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We calculate the spin-Hall conductivity for a two-dimensional electron gas within the self-consistent Born
approximation, varying the strength and type of disorder. In the weak disorder limit we find both analytically
and numerically a vanishing spin-Hall conductivity even when we allow a momentum dependent scattering.
Separating the reactive from the dissipative current response, we find the universal valuessH

R =e/8p for the
reactive response, which cancels however with the dissipative partssH

D =−e/8p.
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Spin-orbit coupling in two-dimensional electron systems
allows a number of unconventional transport phenomena,
since charge current and the spin degrees of freedom are
coupled.1 In particular the spin-Hall effect in two-
dimensional electron systems, i.e., a spin current which flows
in the plane but perpendicular to the electrical current, and
which is polarized perpendicular to the plane, has been dis-
cussed intensively2–16,21 over the last year. The spin-Hall
conductivity connects the spin current with an electric field
j y
z=ssHEx, where j y

z denotes a current in they direction with
spin polarization in thez direction. In a clean two-
dimensional electron gas, the spin-Hall conductivity was pre-
dicted to have a universal valuessH=e/8p, independent of
the strength of the spin-orbit scattering.3 Several publications
have addressed the issue of whether this result is modified in
the presence of impurity scattering. Murakami12 analyzed the
Luttinger Hamiltonian,17 which applies to two-dimensional
hole gases, and concluded that the spin-Hall conductivity in
the limit of weak impurity scattering reproduces the intrinsic
value sat least when restricting tos-wave impurity scatter-
ingd. For the Rashba model,18 which applies to two-
dimensional electron gases, conflicting results exist in the
literature: By applying the standard Green’s function tech-
niques Inoueet al.11 and Mishchenkoet al.15 concluded that
s-wave impurities suppress the spin-Hall effect in bulk
samples even when the disorder broadening of the energy
levels is small compared to the spin-orbit splitting. On the
other hand, Dimitrova13 and Chalaev and Loss,14 starting
from the same model Hamiltonian and applying similar
methods, found a nonzero spin-Hall conductivity. Even di-
rect numerical evaluations of the effect do not fully agree
with each other: Xiong and Xie9 found within a scattering
matrix approach the universal value of the spin-Hall conduc-
tanceGsH=e/8p over a large parameter range. Nomuraet
al.10 on the other hand found a spin-Hall conductivity of the
order of but not identical to the universal value.

In this paper we calculate the spin-Hall conductivity for a
bulk sample within the self-consistent Born approximation.
We confirm Refs. 11 and 15, i.e., we find that even a weak
disorder suppresses the spin-Hall conductivity. Fors-wave
scatterers we calculate the impurity self-energy and the

dressed current vertex numerically. This allows us to obtain
results beyond the limiteFt→`, which is accessible analyti-
cally. We find that a nonzero spin-Hall conductivity is, in
principle, possible although it remains much smaller than
e/8p.

Our calculations are based on our previous work,19,20

where a number of technical details can be found. In the
following we sketch the derivation of the spin-Hall conduc-
tivity. The starting point is the Hamiltonian

H =
p2

2m
+ as ·p 3 ez, s1d

where the parametera describes the strength of the spin-
orbit coupling,s is a vector of Pauli matrices, andez is a unit
vector perpendicular to the two dimensional system. The
spin-Hall conductivity is obtained by the standard linear re-
sponse theory as

ssH = lim
v→0

e

v
E de

2p
Trf js

yG,sed jc
xGAse − vd

+ js
yGRsed jc

xG,se − vdg, s2d

with G,sed= fsedsGR−GAd, fsed being the Fermi function. In
Eq. s2d, the spin- and charge-current operators are given by
j s=s1/4dhszv+vszj and j c=v, respectively. The velocity op-
erator v is obtained from the Hamiltonians1d and reads
vx,y=px,y/m7asy,x. We choose the electron charge as −e
se.0d. The trace in Eq.s2d is over the eigenstates of the
Hamiltonian, and the bar indicates that the expression must
be averaged over the disorder configurations.

When performing the disorder average, we rely on the
self-consistent Born approximation. To begin with, we con-
sider pointlike, i.e., pures-wave scatterers. The retarded/
advanced impurity self-energy is then given by

SR,A =
1

2pN0t
o
p

GR,Aspd. s3d

Due to the spin-orbit coupling, the Green’s functions have a
nontrivial structure in the spin space, although the self-
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energy remains diagonal. Explicitly, one finds thatSss8
=S0dss8, Gss8=G0dss8+G1sss8

x +G2sss8
y with

G0spd =
1

2
sG+ + G−d, s4d

G1spd =
1

2

py

p
sG+ − G−d, s5d

G2spd = −
1

2

px

p
sG+ − G−d, s6d

G± = Se + m −
p2

2m
7 ap − S0D−1

. s7d

By taking the zero frequency limit of Eq.s2d, the spin-Hall
conductivity reads

ssH = −
e

4p
o
p

Trsf2js
yGRspdJc

xGAspdg, s8d

since terms of the typeGRGR and GAGA contribute only in
the orders1/eFtdsa /vFd2 and can be safely neglected in the
limit apF!eF and/or for weak disordereFt@1. The charge
currentJc

x has to be calculated including the vertex correc-
tions,Jc

x=px/m+Gx, compare Eq.s33d of Ref. 20. In the case
of s-wave impurity scattering, the momentum dependent part
of the current vertex is not renormalized, while the momen-
tum independent, but spin-dependent part,Gx, is obtained by
solving the set of equations

Gss8
x = gss8

x +
1

2pN0t
o
p

o
ab

Gsa
R Gab

x Gbs8
A , s9d

with the effectivebare vertex given by

gss8
x = − asss8

y +
1

2pN0t
o
p,a

Gsa
R spd

px

m
Gas8

A spd. s10d

By expandingGss8
x =omGm

x sss8
m in Pauli matrices we obtain the

spin-Hall conductivity as

ssH = −
e

p
G2

x Im o
p

py

m
G0

RspdG1
Aspd. s11d

Performing the momentum integration Eq.s11d under the
restriction thatapF!eF andeFt@1 leads to

ssH = −
e

p
G2

xpN0t
apFvFt

1 + 4a2pF
2t2 . s12d

ApparentlyssH goes to zero when the spin-splittingapF is
small compared to the disorder broadening of the levels 1/t.
If we neglect vertex corrections, i.e., if we insert in Eq.s11d
the bare vertexG2

x=−a, we find

ussHubare vertex=
e

8p

4a2pF
2t2

1 + 4a2pF
2t2 , s13d

i.e., the universal valuessH=e/8p is recovered in the weak
disorder limit. On the other hand, by inserting the dressed

vertexG2
x<0 as calculated in Refs. 19 and 20 one finds that

ssH<0. Our result then agrees with that found in Refs. 11
and 15.

As explained in Ref. 20, the vanishing of the dressed ver-
tex G2

x is due to the fact that the integral on the right-hand
side of Eq.s10d gives<asy, making the effective bare ver-
tex g itself to vanish. A more careful numerical evaluation of
the integral for arbitrary disorder strength actually shows that
the compensation of the two terms in Eq.s10d is exact only
in the weak disorder limit, i.e.,eFt@1. In Fig. 1 we show the
dressed vertex as a function of disorder.G2

x goes to zero as
1/eFt→0, nothing special is observed asapF,1/t, and
even in the strong disorder limitG2

x remains much smaller
than its bare values−ad. We conclude that although, in prin-
ciple, a nonzero spin-Hall conductivity may be obtained, one
expects a much smaller value than the universal one. For a
quantitative theory of the spin-Hall conductivity in the strong
disorder limit on the other hand one has to go beyond the
Born approximation and ladder summation. This however is
not the scope of the present paper.

Next we address the question whether the spin-Hall effect
is sensitive to the type of disorder potential. Inoueet al.11

argued thatssH may be nonzero for long-range defect poten-
tials, although an explicit result has not been given. In our
calculation we follow again closely20 where all the details
can be found. Here we assume weak disorder, so that the
inequalitieseF@apF@1/t hold. In the following, we work
in the eigenstate basis of the Hamiltonians1d

up ± l =
1
Î2

h± i exps− iwdup↑l + up↓lj, s14d

where tanswd=py/px and the corresponding eigenvalues are
E±=p2/2m±ap. In this basis, the matrix elements of the cur-
rent operators read

kp ± u js
yup ± l = 0, s15d

kp ± u js
yup 7 l = −

1

2

p

m
sinswd, s16d

FIG. 1. The dressed vertexG2
x in units of a as function of dis-

order strength 1/seFtd. G2
x enters the dressed charge current,Jc

x

=px/m+G2
xsy and thus the spin-Hall conductivity, Eq.s12d. In com-

parison with the bare chare current,jc
x=px/m−asy, the spin depen-

dence is strongly reduced.
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kp ± u jc
xup ± l = S p

m
± aDcosswd, s17d

kp 7 u jc
xup ± l = 7 ia sinswd. s18d

To use Eq.s8d we need the dressed charge operatorJc
x. Since,

as seen from the above equations, the spin-current operator is
off diagonal in the eigenstate basis we get the spin-Hall con-
ductivity in the form

ssH = −
e

p
o
p

Refkp + u js
yup − lkp − uJc

xup + lG−
RspdG+

Aspdg.

s19d

To calculate the dressed current operator we make use of the
assumption that the spin orbit splitting is large compared to
the impurity broadening of the levels,apF@1/t. The off-
diagonal matrix elements of the current operator are then
obtained in terms of the diagonal ones

kp 7 uJc
xup ± l = kp 7 u jc

xup ± l

+ o
p8,m

fkp 7 uVup8mlkp8muVup ± l

3 Gm
Rsp8dGm

Asp8dkp8muJc
xup8mlg. s20d

The diagonal matrix elements on the other hand were already
considered in Ref. 20, and are obtained from the equation

kp ± uJc
xup ± l = kp ± u jc

xup ± l

+ o
p8,m

ukp ± uVup8mlu2Gm
Rsp8dGm

Asp8d

3kp8muJc
xup8ml. s21d

We consider impurity scattering which conserves spin, but
allow the scattering amplitude to be momentum-transfer de-
pendent. Such a dependence appears as a product of two
contributions. The first is due to the type of disorder potential
one considersVp,p8, while the second is induced by the trans-
formation to the eigenstate basis. The latter gives rise to the
following matrix elements:

kp − uVup8 ± lkp8 ± uVup + l = 7
i
2 sinsw − w8duVp,p8u

2

s22d

and

ukp ± uVup8 ± lu2 = 1
2uVp,p8u

2f1 + cossw − w8dg, s23d

ukp ± uVup8 7 lu2 = 1
2uVp,p8u

2f1 − cossw − w8dg. s24d

We assume that the scattering amplitudeVp,p8 depends on the
smodulus of thed momentum transfer,up−p8u, so that the
scattering probability can be expressed in terms of the angle
between the incoming and scattered particle. Under this con-
dition we can expand the scattering probability as

uVp,p8u
2 = V0 + 2V1 cossw − w8d + 2V2 coss2w − 2w8d + . . . ,

s25d

where the harmonicsV0, V1, . . ., arefunctions ofupu andup8u.
In the following we will ignore this dependence. This is jus-
tified whenVp,p8 depends on the momentum transfer only on
a scaleDp which is larger than the momentum scale defined
by the spin-orbit couplingDp,ma or disorder broadening,
Dp,1/vFt. In the limit we consider here, namely, 1/t
!apF!eF, all relevant momentum integrations are re-
stricted to a narrow region near the Fermi momenta of the
two subbands,p<pF, so that the harmonics of the scattering
probability have to be determined at the Fermi momentum,
e.g., V0=V0spF ,pFd. Given the scattering probability it is
straightforward to calculate the self-energy. Whereas for
s-wave scatterers the impurity self-energy has a trivial struc-
ture in spin space, cf. Eq.s3d, in the present situation the
self-energy is diagonal in the eigenstate basis of the Hamil-
tonian with different lifetimes in the two bands, ImS±

R,A

= 7 i /2t±.20

To obtain the spin-Hall conductivity the two momentum
integrations overp andp8 have to be performed. We split the
momentum integration in an integral over the energyj
=p2/2m−m and the angular variablew

o
p

→ N0E djE dw

2p
, s26d

and find

N0E djG−
RG+

A =
2piN0

2apF + i/t
<

ipN0

apF
, s27d

N0E djG±
RG±

A = 2pN±t±, s28d

whereN± andt± are the density of states and the lifetime in
the two subbands. Notice that the first of the two integrals is
correct only to the lowest order in thessmalld parameter
apF /eF, whereas the second integration is valid beyond that
limit. Finally the spin-Hall conductivity is determined as

ssH =
e

8p
F1 −

1

4a

N+t+J+
x − N−t−J−

x

N0t

V2 − V0

V0
G , s29d

where the second term is due to vertex corrections. When
calculating the productN±t±J±

x to zero order inapF /eF the
vertex corrections disappear. Expanding the density of states,
the scattering time and to dressed current operator to first
order yields

N± < N0S1 7
apF

2eF
D , s30d

t± < tS1 ±
V1

V0

apF

2eF
D , s31d
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J±
x <

V0

V0 − V1

pF

m
7 a

V0 + V2

V0 − V2
. s32d

Notice that the dressed current operator, to the leading order
in a, is of the familiar formJ= jttr /t, wherettr is the trans-
port scattering time. By combining all the terms, one then
finds that the spin-Hall conductivitys29d vanishes as in the
case of pures-wave scattering,ssH=0.22

As a last useful observation, we separate the reactive and
dissipative contributions to the current response,ssH=ssH

R

+ssH
D where

ssH
R = lim

v→0

e

v
E de

2p
Trf js

yG,sed jc
x ReGAse − vd

+ js
yReGRsed jc

xG,se − vdg, s33d

ssH
D = −

e

p
Trf js

y Im GRjc
x Im GRg. s34d

Since the zero frequency spin-Hall conductivity is real, the
terms with imaginarysreald current matrix elements contrib-
ute to ssH

R sssH
D d, respectively. It then follows that the first

term on the right-hand side of Eq.s29d corresponds tossH
R

=e/8p, whereas the second termsthe vertex correctionsd is
the dissipative response with

ssH
D = −

e

8p

1

4a

N+t+J+
x − N−t−J−

x

N0t

V2 − V0

V0
= −

e

8p
s35d

and only the sum of the reactive and dissipative response is
zero.

In summary, we calculated the spin-Hall conductivity in a
two-dimensional electron gas within the self-consistent Born
approximation, including the vertex corrections in the ladder
approximation. We remark that, although a number of similar
studies exist in the recent literature, the final conclusions are
often contradictory. This may be due to the fact that the
relevant integrals depend in a very subtle way on the type of
the physical limit considered. For this reason in this work we
evaluated all the relevant integrals both analytically and nu-
merically. This allowed us to confirm the conclusions of
Refs. 11 and 15. In particular, we find that the spin-Hall
conductivity is strongly suppressed below the universal value
of e/8p. Furthermore we have demonstrated that the result is
not only valid for pures-wave scattering, but is robust upon
the inclusion of a weak momentum dependence of the scat-
tering probability.21
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