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Resonance phenomena in macroscopic quantum tunneling for an rf SQUID
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We consider the theoretical problem of resonant phenomena in the macroscopic quantum tunneling for an rf
superconducting quantum interference device in the presence of an external irradiating field. The transition
probability between different flux states is studied by varying the external parameters of the double-well
potential describing the system in a way that the pumping level in the left potential well is close to one of the
levels in the right potential well. The dependence of the transition probability on the external drive of the
system shows two resonance peaks, the former connected withstieant tunnelingnd the latter with the
resonant pumpingThe relative position of the peaks depends on the pumping frequeacy on the system

parameters.
DOI: 10.1103/PhysRevB.71.024529 PACS nunt®er74.50+r, 03.65.Yz, 03.67.Lx
[. INTRODUCTION probability of quantum tunneling under the potential barrier.

A Josephson device is a macroscopic quantum object, arffl this region, the quantum tunneling probability is depressed
the possibility to observe coherent and incoherent macroPy dissipation'* The third region corresponds to the ex-
scopic quantum phenomena has attracted great interest bdfi§mely underdamped limit, ag is much smaller than the
from the theoreticdland experimentalsides. The first phe- probability of quantum tunneling. This condition is hard to
nomena investigated are the decay from metastable states Bghieve and can be better realized for levels close to the
macroscopic quantum tunnelfigMQT) and energy level barrier top in the double-well potential.
quantizatioft® (ELQ). Furthermore, in recent experimefits, = Resonant phenomena can take place only if the energy
evidence of the superposition between macroscopically digvidth y is small compared to the energy difference between
tinct quantum state6MIQC) in both single Josephson junc- levels, y<wj.
tions and superconducting-quantum-interference-device- Transitions between levels can occur either by thermal
(SQUID-) based systems under the action of an external miactivation inside the same potential well or by tunneling be-
crowave has been observed. In fact the possibility to controiween resonant levels in different wellsee Fig. 1. Interest-
the quantum dynamics of Josephson systems by microwavBg aspects for experiments on Josephson devices are real-
irradiation is a very powerful technique also in view of the ized when the states involved in the transition correspond to
application of these devices to quantum computatibnthis ~ macroscopically distinct ones, such as, for instance, different
paper we present a theoretical approach to describe the qudiix states in a rf-SQUID. In this case the interacting energy
tum behavior of a macroscopic system interacting with arstates can be visualized as belonging to different wells of the
external field at frequencies close to resonant conditiongdouble-well potential sketched in Fig. 1 and the transition
Moreover, we apply our results to simulate resonant phenonrocess is characterized by tunneling across the potential bar-
ena in rf SQUID’s, whose parameters lie in the range typitier. The nonzero width of levels leads to a reduction of

cally used in the experiments. coherence during the tunneling procésand in such a case
As first pointed out by Caldeira and Leggkit order to

observe quantum effects in a macroscopic system, the quan- U »

tum system must be essentially decoupled from the degrees \ K jh Ex

of freedom describing the environment. The interaction with Exa

the external thermal bath produces the appearance of the fi-
nite width y of quantum level$, leading to relaxation and
decoherence effects.

In the problem of quantum tunneling it is possible to dis- ext -
tinguish three regions, differing for the value of the damping ‘pi q’f" ‘Pi
parametery which is equal to the one-half of the sum of the M 02 93 04

transition probabilities between the energy stafem the
first region, corresponding to the overdamped regimés
larger than the plasma frequenay—that is, the distance FIG. 1. A sketch of an rf-SQUID double-well potential(&),
between levels close to the bottom of the potential well. Thawith two minima located a;* and ¢5*"- ¢y, is the position of the
second regime is the moderate underdamped one; @s  potential maximum. The turning points for the two energy le&ls
much smaller than the plasma frequency, but larger than thend Ei are ¢;, ¢, and @3, @4, respectively.
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the behavior of the system strictly depends on the ratio bedensity matrix elementg), in the form of a differential
tween the two small parametegsand Ty, whereTy is the  equation’
tunneling amplitudé’

. . - ) &pj iJ . .
. In the folllowmg we cons@er the resonant tgr)nellng as == coswtd, {lelmexd—i(Ep,- E,—)t]p@“
sisted by microwave irradiation under the conditips Ty, a  2e m
as occurs in dissipative systems, in the moderate under- _ _ -
damped quantum regime. As shown in Fig. 1, the process can — (mle|€yexi(Em = E ok} + > Winoh
m,n

be visualized as a resonant pumping from the ground state to

the upper excited level, followed by resonant tunneling from 1 A .

the left well to the right onéphoton-activated resonant tun- - 52 (Wt + W0t 3
neling. The conditiony> Ty requires that the excited level m

in resonance with the microwave should not be too close to For the density matrix, we work in the basis of the states
the top of the potential barrier. Otherwise the tunneling proof the system, decoupled from the environmeHt.

cess may become the dominant transition with respect to the Assuming that the Josephson junction is shunted by the
thermally induced decay between levels in the same wellnormal resistanc®,® in the low-temperature region all tran-

Due to the very strong exponential dependence of the tursition elements related t are given by the expressidn
neling amplitude on the energy of levels, the macroscopic

tunneling can really be observed only if the number of levels ,jm_ 7 w ~| ¢
in the left potential well is not largésay less than )3° = 2e2R<1 +th2T>M(w)[<J|eXp<l 2>|m><€|
Il. TUNNELING TRANSITION PROBABILITY W FROM ><exp<— i£>|n> + (j|exp<— if)|m><€|exp<if>|n>]
THE LEFT POTENTIAL WELL TO THE RIGHT 2 2 2
ONE IN RESONANT CONDITIONS (4)
In describing the photon-activated resonant tunnelingwhere
great relevance must be given to the excited level in the left E “E+E.-E
well, hereafter referred to as tipeimped levelwhose popu- w= m—J”—e, (5)
lation is increased by the external irradiation, and the two 2
nearest levels in the right well. The tunneling transition prob-
ability decreases very quickly for states below the barrier ) ) |o|
top, such a® 2™, wheren is the number of states counted M(@) = p COthz_T - (6)
from the barrier tog? As a consequence we can neglect
transitions into lower levels in the right potential well. At low temperatures and for weak pumping power, only

To calculate the distribution function for the quantum tun-two n{pndiagonal matrix elements are different from zeid:
neling in the resonant pumping case, we can start from thandp,. Hence we obtain from Eq3)
rf-SQUID Hamiltonian of zero approximation in the pres-

0 P~
ence of an external field with frequeney and intensityJ, dpc__1J coswt(0| | €)expi(Ey— Eot) — 1 > W2
. - 2 L
which can be written as a2 o
—_ ii +U }( _ )2 + ,8 cos + lCOi t) (7)
T oMag? 02T LEOSP[T 26722 Y% Then the solution of Eq(7) is

()

where the mash is connected to the junction capacitari¢e
and theB, SQUID parameter depends on the superconduct\—Ni
ing loop inductance&. and the Josephson currdpt

explifw — (E; - Eg) It}
o= (E=Ep —ivy,

j *
p3=—4—e<0|<p|€> . =" (8)

th
1

(Y _ 27l ye=5 2 Wiy 9)
M—(Ze) C, B.= by 2 2m<e

Uo=(Do/2m2(1/L) is the relevant energy scale ad, is Equation(7) indicates that only_one Ievéfl is close to the
the flux quantum. The external magnetic flgx is a free resonance. Note that the transition matrix eleme@ip|()
parameter of the system. By varying the parametyyand ~ d€Pends strongly on the energy of the stafé* For the
@, we can control the relative position of levels in the left SMe reason it is erlough. to take in sum over m in Eh.
and right potential wells with respect to the pumping fre-Only one term withm=£-1; hence,
quency. It is worth noting that the last term in the E). is E,—-E
4 (-1 P
(€ - 1lex by |€)

the high-frequency external pumping. Ye= “RE
The interaction with the “environment” is described by

the effective actiom\(¢,¢), as reported in Ref. 10. For sharp  The functionp! satisfies the following equation coming

levels y<wj, we can write down the rate equation for the from Egs.(3) and(8) for the matrix elemenp!:

2
. (10
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apy  i7? 2(

Pe- —_ielglo

162 (1#l0) w—-(E —Eo) +i7
1

w-(E,—Eg -y . . ) » )
This form will be used for calculation of the transition matrix
Then the solution of Eq(11) is element(0|¢|¢). From Eqs(10), (16), and(17), we find the

1 B (8M Uixt)lls
‘PO_ (27T)1/4

¢
exP(‘ f . deV2MIU(e) - uwiX‘)J).
1

17

) - 2yp;.- (1)

quantity .
gL ( (€leloyf? ) (12
T 168\ [0 (E - EQIP+ 7 y=—t (18
According to Ref. 11, the transition probability/ from 8M Re’
the left potential well to the right one is given by the equa- The quantitya is connected toy (Ref. 11):
tion
t exty 2
_ Yot ez (@5 7Y%
W= 2[T,[%p! exp(- 2aCe,)T(1 - 2a) a=—M(gg"- )= 5 (19)
- 2 2\ a
X ( E & +2(W t ) ) , 21 - We suppose the energigs andEg be close to the barrier
o] VE B+ (ve + ) top (Fig. 1), so that the transition matrix eleme[®,|? is
E -E given by the expression
xcos{ ma—(1- 2a)arctar<%{>] . (13)
Yet R 0,0 ———Up— E
, . IT|2= —=F expl - m/2M Uliu>, (20)
In Eqg. (13) the quantityCg, is the Euler constani, the 477 U,
tunneling amplitude from the energy levie}, and « a di-
mensionless constan(&,, y,) and(Eg, yr) are the level po- Wwhere
sitions and the widths of levels in the left and right wells, U
respectively. The quantities, T,, andyg will be numerically - _ 2004 _
estimated in the following. Ur= =7 (1 =L cosgiop (2

In Fig. 4 below, we give the transition probability/ as
function of ¢, for three values of irradiation frequeney.  and{), and{)g are the distances between neighbor levels in
The position of the first peak, connected to the resonant turleft and right potential wells:
neling from the upper state in the left potential well to the
right potential well, takes place at a fixed valuegf’ (left Q=E~Ep-1, Qr=Er—Eg-1. (22)
peak in Fig. 4. The position of the second peak, connected . )
to the resonant pumping to the upper excited state, moves o€ Position of levels can be found with the help of the

the right as the pumping frequency is increased. quasiclassical approximatién

[ll. CALCULATION OF THE LEVEL POSITION AND Cos<<I>1 + )5() =0, forlevels in the left potential well,

TRANSITION MATRIX ELEMENTS

In order to proceed in the calculation \8f, we first intro-
duce the quantityy, the width of the first level. Defining$™ cos<<D2+ )—() =0, for levels in the right potential well.
and¢$*as the positions of the two minima of the potential 2
(see Fig. 1, near the minima we have (23

U(e) = U(e7%) + UTY 0~ 079, (14)  The phasesP; , and y are defined by the following equa-
tions:
where
U Ptop —_—
Ugs= =211 - B, ot Y] (15) = L,l Aev2M[Uiep™ U(o)]
- 1/4

The wave function of the first excited state can be taken in + M(Ptop E) ( 2 )

the parabolic potential approximation: V2MU, 8(MU ) (@rop= 1)
(8M UEXE)]./S $top 1
=——=—D.[(8M Uex 1/4, _ ex , 16 — M(Ut - E) d(P ’
1= g DIEMUEY e o). (16 L A TV VVIESy
. . . . ~.

where D; is the parabolic cylinder functiol. The wave _ VPtop~ ¢1
function ¥, of the ground state can be written as V2M U1(@rop= @)% (0= 31) ’
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4 -
®,= f d‘P\“JZM[Utop_ U(e)]

Ptop
MU= ) | ( 21/ )
V2M U, 8(MU )Y@, - Prop)

( )JTPA g ( 1
~M(Uyp-E o| ——e
top ooy \V2M[Uiep— U(e)]

_ Ny - Ptop )
V2MU4(@op= ©)2(34— ¢)

1+iN) V21 exp(— m\/4) .
F( 2 ) - V1 + exg— m\) expli).
U(@1) =U(@4) = Ulerop), (24)

o Yiop— E

A =\2MU, = (25)
1

Note that, in the limiting cases, the phagés given by
x=(N2)(112)
for A <1 with (1/2) = - Cg,-2In2=-1.96351,

x=(2) In[(\/2) - 1]

Furthermore, for the arbitrary value af we have

forn>1. (26)

- ) )
= N2(1/2) - - (27
X=N2y(1/2) E_O(a“‘a”zm 2k+1> @
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FIG. 2. The anticrossing diagram of levélg andEg as a func-
tion of the external fluxp,. In the absence of the repulsion term due
to \, the “crossing” of level€, andEg would occur at some point,
addressed a&f(o). The exact level positions are obtained as solu-
tions of Eqg.(31) by varying ¢,. Energies are referred to the bottom
of the left potential well and are computed with the following pa-
rameters:8, =1.75,L=210 pH, andC=0.1 pF, leading toyMU,
=22.412.

(0|¢|€), which is involved in Eqs(12) and(13) can be found
with the help of Eqs(17) and(28), as

(BMUTYE (¢ do(e - @f)
2m¥G, J,, [2MIE, - U™

(Olgl€) =

Xexp(—fextdso\’/ZM[U(@)—U(<P§Xt)])

XSin(E + J(p deV2M[E, - U(<P)]) . (30

¢1

Now to complete our considerations, we can give the ex-

pressions for the wave functiong, ¥¢_1, ¥r, and r_4. In
the quasiclassical approximation, we have

¢
" i1 '(E+J dcp\’m)’

TG ME-UE TN e T
¢ —0,0-1,
1 1 T (. S —
=————————ginl—+ | deV2M[Ex-U ,
¢R GR[ZM(E—U)]1/4 Sm<4 J(p PN [ R (‘P)])
R—RR-1, (28)

whereG, g are the normalized factors:

1 (% d
G%:—f ’—+, E€:U((Pl,2)r
2J g, N2MIE - U(e)]
1[% do
GR:—I ’/=, ER: U((P3,4) (29)
2J o3 V2M[Eg—U(¢)]

The energy levelg, andEg are solutions of Eq$23) and
(24). The label¢ (R) notes the states in the Igftight) po-
tential well.

IV. TRANSITION MATRIX ELEMENTS BETWEEN
STATES CLOSE TO THE BARRIER TOP

We suppose that the initial value of the external param-
etersUy and ¢, is such that there are two close levElsand
Er near the top of the barrigbut not too close) =1). We
consider that the change of the external parametetor
bothUy and¢,) leads to the “crossing” of levels, andEg in
some point <px(°) (Fig. 2. Furthermore, when the high-
frequency fieldw crosses the energy difference between
ground and the upper levels in the left wellE,=E,—E,,
another pOint(pX(l) is defined(Fig. 3. The transition prob-
ability W will have two sharp peaks in these two poiffsg.

4).

Curves presented in Figs. 2—7 are obtained by assuming
the following parameters;3 =1.75, L=210 pH, andC
=0.1 pF, leading to/MUy=22.412 andR=6 k().

Since level€, andEg are placed near the barrier teg,,
the width of levels and especially the transition matrix ele-
ment (0|¢|¢) (if €+1) are very sensitive to the value of
energyE, and hence to the value of the external parameter
¢y Strictly speaking in such a situation the dependendg, of
(or Eg) on the parametep, is nonlinear. The exact equation

The width of the levelsy, and yg can be found with the for the position of levels near the barrier top in the case of
help of Eqgs.(10) and (28). The transition matrix element small viscosity can be cast in the form

024529-4
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FIG. 3. The crossing between the high-frequency pumping field
o and the energy difference between the ground and upper levels in
the left well, AE,=E,~E,, defines the poing.”

cog®; — @) + Cog Py + P, + y)[1 + exp— m™\)]V?=0
(31)

Equation(31) describes the repulsion of levelfs andEg
giving the “anticrossing” picture. In fact the exact level po-
sitions as a function of the external “drive” of the potential,
¢y 1S shown in Fig. 2. In Fig. 4 we present the behavion\of
as a function ofe,. The first peak, associated with the tun-
neling phenomenon, appears for a fixed external flux. The
second peak, due to the pumping process, moves with the
irradiation field frequencyFigs. 4a) and 4b)] until it super-
imposes onto the first pedkig. 4(c)].

Furthermore, with high accuracy, the transition matrix el-
ements can be found with the help of quasiclassical
approximatiof® even for transitions in the ground stafe.
The transition matrix element between statpsj) can be
taken in the form

E) , :

(plél] >_E digexd-io(E)(p-jtl, (32
wherew(E) is the classical frequency of motion for the en-
ergy E=(E;+E,)/2. This energy is counted from the bottom
of the potential well. Using the cubic approximation for the
potential well,
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FIG. 4. Transition probabilityVV as function ofe,. The curve is

2 calculated according to EL3) for different values of the pumping
U(e) = U‘iXI((P_ (PEXI){;L ¢ ¢r } (33 frequency. The two peaks shown (a) and (b) are connected to

3(@rop= ¢5)
The classical equation of motion is

#Z )
M?_ ZUEXZ 1 oxt

Ptop~ P1

effects of the resonant tunneling between levels in different wells
and the resonant pumping between levels in the same well. As
predicted, the peak due to the resonant pumping moves with the
pumping frequency until it superimposes to the tunneling peak, as
> whereZ= ¢ - (pEXt. evident in(c). Curves are obtained by using the following param-
eters:B,=1.75,L=210 pH,C=0.1 pF, andR=6 k. W is normal-

(34) ized to the tern?/16€?.

The solution of Eq.(34) is given by the Jacobian elliptic
function sn:

. ) [ U$z:-2) )
2=2,+(Z, Zl)snz<t M (p— % (35)

whereZ,, Z,, Z5 are solutions of the equatidd=U and are
given by the relations
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FIG. 5. Squared transition matrix eleme(@| ¢|¢)|* as a func-
tion of ¢, as numerically calculated according to E§9) with
BL=1.75,L.=210 pH, andC=0.1 pF.

1 @
Z3= (‘Ptop_ (Pin)|:§ + Sil’l<§>:| )

_ . 6E
a=arcsin 1 - m
op

The function sA(u) is defined as

CER) (7)) Ld p(irrLU)
ST = (1 K(k)) (kK) 2 g )
(37)

with k=+/(Z,-2,)/(Z3-Z,), K=K(k), E(k) the complete el-
liptic _integrals, g=exp(-7#K'/K), K’'=K(k'), and K
—\l 1-K2.

The energy of the ground stat&g, can be estimated as

_1 j2ug 5
Eo=5\ 1-25 o ot | (38)
42MU; Ptop~ P1

The transition matrix elemenEq. (32)] with help of Eq.
(37) can be cast in the form

(36)

(pleli) =~ (39

ZZ_Zl<1)2 (-p
2 \kK Sin%w(J—p)K)

K

If many levels are in the right potential well, the cubic
approximation may be not adequate, and in general we have

2 T/2
(pléli) = ?J dté(t)cod w(E)(j

0

(@)2_2(E—U)
) M

- pit],

(40)

In Eg. (40) the quantityT is the period of classical mo-

tion, T=27/ w(E). In the initial motion(t=0), the “particle”

is placed in the left “turning” point. We can numerically

calculate the transition matrix elemei@¢|¢) by both Egs.
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FIG. 6. Squared transition matrix elemé(@|explie/2)|€)|? as
a function of ¢, as numerically calculated according to Hg0)
with 8, =1.75,L=210 pH, andC=0.1 pF.

coming from Eq.(39). The width yg can be taken in the
following form [see Eq.(10)]:

o= “’(E‘m 1le p<|—)R>

_Er+Egr,
==

2

(41)

Finally, the results of numerical calculations of the
squared transition matrix elementé|explie/2)[¢)]? and
|(R—1|exp(ip/2)|R)|? are given in Figs. 6 and 7, respectively.

Transition matrix elements are essential for the resonant
tunneling, as they appear to be not constant even in the reso-
nance region. The dependence of the transition matrix ele-
ments ony, leads to a shift of the peaks, as well as to a more
complex shape than a simple Lorentzian one. Both effects
are observed in Fig. 4. For this reason we present a humeri-
cal calculation of the transition matrix elements in Figs. 5-7.

V. CONCLUSION

In conclusion we have developed a theoretical approach
to study resonant phenomena in macroscopic quantum tun-

0.087 T T T T T T y

o
=
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e
=
&

g
=
b
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|<R-1|exp(ig/2)|R>|*
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=3
-
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P

FIG. 7. Squared transition matrix elemefR—1/exp(ie/

(30) and(39). Although we get a very good agreement with 2)|R)|? as a function ofp, as numerically calculated according to
these two different calculations, we show in Fig. 5 the result€q. (40) with 8,=1.75,L=210 pH, andC=0.1 pF.
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neling in the presence of an external irradiating field, limit- Work is in progress to extend such a theoretical treatment
ing ourselves to the moderate underdamped quantum regime the case of the small-viscosity limit= Ty which in ex-
v>Ty. The transition probabilityV from the left potential  periments means to consider the extremely underdamped
well to the right one, as well as the anticrossing diagram okase for an rf-SQUID under the action of external micro-
levels and the transition matrix elements in the left and in theyaves.

right potential well, is numerically calculated for a rf-SQUID  Note that, in the considered problem, the existence of
as functions of the external flux,. We focused our attention other levels except the two resonant levéls g) in left

on the effect of resonant pumping on the transition probabilyjgnt) notential well is essential. The transition to levels with

ity in a condition for which the excitedumped levein the energyE smaller then(E, r) determinates the width of these

left potential well is close to a level in the right potential o -
P ; levels and the transition probability/ from the left to the
well. The dependence of the transition probabilityon the right potential well. The idealized model, where such states

external parametes, (see Fig. 4 shows two peaks. The first Ken | b id onlv in th I
is connected with theesonant tunnelingnd the second one &€ Nt taken into account, can be valid only in the small-
time intervalt<(y,+yg) ™" (see Ref. 1B

is associated with theesonant pumpingThe relative posi-
tions of these two peaks strictly depend on the pumping fre-
quency and on the external flux biasing the SQUID.
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