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In a quantum ring connected with two external leads, the spin properties of an incoming electron are
modified by the spin-orbit interaction, resulting in a transformation of the qubit state carried by the spin. The
ring acts as a one-qubit spintronic quantum gate whose properties can be varied by tuning the Rashba param-
eter of the spin-orbit interaction, by changing the relative position of the junctions, as well as by the size of the
ring. We show that a large class of unitary transformations can be attained with already one ring—or a few
rings in series—including the important cases of theZ, X, and Hadamard gates. By choosing appropriate
parameters the spin transformations can be made unitary, which corresponds to lossless gates.
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The electron spin degree of freedom is one of the prospec-
tive carriers1,2 of qubits, the fundamental units in quantum
information processing. In order to implement quantum op-
erations on electron spins, appropriate gates are necessary
that operate on this type of qubits. We note that in the present
context the word “gate” stands for an elementary logical
operation.3 In this paper we show that a one-dimensional
ring4 connected with two external leads made of a semicon-
ductor structure,5 such as InGaAs in which Rashba-type6

spin-orbit interaction is the dominant spin-flipping mecha-
nism, can render such a gate. Conductance properties of this
kind of ring have been discussed earlier in the case of dia-
metrically connected leads.7–10

By taking here a different point of view, we focus explic-
itly on the spin transformation characteristics of this device,
and show that those can be appropriately controlled by vary-
ing its geometrical and physical parameters in the experi-
mentally feasible range.7,8 We shall determine the effects of
changing the radius and the relative positions of the junc-
tions, as well as the influence of varying the strength of the
spin-orbit interaction via an external electric field. The con-
ditions under which the incoming and transmitted spinors are
connected unitarily will be determined, leading in principle
to a lossless single-qubit gate. By connecting a few such
rings in an appropriate manner, one can achieve practically
all the important one-qubit gates.3

We consider a ring of radiusa in the x–y plane and as-
sume a tunable static electric field7 in thez direction charac-
terized by the parametera. Then, the spin-dependent
Hamiltonian9,11 of a charged particle of effective massm* is

H = "VFS− i
]

]w
+

v

2V
ssx cosw + sy sinwdD2

−
v2

4V2G , s1d

where w is the azimuthal angle of a point on the ring,
"V="2/2m* a2 is the parameter characterizing the kinetic
energy of the charge, andv=a /"a is the frequency associ-
ated with the spin-orbit interaction. Apart from constants, the
Hamiltonian s1d is the square of the sum of thez
component of the orbital angular momentum operator
Lz=−is] /]wd, and of sv /VdSr, whereSr =sr /2 is the radial
component of the spinsboth measured in units of"d. H
commutes in a nontrivial way withK=Lz+Sz, the z compo-

nent of the total angular momentum.H also commutes with
Suw=Sx sinu cosw+Sy sinu sinw+Sz cosu, the spin compo-
nent in the direction determined by the anglesu, and w,
whereu is given by

tanu = − v/V. s2d

One easily can prove that the commutatorfK ,Suwg=0; there-
fore, we may look for simultaneous eigenstates ofH, K and
Suw. In the u1l, u2l eigenbasis ofSz one finds these in the
form

csk,wd = eikwSe−iw/2uskd
eiw/2vskd

D , s3d
obeying

Kcsk,wd = kcsk,wd, s4ad

Suwcsk,wd = sskdcsk,wd, sskd = ± 1/2, s4bd
and the energy eigenvalues are

E = "Vfk2 − mkw + 1/4g, m = ± 1, s5d

with w=Î1+sv2/V2d. In a closed ringk±1/2 must be an
integer, while if one considers leads connected to the ring,
there is no such restriction: the energy is a continuous vari-
able, and then the possible values ofk are the solutions of
Eq. s5d, which can be written as

k j
m = msw/2 + s− 1d jqd, j = 1,2, m = ± 1, s6d

where q=Îsv /2Vd2+E/"V. The energy eigenvalues are
fourfold degenerate:j =1,2correspond to two distinct values
of uk j

mu, while the additional degeneracy at a givenj is re-
solved by the sign ofk j

m. The components of the eigenvec-
tors in s3d are related as

vsk j
md

usk j
md

= stanu/2dm =
V

v
s1 − mwd; s7d

thus, this ratio depends only on the indexm of k j
m. The two

possible eigenvalues in Eq.s4bd aressk j
md=m /2; accordingly,

the eigenstates for a given energy can be classified by giving
the absolute value ofk j

±, together with the sign of the eigen-
value ofSuw.

The stationary states of the problem, ring plus leads,
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can be determined by fitting the solutions obtained in
the different domains. Using local coordinates as shown
in Fig. 1, the incoming wave,CIsxd, and the outgoing
waveCIIsx8d, are built up as linear combinations of spinors
with spatial dependenceeikx etc., corresponding to
E="2k2/2m*

CIsxd = S f1

f2
Deikx + Sr1

r2
De−ikx, CIIsx8d = St1

t2
Deikx8. s8d

The wave functions belonging to the same energy in the
upper and lower arms of the ring can be written as linear
combinations of the corresponding four eigenspinors

Cuswd = o
j=1,2
m=±

aj
mcsk j

m,wd; Clsw8d = o
j=1,2
m=±

bj
mcsk j

m,− w8d,

s9d

respectively. According to Fig. 1 the incoming wave atx
=0 is fitted toCu at w=g and toCl at w8=2p−g, while the
outgoing wave atx8=0 is fitted toCu and Cl at w=w8=0.
One has to require the continuity of the wave functions, as
well as a vanishing spin current density at the two
junctions.9,12,13The resulting set of linear equations leads to
a relation between the expansion coefficients in the different
domains. The detailed procedure for the caseg=p was de-
scribed in Ref. 9 using the eigenbasis ofSuw at both junc-
tions. As we will show, the more general geometry shown in
Fig. 1 allows a significantly wider class of spin transforma-
tions to be described now in the fixedSz basis, which is more
suitable to discuss the qubit operations. We focus here on the
transmission properties of the ring, and obtain in theu1l, u2l
basis

St1
t2
D = TS f1

f2
D = ST11 T12

T21 T22
DS f1

f2
D , s10d

with

T = uTgueid0/2e−ig/2U, s11d

where the matrix elements of U are u11=u22
*

=fe−id/2 sin2su /2d+eid/2 cos2su /2dgeig/2, u12=−u21
*

= i sinsd /2dsinue−ig/2. uTgu and the phasesd0 and d are ob-
tained from

uTgueid± =
4ikaqfsinqs2p − gd + eiF± sinqgge−igF±/2p

k2a2hcos 2qsp − gd − cos 2qpj + 4q2hcosF − cos 2qpj + 4ikaqsin 2qp
, s12d

d0 = d+ + d−, d = d+ − d− = 2 arctan
sinswg/2dsinqs2p − gd + sinwsp − g/2dsinqg

coswsp − g/2dsinqg − cosswg/2dsinqs2p − gd
, s13d

where cosF+=cosF−;cosF, with F±=ps−1±wd, the
Aharonov-Casher phases14 for the corresponding spin direc-
tions.

The important fact is thatU is a unitary, unimodular
matrix. It is this unitary part that performs a nontrivial
spin transformation in the qubit space. In Eq.s11d uTgu is
a non-negative constant withuTguø1, which can be consid-
ered as the efficiency of the gate. Therefore, one has in
general ut1u2+ ut2u2ø1; nevertheless, the transmitted
amplitudes can be renormalized, and their absolute value
squared give the probabilities of having the corresponding
spin direction, if the particle is assumed to be transmitted
at all. In certain cases, to be discussed below, we find,

however, thatT is unitary: uTgu=1. We shall turn now to
analyze the transformation properties of this device in
more detail.

If the incoming and outgoing leads are connected to the
ring diametrically, theng=p, and as seen froms13d also d
=p independently from the energy. The transmission matrix
then takes the form

T = uTpueisd0+pd/2Scosu − sinu

sinu cosu
D = uTpueisd0+pd/2U,

s14d
with

uTpueid0/2 =
8ikaqsinspqdcossF/2d

k2a2s1 − cos 2qpd + 4q2scosF − cos 2qpd + 4ikaqsin 2qp
. s15d

FIG. 1. The geometry of the device and the relevant wave func-
tions in the different domains.
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The unitary partU of the transformation given by Eq.s14d is
independent of the wave vectork, and it rotates the spin
around they axis3 by an angle 2u. By changing the strength
of the spin-orbit interaction7 v=a /"a, according to Eq.s2d
the values ofuuu can be varied from 0 up to 0.8sp /2d. Figure
2 shows the gate efficiencyuTpu as a function ofuuu and ofka
aroundkFa=20.4, corresponding to a ring of radius 0.25mm
and a Fermi energy 11.13 meV of InGaAs. One sees also
that for several values ofka and u the transformation is
strictly unitary, withuTpu=1. If one couples such unitary de-
vices in series, then obviously the resulting transformation
will be the product of the corresponding unitary matrices,
and will be unitary again.

In the language of quantum informatics,3 the transforma-
tion s14d above represents a rather general single-qubit gate,
and it shows that in principle a continuous set of spin rota-
tions can be achieved with already a single diametrically
connected ring. This can be further extended by coupling two
or more such rings in series. A transformation of the form
s14d with u=p /4 is essentially a so-called Hadamard gate,3

which plays a distinguished role in quantum algorithms,
while two such gates in series results in anX gate or quan-
tum NOT gate. Strictly speaking, in both cases one has to
introduce an additional relative phase between the compo-
nents, in order to have the correct determinants−1d of the
transformations.3 This is possible withgÞp, to be discussed
below.

In the case of arbitraryg, other types of transformations
can be realized. An important particular case is whend=0,
which can be achieved by tuning the voltage,a and thereby
v /V. Then, one has

Tgsd = 0d = uTgueid0/2S1 0

0 e−ig D , s16d

and the unitary part of the transformation is a phase gate,3

where the phase difference introduced between spin up and
spin down is just the geometrical angleg sFig. 1d. Figure 3
shows the curves along which such phase gates can be real-
ized fd=0 in Eq. s13dg depending on the values ofka and
v /V. The dots on the curves mark the points whereuTgu=1,
and thus the transformation is unitary. In Fig. 4 we show the
gate efficiency of a phase gatesd=0d for the special value
g=p /2 as function ofa andka.

We note that in principle a number of other gates can be
constructed by coupling several of those rings. This can be
realized with parameters corresponding to unitary gates, so
that the product of the corresponding spin rotations results
again in a unitary transformation. For instance, two rings
both with g=p /2 in Eq. s16d is a Z gate.3 If such a gate is
coupled to a diametric ring associated with Eq.s14d with
u=p /4, one obtains exactly a Hadamard gate. Similarly, two
rings withg=p /2, plus two of the type corresponding to Eq.
s14d with u=p /4, yields a NOT gate with the correct phase.

As emphasized earlier, similar rings in the presence of an
external magnetic field can be used for spin filtering.9,10 This
points to the possibility to integrate gates and filters that can
serve as elementary building blocks of a quantum network
based on spin sensitive devices.15–18

The present calculation was done for an idealized model
system in which transport is ballistic and one dimensional,
i.e., the finite width of the ring wire was not included. Cur-
rently, high mobility samples have become available such
that at cryogenic temperatures transport is found to be bal-
listic over tens of microns. Similarly, phase coherence and
spin coherence lengths19 have been found up to 100mm. Our
narrow ring implies the assumption of single-mode propaga-
tion. Recently, it was found that the finite width of the rings
has a small effect on the loss of coherence of the spin state.10

Souma and Nikolić20 found that in a multichannel system the
modulation of the transmitted spin states survives and that
under specific conditions the individual eigenchannel trans-
missions are very similar to the ones found in single-channel
rings. A possible nonideal coupling to the leads can be de-
scribed through effective tunnel barriers. But, in most of the
current experimental systems the leads are connected in a
rather adiabatic way, which makes the coupling very close to
ideal.

FIG. 2. sad Efficiency uTpu of the quantum gate withg=p as a
function of the modulus of the half rotation angleu=−arctanv /V
and ka. The maximal value ofuuu corresponds tov /V=3.5. sbd
Cross section of the surface atuuu=p /4, where the transformation is
essentially a Hadamard gate.
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In conclusion, we have shown that a quantum ring with
Rashba-type spin-orbit interaction can serve as a one-qubit
quantum gate for electron spins. The spin transformation
properties of the gates can be extended by coupling such
rings in series. Different types of gates can be realized by
tuning the electric field strength and changing the geometric
position of the junctions connected to the ring, as well as by
fabricating rings with different sizes. The considered param-
eters are within the experimentally feasible range.7,8,21 In a
ring of radiusa=0.25mm and for InGaAssm* =0.023 md, a
can be varied7 up to 2.0310−11 eVm, which corresponds to
u=0.8sp /2d.
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FIG. 3. sColor onlined Lines along which the ring acts as ag
phase gate. Points on the curves show where the gates are lossless,
i.e., uTgu=1.

FIG. 4. Efficiency of ap /2 phase gate. Along the gray curve on
the topska−v /Vd plane the ring acts as ap /2 gate. The black lines
on the same plane show where the efficiencyuTp/2u equals unity;
thus, at the crossing points of the black and gray lines this phase
gate is unitary.
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