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In this work we reexamine the LDA+U method of Anisimov and co-workers in the framework of a
plane-wave pseudopotential approach. A simplified rotational-invariant formulation is adopted. The calculation
of the HubbardU entering the expression of the functional is discussed and a linear response approach is
proposed that is internally consistent with the chosen definition for the occupation matrix of the relevant
localized orbitals. In this way we obtain a scheme whose functionality should not depend strongly on the
particular implementation of the model inab initio calculations. We demonstrate the accuracy of the method,
computing structural and electronic properties of a few systems including transition and rare-earth correlated
metals, transition metal monoxides, and iron silicate.
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I. INTRODUCTION

The description and understanding of electronic properties
of strongly correlated materials is a very important and long
standing problem forab initio calculations. Widely used ap-
proximations for the exchange and correlation energy in den-
sity functional theorysDFTd, mainly based on parametriza-
tion of snearlyd homogeneous electron gas, miss important
features of their physical behavior. For instance, both the
local spin-density approximationsLSDAd and spin-polarized
generalized gradient approximationss-GGAd, in their sev-
eral flavors, fail in predicting the insulating behavior of
many simple transition metal oxidessTMOd, not only by
severely underestimating their electronic band gap but, in
most cases, producing a qualitatively wrong metallic ground
state.

TMO’s have for a long time represented the most notable
failure of DFT. When the high-Tc superconductors entered
the scenestheir parent materials are also strongly correlated
systemsd the quest for new approaches that could describe
accurately these systems by first principles received new in-
terest, and in the last fifteen years many methods were pro-
posed. Among these, the LDA+U approach, first introduced
by Anisimov and co-workers,1–3 has allowed to study a large
variety of strongly correlated compounds with considerable
improvement with respect to LSDA ors-GGA results. The
successes of the method have led to further developments
during the last decade which have produced very sophisti-
cated theoretical approaches4 and efficient numerical tech-
niques.

The formal expression of LDA+U energy functional is
adapted from model Hamiltonianssthe Hubbard model in
particulard that represent the “natural” theoretical framework
to deal with strongly correlated materials. As in these mod-
els, a small number of localized orbitals is selected and the
electronic correlation associated to them is treated in a spe-
cial way. The obtained results strongly depend on the defini-
tion of the localized orbitals and on the choice of the inter-
action parameters used in the calculation, that should be

determined in an internally consistent way. This is not al-
ways done and a widespread but, in our opinion, unsatisfac-
tory approach is to determine the value of the electronic cou-
plings by seeking a good agreement of the calculated
properties with the experimental results in a semiempirical
way.

In this work a critical reexamination of the LDA+U ap-
proach is proposed, which starts from the formulation of
Anisimov and co-workers1–3 and its further improvements5–7

and develops a simpler approximation. This is, in our opin-
ion, the “minimal” extension of the usual approximate DFT
sLDA or GGAd schemes needed when atomiclike features
are persistent in the solid environment.

In the central part of this work we describe a method,
based on a linear response approach, to calculate in an inter-
nally consistent way—without aprioristic assumption about
screening and/or basis set employed in the calculation—the
interaction parameters entering the LDA+U functional used.
In this context our plane-wave pseudopotentialsPWPPd
implementation of the LDA+U approach is presented and
discussed in some details. We stress however that the pro-
posed method is basis-set independent. Our methodology is
then applied to the study of the electronic properties of some
real materials, chosen as representative of “normal”sbulk
irond and correlatedsbulk ceriumd metals, as well as a few
examples of strongly correlated systemssiron oxide, nickel
oxide, and fayalited.

II. STANDARD LDA+U IMPLEMENTATION

In order to account explicitly for the on-site Coulomb
interaction responsible for the correlation gap in Mott insu-
lators and not treated faithfully within LDA, Anisimov and
co-workers1–3 correct the standard functional adding an on-
site Hubbard-like interactionEHub:

ELDA+Ufnsr dg = ELDAfnsr dg + EHubfhnm
Isjg − EDCfhnIsjg,

s1d

wherensr d is the electronic density andnm
Is are the atomic-

orbital occupations for the atomI experiencing the “Hub-
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bard” term. The last term in the above equation is then sub-
tracted in order to avoid double counting of the interactions
contained both inEHub and, in some average way, inELDA. In
this term the total, spin-projected, occupation of the localized
manifold is used:nIs=omnm

Is.
In its original definition the functional defined in Eq.s1d

was not invariant under rotation of the atomic-orbital basis
set used to define the occupanciesnm

Is. A rotationally invari-
ant formulation has then been introduced5,6 where the orbital
dependence ofEHub is borrowed from atomic Hartree-Fock
with renormalized slater integrals:

EHubfhnmm8
I jg =

1

2 o
hmj,s,I

hkm,m9uVeeum8,m-lnmm8
Is nm9m-

I−s

+ skm,m9uVeeum8,m-l

− km,m9uVeeum-,m8ldnmm8
Is nm9m-

Is j s2d

with

km,m9uVeeum8,m-l = o
k=0

2l

aksm,m8,m9,m-dFk,

wherel is the angular moment of the localizedsd or fd elec-
trons and

aksm,m8,m9,m-d =
4p

2k + 1 o
q=−k

k

klmuYkqulm8lklm9uYkq
* ulm-l.

The double-counting termEDC is given by

EDCfhnIjg = o
I

U

2
nIsnI − 1d

− o
I

J

2
fnI↑snI↑ − 1d + nI↓snI↓ − 1dg. s3d

The radial Slater integralsFk are the parameters of the model
sF0, F2, andF4 for d electrons, whileF6 must also be speci-
fied for f statesd and are usually reexpressed in terms of only
two parametersU and J, describing screened on-site Cou-
lomb and exchange interaction

U =
1

s2l + 1d2 o
m,m8

km,m8uVeeum,m8l = F0, s4d

J =
1

2ls2l + 1d o
mÞm8,m8

km,m8uVeeum8,ml =
F2 + F4

14
,

by assuming atomic values forF4/F2 andF6/F4 ratios.
To obtainU andJ, Anisimov and co-workers3,8 propose to

perform LMTO calculations in supercells in which the occu-
pation of the localized orbitals of one atom is constrained.
The localized orbitals of all atoms in the supercell are decou-
pled from the remainder of the basis set. This makes the
treatment of the local orbitals an atomiclike problem—
making it easy to fix their occupation numbers—and allows
them to use Janak theorem9 to identify the shift in the corre-
sponding eigenvalue with the second-order derivative of the
LDA total energy with respect to orbital occupation. It has,

however, the effect of leaving a rather artificial system to
perform the screening, in particular when it is not completely
intra-atomic. In elemental metallic iron, for instance, Anisi-
mov and Gunnarsson8 showed that only half of the screening
charge is contained in the Wigner-Seitz cell. This fact, in
addition to a sizable error due to the atomic sphere approxi-
mation used,8 could be at the origin of the severe overesti-
mation of the computed on-site Coulomb interaction with
respect to estimates based on comparison of spectroscopic
data and model calculations.10,11

III. BASIS SET INDEPENDENT FORMULATION
OF LDA+U METHOD

Some aspects of currently used LDA+U formulation and,
in particular, of the determination of the parameters entering
the model, have been so far tied to the LMTO approach. This
is not a very pleasant situation and some effort has been
made recently7,12 to reformulate the method for different ba-
sis sets. Here we want to elaborate further on these attempts
and provide an internally consistent, basis-set independent,
method for the calculation of the needed parameters.

A. Localized orbital occupations

In order to fully define how the approach works the first
thing to do is to select the degrees of freedom on which
“HubbardU” will operate and define the corresponding oc-
cupation matrixnmm8

Is . Although it is usually straightforward
to identify in a given system the atomic levels to be treated
in a special waysthe d electrons in transition metals and the
f ones in the rare earths and actinides seriesd there is no
unique or rigorous way to define occupation of localized
atomic levels in a multiatom system. Equally legitimate
choices fornmm8

Is are sid projections on normalized atomic
orbitals, sii d projections on Wannier functions whenever the
relevant orbitals give raise to isolated band manifolds,siii d
Mulliken population, orsivd integrated values inssphericald
regions around the atoms of the angular-momentum-
decomposed charge densities. Taking into account the arbi-
trariness in the definition ofnmm8

Is no particular significance
should be attached to any of themsor other that could be
introducedd and the usefulness and reliability of an approxi-
mate DFT+U methodsADFT+Ud, and of its more recent
and involved evolutions such as the ADFT+DMFT method,
should be judged from its ability to provide a correct physi-
cal picture of the systems under study irrespective of the
details of the formulation, once all ingredients entering the
calculation are determined consistently.

All the abovementioned definitions for the occupation
matrices can be put in the generic form

nmm8
Is = o

k,v
fkv

s kckv
s uPmm8

I uckv
s l, s5d

where ckv
s is the valence electronic wave function corre-

sponding to the stateskvd with spin s of the system andfkv
s

is the corresponding occupation number. ThePmm8
I ’s are gen-

eralized projection operators on the localized-electron mani-
fold that satisfy the following properties:
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o
m8

Pmm8
I Pm8m9

I = Pmm9
I , Pmm8

I = sPm8m
I d†,

Pmm8
I Pm9m-

I = 0 when m8 Þ m9. s6d

In particular PI =omPmm
I is the projector on the complete

manifold of localized states associated with atom at siteI and
therefore

nI = o
s

o
k,v

fkv
s kckv

s uPIuckv
s l = o

s,m
nmm

Is s7d

is the total localized-states occupation for siteI. Orthogonal-
ity of projectors on different sites isnot assumed.

In the applications discussed in this work we will define
localized-level occupation matrices projecting on atomic
pseudo-wave-functions. The needed projector operators are
therefore simply

Pmm8
I = uwm

I lkwm8
I u, s8d

where uwm
I l is the valence atomic orbital with angular mo-

mentum componentulml of the atom sitting at siteI sthe
same wave functions are used for both spinsd. Since we will
be using ultrasoft pseudopotentials to describe valence-core
interaction, all scalar products between crystal and atomic
pseudo-wave-functions are intended to include the usualS
matrix describing orthogonality in presence of charge
augmentation.13

As already mentioned, other choices could be used as well
and different definitions for the occupation matrices will re-
quire, in general, different values of the parameter entering
the ADFT+U functional, as it has been pointed out recently
also by Pickettet al.,7 where, for instance, the value of Hub-
bardU in FeO shifts from 4.6 to 7.8 eV when atomicd or-
bitals for Fe2+ ionic configuration are used instead of those of
the neutral atom. In an early study19 the U parameter in
La2CuO4 varies from 6.8 to 7.7 eV upon variation of the
atomic sphere radius employed in the LMTO calculation. As
pointed out in these works it is not fruitful to compare nu-
merical values of U obtained by different methods but rather
comparison should be made between results of complete cal-
culations.

B. A simplified rotationally invariant scheme
and the meaning of U

In order to simplify our analysis and gaining a more trans-
parent physical interpretation of the “1U” correction to stan-
dard ADFT functionals we concentrate on the main effect
associated to on-site Coulomb repulsionfthe F0 term in Eq.
s4dg. We thus neglect the important but somehow secondary
effects associated to higher-multipolar terms in the Coulomb
interactionsF2,F4, . . .d and the proper treatment of magnetic
interaction, that in the currently used rotational invariant
method is dealt with by assuming a renormalized spherical
Hartree-Fock formfEq. s2d and Ref. 5g.

We are therefore going to assume in the following that
parameterJ describing these effects can be set to zero, or
alternatively that its effects can be mimicked redefining the

U parameter asUeff=U−J, a practice that have been some-
time used in the literature.14 The Hubbard correction to the
energy functional, Eqs.s2d and s3d, greatly simplifies and
reads

EUfhnmm8
Is jg = EHubfhnmm8

I jg − EDCfhnIjg

=
U

2 o
I

o
m,s Hnmm

Is − o
m8

nmm8
Is nm8m

Is J
=

U

2 o
I,s

TrfnIss1 − nIsdg. s9d

Choosing for the localized orbitals the representation that
diagonalizes the occupation matrices

nIsvi
Is = li

Isvi
Is s10d

with 0øli
Isø1, the energy correction becomes

EUfhnmm8
Is jg =

U

2 o
I,s

o
i

li
Iss1 − li

Isd s11d

from where it appears clearly that the energy correction in-
troduces a penalty, tuned by the value of the U parameter, for
partial occupation of the localized orbitals and thus favors
disproportionation in fully occupiedsl<1d or completely
emptysl<0d orbitals. This is the basic physical effect built
in the ADFT+U functional and its meaning can be traced
back to known deficiencies of LDA or GGA for atomic sys-
tems.

An atom in contact with a reservoir of electrons can ex-
change integer numbers of particles with its environment.
The intermediate situation with fractional number of elec-
trons in this open atomic system is described not by a pure
state wave function, but rather by a statistical mixture so
that, for instance, the total energy of a system withN+v
electronsswhereN is an integer and 0øvø1d is given by

En = s1 − vdEN + vEN+1, s12d

where EN and EN+1 are the energies of the system corre-
sponding to states withN and N+1 particles, respectively,
while v represents the statistical weight of the state with
N+1 electrons. The total energy of this open atomic system
is thus represented by a series of straight-line segments join-
ing states corresponding to integer occupations of the atomic
orbitals as depicted in Fig. 1. The slope of the energy vs
electron-number curve is instead piecewise constant, with
discontinuity for integer number of electrons, and corre-
sponds to the electron affinitysionization potentiald of the
N sN+1d electron system.

Exact DFT correctly reproduce this behavior,15,16which is
instead not well described by the LDA or GGA approach,
which produces total energy with unphysical curvatures for
noninteger occupation and spurious minima in correspon-
dence of fractional occupation of the orbital of the atomic
system. This leads to serious problems when one consider
the dissociation limit of heteropolar molecules or an open-
shell atom in front of a metallic surface,15,16 and is at the
heart of the LDA/GGA failure in the description of strongly
correlated systems.1 The unphysical curvature is associated
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basically to the incorrect treatment by LDA or GGA of the
self-interaction of the partially occupied Kohn-Sham orbital
that gives a nonlinear contribution to the total energy with
respect to orbital occupationswith mainly a quadratic term
coming from the Hartree energy not canceled properly in the
exchange-correlation termd.

Nevertheless, it is well known17 that total energy differ-
ences between different states can be reproduced quite accu-
rately by the LDAsor GGAd approach, if the occupation of
the orbitals isconstrainedto assume integer values. As an
alternative, we can recover the physical situationsan ap-
proximately piecewise linear total energy curved by adding a
correction to the LDA total energy which vanishes for inte-
ger number of electrons and eliminates the curvature of the
LDA energy profile in every interval with fractional occupa-
tion sbottom curve of Fig. 1d. But this is exactly the kind of
correction that is provided by Eq.s9d if the numerical value
of the parameterU is set equal to the curvature of the LDA
sGGAd energy profile.

This clarifies the meaning of the interaction parameterU
as thesunphysicald curvature of the LDA energy as a func-
tion of N which is associated with the spurious self-
interaction of the fractional electron injected into the system.
From this analysis it is clear that the numerical value ofU
will depend in general not only, as noted in the preceding
section, on the definition adopted for the occupation matrices
but also on the particular approximate exchange-correlation
functional to be corrected, and shouldvanish if the exact
DFT functional were used.

The situation is of course more complicated in solids
where fractional occupations of the atomic orbitals can occur
due to hybridization of the localized atomiclike orbitals with
the crystal environment and theunphysicalpart of the cur-
vature has to be extracted from the total LDA/GGA energy,
which contains also hybridization effects. In the next section
this problem is discussed and a linear response approach to
evaluate HubbardU is proposed.

C. Internally consistent calculation of U

Following previous seminal works8,18,19we computeU by
means of constrained-density-functional calculations.20 What
we need is the total energy as a function of the localized-
level occupations of the “Hubbard” sites:

EfhqIjg = min
nsr d,aI

HEfnsr dg + o
I

aIsnI − qIdJ , s13d

where the constraints on the site occupations,nI’s from Eq.
s7d, are applied employing the Lagrange multipliersaI’s.
From this dependence we can compute numerically the cur-
vature of the total energy with respect to the variation,
around the unconstrained valueshnI

s0dj, of the occupation of
one isolated site. A supercell approach is adopted in which
occupation of one representative site in a sufficiently large
supercell is changed leaving unchanged all other site occu-
pations. This curvature contains the energy cost associated to
the localization of an electron on the chosen site including all
screening effects from the crystal environment, but it is not
yet the HubbardU we want to compute. In fact, had we
computed the same quantity from the total energy of the
noninteracting Kohn-Sham problem associated to the same
system

EKSfhqIjg = min
nsr d,aI

HEKSfnsr dg + o
I

aI
KSsnI − qIdJ , s14d

we would have obtained nonvanishing results as well be-
cause by varying the site occupation a rehybridization of the
localized orbitals with the other degrees of freedom is in-
duced that gives rise to a nonlinear change in the energy of
the system. This curvature coming from rehybridization,
originating from the noninteracting band structure but
present also in the interacting case, has clearly nothing to do
with the HubbardU of the interacting system and should be
subtracted from the total curvature

U =
]2EfhqIjg

]qI
2 −

]2EKSfhqIjg
]qI

2 . s15d

In Ref. 8 Anisimov and Gunnarsson, in order to avoid
dealing with the abovementioned noninteracting curvature,
exploited the peculiarities of the LMTO method, used in
their calculation, and decoupled the chosen localized orbitals
from the remainder of the crystal by suppressing in the
LMTO Hamiltonian the corresponding hopping terms. This
reduced the problem to the one of an isolated atom embed-
ded in an artificially disconnected charge background.
Thanks to Janak theorem9 the second order derivative of the
total energy in Eq.s13d can then be recast as a first order
derivative of the localized-level eigenvalue. In our approach
the role played in Refs. 3 and 8 by the eigenvalue of the
artificially isolated atom is taken by the Lagrange multiplier,
used to enforce level occupation20

FIG. 1. sColor onlined Sketch of the total energy profile as a
function of number of electrons in a generic atomic system in con-
tact with a reservoir. The bottom curve is simply the difference
between the other twosthe LDA energy and the “exact” result for
an open systemd.
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]EfhqJjg
]qI

= − aI,
]2EfhqJjg

]qI
2 = −

]aI

]qI
,

]EKSfhqJjg
]qI

= − aI
KS,

]2EKSfhqJjg
]qI

2 = −
]aI

KS

]qI
. s16d

At variance with the original method of Refs. 3 and 8, in our
approach we need to compute and subtract the band-structure
contribution −]aI

KS/]qI from the total curvature but, in re-
turn, HubbardU is computed in exactly the same system to
which it is going to be applied and the screening from the
environment is more realistically included. The present
method was inspired by the linear response scheme proposed
by Pickett and co-workers7 where, however, the role of the
noninteracting curvature was not appreciated.

In actual calculations constraining the localized orbital
occupations is not very practical and it is easier to pass, via a
Legendre transform, to a representation where the indepen-
dent variables are theaI’s

EfhaIjg = min
nsr d HEfnsr dg + o

I

aInIJ ,

EKSfhaI
KSjg = min

nsr d HEKSfnsr dg + o
I

aI
KSnIJ . s17d

Variation of these functionals with respect to wavefunctions
shows that the effect of theaI’s is to add to the single particle
potential a termDV=oIaIP

I sor DV=oIaI
KSPI for the nonin-

teracting cased, where localized potential shifts of strengthaI
saI

KSd are applied to the localized levels associated to siteI.
It is useful to introduce thesinteracting and noninteract-

ingd density response functions of the system with respect to
these localized perturbations

xIJ =
]2E

]aI]aJ
=

]nI

]aJ
,

xIJ
0 =

]2EKS

]aI
KS]aJ

KS =
]nI

]aJ
KS. s18d

Using this response-function language, the effective interac-
tion parameterU associated to siteI can be recast as

U = +
]aI

KS

]qI
−

]aI

]qI
= sx0

−1 − x−1dII s19d

that is reminiscent of the well known random-phase
approximation21 in linear response theory giving the interact-
ing density response in terms of the noninteracting one and
the Coulomb kernel. A similar result is obtained within DFT
linear response22 where the interaction kernel also contains
an exchange-correlation part.

The response functionss18d needed in Eq.s19d are com-
puted taking numerical derivatives. We perform a well con-
verged LDA calculation for the unconstrained systemsaI
=0 for all sites in the supercelld and—starting from its self-
consistent potential—we add smallspositive and negatived
potential shifts on each nonequivalent “Hubbard” siteJ and
compute the variation of the occupationsnI’s for all sites in

the supercell in two ways:sid letting the Kohn-Sham poten-
tial of the system readjust self-consistently to optimally
screen the localized perturbationDV=aJPJ and sii d without
allowing this screening. This latter result is nothing but the
variation computed from the first iteration in the self-
consistent cycle leading eventually to the formersscreenedd
results. The site-occupation derivatives calculated according
to sid and sii d give the matricesxIJ andxIJ

0 , respectively.

D. Further considerations

Before moving to examine some specific examples in the
next section, let us end the present one by discussing a few
additional technical points. As mentioned earlier, HubbardU
is computed, ideally, from variation of the site occupation of
a single site in an infinite crystal and in practice adopting a
supercell approach where periodically repeated sites are per-
turbed coherently. In order to speed up the convergence of
the computedU with supercell size it may result useful to
enforce explicitly charge neutrality for the perturbation, that
is to be introduced in the response functions, thus enhancing
its local character and reduce the interaction with its periodic
images. In this procedure we introduce in the response func-
tions x andx0—in addition to the degrees of freedom asso-
ciated to the localized sites—also a “delocalized back-
ground” representing all other degrees of freedom in the
system. This translates in one more column and row in the
response matrices, whose elements are determined imposing
overall charge neutrality of the perturbed system for all lo-
calized perturbationssoIxIJ=0, oIxIJ

0 =0, ∀Jd and absence of
any charge density variation upon perturbing the system with
a constant potentialsoJxIJ=0, oJxIJ

0 =0, ∀Id. From a math-
ematical point of view bothx and x0 acquire a null eigen-
value, corresponding to a constant potential shift, and the
needed inversions in Eq.s19d must be taken with care. It can
be shown that their singularities cancel out when computing
the differencex0

−1−x−1 and the final result is well defined.
We stress that in the limit of infinitely large supercell the
coupling with the background gives no contribution to the
computedU, but we found that this limit is approached more
rapidly when this additional degree of freedom is included.

In the same spirit we found that the spatial locality of the
response matrices can be rather different from the one of
their inverse and a supercell sufficient to decouple the peri-
odically repeated response may be too small to describe cor-
rectly the inverse in Eq.s19d. As a practical procedure, there-
fore, after evaluating the response function matrices in a
given supercell, we extrapolate the result to much larger su-
percells assuming that the most important matrix elements in
x0 and x involve the atoms in the few nearest coordination
shells accessible in the original supercell. The corresponding
matrix elements of the larger supercell are filled with the
values extracted from the smaller one while all other, more
distant, interactions are neglected. Again, when a sufficiently
large supercell to extract the matrix elements of the response
functions is considered, the effect of this extrapolation van-
ishes but, as we will see in the following, this scheme cap-
ture a large fraction of the system-size dependence of the
calculatedU and it may allow to reach more rapidly the
converged result.
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As a final remark we notice that the electronic structure of
a system described within the LDA+U approach may largely
differ from the one obtained within the LDA used to compute
U. In a more refined approach one might seek internal con-
sistency between the band structure used in the calculation of
U and the one obtained using it. We have not addressed this
issue here, but one can imagine performing the same type of
analysis leading to theU determination for a functional al-
ready containing an LDA+U correction. The computedU
would in that case be a correction to be added to the original
U and internal consistency would be reached when the cor-
rection vanishes.

A generalization of the argument described above to ob-
tain not onlyU but also the exchange parameterJ is possible
and easy. It would consist in studying the linear response of
the system to more general projectorsson the up and down
populations separately, for instanced or in determining the
full curvature of the total energyEfhnm,m8

s jg through the cou-
pling of the external perturbation to the generalized projec-
tors introduced in Eqs.s6d and s8d. These extensions were,
however, not examined in detail in the present work and their
analysis remain for further studies.

IV. EXAMPLES

A. Metals: Iron and cerium

In their seminal paper Anisimov and Gunnarsson8 com-
puted the effective on site Coulomb interaction between the
localized electrons in metallic Fe and Ce. For Ce the calcu-
lated Coulomb interaction was about 6 eV in good agree-
ment with empirical and experimental estimates ranging
from 5 to 7 eV,20,23,24 while the result for Fesalso about
6 eVd was surprisingly high sinceU was expected to be in
the range of 1–2 eV for elemental transition metals, with the
exception of Ni.10,11 Let us apply the present approach to
these two systems, starting with iron.

In its ground state elemental iron has a ferromagnetic
sFMd spin arrangement and a body-centered cubicsbccd
structure. Gradient corrected exchange-correlation functional
are needed in order to stabilize the experimental structure as
compared with nonmagnetic face-centered cubicsfccd struc-
ture preferred by LDA. The Perdew-Burke-Ernzherof
sPBEd25 GGA functional was employed here. Iron ions were
represented by ultrasoft pseudopotential and kinetic energy
cutoffs of 35 and 420 Ry were adopted for wave function
and charge density Fourier expansion. Brillouin Zone inte-
grations where performed using 83838 Monkhorst and
Pack special point grids26 using Methfessel and Paxton
smearing technique27 with a smearing width of 0.005 Ry in
order to smooth the Fermi distribution.

The calculation of the effective HubbardU followed the
procedure outlined in preceding section: a supercell was se-
lected containing a number of inequivalent iron atoms. Then,
after a well converged self-consistent calculation, we applied
to one of these atoms small, positive and negative, potential
shiftsDV=aPd swith a= ±0.2–0.5 eVd, wherePd is the pro-
jector on the localizedd electron of the selected atom. From
the variation of thed-level occupations of all iron atoms in

the cell one column ofx and x0 response functions was
extracted and all other matrix elements were reconstructed
by symmetry, including the background as explained previ-
ously. HubbardU was then calculated from Eq.s19d.

In order to describe response for an isolated perturbation
four supercells were considered.sid A simple cubicsscd cell
containing two inequivalent iron atoms, the perturbed atom,
and one of its nearest neighbors.sii d A 23232 bcc super-
cell containing eight inequivalent iron atoms, four in the
nearest-neighbor shell of the perturbed atom and three be-
longing to the second shell of neighbors.siii d A 23232 sc
cell containing 16 atoms, including also some third-nearest-
neighbor atoms.sivd A 43434 bcc supercell containing 64
inequivalent iron atoms; we used this largest cell just to ex-
trapolate the results from the smaller ones. The convergence
properties of the effectiveU of bulk iron with the size of the
used supercell are shown in Fig. 2.

The HubbardU obtained from the sc two-atom cell, once
inserted in the 64-atom supercell, captures most of the effec-
tive interaction. The second-nearest-neighbor shell brings
some significant corrections to the final extrapolated result,
while third-nearest-neighbor shell has a smaller effect. We
believe that contributions from further neighbor rapidly van-
ish and that an accurate value ofU can be extracted from the
sc supercell containing 16 atoms. The extrapolation from this
cell to larger cells brings only minor variations which are
within the finite numerical accuracy that we estimate within
a fraction of an eV. From this analysis our estimate for the
HubbardU in elemental iron at the experimental lattice pa-
rameter is therefore 2.2±0.2 eV.

This results is in very good agreement with the experi-
mental estimates,10,11 but disagrees with the Anisimov and
Gunnarsson result.8 We can only recall here that many tech-
nical details differ in the two approaches. In particularsid in
the original approach the perturbed atom is disconnected
from the rest of the crystal by removing all hopping terms,
thus leaving a rather unphysical environment to perform the
screening, while in our approach the actual system is allowed
to screen the perturbation andsii d the atomic sphere approxi-

FIG. 2. Calculated HubbardU in metallic iron for different su-
percells. Lines connect results from the cell-extrapolation procedure
described in the text and different symbols correspond to inclusion
of screening contributions up to the indicated shell of neighbors of
the perturbed atom.
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mationsASAd was employed in the original LMTO calcula-
tion while no shape approximation is made in our case.

In order to further test our approach on this element we
investigate the dependence of the Hubbard parameter on
crystal structure. The dependence of the calculated interac-
tion parameter on the lattice spacing of the unit cell is shown
in Fig. 3 where a marked increase of the HubbardU can be
observed when the lattice parameter is squeezed below its
experimental value. Despite this may appear counterintui-
tive, as correlation effects are expected to become less im-
portant when atoms gets closer, one should actually compare
the increasing value ofU with the much steeper increase of
bandwidth when reducing the interatomic distance. Upon in-
crease of the lattice parameter the Hubbard parameter should
approach the atomic limit that can be estimated from all-
electron atomic calculations where the local neutrality of the
metallic system is maintained:U=Esd8s0d+Esd6s2d−2
3Esd7s1d=2.1 eV, in reasonable agreement with the results
of Fig. 3.

Using the calculated volume dependent HubbardU pa-
rameter we have studied the effect of the LDA+U approxi-
mation on the structural properties of iron. Results are re-
ported in Table I where they are compared with results
obtained within LSDA ands-GGAsPBEd approximation and
with experimental data. From these data it appears that, al-
though simples-GGAsPBEd approximation appears to be
superior in this case, LDA+U provides a reasonable descrip-

tion of the data, of the same quality as LSDA. In weakly
correlated metals it has been suggested29 that a formulation
of LDA+U in terms of occupancy fluctuations around the
uniform occupancy of the localized level could be more ap-
propriate than the standard one. This “around mean field”
sAMFd LDA+U approach has recently been revisited30,31

and an “optimally mixed” scheme has also been proposed.31

We do not want to enter in this discussion here, but we
mention that by following the AMF recipe the description of
structural and magnetic properties of metallic iron improves
as it is evident from Table I.

Using the calculated value ofU we have obtained the
electronic structure of iron at the experimental lattice spac-
ing. The theoretical band structure obtained using the AMF
version of LDA+U is reported in Fig. 4 together with some
experimental results.32 The overall agreement is rather good
for this scheme. However, when using the standard LDA
+U scheme a somehow worse agreement with experimental
data was obtained, mainly due to a rigid downward shift of
the majority spin bands of about 1 eV. This is an indication
that LDA+U approximation may still require some fine tun-
ing in order to describe accurately both strongly and weakly
correlated systems.31

Let us proceed to examine the cerium case. Elemental
cerium presents a very interesting phase diagram with a pe-
culiar isostructurala-g phase transition between a low vol-
ume sad and a high volumesgd phase, both fcc. This phase
transition has attracted much experimental and theoretical
interest and in the last 20 years33 many interpretations have
been put forward to explain its occurrence. It is clear now
that standard LDA or GGA approximations do not describe
the transition and it appears that a treatment of the correla-
tion at the DMFT level might be required,34 however, a full
understanding of the nature of the transition is still under
debate.35 Here, we do not want to address this delicate topics
but we simply want to follow Anisimov and Gunnarsson8 by
computing the HubbardU parameter for elemental cerium in
the high volumeg phase.

The interaction of valence-electrons with Ce nuclei and its
core electrons was described by a nonlocal ultrasoft

FIG. 3. Lattice spacing dependence of the calculated HubbardU
parameter for iron.

TABLE I. Comparison between the calculated lattice constant
sa0d, bulk modulussB0d, and magnetic momentsm0d within several
approximate DFT schemes and experimental results quoted from
Ref. 28.

a0 sa.u.d B0 sMbard m0 smBd

Expt. 5.42 1.68 2.22

LSDA 5.22 2.33 2.10

s-GGA 5.42 1.45 2.46

LDA+U 5.53 2.12 2.60

LDA+U sAMFd 5.34 1.53 2.00

FIG. 4. sColor onlined Band structure of bulk iron obtained
within the AMF LDA+U approach. Green dashed lines are for
minority spin states, black ones for majority spin levels. Photoemis-
sion results from Ref. 32 are also reported for comparison.
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pseudopotential13 generated in the 5s25p65d14f1 electronic
configuration. Kinetic cutoffs of 30 and 240 Ry were
adopted for the wave function and charge density Fourier
expansion. The LSDA approximation was adopted for the
exchange and correlation functional. Brillouin zone integra-
tions where performed using 83838 Monkhorst and Pack
special point grids26 using the Methfessel and Paxton smear-
ing technique27 with a smearing width of 0.05 Ry.

To obtain the response to an isolated perturbation we have
perturbed a cerium atom in three different cells.sid The fun-
damental face-centered cubicsfccd cell containing just one
inequivalent atom.sii d A simple-cubic sscd cell containing
four atomssgiving access to the first-nearest-neighbor re-
sponsed. siii d A 23232 fcc cell seight inequivalent atomsd
including also the response of second-nearest neighbor at-
oms. The result of these calculations and their extrapolation
to very large sc cells is reported in Fig. 5 where it can be
seen that the converged value forU approaches 4.5 eV.

The screening in metallic cerium is extremely localized,
as can be seen from the fact that inclusion of the first-
nearest-neighbor response is all that is needed to reach con-
verged results. This is at variance with what we found in
metallic iron where the third-nearest-neighbor response was
still significant ssee Fig. 2d. The calculated value is not far
from the values5–7 eVd expected from empirical and ex-
perimental estimates,20,23,24especially if we consider that the
parameterU we compute plays the role ofU-J in the sim-
plified rotational invariant LDA+U scheme adopted.14

As a check, we performed all-electron atomic calculations
for Ce+ ions where localized 4f electrons were promoted to
more delocalized 6s or 5d states and obtainedU=Esf3s0d
+Esf1s2d−23Esf2s1d=4.4 eV, or U=Esf2s0d1d+Esf0s2d1d
−23Esf1s1d1d=6.4 eV, depending on the selected atomic
configurations. This confirms the correct order of magnitude
of our calculated value in the metal.

The present formulation is therefore able to provide rea-
sonable values for the on-site Coulomb parameter both in
iron and cerium, at variance with the original scheme of Ref.
8 where only the latter was satisfactorily described. We be-
lieve that a proper description of the interatomic screening,
rather unphysical in the original scheme where atoms were

artificially disconnected from the environment, is important
to obtain a correct value for HubbardU parameter, especially
in iron where this response is more long ranged.

B. Transition metal monoxides: FeO and NiO

The use of the LDA+U method for studying FeO is
mainly motivated by the attempt to reproduce the observed
insulating behavior. In fact, as for other transition metal ox-
idessTMO’sd, standard DFT methods, such as LDA or GGA,
produce an unphysical metallic character due to the fact that
crystal field and electronic structure effects are not sufficient
in this case to open a gap in the threefold minority-spint2g
levels that host one electron per Fe2+ atom. As already ad-
dressed in quite abundant literature on TMO’ssand FeO in
particulard, a better description of the electronic correlations
is necessary to obtain the observed insulating behavior and
the structural properties of this compound at low
pressure.36–39 The application of our approach to this mate-
rial will thus allow us to check its validity by comparison of
our results with the ones from experiments and other theo-
retical works.

The unit cell of this compound is of rock-salt type, with a
rhombohedral symmetry introduced by a type-II antiferro-
magneticsAFd order ssee Fig. 6d which sets in along the
f111g direction below a Neél temperature of 198 K, at ambi-
ent pressure.

The calculations on this materials were all performed in
the antiferromagnetic phase starting from the cubicsundis-
tortedd unit cell of Fig. 6 with the experimental lattice spac-
ing. We used a 40 Ry energy cutoff for the electronic wave
functions s400 Ry for the charge density due to the use of

FIG. 5. Calculated HubbardU in metallic cerium for different
supercells. Lines connect results from the cell-extrapolation proce-
dure and different symbols correspond to inclusion of screening
contributions up to the indicated shell of neighbors of the perturbed
atom.

FIG. 6. sColor onlined The unit cell of FeO: blue spheres repre-
sent oxygen ions, red ones are Fe ions, with arrows showing the
orientation of their magnetic moments. Ferromagnetics111d planes
of iron ions alternate with opposite spins producing type-II antifer-
romagnetic order and rhombohedral symmetry.
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ultrasoft pseudopotentials13 both for Fe and Od and a small
smearing width of 0.005 Ry which required a 43434
k-point mesh.

To compute the Hubbard effective interactions, we per-
formed GGA calculations with potential shifts on one Hub-
bard site in larger and larger unit cells, that we named C1,
C4, and C16, containing 2, 8, and 32 iron ions, respectively,
and extrapolated their results up to a supercell containing
256 magnetic ionsscalled C128d. The result for the undis-
torted cubic cell at the experimental lattice spacing is re-
ported in Fig. 7. We can observe that the effective interaction
obtained from C4 is already very well converged, when ex-
trapolated to the largest cell, with respect to inclusion of
screening from additional shells of neighbors.

The final result for the HubbardU is 4.3 eV which is
smaller than most of the values obtainedsor simply assumedd
in other works.37–39 If we use this value in a LDA+U calcu-
lation we can obtain the observed insulating behavior as
shown in the band structure plot of Fig. 8 where a compari-
son is made with GGAsmetallicd results.

A gap opens around the Fermi level whose minimal width
is about 2 eV. The band gap is direct and located at theG
point. The corresponding transition of 3dsFed−2psOd
→4ssFed character, should be quite weak due to the vanish-
ing weight of irons states at the bottom of the valence band
sFig. 9, bottom pictured. We can expect that a stronger ab-
sorption line will appear instead around 2.6 eV due to the
transition of 3dsFed−2psOd→3dsFed character among two
pronounced peaks of the density of states around the Fermi
level. This picture is in very good agreement with experi-
mentssand other theoretical results39,40d where a first weak
absorption is reported between 0.5 and 2 eV and a stronger
line appears around 2.4 eV.41 The large mixing between
majority-spin iron 3d states and the oxygen 2p manifold over
a wide region of energy and the finite contribution of the
oxygen states at the top of the valence band—a feature not
present withins-GGA ssee top panel in Fig. 9d—are also in
good agreement with experiments, which indicate for FeO a
moderate charge transfer character of the insulating state.

Despite the fact that ourU is smaller than the ones used in
the literature, we find a good agreement of our results about
the electronic structure of the system with experiments and
other theoretical works. These findings confirm the validity
of our internally consistent method to computeU. We now
want to extend its application to the study of structural prop-
erties. This is indeed a very important test because a good
ab initio method should be able to describe the true ground
state of a system and provide a complete description of both
electronic and structural properties. Furthermore the plane-
wave implementation we use allows a straightforward calcu-
lation of Hellmann-Feynman forces and stresses, thus giving
easily access to equilibrium crystal structure.

As observed in experiments,42 the cubic rock salt structure
of FeO shown in Fig. 6 becomes unstable under a pressure of
16 GPasat room temperatured toward a rhombohedral distor-
tion. In the distorted phase the unit cell is elongated along
the f111g direction with a consequent shrinking of the interi-
onic distances on thes111d planes. This transition is driven
by the onset of the AFII magnetic order42 sthe Neél tempera-
ture reaches room value at about 16 GPad which imposes a
rhombohedral symmetry even in the cubic phase. Upon in-
creasing pressure above the threshold value the distortion of
the unit cell is observed to increase producing more elon-
gated structures.42

We have computed the HubbardU on a grid of possible
values for the rhombohedral distortion and cell parameter
and then from the corresponding total energy calculations we
determined the rhombohedral distortion and the enthalpy of

FIG. 7. Convergence of HubbardU parameter of FeO with the
number of iron included in the supercell used in the extrapolation.
Lines connect results including the screening contributions ex-
tracted from the indicated cell.

FIG. 8. The band structure of FeO in the undistortedscubicd AF
configuration at the experimental lattice spacing obtained within
GGA stop paneld and LDA+U using the computed HubbardU of
4.3 eVsbottom paneld. The zero of the energy is set at the top of the
valence band.
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the system as a function of the pressure up to 250 Kbar. As
evident from Fig. 10, while GGA overestimates the rhombo-
hedral distortion and its pressure dependence, the LDA+U
method—in the standard electronic configuration examined
so far—overcorrects the GGA results and introduces even
larger errors with respect to experimental results. In fact not
only we obtain a distortion with the wrong signsof compres-
sive character along thef111g directiond, but also the wrong
pressure dependence. The reason for this failure can be

traced back to the different occupation of the orbitals around
the gap/Fermi level in the two cases. Even in the undistorted
cell, the rhombohedral symmetry, induced by the antiferro-
magnetic order, lifts the degeneracy of the minority spint2g
states of iron and split them in one state ofA1g character—
which is essentially them=0 sz2d state along thef111g quan-
tization axis—and two states ofeg symmetry localized on the
iron s111d planes. Within GGA, the iron minority-spin 3d
electrons partially occupy the two equivalenteg orbitals giv-
ing rise to two half filled bands and aswrongd metallic state
which is delocalized on thes111d plane. The system gains
energy by filling the lowest half of theeg states and tends to
elongate in thef111g direction, shrinking in the plane, be-
cause this increases the overlap of theeg states and their
bandwidth. Within LDA+U, fractional occupation of orbitals
is energetically disfavored and the system would like to have
completely filled or empty 3d states. In the standard unit cell
considered so far in the literature—and used by us in the
calculation above—this can be accomplished only by filling
the nondegenerateA1g level, corresponding to wave func-
tions elongated alongf111g, and pushing upward in energy
the in-planeeg states, leaving them empty. As a consequence,
the system tends to pull apart the ions on the sames111d
plane, so that the bandwidth of the state in the plane is re-
duced, and increases instead the interplane overlap of theA1g
states. This simple picture gives an explanation of the fact
that GGA overestimates the elongation of the unit cell in the
f111g direction, as well as theswrongd compressive behavior
of the standard LDA+U solution. We are thus left with the
paradoxical situation that a correct pressure dependence of
the structural properties can be obtained from the wrong
band structure and vice versa.

We have found that it is possible to solve this paradox by
allowing the possibility that the system partially occupies, as
within GGA, theeg levels, thus maintaining the driving force
for the right rhombohedral deformation, and still opens a
gap, as in standard LDA+U, by some orbital ordering that
breaks the equivalence of the iron ions in thes111d plane.
This possibility has been sometimes proposed in the
literature39,44 but has never been clearly addressed.

From a simple tight-binding picture one finds that the op-
timal broken symmetry phase would be the one where occu-
pied eg orbitals have the highest possible hopping term with
unoccupiedeg orbitals in nearest-neighbor atoms in the
plane, in order to maximize the kinetic energy gain coming
from delocalization, and the lowest possible hopping term
with neighboring occupiedeg orbitals, in order to minimize
bandwidth that tends to destroy the insulating state. In bipar-
tite lattice this is simply achieved by making occupied orbit-
als in nearest-neighbor sites orthogonal but, in the triangular
lattice, formed by iron atoms ins111d planes, this is not
exactly possible, the system is topologically frustrated and
some compromise is necessary.

It is generally believed45 that Heisenberg model in the
triangular lattice, to which our system resemble in some
sense, displays a three-sublattice 120° Néel long-range order.
We thus imposed a symmetry breaking to the system where
three nearest-neighbor atoms in thes111d plane were made
inequivalent by slightly displacing them from the ideal posi-
tions in the way shown in Fig. 11. This induced the desired

FIG. 9. sColor onlined Projected density of states of FeO in the
undistorted scubicd AF configuration at the experimental lattice
spacing obtained within GGAstop paneld and LDA+U using the
computed HubbardU of 4.3 eV sbottom paneld.

FIG. 10. The pressure dependence of the rhombohedral angle in
FeO for the various approximations described in the text is com-
pared with experimental results. These latter results were extracted
extrapolating the data for the non stoichiometric compound Fe1−xO
up to the stoichiometric compositionsRefs. 42 and 43d.
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symmetry breaking of the electronic structure and opened a
gap that was robust and persisted when the atoms were
brought back into the ideal positions. We found, quite satis-
factorily, that the new broken symmetry phasesBSPd corre-
sponds to a lower energy minimum than the “standard”
LDA+U solution and that therefore it is, to say the least, a
more consistent description of the ground state of FeO. The
one depicted in Fig. 11 is, of course, only one of three
equivalent distortions we could have imposed to the elec-
tronic structure of the system and three symmetry related
BSP’s could be defined. In the actual system an effective
equivalence of the ions in thes111d planes is probably re-
stored by asdynamicald switching among equivalent states
but considering the atoms as strictly equivalent, as in the
standard solution, leads to incorrect results.

The comparison of the projected density of state in the
“standard” LDA+U solution and in the novel BSP phase is

shown in Fig. 12 where also a pictorial representation of the
occupied minority-spin orbitals in the two cases is shown. As
we can observe, no remarkable qualitative difference in the
DOS appears apart from the different ordering of thed states
around the gap. In fact the minority-spind electron is now
accommodated on a state lying on thes111d planesshown on
the right paneld while the one withA1g sz2d character has
been pushed above the energy gap. The gap width and the
charge transfer character of the system do not change signifi-
cantly and are still in very good agreement with the experi-
ments.

We repeated the structural calculationssaccording to the
same procedure described aboved in the BSP, and obtained
the LDA+U sBSPd curve reported in Fig. 10. The agreement
with experiments is much improved with respect to both
GGA and LDA+U “standard” ground states. The mechanism
leading to the pressure behavior in the BSP case is basically
the same already producing the correct evolution of distor-
tion in the GGA calculations. When the unit cell elongates
along the cubic diagonal the iron ions in thes111d plane get
closer and the hopping between nearest-neighbor orbitals in-
creased with a consequent lowering of the electronic kinetic
energy. We therefore conclude that LDA+U, not only im-
proves the description of the structural and electronic prop-
erties with respect to GGA, but that a close examination of
both electronic and structural properties is in this case nec-
essary in order to describe the correct ground state of the
system.

Another classical example of TMO we want to study in
order to test the present implementation of LDA+U is nickel
oxide. It is a very well studied material and there are a good
number of theoretical12 and experimental works, including
some photoemission experiments,46,47 our results can be
compared with. At variance with FeO, no compositional in-
stability is observed for NiO so that the stoichiometric com-

FIG. 12. sColor onlined The projected density
of states of FeO as obtained in the “standard”
LDA+U ground statestop paneld and in the pro-
posed broken symmetry phasesbottom paneld.
On the right of each DOS is a picture of the cor-
responding occupied Fe-3d minority states.

FIG. 11. sColor onlined Lattice distortion in thes111d iron planes
used to induce symmetry breaking in the electronic configuration of
FeO.
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pound is easy to study and is much better characterized than
iron oxide. It has cubic structure with the same AF spin
arrangements of rhombohedral symmetry as FeO, but does
not show tendencies toward geometrical distortions of any
kind and is therefore easier to study.

In this case we did not perform any structural relaxation
and calculated the value ofU at the experimental lattice
spacing for the cubic unit cell imposing the rhombohedral
AF magnetic order which is the ground state spin arrange-
ment for this compound. The GGA approximationsin the
PBE prescriptiond was used in the calculation. US pseudopo-
tentials for nickel and oxygensthe same as in FeOd were
used with the same energy cutoffssof 40 and 400 Ry, respec-
tivelyd for both the electronic wave functions and the charge
density as for FeO and also the same 43434 k-point grid
for reciprocal space integrations.

In the calculation of the HubbardU of NiO we did not
study the convergence properties ofU with system size as
we did in FeO but, assuming a similar convergence also in
this case, we performed a constrained calculation only in the
C4 cell and then extrapolated the obtained result to the C128
supercell. The calculated value of theU parameter is 4.6 eV.
This value is smaller than the values found in the literature
for the same parameter that are rather in the range of
7–8 eV,1 however, it has been recently pointed out12,14 that
in obtaining these values self-screening ofd electrons is ne-
glected and that better agreement with experimental results is
obtained using an effective HubbardU of the order of
5–6 eV.

The magnetic moment of the Ni ions is correctly de-
scribed within the present GGA+U approach which gives a
value of 1.7mB well within the experimental range of values
ranging from 1.64 and 1.9mB,48,49 better than the value of
1.55mB obtained within GGA.

In Figs. 13 and 14 the band structure and atomic-state

projected density of states of NiO obtained with this value of
U is shown, along with the results of standard GGA, and
compared with the photoemission data in theGX direction
extracted from Refs. 46 and 47. Despite the fact that the
agreement with the experimental band dispersion is not
excellent—the valence band width is somehow overesti-
mated by both GGA and GGA+U calculations—GGA+U
band structure reproduces some features of the photoemis-
sion spectrum well for this compound and gives a much
larger band gap than the one obtained within GGA approxi-
mation. A very important feature to be noticed in the density
of states reported in Fig. 14 is the fact that GGA+U quali-
tatively modifies the nature of the states at the top of the
valence band, and hence the nature of the band gap: in the
GGA approximation the top of valence band is dominated by
nickel d states while in the GGA+U calculation the oxygen
p states give the most important contribution. In both ap-
proaches the bottom of the conduction band is mainly nickel-
d-like and therefore the predicted band gap is primarily of
charge-transfer type within GGA+U, in agreement with ex-
perimental and theoretical evidence,40,50,51 while it is
wrongly described as Mott-Hubbard type according to the
GGA approximation.

Our GGA+U value for the optical gap is<2.7 eV around
theT point, smaller than the commonly accepted experimen-
tal values that range from 3.7 to 4.3 eV.52–55 More recently,
however, a reexamination56 of the best available optical ab-

FIG. 13. The band structure of NiO in the undistortedscubicd
AF configuration at the experimental lattice spacing obtained within
GGA stop paneld and with the computed HubbardU of 4.6 eV
sbottom paneld. The zero of the energy is set at the top of the
valence band. Experimental data from Refs. 46sempty symbolsd
and 47ssolid symbolsd are also reported.

FIG. 14. sColor onlined Projected density of states of NiO in the
undistorted AF configuration at the experimental lattice spacing ob-
tained withU=4.6 eV.
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sorption data52 pointed out that optical absorption in NiO
starts at photon energy as low as 3.1 eV, not far from our
theoretical result. Indeed, Bengone and co-workers12 recently
reported an LDA+U calculation in NiO where different em-
pirical values of U were employed. WhenU=5 eV was
used—a value close to our present first-principles result—
they obtained an optical gap of 2.8 eV, very close to our
results,and an excellent agreement between the calculated
and experimental52 optical absorption spectra. The same cal-
culation with the literature value ofU=8 eV gave a larger
value for the optical gap but a very poor agreement with the
experimental absorption spectrum.

C. Minerals: Fayalite

As a final example we want to apply the present method-
ology to fayalite, the iron-rich end member ofsMg,Fed2SiO4

olivine sorthorhombic structured, one of the most abundant
minerals in Earth’s upper mantle. Recently57 we showed that,
although good structural and magnetic properties could be
obtained for this mineral within LDA or GGA, its electronic
properties were incorrectly described as metallic, confirming
the correlated origin of the observed insulating behavior.

From x-ray diffraction studies it is known that fayalite has
an orthorhombic cell, whose experimental lattice parameters
are sin atomic unitsd a=19.79,b=11.50,c=9.11. The unit
cell sdepicted in Fig. 15d contains four formula units and 28
atoms: 8 iron, 4 silicon, and 16 oxygen. Silicon ions are
tetrahedrally coordinated to oxygens, whereas iron ions oc-
cupy the centers of distorted oxygen octahedra. The point
group symmetry of the nonmagnetic crystal ismmmsD2h in
the Schoenflies notationd and the space group isPnma. The
magnetization of iron reduces the original symmetry and
only half of the symmetry operations survive. The general
expression for the internal structural degrees of freedom is
given in Table II in the Wyckoff notation.58

Iron sites can be divided into two classesssee Fig. 15 and
Table IId: Fe1 centers which are structured in chains running
parallel to theb, f010g, side of the orthorhombic cell, and
Fe2 sites which belong to mirror planes for the nonmagnetic
crystal structure perpendicular to theb side and cutting it at
1/4 and 3/4 of its length. The main structural units are the
iron centered oxygen octahedra which are distorted from the
cubic symmetry and tilted with respect to each other both
along the chains and on nearest Fe2 sites. Fayalite is known
to be an antiferromagneticsAFd compound with slightly non-
collinear arrangement of spin on Fe1 iron sitesthis noncol-
linearity will not be addressed hered. Magnetic moments
along the central and the edge Fe1 chains are antiferromag-
netically oriented and from our previous work57 the most
stable spin configuration is the one in which the magnetiza-
tion of Fe2 ion is parallel to the one of the closest Fe1 iron.
This magnetic structure is consistent with an iron-iron mag-
netic interaction via a superexchange mechanism through
oxygenp orbitals.

The calculation ofU was performed for the experimental
geometry, in the abovementioned spin configuration. As the
primitive unit cell of fayalite is already quite large, we per-
formed the constrained calculation only in this cell and used
larger supercells only to extrapolate the results. We consid-
ered three supercells in addition to the primitive one:sid a
cell duplicated in thef0,1,0g chain directionsa 13231 su-
percelld, containing 16 iron atoms,sii d a cell, containing 64
iron ions, obtained by duplicating the primitive structure in
all directionssa 23232 supercelld, andsiii d a 43432 su-
percell s256 iron ionsd. Other computational details where
similar to those used in our previous work.57 As the GGA
approximation provided a slightly better description of the
system than LDA, we assumed this functional as the starting
point to be improved; the same pseudopotentials used in Ref.
57 for Fe, O, and Si were adopted here; somehow larger
energy cutoff for the electronic wave functions and charge
densitys36 and 288 Ry, respectivelyd and a small smearing
width of 0.005 Ry were used. A 23434 Monkhorst-Pack
grid of k points in the primitive cell was found sufficient for
the BZ integration.

The results of theU calculation for the two different fami-
lies of iron sitessFe1 and Fe2d are reported in Fig. 16 where
the rapid convergence with respect to supercell dimension
can be seen. The final results for the on-site Coulomb param-
eters areU1=4.9 eV for Fe1 ions andU2=4.6 eV for Fe2,
which are in fairly good agreement with the approximate

FIG. 15. sColor onlined The unit cell of fayalite. Large dark ions
are Fe, small dark ions are O, light ions are Si.

TABLE II. Definition of the Wyckoff structural parameters ap-
propriate for fayalite structure

Ion Class Coordinates

Fe1 4a s0,0,0d, s1/2,0,1/2d
s0,1/2,0d, s1/2,1/2,1/2d

Fe2, Si, O1, O2 4c ±su,1 /4 ,vd,
±su+1/2,1/4,1/2−vd

O3 8d ±sx,y,zd, ±sx,1 /2−y,zd,
±sx+1/2,1/2−y,1 /2−zd,

±sx+1/2,y,1 /2−zd
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saveraged value of 4.5 eV obtained in Ref. 57 from a rather
crude estimate.

The GGA+U band structure of fayalite is shown in Fig.
17 while in Fig. 18 some atomic-projected density of states
are reported. At variance with the GGA results reported in
Ref. 57 a band gap of about 3 eV now separates the valence
manifold from the conduction one, in reasonable agreement
with the experimental result of about 2 eVsRef. 59d at zero
pressure.

The minority spint2g manifold of iron ions, that within
GGA crosses the Fermi energy, is split into two subgroups by
the gap opening. The conduction-band states are shrunk to a
narrow energy range and moved above the bottom of the iron
s states band which remains almost unaffected; the lower-
energy minority-spind states, instead, merge in the group of

states below the Fermi level where they mix strongly with
states originating from oxygenp orbitals: the two sets of
states, well separated in the GGA results, collapse into a
unique block. The most evident consequence of the gap
opening consists in a pronounced shrinking of thed states of
iron which become flatter than in the GGA case. This is
evident on the top of the valence band, but also for states
well below this energy level, which thus reveal a more pro-
nounced atomiclike behavior. In addition to the gap opening
between the two groups of the minority-spin states, a strong
mixing occurs among the oxygenp states and the irond
levels over a rather large region extending down to 8 eV
below the top of the valence band. A finite contribution of
the oxygen states is present close to the top of the valence
manifold showing that the gap is mainly of Mott-Hubbard
type with a partial charge-transfer character.

TABLE III. Comparison of the experimental and LDA+U cal-
culated values for the Wyckoff structural parameters of fayalite as
defined in Table II.

Ion u v x y z

Exp.

Fe2 0.780 0.515

Si 0.598 0.071

O1 0.593 0.731

O2 0.953 0.292

O3 0.164 0.038 0.289

GGA+U

Fe2 0.779 0.515

Si 0.597 0.072

O1 0.593 0.735

O2 0.951 0.289

O3 0.165 0.036 0.286

FIG. 16. Convergence of Hubbard parameters of fayalite with
the number of iron included in the supercell used in the extrapola-
tion. U1 is the value obtained for Fe1 ions, U2 the one for Fe2.

FIG. 17. The band structure of fayalite obtained within the
present LDA+U approach. The zero of the energy is set to the top
of the valence band. Complete degeneracy among spin up and spin
down states is present.

FIG. 18. sColor onlined Some atomic-projected density of states
of fayalite obtained within the present LDA+U approach. Contri-
butions from majority- and minority-spin 3d states of one of the Fe1
iron ions and from the total 2p manifold of one oxygen ion are
shown.
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We have then relaxed the geometric structure of the sys-
tem sboth internal and cell degrees of freedomd assuming no
dependence ofU1 and U2 on the atomic configuration. The
resulting structural parameterssa=20.18,b=11.75,c=9.29
atomic unitd as well as the internal coordinates reported in
Table III are in very good agreement with the experimental
results, even better than the already satisfactory agreement
obtained in Ref. 57 within GGA.

Although we did not study other spin configurations,
magnetic properties seem to improve slightly in the GGA
+U approximation. The magnetic moment on each ironsboth
Fe1 and Fe2d was found to be 3.9mB, in closer agreement
with the spin-only values4mBd of the experimental result
s4.4mBd than the one obtained by GGA onlys3.8mBd. This
improvement is probably due to the enhanced atomiclike
character of irond states, which is a consequence of the gap
opening. In conclusion, the GGA+U provides quite a good
description of structural, magnetic,and electronic properties
of fayalite, reproducing the observed insulating behavior
with a reasonable value for its fundamental band gap.

V. SUMMARY

In this work we have reexamined the LDA+U approxi-
mation to DFT and a simplified rotational-invariant form of
the functional was adopted. We then developed a method,
based on a linear response approach, to calculate in an inter-
nally consistent way the interaction parameters entering the
LDA+U functional, without making an aprioristic assump-
tion about the screening and/or basis set employed in the
calculation. Our methodology was then successfully tested
on a few systems representative of normal and correlated
metals, simple transition metal oxides, and iron silicates. In
all cases we obtained rather accurate results indicating that
our scheme allows us to study both electronic and structural
properties of strongly correlated material on equal footing,
without resorting to any empirical parameter adjustment.
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