diagraff) is of the same size as the dimensions, the actual logarithmic correction is half that pre-
other diagrams in the case of thermal conductivity. The uselicted by the Wiedemann-Franz law. Unfortunately the ex-
of the Matsubara heat current vertex defined in &jy.en-  perimental work of Bayoet al*? is the only work we know
sures that no interaction renormalization of vertices isof on thermal conductivity in disordered conductors, and this
needed, greatly simplifying the calculation with respect toonly isolates a weak localization contribution. We hope that
other choices of heat current operatobviously the final further experiments will be performed in this area, and that
results must be independent of this choice the interaction correction be observed as well as the weak

X eE

IV. CONCLUSIONS
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localization correction. In particular the two-dimensional mondi et al!” and Catelani and Aleinéf, which indepen-
system would seem to be a promising one to investigate. Theently confirm our results.

disordered graphitic system of Bayet all® showed weak
localization effects whose magnitude was roughly 20% of
the Drude term in the electronic thermal conductivity at a
temperature of 2.9 K. If it were possible to cleanly extract
the phonon term, one could look at the electronic term as
function of both temperature and magnetic field, and distin
guish weak localization and interaction effects. This would
then experimentally settle the question of whether the
Wiedemann-Franz law is violated in an interacting disor-
dered system. Another sensible quantity to investigate ex-
perimentally would be the thermal Hall conductivity, which

ACKNOWLEDGMENTS

We thank A.M. Finkel'stein, L.V. Lerner, and I.V.

Jurkevich for helpful discussions. We acknowledge support
from the U.K. EPSRC.

APPENDIX: DIAGRAMMATIC CONTRIBUTIONS

In this appendix we list the complete set of diagrammatic

arises solely from electron@lthough there can be phonon contributions for archival purposes. This should allow inter-
drag effects In future work we intend to derive the interac- ested researchers to reproduce our results in detail. The total

tion corrections to this quantity.

contribution to the heat-current response functiQg,(iQ2),

Note addedRecently, two works have appeared by Rai-from all the diagrams in Fig. 2 is given by

|

~8ANODS TS T > 3

0> 0<e<w-Q (q

B

-87N(0)DS,, T2 T X X

w>0 0<e<w (q

+87N(ODST > T S >

0<w<) 0<e<w q

:

+87N(ODSTE T > X

0>0 0<e<Q q

|
|

€+ —

+16mNODS, TS T 3 Sle+s

0> 0<e<w—-Q q

Q
€t —

+327N(ODTY T > D, 5

©>0 0<e<w q

€—

i

Q
2

V(q, w)

2] D+ w)

|

!
T

2 V(q, wy)
(D + w)?

(A1)

Q

e+ —

|

V(q, )

(D? + w)? (A2)

X (A3) + (B)

Q

2

V(g, )
(D + w)?

T
|

B
Dg,9,V(9, w)
(DG? + )4 (DG? + w + Q)

(A3)+(B)

Q
—-w

2

V(q, )

(qu—+w)2 (C1)+(C2

(A1)

(D1)

Q |2 Dq,q,V(q, w)
+327NODT X T > > |:e+ —} alp (D2)
0> 0<e<w-Q q 2 (Dq2 + w)z(qu +w-Q)
o]l o ] Dq,4;V(q, @)
- 32aN(0)DT T e+— |l e+t —- E1l
i ( ) a)gﬂ O<e§w—ﬂ % L 2 dL 2 w_ (Dq2 + w)z(qu +w+ Q) ( )
o]l o |  DggMago)
- 327N(0)DT T et—||let—-w (E2
( agn o<§w—n % L 2]l 2 1 (DG + w)A(DG?+ - Q)

anqﬁv(q! w)V(q, w+ Q)

+16N(0)2DT D D, 0w+ Q)2

w>0 q (D

@+ 02D+ wr )2 )
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In the above expression we have listed the contributionshere are three possible sign configurations whose contribu-
according to which diagram they are obtained from; the adtions we denote by(A1)), ((A2)), and ((A3)). To proceed
ditional numerical label following the letter refer to different further we next perform the sums over the Fermi Matsubara
sign configurations of Matsubara frequencies that are podrequency,e. After some simplification we then obtain the
sible within the same diagram. For example, in diagf&n  following result for Q,,(i(2):

- 4N(0)D5QBTE,Q% w3% - 4N(0)D5QBTO<§;Q§q‘, wm% (ABC)
#INOOT S, 3 oo~ g et ©8
+ %"N(O)DTEQ % [Q%+120°Q - 472T?Q)] o7 EZ;‘S(“S’Q?;“’Z) ) (DE) (A2)
+ gN(O)DT(K%sQ % [40° + 6020 + 3002 — 47°T20] o EZ;’S(B[\)/;S:‘Z o (0P

F1NOPDTS. S wi(w+ )2 LIV (G V(G 0+ )

F
=2 (DG + W DF+wt Q) )

Note that the contributions from diagrarts), (B), and(C)  omitted—it is very dangerous to merely calcul@@,(i(2)

do not cancel each other as they do in the correspondingQ,,(0)]/(2, especially when a large number of diagrams
electrical conductivity calculation. At this point we can are involved. One always runs the risk of missing important
check that we have chosen a consistent set of diagrams fahysical processes; in fact we only became aware of the
evaluate by setting the external frequetizy 0 and checking presence of the heat-drag term of diagré® when this
thatQpr(0)=0. This is a very powerful test that should not be check failed in its absence. Settifi=0 here yields

4DQ£¥QB 4quaqﬁN(O)V(q! (l)) w3V(q,w)
=4AN(O)DT -
QuO)=4NOIDT 2 2 =0t (p s 1 * ™ Dgrw? | D+ w?

=-2T> D ? A

w>0 q aqaaq,B

In[Vo(q) ™ +T1(q, )] =0, (A3)

where in the last step we have used the divergence theorefar both singlet and triplet potentials, and found it to equal to
to convert theq integral into a surface integral with its zero.

bounding surface at infinity. Note that this check not only ~We can then findkT as the limit of Quy(€2p)/Q, as
gives us confidence that all relevant diagrams have been ifends to zero. Now of course this statement does not make
cluded, but also that each diagram has been given the corret@nse Sincél,, is discrete—we should first analytically con-

combinatorial factors. In the above derivation we havetnue to real frequencies and then take the limit. However, it

1 . .. turns out to be possible to avoid performing this analytic
treatedVo(q) ™~ as though it had nay dependence. This is ontinuation, and instead to continue manipulating discrete

justified as the terms ignored are smaller in magnitude, and,, s \We can then extract the term that is proportion&l fo
would be canceled by higher-order diagrams. In addition toyd discard terms proportional to higher powerdgf This

the above proof tha@y,(0)=0, we have also directly evalu- approach is legitimate provided that any operation we per-
atedQn,(0) from Eg.(A3) in one, two, and three dimensions, form on (), would carry over unchanged to the same opera-
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tion on the corresponding real frequency after analytic con
tinuation. The advantage of this method is simply

convenience in calculation—no illegal operations occur, as

PHYSICAL REVIEW B 71, 035106(2005

)

dg
(2m)°

(AT)

we have checked by performing the analytic continuation
first and then taking the zero-frequency limit. This procedure;yq the formulas for th¥/(q,iw) given in Eq.(10) and Eq.
leads to the expression faT as the zero-frequency limit of (13). After performing thisq integral we end up with terms

T J. 8 D | V(o)
FANODY 2 2o [1 3d (DG + wJ (DG + w?
(A4)
16 ,, T Dg*V(q, )
3d T N(O)D[Tzo i Qo<§<n w]% (DG? + w)*
(A5)
16, 5| 2DGPV(q, w)
e N(0) DTEO% w [—(qu+ )
V(g ) [DG?V(q, )
T dw ] (D + w)*” (A6)

We can then perform thg integral using the standard iden-
tification

that are infinite sums over powers @f Provided that the
sums are ultraviolet divergent, we can identify them as zeta
functions via

T o*=TQ2aTD DY n*=T2aT) (- K).

>0 n>0

(A8)

Any sum that is infrared divergent must be cut off correctly
since such a divergence is physical—such a situation occurs
in two dimensions where we obtain a logarithmic sum that is
cut off at w~T at low frequency andv~1/7 at high fre-
guency. We have used this particular divergent series trick as
it allows a very direct evaluation of results. As a check of its
legality we have recalculated the various terms using stan-
dard analytic continuation methods and obtained the same
results—albeit after a lot more algebraic manipulation.

1B. L. Altshuler and A. G. Aronov, irElectron-Electron Interac-
tions in Disordered System#lodern Problems in Condensed
Matter Science, Vol. 10, edited by A. L. Efros and M. Pollak
(North-Holland, Amsterdam, 1985p. 1.

2G. Zzala, B. N. Narozhny, and I. L. Aleiner, Phys. Rev. @,
214204(2001).

3G. V. Chester and A. Thellung, Proc. Phys. Soc. Lond@n1005
(1960.

4C. Castellani, C. DiCastro, G. Kotliar, P. A. Lee, and G. Strinati,
Phys. Rev. Lett59, 477(1987; Phys. Rev. B37, 9046(1988.

5B. L. Altshuler and A. G. Aronov, Pis’'ma Zh. Eksp. Teor. Fiz.
77, 2028(1979 [Sov. Phys. JETFS0, 968 (1979].

6D. V. Livanov, M. Yu. Reizer, and A. V. Sergeev, Pis'ma Zh.
Eksp. Teor. Fiz.99, 1230 (1991 [Sov. Phys. JETP72, 760
(1991)].

"B. Arfi, J. Low Temp. Phys86, 213(1992.

8J. S. Langer, Phys. Rel28 110(1962.

9A. Kamenev and Y. Oreg, Phys. Rev. B, 7516(1995.

10G. H. Hardy,Divergent Serie$Oxford University Press, London,
1949.

11G. Strinati and C. Castellani, Phys. Rev.3, 2270(1987.

12M. J. Kearney and P. N. Butcher, J. Phys.2T, L265 (1988.

13y, Bayot, L. Piraux, J. P. Michenaud, and J. P. Issi, Phys. Rev.
Lett. 65, 2579(1990.

143, E. Enderby and A. C. Barnes, Phys. Rev48 5062 (1994).

15A readable discussion of screening of the electron-electron inter-
action in singlet and triplet channels can be found in M. Grilli
and S. Sorella, Nucl. Phys. R95 422(1988.

16Note that there are two different definitions of paramétén the
literature; we follow that of Ref. 2 rather than that of Ref. 1 in
this paper. The= of Ref. 1 is equal to —B/(F+1) in our lan-
guage.

17R. Raimondi, G. Savona, P. Schwab, and T. Lueck, Phys. Rev. B
70, 155109(2004).

18G. catelani and I. L. Aleiner, cond-mat/04053@Bpublished

035106-7



