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The electrostatic potential above the Abrikosov vortex lattice, discussed earlier by BiadlefPhys. Rev.
Lett. 77, 566(1996)], is evaluated within the Ginzburg-Landau theory. Unlike previous studies we include the
surface dipole. Close to the critical temperature, the surface dipole reduces the electrostatic potential to values
below the sensitivity of recent sensors. At low temperatures the surface dipole is less effective and the
electrostatic potential remains observable as predicted earlier.
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I. INTRODUCTION face is strongly reduced by the surface dipole, which arises

A boundary between the normal and superconductingue to unpalanged pairing forcéAt lower temperatures th?
states is characterized by two length scales. First, the loc urface dipole is not so (_effectlve and the electrostatic field
fraction of superconducting electrons is measured by théeaches observable amplltudes. .

Ginzburg-LandauGL) wave functiony which changes on Th_e paper is organized as fOHOWS.' In '_[he next section we
the scale of the GL coherence lengthSecond, there is a speC|fy the assumed expenmer_]tal situation and the physical
magnetic fieldB screened on the scale of the London pen_plcture of charge transfer contributing to the expected elec-

etration depth. This picture is common to type-I supercon- trostatic potential. In Sec. Ill we derive a relation between
: at-he GL wave function and the electrostatic potential and pro-

ductors, in which the superconducting state is nearly sep id imol . f th ial for th ic field

rated from the normal state, and to type-l| superconductors}{' ‘? a spr e estimate OI ft. Iedp_oten]:ua horlt_ e m?gnetw Ied

in which the normal state is dispersed into individual lines ar from the upper critical field, .., for the limit of separate
vortices. In Sec. IV we discuss numerical results, and in Sec.

called vortices. v .
In extreme type-Il superconductors, where\, the spa- ¥ W€ Summarize.

tial shape of the superconducting fraction provides a sharper
image of vortices than the spatial dependence of the mag- Il. BASIC ASSUMPTIONS

ic fi 1
netic f|e_|d. Blatteret al. propo;ed to o_bser\_/e the space Let us first describe the experimental situation we assume
modulation of the superconducting fraction via the electro-

i field that i d to devel b ; in our discussion. A superconducting film fills the laydr —
static field that Is expected to develop above a surface oL, g Thjs film is thin on the characteristic scales of the

superconductors. Their estimate of the electric field create%l_ theory L<¢,\, but it is thick with respect to the BCS
by the Abrikosov vortex lattice predicts values well observ-Coherence length > £, The magnetic fieldlz penetrates
able by. recent expenmenpal tools. . the superconductor in form of vortices. The electrostatic po-
The idea of Blatteet al. is as follows. According to the- tential will be scanned close to the surfacezat,> 0

oretl_cal predlct_loné,“‘the space modulation of the supercon- Now we turn to the underlying physical picture. The elec-
duc_tlng gapA_ induces a charge tran_sfer SO t_hat an eIEECtro'trostatic potential leaking out of the superconductor is gen-
static potential(called the Bernoulll poten'u}_al develqps erated by charges that can be sorted into three grdipbe
inside the superconductor. Since the Bernoulli poterngigd bulk charge, (i) the surface dipole, andii) the surface

a f‘;”C“O” of the square of the gap.can be used to observe charge. These contributions are discussed in individual sub-
|A]2. The GL wave function is linearly proportional to the sections

superconducting gap, i.e4 can be used to obseryg?.

The Bernoulli potential cannot be detected inside the su-
perconductor, it leaks out from the surface, however. Its de-
tection outside might be possible by scanning force micros- The bulk charge covers a transfer of electrons from the
copy or using the Kelvin capacitive pickup with a single- inner to the outer regions of the vortices. There are various
electron transistor as a sensor. forces taking part in this transfer. First, electrons rotate

As far as we know, such an experiment has not been pearound the vortex center so that the inertial force acts in the
formed yet, but it is under preparation. It is likely that the centrifugal direction. Second, the magnetic field pushes elec-
experimental setup will first be tested on conventionaltrons via the Lorentz force—also pointing outward. Third,
superconductor3.In this paper we show that close to the the energy of Cooper pairs is lower than the energy of free
critical temperature the electrostatic potential above the sutelectrons, therefore unpaired electrons in the vortex core are

A. Bulk charge
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attracted towards the condensate around the core. The resul-Ref. 6 the local value of the dipole as a function of the GL
ing force again points outward. These forces deplete the eleevave function at the surface. The internal electrostatic poten-
tron density in the vortex core, creating the Coulomb forcetial and the potential step due to the surface dipole add. The

which balances all the other forces. resulting observable surface potential
Due to these various contributing mechanisms, there is no
single characteristic length scale of the charge modulation. edy = _ el (1)

The shortest scale is the GL coherence lergtéflecting the
pairing forces. The contributions of the inertial and the Lor-.

entz forces change on the scale of the London penetratiofi 91Ven by the free energy per electidhleren is the total

depth\. The long-range periodicity is, of course, enforceqdensity of pairable electrorishe total densityandf, is the
by the Abrikosov vortex lattice. density of the electronic part of the free energy.

The bulk charge has been evaluated within various ap- | "€ surface potentidll) follows from general thermody-

proximations mostly covering only some of the acting forces"aMic assumptions and it can be implemented within differ-
Studies based exclusively on the Lorentz and the inertiafNt @Pproximations of the free energy, compare Ref. 6 with
forces have been performed within the classical picture oft€f- 18- In our treatment the free energy is evaluated from
the superconducting flufcand later with its quantum forrh. the GL theory.

In the last decade, the charge transfer in vortices has been
derived from the electron-hole nonsymmetry of the density C. Surface charge
of states at the Fermi levél Later it was recognized that the
electron-hole nonsymmetry effects are identical to forces dug;

e 10 L
to the pairing energ¥® In result there are two scientific Since e is much shorter than the GL coherence length

dialects for the pairing forces. We prefer _the original one. the BCS coherence length, and the London penetration
Approaches that cover all the above listed forces are ei

. . X .depth\, we use the limith— 0 and treat the surface charge
ther phenomenological or microscopic. The phenomenologi

cal studied use the theory of the GL type. The microscopic as an ideal two-dimensional surface charge. The surface
. ) ) charge represents the utmost layer of the superconductor.
studied?®are based on the Bogoliubov—de Gennes theor 9 P y b

It h fioning that in the vicinity of. the elect Y- The surface charge simplifies the construction of the elec-
IS worth mentioning that in the vicinity of ; the €lectro- 4 qqtatic potential inside and outside of the superconddctor.
static potential obtained from thelgnlcroscoplc studies agr€€Reglecting contributions of the order nt./ £, one can sim-
with the r.esult of _the GL th.eor’yz. . . ply evaluate the potential at the inner side of the surface
The microscopic thgory IS superior to th.e other's. as \;:?cov-d)(o_) and match it with the potential outsid&0,)=¢(0_).
Z;Sd?tllslgp%;ag]z gonltir(lzt;%tillﬂg i?if)?arlgfsst?ctlg dat(L)th]Il‘flee?/iCir?iy The potential outside decays far from the surface to its mean
9 PP y ty value ¢(z) — () for z— . Due to this asymptotic condition,

of T, or to small gradients of the superconducting gap. O o o .
the E)ther hand, sgch complete treatrgent is complicatgd anae potential is fully specified by its value at the surface. In

; - - our case the potential at the surface includes the surface di-
numerically demanding. Here we use the simpler GL theor hole b(0.)= $(0.) = do, Where by is given by formula(l).
B. Surface dipole The matching of the inner and outer potentials is simple in

. . _the two-dimensional Fourier representation
The second kind of charges determining the electrostatic .

potential is a surface dipole due to which the potential has a 2
finite step. A spatially resolved profile of this step is not ¢(K):§ dr ¢o(r)cosK - 1), (2
known. It is expected that the dipole is located near the sur- o

face inside the superconductor. In analogy with the spacgnerer = (x,y) andK are discrete momenta that have to be

prlofile of the §uper.con.dl,|.cting gap, one can speculate that thgyecteq according to the structure of the Abrikosov vortex
width of the dipole is similar to the BCS coherence lengfh  |5ttice. The ared) of the elementary cell is given by the

The present treatment is limited to temperatures closg.to .45 magnetic fiel® and the elementary fluxp,=BQ.

where &< &. Accordingly, we assume the width of the sur- one gptains the potential at any distarzce0 from the sur-
face dipole to be infinitesimal.

So far, the role of the surface dipole in superconductors i;ac
npt fully .clar|f|ed. There is an |mp9rtant experimental expe- (2 =(H+ > dK)e zcogK -r), (3)
rience with the electrostatic potential above the surface in the K#0
Meissner state, however. Precise measurements of the elec-
trostatic potential made by Morris and Bro¥mvith the help ~ from the Fourier component®) and the mean valués)
of the capacitive Kelvin method have shown a surprising=(1/Q)) fdr ¢o(r). It is easy to check that the potentid)
result—all contributions of the pairing force¥ are canceled satisfies the Poisson equation.
by the surface dipole. The experiment of Morris and Brown The potential or its gradient at a finite distance will natu-
thus indicates that the surface dipole has to be taken intmally be necessary for interpretations of future measurements.
account. On the other hand, we feel that this technical step does not

Based on the assumption that the surface dipole resultsring any new insight to the problem. In our discussion we
from the surface depression of the BCS gap, we have derivedill focus on the surface valuey(r)=d¢(r,0).

Finally, there is the surface charge distributed on the scale
the Thomas-Fermi screening length- from the surface.
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IIl. SURFACE POTENTIAL WITHIN THE GINZBURG- (-ih V- e*A)Z

LANDAU THEORY -~ == ay— By (6)

With respect to electrostatic phenomena it is advantaT
geous to introduce the GL theory in the formulation proposede
by Bardeert>?°The free energy

his equation is solved numerically with the help of the it-
ration procedure described in Ref. 24.
Before we enter a discussion of numerical results pre-

P - 22 sented in the next section, it is useful to express the surface
fa=5yT 4+ o W=V —eA)"Y—econ o potential as a function of the amplitude of the GL wave
5 function. To this end we multiply E(6) by ¢ which yields
- 1572, /1 - 2 @) (1./2m*)¢.(—ih.V—e*A)Zzﬂ:—a|¢|2—,8| ke If we substitute
n this relation into the free energip), we find that the free

is composed of three terms: the free energy of Gorter angrllergy4 is the negative va!ue of the qgarﬂc te@:
Bly*. The surface potentiall) thus attains the simple

Casimir (last two termy the kinetic energy in the quantum _ 2
form (second terry and the subtracted free energy of the orm
normal state(first term). Here, y is the linear coefficient of 1
the specific heat. The condensation energy determines the ey = 2—,3|¢|4- (7)
critical temperature ascon:%yTg. :

For temperatures close T the superconducting fraction At this point we can stress the first effect of the surface
is small, 2y4?/n< 1. Expanding the square root in this small dipole. According to Eq.(7), the electrostatic potential is

value one arrives at the GL free energy proportional tdy{*. In contrast, the internal potential used by
1 Blatteret al.
- ar _ A2 2,1 4
feI—Zm*Iﬂ( ihV-eA) ¢+a|zﬂ| +2/3|¢| . (5 _’)’_Tca_Tc 5
edp = n |41 (8)

Note that the kinetic energy is not in the form proposed by

Ginzburg and Landatt. In particular, it becomes negative at is proportional to|4%. The different order of the amplitude
the vortex core. The volume integral over this kinetic energydoes not ruin the basic idea of the proposed experiment—the
differs from the GL form by a surface contribution which is electrostatic potential at the surface can be used to monitor
identically zero if the GL boundary condition is satisfied, seethe GL wave function.

the discussion in Ref. 22.

From the limit 2¢/°/n— 0 one obtains the GL parameters B. Upper estimate of the amplitude
a=-(1/2n)y(T2-T?) and B=(1/2n?)yT2 Below we com- , . . . .
pare the surface potential with the bulk potential. The bulk dlt |sfp(;55|blle to eSta.‘b“Sh an_ulpp_l?r: estimate of t?ehampll-
potential includes pairing forces proportional to density delude of the electrostatic potential. The minimum of the po-

i i i 2
rivatives da/dn and dB/dn. The temperature dependence istenot'a_:_r(j) |stat t'a bvortex chentgtr, Whe.red’OHO smci|¢| b
essential in this point agl,/an+ 0. After we have evaluated _ ° € potentiabd, reaches its maximum somewnhere be-

derivatives, we can use the usual limiting parameters of th yveen vortices. The magnetic field in the Abrikosov vortex
GL theory a=—(1/n)yT,(T,~T) and 8= (1/2n?) yT2 attice suppresses the amplitude of the GL wave function
cre ¢ compared to its valug’=-a/B in the nonmagnetic state.
To complete the description of the GL free energy Wer refore from| |2<w2°° one obtains an upper estimate of
recall that the charge of the Cooper pair equals twice th Y=L PP

electron charge” =2e. The massn’ =2m depends on impu- The maximum as

rities and has to be fitted, e.g., from the GL coherence length 1a® &gon )

using &m’y(T2-T?)=nA2% For niobium we useT.=9.5 K edo =< Y = 74(1 - 9
and y=719 JIm3K?) giving £.,,=1.6x 10* J/n?. The elec-

tron density isn=2.2x 1078/m?, so that the condensation Here we have used=(-4e.,/n)(1-t), wheret=T/T, to
energy per particle ig.,/n=4.59 ueV. For pure niobium highlight that close to the critical temperature the amplitude
the effective mass isn=1.2m, and the GL parameter i  of the potential vanishes &% -t)>.

=0.78. To illustrate how the surface dipole changes the surface
potential we compare the full potentiéd) with the internal
A. The surface potential potential (8). For the amplitude of the internal potenti@)
To proceed we have to derive the GL equation for the GLOne has the upper estimate
wave functiony. For the assumed thin layer, induced cur- YT dTea  eeondIn T
rents are proportional to the layer widthand they are neg- g <~ TEE = n ainn 8(1-1). (10

ligible in the limit L<\. The vector potentiad thus has the o _ _
same value as in the absence of the superconducting layEer niobium one finds from the McMillan formula the value

andB is practically constant in thin layefs. %yTC(aTC/ﬁn):GJS,u,eV, see Ref. 11. This corresponds
From the minimum of the free energy we arrive at the GLto ¢In T./dInn=0.74. Numerical factors of the surface
equation potential (9) and the internal potentiall0) are thus quite
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15 FIG. 1. The relative supercon-
ducting fraction w=|¢{2/ 2 (left
column and the electrostatic po-
tential ¢ (right column at the sur-
face of the superconductor with
(i the Abrikosov vortex lattice. The
distances are normalized to the
vortex separation. The tempera-
ture T=0.95T. is used for both
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comparable. What makes the difference is the temperature IV. NUMERICAL RESULTS FOR NIOBIUM
dependence.

Now we discuss the electrostatic potential with the help of
C. Lower temperatures numerical results. To be specific, we use material parameters

The above upper estimate of the potential amplitude i$f niobium.
based on the zero free energy at the vortex center and the Figure 1 displays the GL wave functiom=|y{?/yZ,
finite free energy in the nonmagnetic state. These values camhere .. is the GL wave function in the absence of the
be easily estimated also at temperatures far fionindeed, magnetic field 22=n(1-t%. The profile ofw is compared
as long as the free energy is adjusted to vanish in the normalith the surface electrostatic potenti@) according to Eq.
state, it has to be zero at the vortex center, where the supe(?) near the critical temperatui®=0.95T..
conducting condensate vanishes. The free energy in the non- |n the first row we show the result for niobium with
magnetic state can be taken from the thermodynamic mea-1.5. The low magnetic field=0.08B,, already falls into
surements in the fornfe=—ec(1-t%)% Accordingly, the  the |imit of isolated vortices, because vortex cores are well

upper estimate of the amplitude of the potential is separated and the superconducting fraction between them
e reaches its nonmagnetic value with less than 1% difference.
ey < %”(1 -t?)2, (11)  The amplitude of the electrostatic field is thus well described

by the estimate11).

This estimate applies to any temperature. Of course, it ap- Compared to the superconducting fraction, the electro-
proaches Eq(9) for t— 1. static potential is much flatter in the center of the vortex.
Similarly we can use the relation between the GL waveThis feature directly follows from formulé7). At the vortex
function and the superconducting densify{2=ng together  centerx?+y?=r2—0, the superconducting fraction quadrati-

with the phenomenological law,=n(1-t%) to obtain the es- cally vanishes withr, w=r2. According to Eq(7) the poten-

timate of the internal potential tial vanishes there with the fourth order of ¢yxr*. We
believe that this will be possible to be observed in future
Econd IN T¢ 4
ey < ————2(1 —t%). (120  measurements.
dinn The second row in Fig. 1 withk=0.78 corresponds to
Fort—1 this estimate goes to E(L0). pure niobium. We choose the magnetic field close to the

One can see that for low temperatures1, estimates upper critical fieldB=0.7818,, when the superconducting
(11) and (12) yield comparable amplitudes of the potential. fraction is suppressed to less than 1/3 of its nonmagnetic
This indicates that at low temperatures the surface dipole igalue. In this regime the GL wave function is well approxi-
less effective in reducing the surface potential. mated by the asymptotic solution due to Abrikog®v.
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A. Estimate from the Abrikosov solution 0.5

For B close toB,, the amplitude of the GL wave function inertial + Lorentz
undergoes rapid changes while its shape remains nearly un- 0 ————————————————— :
changed. As in Fig. 1 we express the superconducting frac- \ present theory
tion 2/¢1?/n in terms of its non-magnetic valug2,|>/n=1 o5l
—t# as the relative superconducting fractior |2/ |i..|?. E A I

For the fixed shape of the GL wave function, the mean = '\\
(w)=(1/Q) [drw and its fluctuationw?)=(1/Q) [ dr w? are I N no surface dipole
proportional as{w?)=pB(w)?, where the Abrikosov coeffi- N T s
cient for the triangular lattice i8,=1.16. Taking 1 with 15t \‘\.\\ ]
b=B/B., as a small perturbation, one finds that the free en- BI;;;;:I ---------------------
ergy (5) has the minimum whefw? =(w)(1-b). The mean . . ) . .
and the fluctuations thus read as followSor details of the 2 0 0.2 0.4 0.6 0.8 1
derivation see Ref. 25. In the limit of the thin layer the term X,y
(w?)12x? disappears as it follows from the induced magnetic . o ) .
field.) FIG. 2. Various approximations of the electrostatic potential at

the surface. The parametefs=0.95T;, «=1.5, andB=0.06B,
correspond to the upper row in Fig. 1. The symmetric lifssid)
(w)= ,8_(1 ~b), <w2> = ﬁ_(l - b)z- (13) are cu?s along the az?s, the nonsy?nmetric Iini(siasheai aE:E(l:uts
A A along they axis in Fig. 1. The line “present theory” is given by Eq.
With the help of the mean valug¢$3) we can express the (7), the line “no surface dipole” by Eq16), the line “inertial +
mean values of the electrostatic potentials. The surface pd-orentz” corresponds to the first term of E@L6), and the line
tential (7) with the surface dipole included has the mean“Blatter et al” is according to Ref. 1.

value haps it is better to neglect also other pairing forces. In this

€con 5ol ) approximation the surface potential equals the first term of
(edg) = T(l -t9) ﬁ_(l —b)~. (14 Eq.(16) which covers the inertial and Lorentz forces.
A Third, following Blatter et al. we take a single vortex
If we extend the estimate by Blattet al. to magnetic fields located atx,y=0. Its GL wave function is modeled by the
close to the critical field, we find that it has the mean valueClem ansat® v~ 1- —£1(2+y?+£). The vortex radius,
found from the minimum of the free energy is given &y
2(1 - t4)—(1 b). 15 =&2(1-K3(E/MNIKE(E,/N), whereK, andK; are modified
dlnn Ba Bessel functions. According to the approximation of Khom-
skii and Kusmartsevadopted by Blatteet al., We take only

Comparing(14) with (15) one can see that due to the 1
surface dipole, the electrostatic potential vanishes close twg 758622(]/(1 term of Eq16) with decon/ (9”~27’T (el om)

L . ey i
the upper critical field ag1-b)%, rather than 1% without The potentials plotted in Fig. 2 can be sorted into two

fiold might be one o experimentally well sccessible toae of2UPS: The itemal potentidlo) and Blatir's result are
the presence of the surface dipole ery similar except for some minor differences folloyvmg
: from the Clem model and the neglect®f/ dn. The potential
B. Effect of the surface dipole (7) with the surface dipole included, and the approximation
by inertial and Lorentz forces are much smaller than the
botentials from the first group.

€condIN T InT,

(edg)) =

As already mentioned the surface dipole is responsible fo
the flat region of the potential at the center of the vortex. In
this section we discuss the role of the surface dipole in more
detail.

inertial + Lorentz

In Fig. 2 we compare the present theory yielding formula 10 }
(7) with three approximations. First, if one neglects the sur-
face dipole, the surface potential becomes equal to the inter- L N
nal potential* S
= -10
1 Jecon2l 1 ©
ep=-— inV-eA)?Zy+ —=" T 20
¢ . - )2y non
=30 present theory
Tzﬂ 2 4
_ __y(@ ) 19
2\ n  2n -40 ¢
The material parameters for niobiude,,,/dn=8.71 ueV -500 02 02 08 08 1
1 2 _ . . B . B K
and5(dy/dn)T¢=3.85ueV, are derived in Ref. 11. X,y
Second, the surface dipole results from the pairing forces.
As long as one does not account for the surface dipole, per- FIG. 3. Detail of Fig. 2.
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05 . : : , 20
inertial s Lorenz | AN T
o= 15
~. present theory
N\
N T e inertial + Lorentz
N\
5 -0.5 \\ no surface dipole = 10 |
3 z
< °~N
o S T 5|
-1.5 Blatteretal. T ~tme—ee. B
0 present theory
-2 s s . S e N S St SR
0 0.2 0.4 0.6 0.8 1 -5 . . . ,
XYy 0 0.2 0.4 0.6 0.8 1
£
X,y
FIG. 4. The same as Fig. 2 but with parameters of the lower row _ _
in Fig. 1, i.e.,T=0.95T, x=0.78, andB=0.78B,. FIG. 5. Detail of Fig. 4.

. : 4 L
To compare our potentigl7) with the approximation by Idsi[;j(;:g tg)ntehﬁnrgs)t;?ﬁ?p I, see Eq(7), while without the

inertial and Lorentz forces, we have expanded the scale in According to various mechanisms to suppress the GL

Fig. 3. The numerical result clearly shows that the approxiy, ave function, we can outline possible cases for which the

ma’:c!i)n gy. |Hert|ezjl andthLorAthi forces htas ? t\{_ery t?}'ﬁerempresented theory can be tested. At the vortex ¢gife<r? so
protile. riefly, above the ADrikosov: vortex 1atlice the SUr . o 4 \while ¢bg, o r2. At temperatures close to the criti-

face dipole cancels the major part of the con'trlbutlon of. pair-. temperaturé— 1, | {2 1t, thereforeco (1-t)2 while
ing forces. On the other hand, it is not possible to avoid the¢ %1—t. Finallv. at maanetic fields close to the upper criti-
full calculation and to replace the action of the surface dipole’ 2! ' Y, 9 PP

by simply omitting the pairing forces cal field, b—1, [yf*=1-b so that ox(1-b)° while
Figure 4 shows the different potentials fo=0.78 corre- «1-h. Of course, there are rich experimental realizations

sponding to pure niobium of the lower row in Fig. 1. Most of W'tcvg'eioslg?.ig t?)ur?wirr?tqonr??r?g?'?nigz{lc?ﬁssbf our aporoach
the features are identical to the situation of largein the would 1 : imitati urapp i

upper row in Fig. 1 and in Fig. 2. But, in the internal poten- First, the formula fqr the surface potential has been der[ved
tial (16) the GL wave function is now suppressed by theonly for the magnetic field parallel to the surface. According

magnetic field compared to Blatter's approach. Indeed, th 0 its interpretation in terms of the pairing energy we believe

Clem approximation is derived for the limit of low magnetic . at it. a]so applies for the perpendicular field, nevert_hele_ss,
fields and thus it does not cover the suppression its validity should be tested. Second, the local approximation

The detail presented in Fig. 5 demonstrates that the fulgf the surface dipole requires the BCS coherence Ieggtp
theory and the approximation by inertial and Lorentz forces € _m_uch smaller than the GL coher_e_nce lengtiihis is .

result in very different profiles of the electrostatic potential.SatISerd at temperatures CIO.Se the _crltlcal temperature, while
One can see that the neglect of pairing forces leads to th ne can expect sharper spatial profiles at lower temperatures.

potential of much larger amplitude and the wrong sign. or this region of lower temperature, however, our results
have to be taken only qualitatively.
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