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We consider the theoretical problem of resonant phenomena in the macroscopic quantum tunneling for an rf
superconducting quantum interference device in the presence of an external irradiating field. The transition
probability between different flux states is studied by varying the external parameters of the double-well
potential describing the system in a way that the pumping level in the left potential well is close to one of the
levels in the right potential well. The dependence of the transition probability on the external drive of the
system shows two resonance peaks, the former connected with theresonant tunnelingand the latter with the
resonant pumping. The relative position of the peaks depends on the pumping frequencyv and on the system
parameters.
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I. INTRODUCTION

A Josephson device is a macroscopic quantum object, and
the possibility to observe coherent and incoherent macro-
scopic quantum phenomena has attracted great interest both
from the theoretical1 and experimental2 sides. The first phe-
nomena investigated are the decay from metastable states by
macroscopic quantum tunneling3 sMQTd and energy level
quantization4,5 sELQd. Furthermore, in recent experiments,6

evidence of the superposition between macroscopically dis-
tinct quantum statessMQCd in both single Josephson junc-
tions and superconducting-quantum-interference-device-
sSQUID-d based systems under the action of an external mi-
crowave has been observed. In fact the possibility to control
the quantum dynamics of Josephson systems by microwave
irradiation is a very powerful technique also in view of the
application of these devices to quantum computation.7 In this
paper we present a theoretical approach to describe the quan-
tum behavior of a macroscopic system interacting with an
external field at frequencies close to resonant conditions.
Moreover, we apply our results to simulate resonant phenom-
ena in rf SQUID’s, whose parameters lie in the range typi-
cally used in the experiments.8

As first pointed out by Caldeira and Leggett,1 in order to
observe quantum effects in a macroscopic system, the quan-
tum system must be essentially decoupled from the degrees
of freedom describing the environment. The interaction with
the external thermal bath produces the appearance of the fi-
nite width g of quantum levels,9 leading to relaxation and
decoherence effects.

In the problem of quantum tunneling it is possible to dis-
tinguish three regions, differing for the value of the damping
parameterg which is equal to the one-half of the sum of the
transition probabilities between the energy states.10 In the
first region, corresponding to the overdamped regime,g is
larger than the plasma frequencyv j—that is, the distance
between levels close to the bottom of the potential well. The
second regime is the moderate underdamped one, asg is
much smaller than the plasma frequency, but larger than the

probability of quantum tunneling under the potential barrier.
In this region, the quantum tunneling probability is depressed
by dissipation.11 The third region corresponds to the ex-
tremely underdamped limit, asg is much smaller than the
probability of quantum tunneling. This condition is hard to
achieve and can be better realized for levels close to the
barrier top in the double-well potential.

Resonant phenomena can take place only if the energy
width g is small compared to the energy difference between
levels,g!v j.

Transitions between levels can occur either by thermal
activation inside the same potential well or by tunneling be-
tween resonant levels in different wellsssee Fig. 1d. Interest-
ing aspects for experiments on Josephson devices are real-
ized when the states involved in the transition correspond to
macroscopically distinct ones, such as, for instance, different
flux states in a rf-SQUID. In this case the interacting energy
states can be visualized as belonging to different wells of the
double-well potential sketched in Fig. 1 and the transition
process is characterized by tunneling across the potential bar-
rier. The nonzero width of levels leads to a reduction of
coherence during the tunneling process11 and in such a case

FIG. 1. A sketch of an rf-SQUID double-well potential Uswd,
with two minima located atw1

ext andw2
ext·wtop is the position of the

potential maximum. The turning points for the two energy levelsE,

andER arew1, w2 andw3, w4, respectively.
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the behavior of the system strictly depends on the ratio be-
tween the two small parametersg and TN, whereTN is the
tunneling amplitude.11

In the following we consider the resonant tunneling as-
sisted by microwave irradiation under the conditiong@TN,
as occurs in dissipative systems, in the moderate under-
damped quantum regime. As shown in Fig. 1, the process can
be visualized as a resonant pumping from the ground state to
the upper excited level, followed by resonant tunneling from
the left well to the right onesphoton-activated resonant tun-
nelingd. The conditiong@TN requires that the excited level
in resonance with the microwave should not be too close to
the top of the potential barrier. Otherwise the tunneling pro-
cess may become the dominant transition with respect to the
thermally induced decay between levels in the same well.
Due to the very strong exponential dependence of the tun-
neling amplitude on the energy of levels, the macroscopic
tunneling can really be observed only if the number of levels
in the left potential well is not largessay less than 10d.10

II. TUNNELING TRANSITION PROBABILITY W FROM
THE LEFT POTENTIAL WELL TO THE RIGHT

ONE IN RESONANT CONDITIONS

In describing the photon-activated resonant tunneling,
great relevance must be given to the excited level in the left
well, hereafter referred to as thepumped level, whose popu-
lation is increased by the external irradiation, and the two
nearest levels in the right well. The tunneling transition prob-
ability decreases very quickly for states below the barrier
top, such ase−2pn, wheren is the number of states counted
from the barrier top.12 As a consequence we can neglect
transitions into lower levels in the right potential well.

To calculate the distribution function for the quantum tun-
neling in the resonant pumping case, we can start from the
rf-SQUID Hamiltonian of zero approximation in the pres-
ence of an external field with frequencyv and intensityI,
which can be written as

H = −
1

2M

]2

]w2 + U0H1

2
sw − wxd2 + bL coswJ +

I

2e
cossvtdw,

s1d

where the massM is connected to the junction capacitanceC
and thebL SQUID parameter depends on the superconduct-
ing loop inductanceL and the Josephson currentIc:

M = S "

2e
D2

C, bL =
2pLIc

F0
. s2d

U0=sF0/2pd2s1/Ld is the relevant energy scale andF0 is
the flux quantum. The external magnetic fluxwx is a free
parameter of the system. By varying the parametersU0 and
wx we can control the relative position of levels in the left
and right potential wells with respect to the pumping fre-
quency. It is worth noting that the last term in the Eq.s1d is
the high-frequency external pumping.

The interaction with the “environment” is described by
the effective actionAsw ,w̃d, as reported in Ref. 10. For sharp
levels g!v j, we can write down the rate equation for the

density matrix elementsr,
j in the form of a differential

equation.9

]r,
j

]t
=

iI

2e
cosvto

m

hk j uwumlexpf− isEm − Ejdtgr,
m

− kmuwu,lexpfisEm − E,dtgrm
j j + o

m,n
W,n

jmrn
m

−
1

2o
m

sWmj
mj + Wm,

m,dr,
j . s3d

For the density matrix, we work in the basis of the states
of the system, decoupled from the environment.9,10

Assuming that the Josephson junction is shunted by the
normal resistanceR,5 in the low-temperature region all tran-
sition elements related toR are given by the expression9

W,n
jm =

p

2e2R
S1 + th

ṽ

2T
DMsṽdFk j uexpSi

w

2
Dumlk,u

3expS− i
w

2
Dunl + k j uexpS− i

w

2
Dumlk,uexpSi

w

2
DunlG ,

s4d

where

ṽ =
Em − Ej + En − E,

2
, s5d

Msṽd =
ṽ

p
coth

ṽ

2T
→ uṽu

p
. s6d

At low temperatures and for weak pumping power, only
two nondiagonal matrix elements are different from zero:r,

0

andr0
,. Hence we obtain from Eq.s3d

]r,
0

]t
= −

iI

2e
cosvtk0uwu,lexpsisE0 − E,dtd −

1

2 o
m,,

Wm,
m,r,

0.

s7d

Then the solution of Eq.s7d is

r,
0 = −

I

4e
k0uwu,l

exphifv − sE, − E0dgtj
v − sE, − E0d − ig,

, r0
, = sr,

0d* s8d

with

g, =
1

2 o
m,,

Wm,
m,. s9d

Equations7d indicates that only one level, is close to the
resonance. Note that the transition matrix elementk0uwu,l
depends strongly on the energy of the state,.12,13 For the
same reason it is enough to take in sum over m in Eq.s9d
only one term withm=,−1; hence,

g, =
E, − E,−1

Re2 Uk, − 1uexpSi
w

2
Du,lU2

. s10d

The functionr,
, satisfies the following equation coming

from Eqs.s3d and s8d for the matrix elementr,
0:
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]r,
,

]t
=

iI2

16e2uk,uwu0lu2S 1

v − sE, − E0d + ig,

−
1

v − sE, − E0d − ig,
D − 2g,r,

,. s11d

Then the solution of Eq.s11d is

r,
, =

I2

16e2S uk,uwu0lu2

fv − sE, − E0dg2 + g,
2D . s12d

According to Ref. 11, the transition probabilityW from
the left potential well to the right one is given by the equa-
tion

W= 2uT,u2r,
, exps− 2aCEudGs1 − 2ad

3S sE, − ERd2 + sg, + gRd2

v j
2 Da 1

ÎsE, − ERd2 + sg, + gRd2

3cosFpa − s1 − 2adarctanSE, − ER

g, + gR
DG . s13d

In Eq. s13d the quantityCEu is the Euler constant,T, the
tunneling amplitude from the energy levelE,, and a a di-
mensionless constant.sE, ,g,d and sER,gRd are the level po-
sitions and the widths of levels in the left and right wells,
respectively. The quantitiesa, T,, andgR will be numerically
estimated in the following.

In Fig. 4 below, we give the transition probabilityW as
function of wx for three values of irradiation frequencyv.
The position of the first peak, connected to the resonant tun-
neling from the upper state in the left potential well to the
right potential well, takes place at a fixed value ofwx

s0d sleft
peak in Fig. 4d. The position of the second peak, connected
to the resonant pumping to the upper excited state, moves to
the right as the pumping frequency is increased.

III. CALCULATION OF THE LEVEL POSITION AND
TRANSITION MATRIX ELEMENTS

In order to proceed in the calculation ofW, we first intro-
duce the quantityg, the width of the first level. Definingw1

ext

andw2
ext as the positions of the two minima of the potentialU

ssee Fig. 1d, near the minima we have

Uswd = Usw1,2
extd + U1,2

extsw − w1,2
extd2, s14d

where

U1,2
ext =

U0

2
f1 − bL cossw1,2

extdg. s15d

The wave function of the first excited state can be taken in
the parabolic potential approximation:

C1 =
s8MU1

extd1/8

s2pd1/4 D1fs8MUl
extd1/4sw − w1

extdg, s16d

where D1 is the parabolic cylinder function.14 The wave
function C0 of the ground state can be written as

C0 =
s8MU1

extd1/8

s2pd1/4 expS−E
w1

ext

w

dwÎ2MfUswd − Usw1
extdgD .

s17d

This form will be used for calculation of the transition matrix
elementk0uwu,l. From Eqs.s10d, s16d, ands17d, we find the
quantityg.

g =
1

8M Re2 . s18d

The quantitya is connected tog sRef. 11d:

a =
g

p
Msw2

ext− w1
extd2 =

sw2
ext− w1

extd2"

8p Re2 . s19d

We suppose the energiesE, andER be close to the barrier
top sFig. 1d, so that the transition matrix elementuT,u2 is
given by the expression

uT,u2 =
V, VR

4p2 expS− pÎ2MU1
Utop − E,

U1
D , s20d

where

U1 = −
U0

2
s1 − bL coswtopd s21d

andV, andVR are the distances between neighbor levels in
left and right potential wells:

V, = E, − E,−1, VR = ER − ER−1. s22d

The position of levels can be found with the help of the
quasiclassical approximation9

cosSF1 +
x

2
D = 0, for levels in the left potential well,

cosSF2 +
x

2
D = 0, for levels in the right potential well.

s23d

The phasesF1,2 and x are defined by the following equa-
tions:

F1 =E
w̃1

wtop

dwÎ2MfUtop − Uswdg

+
MsUtop − Ed

Î2MU1

lnS 21/4

8sMU1d1/4swtop − w̃1d
D

− MsUtop − EdE
w̃1

wtop

dwS 1
Î2MfUtop − Uswdg

−
Îwtop − w̃1

Î2MU1swtop − wd2sw − w̃1d
D ,

RESONANCE PHENOMENA IN THE MACROSCOPIC… PHYSICAL REVIEW B 71, 024529s2005d

024529-3



F2 =E
wtop

w̃4

dwÎ2MfUtop − Uswdg

+
MsUtop − Ed

Î2MU1

lnS 21/4

8sMU1d1/4sw̃4 − wtopd
D

− MsUtop − EdE
wtop

w̃4

dwS 1
Î2MfUtop − Uswdg

−
Îw̃4 − wtop

Î2MU1swtop − wd2sw̃4 − wd
D ,

GS1 + il

2
D =

Î2p exps− pl/4d
Î1 + exps− pld

expsixd,

Usw̃1d = Usw̃4d = Uswtopd, s24d

l = Î2MU1
Utop − E

U1
. s25d

Note that, in the limiting cases, the phasex is given by

x = sl/2dcs1/2d

for l ! 1 with cs1/2d = − CEu − 2 ln 2 = − 1.96351,

x = sl/2d lnbsl/2d − 1c for l @ 1. s26d

Furthermore, for the arbitrary value ofl, we have

x = l/2cs1/2d − o
k=0

` Sarctan
l

2k + 1
−

l

2k + 1
D . s27d

Now to complete our considerations, we can give the ex-
pressions for the wave functionsc,, c,−1, cR, andcR−1. In
the quasiclassical approximation, we have

c, =
1

G,

1

f2MsE − Udg1/4 sinSp

4
+E

w1

w

dwÎ2MfE, − UswdgD,

, → ,,, − 1,

cR =
1

GR

1

f2MsE − Udg1/4 sinSp

4
+E

w

w4

dwÎ2MfER − UswdgD,

R→ R,R− 1, s28d

whereGl,R are the normalized factors:

G,
2 =

1

2
E

w1

w2 dw

Î2MfE, − Uswdg
, E, = Usw1,2d,

GR =
1

2
E

w3

w4 dw

Î2MfER − Uswdg
, ER = Usw3,4d. s29d

The energy levelsE, andER are solutions of Eqs.s23d and
s24d. The label, sRd notes the states in the leftsrightd po-
tential well.

The width of the levelsg, andgR can be found with the
help of Eqs.s10d and s28d. The transition matrix element

k0uwu,l, which is involved in Eqs.s12d ands13d can be found
with the help of Eqs.s17d and s28d, as

k0uwu,l =
s8MU1

extd1/8

s2pd1/4G,
E

w1

w2 dwsw − w1
extd

h2MfE, − Uswdgj1/4

3expS−E
w1

ext

w

dwÎ2MfUswd − Usw1
extdgD

3sinSp

4
+E

w1

w

dwÎ2MfE, − UswdgD . s30d

IV. TRANSITION MATRIX ELEMENTS BETWEEN
STATES CLOSE TO THE BARRIER TOP

We suppose that the initial value of the external param-
etersU0 andwx is such that there are two close levelsE, and
ER near the top of the barriersbut not too close,lù1d. We
consider that the change of the external parameterwx sor
bothU0 andwxd leads to the “crossing” of levelsE, andER in
some point wx

s0d sFig. 2d. Furthermore, when the high-
frequency fieldv crosses the energy difference between
ground and the upper levels in the left well,DE,=E,−E0,
another pointwx

s1d is definedsFig. 3d. The transition prob-
ability W will have two sharp peaks in these two pointssFig.
4d.

Curves presented in Figs. 2–7 are obtained by assuming
the following parameters:bL=1.75, L=210 pH, and C
=0.1 pF, leading toÎMU0=22.412 andR=6 kV.

Since levelsE, andER are placed near the barrier topwtop,
the width of levels and especially the transition matrix ele-
ment k0uwu,l sif ,Þ1d are very sensitive to the value of
energyE, and hence to the value of the external parameter
wx. Strictly speaking in such a situation the dependence ofE,

sor ERd on the parameterwx is nonlinear. The exact equation
for the position of levels near the barrier top in the case of
small viscosity can be cast in the form

FIG. 2. The anticrossing diagram of levelsE, andER as a func-
tion of the external fluxwx. In the absence of the repulsion term due
to l, the “crossing” of levelsE, andER would occur at some point,
addressed aswx

s0d. The exact level positions are obtained as solu-
tions of Eq.s31d by varyingwx. Energies are referred to the bottom
of the left potential well and are computed with the following pa-
rameters:bL=1.75, L=210 pH, andC=0.1 pF, leading toÎMU0

=22.412.
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cossF1 − F2d + cossF1 + F2 + xdf1 + exps− pldg1/2 = 0.

s31d

Equations31d describes the repulsion of levelsE, andER
giving the “anticrossing” picture. In fact the exact level po-
sitions as a function of the external “drive” of the potential,
wx, is shown in Fig. 2. In Fig. 4 we present the behavior ofW
as a function ofwx. The first peak, associated with the tun-
neling phenomenon, appears for a fixed external flux. The
second peak, due to the pumping process, moves with the
irradiation field frequencyfFigs. 4sad and 4sbdg until it super-
imposes onto the first peakfFig. 4scdg.

Furthermore, with high accuracy, the transition matrix el-
ements can be found with the help of quasiclassical
approximation15 even for transitions in the ground state.10

The transition matrix element between statessp, jd can be
taken in the form

kpuju jl =
vsEd
s2pd R dtjstdexpf− ivsEdsp − jdtg, s32d

wherevsEd is the classical frequency of motion for the en-
ergy E=sEj +Epd /2. This energy is counted from the bottom
of the potential well. Using the cubic approximation for the
potential well,

Uswd = U1
extsw − w1

extd2F1 −
2sw − w1

extd
3swtop − w1

extdG . s33d

The classical equation of motion is

M
]2Z

]t2
= − 2U1

extZS1 −
Z

wtop − w1
extD whereZ = w − w1

ext.

s34d

The solution of Eq.s34d is given by the Jacobian elliptic
function sn:

Z = Z1 + sZ2 − Z1dsn2StÎ U1
extsZ3 − Z1d

3Mswtop − w1
extd

D , s35d

whereZ1, Z2, Z3 are solutions of the equationE=U and are
given by the relations

Z1 = swtop − w1
extdF1

2
+ sinS−

p

3
+

a

3
DG ,

Z2 = swtop − w1
extdF1

2
− sinSa

3
DG ,

FIG. 3. The crossing between the high-frequency pumping field
v and the energy difference between the ground and upper levels in
the left well, DE,=E,−E0, defines the pointwx

s1d.

FIG. 4. Transition probabilityW as function ofwx. The curve is
calculated according to Eq.s13d for different values of the pumping
frequency. The two peaks shown insad and sbd are connected to
effects of the resonant tunneling between levels in different wells
and the resonant pumping between levels in the same well. As
predicted, the peak due to the resonant pumping moves with the
pumping frequency until it superimposes to the tunneling peak, as
evident inscd. Curves are obtained by using the following param-
eters:bL=1.75,L=210 pH,C=0.1 pF, andR=6 k V. W is normal-
ized to the termI2/16e2.
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Z3 = swtop − w1
extdF1

2
+ sinSa

3
DG ,

a = arcsinS1 −
6E

U1
extswtop − w1

extd
D . s36d

The function sn2sud is defined as

sn2sud =
1

k2S1 −
Eskd
Kskd

D − S p

kK
D2

o
LÞ0

LqL

1 − q2L expS ipLu

K
D ,

s37d

with k=ÎsZ2−Z1d / sZ3−Z1d, K=Kskd, Eskd the complete el-
liptic integrals, q=exps−pK8 /Kd, K8=Ksk8d, and k8
=Î1−k2.

The energy of the ground state,E0, can be estimated as

E0 =
1

2
Î2U1

ext

M F1 −
5

24Î2MU1
extswtop − w1

extd
G . s38d

The transition matrix elementfEq. s32dg with help of Eq.
s37d can be cast in the form

kpuwu jl = −
Z2 − Z1

2
S p

kK
D2 s j − pd

sinhSps j − pdK8

K
D . s39d

If many levels are in the right potential well, the cubic
approximation may be not adequate, and in general we have

kpuju jl =
2

T
E

0

T/2

dtjstdcosfvsEds j − pdtg,

S ]w

]t
D2

=
2sE − Ud

M
. s40d

In Eq. s40d the quantityT is the period of classical mo-
tion, T=2p /vsEd. In the initial motionst=0d, the “particle”
is placed in the left “turning” point. We can numerically
calculate the transition matrix elementk0uwu,l by both Eqs.
s30d and s39d. Although we get a very good agreement with
these two different calculations, we show in Fig. 5 the results

coming from Eq.s39d. The width gR can be taken in the
following form fsee Eq.s10dg:

gR =
vsEd
Re2 UkR− 1uexpSi

w

2
DuRlU2

,

E =
ER + ER−1

2
. s41d

Finally, the results of numerical calculations of the
squared transition matrix elementsuk0uexpsiw /2du,lu2 and
ukR−1uexpsiw /2duRlu2 are given in Figs. 6 and 7, respectively.

Transition matrix elements are essential for the resonant
tunneling, as they appear to be not constant even in the reso-
nance region. The dependence of the transition matrix ele-
ments onwx leads to a shift of the peaks, as well as to a more
complex shape than a simple Lorentzian one. Both effects
are observed in Fig. 4. For this reason we present a numeri-
cal calculation of the transition matrix elements in Figs. 5–7.

V. CONCLUSION

In conclusion we have developed a theoretical approach
to study resonant phenomena in macroscopic quantum tun-

FIG. 6. Squared transition matrix elementuk0uexpsiw /2d u,lu2 as
a function of wx as numerically calculated according to Eq.s40d
with bL=1.75,L=210 pH, andC=0.1 pF.

FIG. 5. Squared transition matrix elementuk0uw u,lu2 as a func-
tion of wx as numerically calculated according to Eq.s39d with
bL=1.75,L=210 pH, andC=0.1 pF.

FIG. 7. Squared transition matrix elementukR−1uexpsiw /
2duRlu2 as a function ofwx as numerically calculated according to
Eq. s40d with bL=1.75,L=210 pH, andC=0.1 pF.
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neling in the presence of an external irradiating field, limit-
ing ourselves to the moderate underdamped quantum regime
g@TN. The transition probabilityW from the left potential
well to the right one, as well as the anticrossing diagram of
levels and the transition matrix elements in the left and in the
right potential well, is numerically calculated for a rf-SQUID
as functions of the external fluxwx. We focused our attention
on the effect of resonant pumping on the transition probabil-
ity in a condition for which the excitedpumped levelin the
left potential well is close to a level in the right potential
well. The dependence of the transition probabilityW on the
external parameterwx ssee Fig. 4d shows two peaks. The first
is connected with theresonant tunnelingand the second one
is associated with theresonant pumping. The relative posi-
tions of these two peaks strictly depend on the pumping fre-
quency and on the external flux biasing the SQUID.

The transition probabilityW from the left potential well to
the right one is obtained as a function of the potential param-
eters and of the shunt resistanceR. Assuming that the tem-
peratureT of the thermal bath is negligible in comparison
with the plasma frequency—the distance between levels in
left srightd potential well—Eq.s13d for W can be easily gen-
eralized for the case of moderate high temperatures, asT is
orders of magnitude smaller than the distance between levels
or the width of levelsg,,R ssee Ref. 11d. The predicted phe-
nomena have been observed by escape measurements.6

Work is in progress to extend such a theoretical treatment
to the case of the small-viscosity limitg<TN which in ex-
periments means to consider the extremely underdamped
case for an rf-SQUID under the action of external micro-
waves.

Note that, in the considered problem, the existence of
other levels except the two resonant levelssE,,Rd in left
srightd potential well is essential. The transition to levels with
energyE smaller thensE,,Rd determinates the width of these
levels and the transition probabilityW from the left to the
right potential well. The idealized model, where such states
are not taken into account, can be valid only in the small-
time intervalt, sg,+gRd−1 ssee Ref. 16d.
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