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We investigate the influence of electron-phononsEPd scattering on conductance of a finite one-dimensional
system by solving Schrödinger equation for EP states. At zero temperature the conductance as a function of
gate voltage exhibits both slow and fast oscillations, owing to the quantum interference between channels for
the EP states. By introducing disorder the regular oscillations are replaced by white-noise fluctuations. With
increasing the temperature both the slow and fast oscillations are gradually smeared. The relaxation of phonon
components in the EP states by coupling with the environment is also discussed. The results provide a natural
explanation for recent experimental observations of quantum interference in carbon nanotubes in which EP
scattering is important.

DOI: 10.1103/PhysRevB.71.033315 PACS numberssd: 73.22.2f, 72.10.Di, 72.80.Ng, 73.63.Nm

Owing to the advances in technology, in recent years it is
possible to fabricate one-dimensionals1Dd or quasi-1D sys-
tems with their widths in nanometer scales. Carbon nano-
tubes, quantum wires, and quantum point contacts are ex-
amples of these systems.1–3 The transport properties are of
particular importance for their possible applications. The
conductance of ballistic 1D or quasi-1D systems embedded
between two leads is quantized in units of 2e2/h.4 This be-
havior, however, can be significantly changed when there
exists scattering for the motion of electrons resulting in the
mean free path shorter than the system length. For 1D or
quasi-1D systems there are three important mechanisms
causing the scattering,s1d impurities or disorder in the sys-
tem, s2d electron-electron interaction, ands3d electron-
phononsEPd scattering. By introducing the disorder Ander-
son localization occurs for all states in 1D systems at the
thermodynamical limit.5 The electron-electron interaction
may change the behavior of Fermi liquid in a 1D system.6

The effects of EP scattering are twofold: it can reduce the
conductance by scattering the electrons out of their initial
orbits, but in some casesssuch as in systems with disorderd it
may enhance the conductance by providing phonon-assistant
tunneling paths. Recently, the effect of EP scattering in the
0.7 anomaly of quantum point contacts was theoretically
studied.7

In this paper we investigate the effect of EP scattering on
conductance of a finite 1D system by solving Schrödinger
equation of the coupled EP system. It is found that the EP
scattering can induce a special type of quantum interference
sQId for EP states, manifested by slow and fast oscillations of
the conductance with respect to the gate voltage. This is
contrary to the knowledge that EP scattering is inelastic and
always destroys the QI. The results provide a natural expla-
nation of slow and fast oscillations of conductance observed
in nanotubes.8

We consider the following Hamiltonian in the 1D system:

H = He + Hph + He-ph, s1d

where the electron part is written in a tight-binding form

He = o
i

s«i + VidCi
†Ci + o

i

st0Ci
†Ci+1 + H.c.d,

the part for the phonon modes within the chain is

Hph = o
q

"vqaq
†aq,

and the EP interaction is

He-ph = o
iPB

o
q

slqCi
†Ciaq + H.c.d.

Here,Ci
† and aq

† are creation operators for electron at sitei
and for phonon of theqth mode in the chain,ei andt0 are the
site energy and the nearest-neighbor hopping integral for
electrons, respectively.Vi is the additional potential at sitei
controlled by the gate voltage."vq is the phonon energy in
modeq, andlq characterizes the EP coupling strength. The
tight-binding Hamiltonian is used to reproduce the 1D dis-
persion relation of a system by choosing the parameters, and
the sites stand for discretization points. In a pure chain all
«i’s are equal and set to be the energy zero, while in a dis-
ordered system they are uniformly distributed in range
f−w/2 ,w/2g, with w being the strength of disorder. We are
interested in finite areaB where the phonon modes locate
and the EP interaction for tunneling electrons occurs. The
interaction strength is dependent on the phonon energy"vq
and can be written as9 lq=c0/"vq, with c0 depending on
density, dielectric constant, system size, and average strain.
The hopping integralt0 can be estimated from the effective
mass of the conduction band.

Due to the finite size ofB, the wave vector of 1D phonon
modes is discretized,qj =q0j /n, with n being the total num-
ber of included modes andj =1, . . . ,n. We are interested in
only those modes that are more isolated in segmentB and
more strongly interacting with the tunneling electron, son
may be less than the number of all vibration modes inB. For
acoustic modes we use a uniform frequency distribution for
these modes,v j = jv0 with v0 being the frequency spacing.
Becauset0@lq and the considered length ofB is only in the
mesoscopic range, the average number of phonons stimu-
lated by an electron during its transmission through areaB is
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much less than 1. So we do not need to include multiphonon
processes in the EP scattering. The wave function of the
combined electron-phonon system can be written as a super-
position

uCl = o
i

o
j=0

n

bi,jCi
†u0l ^ f j , s2d

where u0l denotes the vacuum,f0 is the zero-phonon state,
f jÞ0=aj

†u0l is the state with one phonon in modej . Usually
this is an EP state and the coefficientsbi,j’s obey the
Schrödinger equations,

fei + Vi + s1 − d j ,0d" jv0gbi,j + t0sbi+1,j + bi−1,jd = Ebi,j

for i ¹ B,

and

fei + Vi + s1 − d j ,0d" jv0gbi,j + t0sbi+1,j + bi−1,jd

+ d j ,0o
j8=1

n

lqj8
bi,j8 + s1 − d j ,0dlqj

bi,0 = Ebi,j for i P B.

s3d

The 1D phonon modes inB may be coupled to 3D phonon
modes in the environment so that the phonon components in
EP states can decay into the bath in a relaxation time. To
include this decaying process, we consider the coupling be-
tween the 1D phonons and the bath,

Hph-bath= o
q,r

hqrsÎmq
sadsmr

sXd + 1dXr
†aq + Îmr

sXdsmq
sad + 1daq

†Xrd,

s4d

whereXr
† is creation operator for therth mode in the bath,

mq
sad and mr

sXd are numbers of phonons in corresponding
modes, andhqr is the coupling strength. The 3D phonons in
the bath always obey the statistics of equilibrium, but the 1D
phonons in segmentB can be out of the equilibrium due to
the stimulation of the tunneling electrons. Owing to the cou-
pling of Eq. s4d, the 1D phonons inB will eventually decay
into the equilibrium. This decay process, however, could not

be completed during the tunneling of an electron if segment
B is short enough. The relaxation time of 1D phonons ist1

=" /hqrM with M being the average number of environment
modes coupled to each 1D mode. Forhqr=3310−6t0, M
=180 andt0=1 eV, one hast1=1 ps. The transmission time
t2 is estimated from"L / t0akF, with L being the length ofB,
a the lattice spacing, andkF the Fermi wave vector. ForL
,10 nm,t2,0.1 ps, shorter thant1 by an order of magni-
tude. In this case the EP coupling may create new effects
which cannot be accounted for from theories based on equi-
librium distribution of phonons.

By including the coupling of Eq.s4d, the phonons in states
Eq. s2d can leak to the bath, so new terms,oi,rbi,rCi

†Xr
†u0l,

should be added in this superposition. On the left-hand side
of Eq. s3d new terms,s1−d j ,0dorhqj,r

bi,r, are added. New
equations forbi,r are similar to Eq.s3d but with frequencies
of environment modes and coupling to the 1D modes. The
equations can be illustrated by an equivalent one-electron
network shown in Fig. 1. Below we will check the effect of
the relaxation of 1D phonons by includingHph−bath in the
calculation of Fig. 2sbd. In the other calculationsHph−bath is
not included as we focus on the effect of the coupling be-
tween the electron and the 1D modes.

We suppose thatB is linked to the left and right leads. If
an incident electron wave with unity amplitude and energye
is injected from the left and the phonon state in regionB is
f j, the coefficients of the wave function outside regionB can
be written as

FIG. 1. Equivalent one-electron network illustrating
Schrödinger equations. The vertical coordinate of sites represents
the phonon states, while the horizontal coordinate is for the position
of electron. The bonds in the network stand for the nonzero off-
diagonal elements in the Hamiltonian. The black band at the bottom
stands for the bath with hot phonons, and the thin links represent
the leaking of the 1D phonons to the bath.

FIG. 2. sColor onlined Zero-temperature conductanceGs0d as a
function of gate voltageVg without sad and with sbd the leaking of
1D phonons. The length of regionB is 1200 lattice spacings, the
energy spacing between 1D phonon modes is"v0=0.0008t0, the
chemical potentialm=0.66t0, w=0 and the number of included 1D
modes isn=20. Forsbd, c0/"v0=0.04t0 and the number of included
environment phonon modes is 180 with energies distributed be-
tween 0 and 0.01t0.
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bi,j8

=Hd j ,j8e
iki + r j j 8e

−ikjj 8i for i on the left-hand side ofB,

tj j 8e
ikjj 8i for i on the right-hand side ofB,

J
s5d

where j8 denotes the phonon states in both theB region and
the 3D bath,k is the wave vector of the incident electron
satisfying e=2t0 cosk, and kjj 8, determined by e j j 8−e
;2t0scoskjj 8−coskd="s j − j8dv0, denotes the wave vector
of electron outside regionB after the inelastic scattering.
Correspondingly, this scattering causes the change of the
electron energy frome to e j j 8 and the change of the phonon
state fromf j to f j8. Here,r j j 8 and tj j 8 are the corresponding
reflection and transmission amplitudes, respectively, with
phonon statef j8 left in B or in the bath. Under a small bias
voltageVb the current through regionB can be calculated as

I =
2e

h
o
k

o
j j 8

utj j 8u
2usinkjj 8uFjsTd

usinku

3 H fSe,
eVb

2
,TDF1 − fSe j j 8,−

eVb

2
,TDG

− fSe,−
eVb

2
,TDF1 − fSe j j 8,

eVb

2
,TDGJ , s6d

whereFjsTd is the probability of phonon state beingf j at
temperatureT, and fse , ±eVb/2 ,Td is the Fermi statistical
factor on the left-handsright-handd side under the bias,

fSe, ±
eVb

2
,TD =

1

expS e − m ± eVb/2

kBT
D + 1

,

with m being the chemical potential. By taking limitation
Vb→0, one obtains the dc conductance

GsTd = −
2e2

h
E deo

j j 8

utj j 8u
2usinkjj 8uFjsTd

usinku

3 H ]fse,0,Td
]e

f1 − fse j j 8,0,Tdg

+ fse,0,Td
]fse j j 8,0,Td

]e
J . s7d

ProbabilityFjsTd obeys the thermal statistics of phonons. As
only phonon stateshf jj with j =0,1,2, . . . ,n are included, so

FjsTd =
1

Z
expS−

" jv0

kBT
D , s8d

with Z=o j=0
n exps−" jv0/kBTd.

At T=0, Fjs0d=d j ,0 and we have

Gs0d =
2e2

h
ut00ue=m

2 . s9d

This means that atT=0 the conductance is only determined
by the transmission from the left zero-phonon channel to the

right zero-phonon channel for electron at the Fermi level.
However, this does not mean the zero effect of EP scattering
as t00 still depends on the scattering within regionB.

In Fig. 2, we plot the zero-temperature conductance as a
function of the gate voltage for a pure chain with finite
length ofB and various EP coupling strengths. The gate volt-
age is applied only on regionB. In sad the phonon-bath cou-
pling is not included. By introducing the EP interaction both
slow and fast oscillations ofGs0d appear in varying the gate
voltage. This type of oscillation has already been observed in
the measurements of low-temperature conductance through
carbon nanotubes.8 They are attributed to the QI within re-
gion B illustrated in Fig. 1. Although the EP interaction usu-
ally causes decoherence of electron states, the EP state, as a
whole, can be coherent, and QI occurs if there exist more
than one channels for such state. The EP coupling by itself
provides the multiple internal channels within regionB as
can be seen from Fig. 1. Insbd we investigate the effect of
relaxation of phonons in EP states by increasing the phonon-
bath coupling. The largest value ofhqr corresponds the case
of t2,t1. It can be seen that the relaxation suppresses the
slow oscillations, but has little effect on the fast oscillations.
We also can see that the relaxation effect is negligible ift1 is
in the order of its typical value, 1 ps.

In order to analyze the components in the slow and fast
oscillations, in Fig. 3 we plot the Fourier transformations for
curves in Fig. 2sad. Two groups of frequencies, correspond-
ing to the slow and fast oscillations, are evident. Such a
structure is robust against the change of parameters, such as
v0, c0, n, andL. By increasing the EP coupling, the group
near the zero frequency is slightly widened, corresponding to
the increase of the components with relatively higher fre-
quencies in the slow oscillations. In fact, the structure of
network in Fig. 1 provides the basic mechanism for these
two groups of oscillation frequencies: the presence of mul-

FIG. 3. Fourier transformation of three curves in Fig. 2sad.
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tiple channels in regionB gives rise to the interference be-
tween them which creates the slow oscillations, meanwhile
the finite length of each channel leads to discrete resonances
squantum size effectd corresponding to the fast oscillations in
the Gs0d−Vg curves. If we eliminate the coupling between
channels by partial diagonalization, the obtained energy dif-
ferences between decoupled channels are in the order of EP
coupling strength. These energy differences are much
smaller than the resonant energies, and are related to the
low-frequency group of oscillations. This is the reason why
increasing the EP coupling can enhance frequencies of slow
oscillations, meanwhile has almost no effect on the fast os-
cillations.

The effect of disorder is displayed in Fig. 4 where the
Gs0d−Vg curves are shown for different strengths of disor-
der. By introducing the disorder, at first the fast oscillations,
then the slow oscillations, are replaced by the white-noise
fluctuations typical for disordered systems. It can be seen
that the necessary disorder for destruction of the regular os-
cillations is certainly weak, indicating the frangibility of the
QI induced by the EP interaction. This means that the purity
of 1D system is a necessary condition for observing such
interference.

The conductanceGsTd as a function ofVg for different
temperatures is shown in Fig. 5. At finite temperatures the
transmission amplitudetj j 8 with j Þ0 also have contributions
to the transport. By raising the temperature, both the slow

and fast oscillations are smoothed. At higher temperatures
the phonon states in the EP states are closer to the thermal
equilibrium due to the inclusion of more channels on both
sides in Fig. 1, and in turn the quantum coherence of the EP
state cannot be kept during the transmission of electrons.
This eliminates the effect of QI. Such a temperature depen-
dence of slow and fast oscillations is in good consistence
with the experimental measurements.8

As a summary, we investigate the effect of the EP inter-
action on the transport of electrons through a 1D system of
mesoscopic length. It is shown that the quantum interference
can be induced by the EP interaction provided that the EP
states are quantum-mechanically coherent during the tunnel-
ing of electrons through the region. This interference is ex-
hibited from the fast and slow oscillations of the conductance
with respect to the gate voltage. Such characteristics are ro-
bust against the changes of the size of the system and the
strength of the interaction, but can be easily eliminated by
introducing the disorder and raising the temperature due to
the destruction of the coherence. The obtained results pro-
vide a natural explanation for the observation of fast and
slow oscillations of conductance in quasi-1D systems.
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