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Spin-Hall effect in a disordered two-dimensional electron system
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We calculate the spin-Hall conductivity for a two-dimensional electron gas within the self-consistent Born
approximation, varying the strength and type of disorder. In the weak disorder limit we find both analytically
and numerically a vanishing spin-Hall conductivity even when we allow a momentum dependent scattering.
Separating the reactive from the dissipative current response, we find the universair&ah.ﬁSw for the
reactive response, which cancels however with the dissipativerBgst—e/8.
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Spin-orbit coupling in two-dimensional electron systemsdressed current vertex numerically. This allows us to obtain
allows a number of unconventional transport phenomenagesults beyond the limi¢-7— o, which is accessible analyti-
since charge current and the spin degrees of freedom aglly. We find that a nonzero spin-Hall conductivity is, in
coupled! In particular the spin-Hall effect in two- principle, possible although it remains much smaller than
dimensional electron systems, i.e., a spin current which flowg/g .
in the plane but perpendicular to the electrical current, and oyr calculations are based on our previous W8,
which is polarized perpendicular to the plane, has been disyhere a number of technical details can be found. In the

; i 16,21 i : ivati i
cussed intensivefy'®2 over the last year. The spin-Hall g1owing we sketch the derivation of the spin-Hall conduc-
conductivity connects the spin current with an electric f'eldtivity. The starting point is the Hamiltonian

Jy=0sHE, wherejj denotes a current in thedirection with

spin polarization in thez direction. In a clean two- _ p?

dimensional electron gas, the spin-Hall conductivity was pre- H= om tao-pXxXeg, ()
dicted to have a universal valug,=e/87r, independent of

the strength of the spin-orbit scatterih§everal publications Wwhere the parametex describes the strength of the spin-
have addressed the issue of whether this result is modified iarbit coupling,o is a vector of Pauli matrices, amgis a unit

the presence of impurity scattering. Murak&hainalyzed the vector perpendicular to the two dimensional system. The
Luttinger Hamiltoniant” which applies to two-dimensional spin-Hall conductivity is obtained by the standard linear re-
hole gases, and concluded that the spin-Hall conductivity isponse theory as

the limit of weak impurity scattering reproduces the intrinsic

value (at least when restricting te-wave impurity scatter- o €[ de i —

ing). For the Rashba mod#l, which applies to two- USH_(!,'TOQ, WTr[JSG (6]cGe~w)
dimensional electron gases, conflicting results exist in the RS

literature: By applying the standard Green's function tech- + 3G G (e~ w)], ()

niques Inoueet al** and Mishchenket al*® concluded that \yith G=<(e)=f(e)(GR-GA), f(e) being the Fermi function. In

swave impurities suppress the spin-Hall effect in bulk gq (2) the spin- and charge-current operators are given by
samples even when the disorder broadening of the energy=(1/4){ov+vo,} andj.=v, respectively. The velocity op-

levels is smalllcqmpared to the spin-orbit splitting. Qn theerator v is obtained from the Hamiltonianil) and reads
other hand, Dimitrov& and Chalaev and Log$, starting v*Y=pYIm7 acy,. We choose the electron charge as -

from the same model Hamiltonian and applying similar(e>0). The trace in Eq(2) is over the eigenstates of the

me’;hods, f(_)unld a ?orl_zero SF'%'HaI# cotnguctlv![t% lIIEven dl'Hamiltonian, and the bar indicates that the expression must
rect numerical €valuations of the €efiect do not 1u'ly agreey, averaged over the disorder configurations.

with .each other: Xiong. and Xfefound within a scattering When performing the disorder average, we rely on the
matrix approach the universal value of the spin-Hall Conduc'self-consistent Born approximation. To begin with, we con-

ta?geGste’BW over a large pargmeter range. I_\lpmlﬂ!ta sider pointlike, i.e., pures-wave scatterers. The retarded/
al."" on the other hand found a spin-Hall conductivity of the _ . o4 impurity self-energy is then given by

order of but not identical to the universal value.

In this paper we calculate the spin-Hall conductivity for a
bulk sample within the self-consistent Born approximation.
We confirm Refs. 11 and 15, i.e., we find that even a weak
disorder suppresses the spin-Hall conductivity. Bavave  Due to the spin-orbit coupling, the Green'’s functions have a
scatterers we calculate the impurity self-energy and th&ontrivial structure in the spin space, although the self-
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energy remains diagonal. Explicitly, one finds thay 0000 = T
— — . -0.001 2 -
—20535', GS§_6055§+GlU:g+GZO_Zg with 0,002 ]
1 -0.003 -
Go(p) =Z(G++G), (4) 3 -0004 -
2 BT -0.005 app = 0.1ep
-0.006 |- oPr =02ep ———--
1p -0.007 [
Gi(p) = EJ(G+ -G, ©) -0.008 |- \;
P 0009t ——1L 1 1 |
0 0102 03 04 0506 07 08 09 1
1p 1/ert
Ga(p) =~ EEX(G+ -G, (6)

FIG. 1. The dressed vertds; in units of & as function of dis-
order strength 1(e-7). I's enters the dressed charge curredt,
) :pX/m+l“§ay and thus the spin-Hall conductivity, EGL2). In com-

parison with the bare chare currefjt=p,/m- aoy, the spin depen-
dence is strongly reduced.

p? -1
Gi=(e+,u—%1ap—20> :

By taking the zero frequency limit of Eq2), the spin-Hall

conductivity reads . )
ty vertexI'3~0 as calculated in Refs. 19 and 20 one finds that

osy~=0. Our result then agrees with that found in Refs. 11
and 15.

As explained in Ref. 20, the vanishing of the dressed ver-
since terms of the typ&RGR and GAG” contribute only in  tex T} is due to the fact that the integral on the right-hand
the order(1/e-7)(a/vg)? and can be safely neglected in the side of Eq.(10) gives~ad¥, making the effective bare ver-
limit apg<<e: and/or for weak disordeg-7>1. The charge tex y itself to vanish. A more careful numerical evaluation of
currentJ} has to be calculated including the vertex correc-the integral for arbitrary disorder strength actually shows that
tions, JX=p*/m+I'%, compare Eq(33) of Ref. 20. In the case the compensation of the two terms in E@0) is exact only
of ss-wave impurity scattering, the momentum dependent parin the weak disorder limit, i.ege7> 1. In Fig. 1 we show the
of the current vertex is not renormalized, while the momen-dressed vertex as a function of disorde}.goes to zero as
tum independent, but spin-dependent pBft,is obtained by 1/e-7—0, nothing special is observed agpr~1/7, and
solving the set of equations even in the strong disorder limlty remains much smaller

1 than its bare valué-«). We conclude that although, in prin-
——> > GRI%Gry, (9)  ciple, a nonzero spin-Hall conductivity may be obtained, one
2Ny "ab expects a much smaller value than the universal one. For a
quantitative theory of the spin-Hall conductivity in the strong
disorder limit on the other hand one has to go beyond the
Born approximation and ladder summation. This however is
not the scope of the present paper.

Next we address the question whether the spin-Hall effect
By expandind‘zg:zﬂr;ig-gs, in Pauli matrices we obtain the is sensitive to the type of disorder potential. Inceteal**
spin-Hall conductivity as argued thatrg; may be nonzero for long-range defect poten-
tials, although an explicit result has not been given. In our
calculation we follow again closely where all the details
can be found. Here we assume weak disorder, so that the
inequalitieser> apg>1/7 hold. In the following, we work
in the eigenstate basis of the Hamiltonidn

asH:-fz Tr,[2GR(p)ZGAPp)], 8
T p

X _ X
Fs§_75§+

with the effectivebare vertex given by
1

px A
GR(p)=GL,(p). 10
ZWNME s(P) "Gog(P).  (10)

X _
Yog = —aoly +

e
o= 7—Tr§ Im >, %Gﬁ(p)G’f(p). (11)
p

Performing the momentum integration E@1) under the
restriction thatape < er and eg7>1 leads to
1 . .
Ipi>:,—§{il exp(=ie)lpT) +p)}, (14
N

e
Oon= = —3mNor — 5. (12)

Apparently o goes to zero when the spin-splittingpg is
small compared to the disorder broadening of the leveis 1/
If we neglect vertex corrections, i.e., if we insert in Efjl)
the bare verteX’s=-a, we find

where tafig)=p,/p, and the corresponding eigenvalues are
E.=p?/2mz ap. In this basis, the matrix elements of the cur-
rent operators read

e 4d’p (p£liYp)=0, (15)
0'sH|bare vertex— gm, (13
i.e., the universal value,=e/8 is recovered in the weak (ptl¥p)=- ip sin(e), (16)
disorder limit. On the other hand, by inserting the dressed 2m
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|Vp'p/|2: Vo+2Vcodo—¢')+2V,coq2¢ - 2¢") + ...,

: p
<piIJxlpt>=<—ia)cosuo), (17)
° m (25
— |ix . where the harmonic¥y, V4, ..., arefunctions of|p| and|p’|.
(p=lidp )= = iasine). (18) In the following we will ignore this dependence. This is jus-

To use Eq(8) we need the dressed charge operafosince, tified Whean’.p, d.epends on the momentum transfer only on
as seen from the above equations, the spin-current operatordsscaleAp which is larger than the momentum scale defined

off diagonal in the eigenstate basis we get the spin-Hall conbY the spin-orbit coupling\p ~ma or disorder broadening,
ductivity in the form Ap~1/vgr. In the limit we consider here, namely, 4/

<ape<e¢r all relevant momentum integrations are re-
e o . R A stricted to a narrow region near the Fermi momenta of the
OsH=— ;2 Rel(p +|j¥lp - Xp - [Ilp +)GZ(p) G, (p)]. two subbandsp= p, so that the harmonics of the scattering
P probability have to be determined at the Fermi momentum,
(190  e.g., Vo=Vo(pr,pr). Given the scattering probability it is
straightforward to calculate the self-energy. Whereas for
To calculate the dressed current operator we make use of theyave scatterers the impurity self-energy has a trivial struc-
assgmptlo_n that the spin orbit splitting is large compared tq e in spin space, cf. Eq3), in the present situation the
the impurity broadening of the levelsp=>1/7. The off-  gself-energy is diagonal in the eigenstate basis of the Hamil-
diagonal matrix elements of the current operator are thegynian with different lifetimes in the two bands, B}A

obtained in terms of the diagonal ones =Fi/27,.20
i i To obtain the spin-Hall conductivity the two momentum
P+ |p£)=(p+lidpt) integrations ovep andp’ have to be performed. We split the
+ = IVIo m\p’miVip + momentum integration in an integral over the eney
pZm [p = [VIp'm)}p'm|V|p +) =p?/2m-u and the angular variable
X GR(P )G NP’ MIp'm]. (20 d
m(P")Gr(p"){p M| Ip E—>Nofd§f2—¢, 26
The diagonal matrix elements on the other hand were already P &
considered in Ref. 20, and are obtained from the equation .
and find
+|Jp+)=(p|jgp*
P£Ep)=(ptlidp+) N Jd en 2Ny i .
+ 3 [p£ VP mPGR(p")GAP") 0] UGG = il ape |
p’.m
X(p'mJp'm). (21)
No f déGEGL = 27N, 7., (28)

We consider impurity scattering which conserves spin, but

allow the scattering amplitude to be momentum-transfer de- , o
pendent. Such a dependence appears as a product of tWpereN. and 7. are the density of states and the lifetime in

contributions. The first is due to the type of disorder potentiat"€ tWo subbands. Notice that the first of the two integrals is
one consider¥, ,, while the second is induced by the trans- COTeCt only to the lowest order in thsmal) parameter

formation to the eigenstate basis. The latter gives rise to th&PF/ €, Whereas the second integration is valid beyond that
following matrix elements: limit. Finally the spin-Hall conductivity is determined as

i . 12 X — X —
(P=|VIp £)(p’ £ |Vlp+) = = 3 sin(e = ¢")Vppl? = i[l _ AN -N7 LV, VO], 29
(22) 8’77' 4a NoT VO
and where the second term is due to vertex corrections. When

calculating the produch.7.J; to zero order inapg/ e the
+ VI’ +)2= LV, 171 + codo - )], 23 vertex corrections disappear. Expanding the density of states,
Kp VIp" )%= Vo I $¢=¢")] 23 the scattering time and to dressed current operator to first
order yields
[(pIMp" )= 3Vp 1 - coso-¢)].  (24)
aPe

We assume that the scattering amplitig, depends on the N, ~ No(l - 2_6F> (30
(modulus of th¢ momentum transferlp—p’|, so that the

scattering probability can be expressed in terms of the angle

between the incoming and scattered particle. Under this con- T~ T<1 + ﬁ“_pF) (31)

dition we can expand the scattering probability as "V 2€r
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. Vo Pe_ Vot+V, =e/8, whereas the second terftne vertex correctionss
Ji= Vo-Vim * V-V, (32)  the dissipative response with
Notice that the dressed current operator, to the leading order ~ p __ € 1 NemB-N.7.JVo-Vo_ _ e (35)
in a, is of the familiar formJ=j =,/ 7, wherer, is the trans- sH 8mia No7 Vo

port scattering time. By combining all the terms, one then ) o )
finds that the spin-Hall conductivit§29) vanishes as in the and only the sum of the reactive and dissipative response is
case of pures-wave scatteringg,=0.22 Zero.

As a last useful observation, we separate the reactive and /N Summary, we calculated the spin-Hall conductivity in a
dissipative contributions to the current respom%:aRH two-dimensional electron gas within the self-consistent Born
S

+o2. where approximation, including the vertex corrections in the ladder
st approximation. We remark that, although a number of similar
studies exist in the recent literature, the final conclusions are
often contradictory. This may be due to the fact that the
relevant integrals depend in a very subtle way on the type of
+ReGR(€)j3G (e~ w)], (33)  the physical limit considered. For this reason in this work we
evaluated all the relevant integrals both analytically and nu-
I merically. This allowed us to confirm the conclusions of
‘TsH—‘:TTr[Js Im G™j¢ Im G™]. (34 Refs. 11 and 15. In particular, we find that the spin-Hall
conductivity is strongly suppressed below the universal value
Since the zero frequency spin-Hall conductivity is real, theof e/8#. Furthermore we have demonstrated that the result is
terms with imaginary(rea) current matrix elements contrib- not only valid for pures-wave scattering, but is robust upon
ute to o5, (o5, respectively. It then follows that the first the inclusion of a weak momentum dependence of the scat-
term on the right-hand side of E€9) corresponds t@y,  tering probability?*

e (d
o= |im05jiTr[jgeﬂe)ngeGA(e—w)
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