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We evaluate the electron-electron interaction corrections to the electronic thermal conductivity in a disor-
dered conductor in the diffusive regime. We use a diagrammatic many-body method analogous to that of
Altshuler and Aronov for the electrical conductivity. We derive results in one, two, and three dimensions for
both the singlet and triplet channels, and in all cases find that the Wiedemann-Franz law is violated.
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I. INTRODUCTION

The effect of the electron-electron interaction on the elec-
trical conductivity of disordered systems has been exten-
sively investigated both theoretically and experimentally
over the past two decades.1,2 There are two main types of
corrections to the Drude electrical conductivity that can have
similar magnitudes and temperature dependences: weak lo-
calization and interaction effects. Weak localization is due to
interference between pairs of time-reversed scattering trajec-
tories of electrons from impurities; this effect can occur in a
noninteracting system. Interaction effects are due to the in-
creased effective electron-electron interaction strength due to
incomplete screening by diffusively moving electrons. Ex-
perimentally the two effects can be distinguished by applying
a magnetic field; weak localization is suppressed while inter-
action effects are not.

In comparison there has been relatively little work done
on the thermal conductivity, either theoretically or experi-
mentally. This is largely because thermal conductivity is hard
to measure in low-dimensional systems at low temperature,
and it is difficult to separate the electronic and lattice contri-
butions. It is therefore doubly hard to observe the disorder-
driven corrections to the electronic thermal conductivity.
Moreover, there have been theoretical predictions3,4 that the
Wiedemann-Franz law holds, which allows one to deduce the
thermal conductivity,k, directly from the electrical conduc-
tivity, s,

k

s
=

p2

3
SkB

e
D2

T = L0T, s1d

wherekB is Boltzmann’s constant,e is the electronic charge,
T is the temperature, andL0 is known as the Lorenz number.
Clearly it is important to establish whether the Wiedemann-
Franz law is valid in interacting disordered systems; if it is,
there is nothing to be gained from measuring the thermal
conductivity in addition to the electrical conductivity.

In this paper we evaluate the interaction corrections to
the thermal conductivity in one, two, and three dimensions
in both the singlet and triplet channels. We find that the
Wiedemann-Franz law is violated in all cases. Our results
are presented in detail in Table I. We have not included a
result for the singlet channel in one dimension since this is
just one third of the corresponding triplet channel result with
F replaced by an effective singlet channel interaction

Fs=k3
2a2 lnsDk3

2/Td, as explained in the table caption. Each
term consists of two pieces: the first piece leads to violation
of the Wiedemann-Franz law; the second piece does not. The
exception is the triplet channel in two dimensions, which
does not possess a violating piece. Note that in each case
both terms have the same parametric dependences; it is only
the constant prefactors that are different.

Our calculation is the exact analog of the original
Altshuler-Aronov calculation for electrical conductivity.5

There have been several previous attempts at this
calculation;4,6,7however, these are in disagreement with each
other, and we believe all of them to be incorrect. The fact
that it has taken so longsover 20 yearsd to get the correct
result for the thermal conductivity is due to three inherent
difficulties in the problem. First, the heat-current operator is
not uniquely defined, and some choices of definition will be
renormalized by the electron-electron interaction.6,8 Second,
the heat-current operator has opposite electron-hole parity to
the charge-current operator, which leads to the presence of an
extra “heat-drag” diagram for the thermal conductivity,
which is vanishingly small for the electrical conductivity.
sWe use the term “heat-drag” by analogy to the Coulomb
drag effect between two layers of electrons; this effect is
described by the same diagram.9d Third, spurious ultraviolet
divergences occur in the diagrammatic approach to thermal
conductivity; these can be understood and evaluated within
the framework of divergent series theory10 stheir origin is
due to illegal series expansions in the derivation of the per-
turbation theoryd.

Before we proceed to the details of our calculation, we
present a short history of the field. We will first consider
effects that do not require interaction, such as weak localiza-
tion and the Anderson transition. Chester and Thellung3 used
an exact eigenstate approach to show that the Wiedemann-
Franz law should hold in a noninteracting disordered system,
independent of the strength of impurity scattering. Strinati
and Castellani11 used a Ward identity construction to argue
that the Wiedemann-Franz law holds all the way to the
Anderson transition. Kearney and Butcher12 used the exact
eigenstates approach of Chester and Thellung to deduce the
weak localization correction to thermal conductivity. This
effect was later seen in the experiment of Bayotet al.,13

which measured the electrical and thermal magnetoconduc-
tance, which were found to obey the Wiedemann-Franz law.
Enderby and Barnes14 later pointed out that the Wiedemann-
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Franz law is not obeyed at the Anderson transition—the pre-
vious treatments all use the Sommerfeld expansion, which is
not valid close to the Anderson transition. However, the only
effect is to decrease the constant in the Lorenz number from
p2/3<3.29 to 2.17 for a conductivity exponentn=1. The
overall conclusion for the noninteracting effects is that there
is no extra information in the thermal conductivity that is not
present in the electrical conductivity. In the weak localization
regime the Wiedemann-Franz law holds; close to the Ander-
son transition it is only modified by a simple numerical fac-
tor, so all critical properties are correctly predicted by it.

It would therefore seem that the only possibility of inter-
esting behavior lies with the interaction corrections to ther-
mal conductivity. Castellaniet al.4 predicted that the
Wiedemann-Franz law would hold even for the interacting
disordered system. These authors evaluated the dynamic
energy-energy correlation function in the interacting system
using a skeleton graph analysis, and derived the thermal con-
ductivity from this. Since their method of calculation is
somewhat different from ours, it is not obvious to us why
they obtain a different result. Livanovet al.6 later directly
calculated the interaction corrections using a quantum kinetic
equation approach, and predicted that the Wiedemann-Franz
law is violated in all dimensions. They appear to have evalu-
ated some interaction contributions correctly, but to have
missed other contributions of the same order of magnitude;
for example, in two dimensions, they predict a logarithmic
increase ink /T at low temperature rather than the correct
logarithmic decrease. We believe that the results obtained
initially from their diagrammatic formalism are correct, and
that they have then erroneously thrown away some terms,
believing them to be smaller in magnitude. Arfi7 performed
the equivalent calculation in the Matsubara formalism and
again found violation of the Wiedemann-Franz law. How-
ever, this calculation has errors relating to all three of the
difficulties referred to previously:sad the Matsubara form of
heat current is used, but the heat current is then erroneously

renormalized by interaction;sbd the “heat drag” or
Aslamazov-Larkin-like diagram is omitted;scd the final re-
sults are parametrically larger than those for electrical con-
ductivity by factors of 1/sTtd2, wheret is the elastic scatter-
ing time, which appears to be due to incorrect treatment of
spuriously divergent terms, as will be described later. The
aim of the present work is therefore to resolve the discrep-
ancies between previous calculations and to present a consis-
tent calculation of the interaction correction to thermal con-
ductivity.

The remainder of the paper is organized as follows: in
Sec. II we derive the Drude contribution to electronic ther-
mal conductivity; in Sec. III we present an outline of the
calculation of the interaction corrections to thermal conduc-
tivity; finally in Sec. IV we analyse our results and draw
conclusions.

II. DRUDE THERMAL CONDUCTIVITY AND THE
WIEDEMANN-FRANZ LAW

Before we proceed to the calculation of the interaction
corrections, we demonstrate the simplicity and elegance of
the Matsubara approach to evaluating thermal conductivity
by deriving the Drude result. The thermal conductivity is
obtained from the imaginary time heat response kernel,
QhhsiVpd, by analytic continuation from positive Bose Mat-
subara frequencies,Vp=2pTp,

kT = lim
V→0

FQhhsiVpd
Vp

G
iVp→V+i0

. s2d

The Feynman diagram for the Drude thermal conductivity is
shown in Fig. 1. The solid lines are disordered electron
Green functions

TABLE I. Interaction corrections to the electronic thermal conductivity in one, two, and three dimensions in both the singlet and triplet
channels. In the above equationsT is temperature,D is the diffusion constant,F is the effective interaction in the triplet channel, andk2 is
the inverse screening length in two dimensions. Note that"=1 andkB=1 in these calculations. We do not include a result for the singlet
channel in one dimension as it is just one third of that for the triplet channel withF replaced by the effective interaction parameter for the
singlet channel,Fs<k3

2a2 lnsDk3
2/Td, wherek3 is the inverse screening length in three dimensions, anda is the wire width. The inverse

screening lengths in two and three dimensions are given byk3
2=8pNs0de2 and k2=4pNs0de2, whereNs0d is the single-spin electronic

density of states in the appropriate dimension.

Dimension Singlet term Triplet term

3 105zs5/2d−16p2zs1/2d

288Î2p3/2

T3/2

D1/2

15fs4+7FdÎ1+F−s4+9Fdgzs5/2d−16p2f2−s2−FdÎ1+Fgzs1/2d

96Î2p3/2FÎ1+F

T3/2

D1/2

2 T

12flnsDk2
2

T d−2 lns 1

Tt dg −
T

2f1−
1

F
lns1+Fdglns 1

Tt d
1 3hfs4+3FdÎ1+F−s4+5Fdg−4pfs2+Fd−2Î1+Fgjzs3/2d

8Î2pF
T1/2D1/2
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Gsk,i«ld =
1

i«l − jk + si/2tdsgns«ld
, s3d

where «l =2pTsl +1/2d is a Fermi Matsubara frequency,
jk=k2/2m−m is the electronic excitation spectrum, andt is
the elastic scattering time. The black dots represent heat-
current vertices, which are given by

j hsk,«l,«l + Vpd =
k

2m
is2«l + Vpd s4d

in the Matsubara frequency representation that we use. The
heat current kernel is then given by

Qhh
absiVpd = 2To

el

o
k

ka

m

kb

m
fisel + Vp/2dg2

3 Gsk,ieldGsk,iel + iVpd. s5d

Performing thek integral, we only obtain a nonzero result if
the frequenciesel +Vp and el have opposite sign, which
means that theel is restricted to the range −Vp,el ,0. Upon
changing the sign ofel we obtain

Qhh
absiVpd = − 4pNs0dDdabT o

0,el,Vp

sel − Vp/2d2, s6d

whereNs0d is the single-spin electronic density of states at
the Fermi surface. We see that the response function is iso-
tropic, so we drop the spatial indices. We can then perform
the el sum to obtain

Qhh = − 16p3Ns0dDT3o
l=0

p−1

sl + 1/2 −p/2d2

= −
4p3

3
Ns0dDT3sp3 − pd, s7d

and we finally extractk using Eq.s2d to get the Drude result

k0 =
2p2

3
Ns0dDT =

p2ntT

3
, s8d

wheren is the electron number density and we have used the
Einstein relation 2Ns0dD=nt /m. From the corresponding
Drude formula for electrical conductivity,s0=ne2t /m, we
see that the Wiedemann-Franz law is obeyedsnote that
"=1 andkB=1 in our calculationsd.

This diagrammatic technique offers a simple proof that
the Wiedemann-Franz law is obeyed for a noninteracting dis-

ordered system with arbitrary disorder strength. For any dia-
grammatic contribution to electrical conductivity,s there is a
corresponding contribution to thermal conductivity,k. More-
over, the corresponding expressions differ only in the form of
the current vertices, yielding a factorkakbe2/m2 for s, and
kakbfisel +Vp/2dg2/m2 for k. The only essential difference
betweenk ands then lies in the frequency sums; the ratio of
these two sums is independent of disorder and leads to the
Wiedemann-Franz ratio. In particular, the weak localization
correction to thermal conductivity is obtained directly from
the Wiedemann-Franz law. Note that this proof relies on the
Sommerfeld expansion since we are linearizing our energy
integrals about the Fermi surface. Interaction effects can vio-
late the Wiedemann-Franz law since the presence of an in-
teraction line can alter the Matsubara frequencies at the two
current vertices.

III. THE INTERACTION CORRECTIONS

In this section we calculate the interaction corrections
arising from the singlet and triplet interaction
channels15—we do not evaluate Cooperonic contributions
since these are expected to be small for a system with repul-
sive interactions. In the singlet channel the dominant contri-
bution arises from small energy and momentum transfers be-
tween electrons. This is dominated by the bare Coulomb
interaction, which takes the form

V0sqd =5
4pe2

q2 , d = 3

2pe2

q
, d = 2

e2 lnS 1

q2a2D , d = 1
6 s9d

where d is the dimensionality, anda is a measure of the
transverse width in a quasi-one-dimensional wire. The
disorder-screened singlet interaction then takes the form

Vssq,ivnd =
1

V0sqd−1 + Psq,ivnd
, s10d

where the polarization operatorPsq, ivnd is given by

Psq,ivnd = 2Ns0d
Dq2

Dq2 + uvnu
. s11d

If any integrals we obtain involvingVssq, ivnd are conver-
gent at small momentum,q, we can ignore theV0sqd−1 term
in Eq. s10d in comparison toPsq, ivnd; Vssq, ivnd then takes
the universal form

2Ns0dVssq,ivnd =
Dq2 + uvnu

Dq2 . s12d

In the triplet channel the dominant contribution arises from
momentum transfers of the order of 2kF, and the unsceened
triplet interaction can be treated as a constant. The disorder
screened triplet interaction then takes the form

FIG. 1. Feynman diagram for the Drude contribution to the heat
response kernel. The black circles represent the Matsubara heat cur-
rent vertex given in Eq.s4d.
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2Ns0dVtsq,ivnd = F
Dq2 + uvnu

sF + 1dDq2 + uvnu
, s13d

whereF=2Ns0dVt
0 andVt

0 is the bare interaction in the triplet
channel.16 Note thatF includes Fermi liquid corrections in
the absence of disordersit is only unscreened with respect to
the disorderd. F may be determined from the measured para-
magnetic spin susceptibility in the experimental system of
interest

x =
2Ns0d
1 + F

. s14d

If we first calculate the contribution from the singlet channel,
we can then obtain the corresponding result for the triplet
channel by replacingVs by Vt and multiplying by 3—the
extra factor of 3 arises because there are 3 times as many
modes in the spin-one channel than in the spin-zero channel.

Applying standard perturbation theory we find that the
leading order interaction corrections are given by the Feyn-
man diagrams shown in Fig. 2. These diagrams are identical
to those considered by Altshuler and Aronov for the electri-
cal conductivity,5 with the exception of diagramsFd, which
we call the heat-drag term. The corresponding diagram for
electrical conductivity is a factorsT/EFd2 smaller than the
other diagrams due to cancellation of electron and hole
charge currents; the heat current has opposite electron-hole
parity and thus electron and hole heat currents reinforce each
other. Consequently diagramsFd is of the same size as the
other diagrams in the case of thermal conductivity. The use
of the Matsubara heat current vertex defined in Eq.s4d en-
sures that no interaction renormalization of vertices is
needed, greatly simplifying the calculation with respect to
other choices of heat current operatorsobviously the final
results must be independent of this choiced.

Details of the calculation of the contributions from dia-
grams sAd–sFd to the heat-current response function,
QhhsiVd, are presented in the Appendixsnote that in the fol-
lowing we suppress the subscripts on Matsubara frequencies
Vp=2pTp andvn=2pTn for convenienced. It is shown there
that Qhhs0d vanishes, as it must for internal consistency, and
that kT may be written as the limit of the expression

+ 4Ns0dD
T

V
o

0,vøV
o
q

v3F1 −
8

3d

Dq2

sDq2 + vdG Vsq,vd
sDq2 + vd2

s15d

−
16

3d
p2T2Ns0dDFTo

v.0
+

T

V
o

0,vøV

vGo
q

Dq2Vsq,vd
sDq2 + vd3

s16d

+
16

d
Ns0d2DTo

v.0
o
q

v3F2Dq2Vsq,vd
sDq2 + vd

+ v
]Vsq,vd

]v
GDq2Vsq,vd

sDq2 + vd4 s17d

asV tends to zero. As explained in the Appendix, this state-
ment is to be interpeted in the sense of first continuingiVp to
real frequencies, and then taking the limit of real frequency
going to zero. Terms16d is just the interaction contribution to
the electrical conductivity multiplied by the factorp2T2/3e2.
In other words, this is the contribution tokT predicted by the
Wiedemann-Franz law. The other two terms thus lead to vio-
lation of the Wiedemann-Franz law if they yield a nonzero
result sas we indeed find that they dod. The expressions in
termss15d–s17d may now be evaluated in one, two, and three
dimensions for both the singlet and triplet interactions to
yield the results listed in Table I. Note that all terms
s15d–s17d give results having the same parametric form but
with different constant prefactors; we must therefore evalu-
ate all of them to get a correct final result. This statement is
not quite true in two dimensions because of the presence of
logarithmic terms, and we should keep the most singular
terms in this case.

IV. CONCLUSIONS

We have calculated the interaction corrections to thermal
conductivity in the diffusive regime of a disordered conduc-
tor. Our main result is that the Wiedemann-Franz law is vio-
lated in all dimensions; the predicted interaction results have
the expected parametric dependences, but different numeri-
cal coefficients. For example, in the singlet channel in two
dimensions, the actual logarithmic correction is half that pre-
dicted by the Wiedemann-Franz law. Unfortunately the ex-
perimental work of Bayotet al.13 is the only work we know
of on thermal conductivity in disordered conductors, and this
only isolates a weak localization contribution. We hope that
further experiments will be performed in this area, and that
the interaction correction be observed as well as the weak

FIG. 2. Feynman diagrams for the leading order interaction cor-
rections to the heat response kernel. DiagramssAd–sEd are identical
to those considered by Alshuler and Aronov for the electrical re-
sponse; diagramsFd is the heat-drag contribution discussed in the
text.
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localization correction. In particular the two-dimensional
system would seem to be a promising one to investigate. The
disordered graphitic system of Bayotet al.13 showed weak
localization effects whose magnitude was roughly 20% of
the Drude term in the electronic thermal conductivity at a
temperature of 2.9 K. If it were possible to cleanly extract
the phonon term, one could look at the electronic term as a
function of both temperature and magnetic field, and distin-
guish weak localization and interaction effects. This would
then experimentally settle the question of whether the
Wiedemann-Franz law is violated in an interacting disor-
dered system. Another sensible quantity to investigate ex-
perimentally would be the thermal Hall conductivity, which
arises solely from electronssalthough there can be phonon
drag effectsd. In future work we intend to derive the interac-
tion corrections to this quantity.

Note added.Recently, two works have appeared by Rai-

mondi et al.17 and Catelani and Aleiner,18 which indepen-
dently confirm our results.
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APPENDIX: DIAGRAMMATIC CONTRIBUTIONS

In this appendix we list the complete set of diagrammatic
contributions for archival purposes. This should allow inter-
ested researchers to reproduce our results in detail. The total
contribution to the heat-current response function,QhhsiVd,
from all the diagrams in Fig. 2 is given by

− 8pNs0dDdabTo
v.0

T o
0,e,v

o
q
Fe +

V

2
G2 Vsq,vd

sDq2 + vd2 sA1d

− 8pNs0dDdabT o
v.V

T o
0,e,v−V

o
q
Fe +

V

2
G2 Vsq,vd

sDq2 + vd2 sA2d

+ 8pNs0dDdabT o
0,vøV

T o
0,e,v

o
q
Fe −

V

2
G2 Vsq,vnd

sDq2 + vd2 sA3d + sBd

+ 8pNs0dDdabT o
v.V

T o
0,e,V

o
q
Fe −

V

2
G2 Vsq,vd

sDq2 + vd2 sA3d + sBd

+ 16pNs0dDdabT o
v.V

T o
0,e,v−V

o
q
Fe +

V

2
GFe +

V

2
− vG Vsq,vd

sDq2 + vd2 sC1d + sC2d sA1d

+ 32pNs0dDTo
v.0

T o
0,e,v

o
q
Fe +

V

2
G2 DqaqbVsq,vd

sDq2 + vd2sDq2 + v + Vd
sD1d

+ 32pNs0dDT o
v.V

T o
0,e,v−V

o
q
Fe +

V

2
G2 DqaqbVsq,vd

sDq2 + vd2sDq2 + v − Vd
sD2d

− 32pNs0dDT o
v.V

T o
0,e,v−V

o
q
Fe +

V

2
GFe +

V

2
− vG DqaqbVsq,vd

sDq2 + vd2sDq2 + v + Vd
sE1d

− 32pNs0dDT o
v.V

T o
0,e,v−V

o
q
Fe +

V

2
GFe +

V

2
− vG DqaqbVsq,vd

sDq2 + vd2sDq2 + v − Vd
sE2d

+ 16Ns0d2DTo
v.0

o
q

v2sv + Vd2 DqaqbVsq,vdVsq,v + Vd
sDq2 + vd2sDq2 + v + Vd2 sFd
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In the above expression we have listed the contributions
according to which diagram they are obtained from; the ad-
ditional numerical label following the letter refer to different
sign configurations of Matsubara frequencies that are pos-
sible within the same diagram. For example, in diagramsAd,

there are three possible sign configurations whose contribu-
tions we denote byssA1dd, ssA2dd, and ssA3dd. To proceed
further we next perform the sums over the Fermi Matsubara
frequency,e. After some simplification we then obtain the
following result forQhhsiVd:

− 4Ns0dDdabT o
v.V

o
q

v3 Vsq,vd
sDq2 + vd2 − 4Ns0dDdabT o

0,vøV
o
q

v2V
Vsq,vd

sDq2 + vd2 sABCd

+ 16Ns0dDT o
v.V

o
q

v2sv − Vd
DqaqbVsq,vd

sDq2 + vdfsDq2 + vd2 − V2g
sDEd

+
4

3
Ns0dDT o

v.V
o
q

fV3 + 12v2V − 4p2T2Vg
DqaqbVsq,vd

sDq2 + vd2sDq2 + v + Vd
sDEd sA2d

+
4

3
Ns0dDT o

0,vøV
o
q

f4v3 + 6v2V + 3vV2 − 4p2T2vg
DqaqbVsq,vd

sDq2 + vd2sDq2 + v + Vd
sDEd

+ 16Ns0d2DTo
v.0

o
q

v2sv + Vd2 DqaqbVsq,vdVsq,v + Vd
sDq2 + vd2sDq2 + v + Vd2 sFd

Note that the contributions from diagramssAd, sBd, andsCd
do not cancel each other as they do in the corresponding
electrical conductivity calculation. At this point we can
check that we have chosen a consistent set of diagrams to
evaluate by setting the external frequencyV=0 and checking
thatQhhs0d=0. This is a very powerful test that should not be

omitted—it is very dangerous to merely calculatefQhhsiVd
−Qhhs0dg /V, especially when a large number of diagrams
are involved. One always runs the risk of missing important
physical processes; in fact we only became aware of the
presence of the heat-drag term of diagramsFd when this
check failed in its absence. SettingV=0 here yields

Qhhs0d = 4Ns0dDTo
v.0

o
q
F− dab +

4Dqaqb

sDq2 + vd
+

4vDqaqbNs0dVsq,vd
sDq2 + vd2 G v3Vsq,vd

sDq2 + vd2

= − 2To
v.0

o
q

v2 ]2

]qa]qb

lnfV0sqd−1 + Psq,Vdg = 0, sA3d

where in the last step we have used the divergence theorem
to convert theq integral into a surface integral with its
bounding surface at infinity. Note that this check not only
gives us confidence that all relevant diagrams have been in-
cluded, but also that each diagram has been given the correct
combinatorial factors. In the above derivation we have
treatedV0sqd−1 as though it had noq dependence. This is
justified as the terms ignored are smaller in magnitude, and
would be canceled by higher-order diagrams. In addition to
the above proof thatQhhs0d=0, we have also directly evalu-
atedQhhs0d from Eq.sA3d in one, two, and three dimensions,

for both singlet and triplet potentials, and found it to equal to
zero.

We can then findkT as the limit ofQhhsVpd /Vp as Vp
tends to zero. Now of course this statement does not make
sense sinceVp is discrete—we should first analytically con-
tinue to real frequencies and then take the limit. However, it
turns out to be possible to avoid performing this analytic
continuation, and instead to continue manipulating discrete
sums. We can then extract the term that is proportional toVp
and discard terms proportional to higher powers ofVp. This
approach is legitimate provided that any operation we per-
form on Vp would carry over unchanged to the same opera-
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tion on the corresponding real frequency after analytic con-
tinuation. The advantage of this method is simply
convenience in calculation—no illegal operations occur, as
we have checked by performing the analytic continuation
first and then taking the zero-frequency limit. This procedure
leads to the expression forkT as the zero-frequency limit of

+ 4Ns0dD
T

V
o

0,vøV
o
q

v3F1 −
8

3d

Dq2

sDq2 + vdG Vsq,vd
sDq2 + vd2

sA4d

−
16

3d
p2T2Ns0dDFTo

v.0
+

T

V
o

0,vøV

vGo
q

Dq2Vsq,vd
sDq2 + vd3

sA5d

+
16

d
Ns0d2DTo

v.0
o
q

v3F2Dq2Vsq,vd
sDq2 + vd

+ v
]Vsq,vd

]v
GDq2Vsq,vd

sDq2 + vd4 . sA6d

We can then perform theq integral using the standard iden-
tification

o
q

=E ddq

s2pdd sA7d

and the formulas for theVsq, ivd given in Eq.s10d and Eq.
s13d. After performing thisq integral we end up with terms
that are infinite sums over powers ofv. Provided that the
sums are ultraviolet divergent, we can identify them as zeta
functions via

To
v.0

vk = Ts2pTdko
n.0

nk = Ts2pTdkzs− kd. sA8d

Any sum that is infrared divergent must be cut off correctly
since such a divergence is physical—such a situation occurs
in two dimensions where we obtain a logarithmic sum that is
cut off at v,T at low frequency andv,1/t at high fre-
quency. We have used this particular divergent series trick as
it allows a very direct evaluation of results. As a check of its
legality we have recalculated the various terms using stan-
dard analytic continuation methods and obtained the same
results—albeit after a lot more algebraic manipulation.
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