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The electrostatic potential above the Abrikosov vortex lattice, discussed earlier by Blatteret al. fPhys. Rev.
Lett. 77, 566s1996dg, is evaluated within the Ginzburg-Landau theory. Unlike previous studies we include the
surface dipole. Close to the critical temperature, the surface dipole reduces the electrostatic potential to values
below the sensitivity of recent sensors. At low temperatures the surface dipole is less effective and the
electrostatic potential remains observable as predicted earlier.
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I. INTRODUCTION

A boundary between the normal and superconducting
states is characterized by two length scales. First, the local
fraction of superconducting electrons is measured by the
Ginzburg-LandausGLd wave functionc which changes on
the scale of the GL coherence lengthj. Second, there is a
magnetic fieldB screened on the scale of the London pen-
etration depthl. This picture is common to type-I supercon-
ductors, in which the superconducting state is nearly sepa-
rated from the normal state, and to type-II superconductors,
in which the normal state is dispersed into individual lines
called vortices.

In extreme type-II superconductors, wherej!l, the spa-
tial shape of the superconducting fraction provides a sharper
image of vortices than the spatial dependence of the mag-
netic field. Blatteret al.1 proposed to observe the space
modulation of the superconducting fraction via the electro-
static field that is expected to develop above a surface of
superconductors. Their estimate of the electric field created
by the Abrikosov vortex lattice predicts values well observ-
able by recent experimental tools.

The idea of Blatteret al. is as follows. According to the-
oretical predictions,2–4 the space modulation of the supercon-
ducting gapD induces a charge transfer so that an electro-
static potential scalled the Bernoulli potentiald develops
inside the superconductor. Since the Bernoulli potentialf is
a function of the square of the gap,f can be used to observe
uDu2. The GL wave function is linearly proportional to the
superconducting gap, i.e.,f can be used to observeucu2.

The Bernoulli potential cannot be detected inside the su-
perconductor, it leaks out from the surface, however. Its de-
tection outside might be possible by scanning force micros-
copy or using the Kelvin capacitive pickup with a single-
electron transistor as a sensor.1

As far as we know, such an experiment has not been per-
formed yet, but it is under preparation. It is likely that the
experimental setup will first be tested on conventional
superconductors.5 In this paper we show that close to the
critical temperature the electrostatic potential above the sur-

face is strongly reduced by the surface dipole, which arises
due to unbalanced pairing forces.6 At lower temperatures the
surface dipole is not so effective and the electrostatic field
reaches observable amplitudes.

The paper is organized as follows. In the next section we
specify the assumed experimental situation and the physical
picture of charge transfer contributing to the expected elec-
trostatic potential. In Sec. III we derive a relation between
the GL wave function and the electrostatic potential and pro-
vide a simple estimate of the potential for the magnetic field
far from the upper critical field, i.e., for the limit of separated
vortices. In Sec. IV we discuss numerical results, and in Sec.
V we summarize.

II. BASIC ASSUMPTIONS

Let us first describe the experimental situation we assume
in our discussion. A superconducting film fills the layer −L
,z,0. This film is thin on the characteristic scales of the
GL theory L!j ,l, but it is thick with respect to the BCS
coherence lengthL@j0. The magnetic fieldB iz penetrates
the superconductor in form of vortices. The electrostatic po-
tential will be scanned close to the surface atzscan.0.

Now we turn to the underlying physical picture. The elec-
trostatic potential leaking out of the superconductor is gen-
erated by charges that can be sorted into three groups:sid the
bulk charge,sii d the surface dipole, andsiii d the surface
charge. These contributions are discussed in individual sub-
sections.

A. Bulk charge

The bulk charge covers a transfer of electrons from the
inner to the outer regions of the vortices. There are various
forces taking part in this transfer. First, electrons rotate
around the vortex center so that the inertial force acts in the
centrifugal direction. Second, the magnetic field pushes elec-
trons via the Lorentz force—also pointing outward. Third,
the energy of Cooper pairs is lower than the energy of free
electrons, therefore unpaired electrons in the vortex core are
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attracted towards the condensate around the core. The result-
ing force again points outward. These forces deplete the elec-
tron density in the vortex core, creating the Coulomb force
which balances all the other forces.

Due to these various contributing mechanisms, there is no
single characteristic length scale of the charge modulation.
The shortest scale is the GL coherence lengthj reflecting the
pairing forces. The contributions of the inertial and the Lor-
entz forces change on the scale of the London penetration
depthl. The long-range periodicity is, of course, enforced
by the Abrikosov vortex lattice.

The bulk charge has been evaluated within various ap-
proximations mostly covering only some of the acting forces.
Studies based exclusively on the Lorentz and the inertial
forces have been performed within the classical picture of
the superconducting fluid7 and later with its quantum form.8

In the last decade, the charge transfer in vortices has been
derived from the electron-hole nonsymmetry of the density
of states at the Fermi level.3,4 Later it was recognized that the
electron-hole nonsymmetry effects are identical to forces due
to the pairing energy.9,10 In result there are two scientific
dialects for the pairing forces. We prefer the original one.

Approaches that cover all the above listed forces are ei-
ther phenomenological or microscopic. The phenomenologi-
cal studies11 use the theory of the GL type. The microscopic
studies12–16 are based on the Bogoliubov–de Gennes theory.
It is worth mentioning that in the vicinity ofTc the electro-
static potential obtained from the microscopic studies agrees
with the result of the GL theory.12–16

The microscopic theory is superior to the others as it cov-
ers all important contributing mechanism in a unified way16

and its region of applicability is not restricted to the vicinity
of Tc or to small gradients of the superconducting gap. On
the other hand, such complete treatment is complicated and
numerically demanding. Here we use the simpler GL theory.

B. Surface dipole

The second kind of charges determining the electrostatic
potential is a surface dipole due to which the potential has a
finite step. A spatially resolved profile of this step is not
known. It is expected that the dipole is located near the sur-
face inside the superconductor. In analogy with the space
profile of the superconducting gap, one can speculate that the
width of the dipole is similar to the BCS coherence lengthj0.
The present treatment is limited to temperatures close toTc,
wherej0!j. Accordingly, we assume the width of the sur-
face dipole to be infinitesimal.

So far, the role of the surface dipole in superconductors is
not fully clarified. There is an important experimental expe-
rience with the electrostatic potential above the surface in the
Meissner state, however. Precise measurements of the elec-
trostatic potential made by Morris and Brown17 with the help
of the capacitive Kelvin method have shown a surprising
result—all contributions of the pairing forces9,10 are canceled
by the surface dipole. The experiment of Morris and Brown
thus indicates that the surface dipole has to be taken into
account.

Based on the assumption that the surface dipole results
from the surface depression of the BCS gap, we have derived

in Ref. 6 the local value of the dipole as a function of the GL
wave function at the surface. The internal electrostatic poten-
tial and the potential step due to the surface dipole add. The
resulting observable surface potential

ef0 = −
fel

n
s1d

is given by the free energy per electron.6 Heren is the total
density of pairable electronssthe total densityd and fel is the
density of the electronic part of the free energy.

The surface potentials1d follows from general thermody-
namic assumptions and it can be implemented within differ-
ent approximations of the free energy, compare Ref. 6 with
Ref. 18. In our treatment the free energy is evaluated from
the GL theory.

C. Surface charge

Finally, there is the surface charge distributed on the scale
of the Thomas-Fermi screening lengthlTF from the surface.
SincelTF is much shorter than the GL coherence lengthj,
the BCS coherence lengthj0, and the London penetration
depthl, we use the limitlTF→0 and treat the surface charge
as an ideal two-dimensional surface charge. The surface
charge represents the utmost layer of the superconductor.

The surface charge simplifies the construction of the elec-
trostatic potential inside and outside of the superconductor.1

Neglecting contributions of the order oflTF
2 /j2, one can sim-

ply evaluate the potential at the inner side of the surface
fs0−d and match it with the potential outsidefs0+d=fs0−d.
The potential outside decays far from the surface to its mean
valuefszd→ kfl for z→`. Due to this asymptotic condition,
the potential is fully specified by its value at the surface. In
our case the potential at the surface includes the surface di-
pole fs0+d=fs0−d=f0, wheref0 is given by formulas1d.

The matching of the inner and outer potentials is simple in
the two-dimensional Fourier representation

fsK d =
2

V
E

V

drf0sr dcossK · r d, s2d

wherer ;sx,yd andK are discrete momenta that have to be
selected according to the structure of the Abrikosov vortex
lattice. The areaV of the elementary cell is given by the
mean magnetic fieldB and the elementary flux,F0=BV.
One obtains the potential at any distancez.0 from the sur-
face,

fsr ,zd = kfl + o
KÞ0

fsK de−uK uz cossK · r d, s3d

from the Fourier componentss2d and the mean valuekfl
=s1/Vdedrf0sr d. It is easy to check that the potentials3d
satisfies the Poisson equation.

The potential or its gradient at a finite distance will natu-
rally be necessary for interpretations of future measurements.
On the other hand, we feel that this technical step does not
bring any new insight to the problem. In our discussion we
will focus on the surface valuef0sr d=fsr ,0d.
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III. SURFACE POTENTIAL WITHIN THE GINZBURG-
LANDAU THEORY

With respect to electrostatic phenomena it is advanta-
geous to introduce the GL theory in the formulation proposed
by Bardeen.19,20 The free energy

fel =
1
2gT2 +

1

2m* c̄s− i" ¹ − e*Ad2c − «con
2ucu2

n

− 1
2gT2Î1 −

2ucu2

n
s4d

is composed of three terms: the free energy of Gorter and
Casimir slast two termsd, the kinetic energy in the quantum
form ssecond termd, and the subtracted free energy of the
normal statesfirst termd. Here,g is the linear coefficient of
the specific heat. The condensation energy determines the
critical temperature as«con=

1
4gTc

2.
For temperatures close toTc the superconducting fraction

is small, 2ucu2/n!1. Expanding the square root in this small
value one arrives at the GL free energy

fel =
1

2m* c̄s− i" ¹ − e*Ad2c + aucu2 + 1
2bucu4. s5d

Note that the kinetic energy is not in the form proposed by
Ginzburg and Landau.21 In particular, it becomes negative at
the vortex core. The volume integral over this kinetic energy
differs from the GL form by a surface contribution which is
identically zero if the GL boundary condition is satisfied, see
the discussion in Ref. 22.

From the limit 2ucu2/n→0 one obtains the GL parameters
a=−s1/2ndgsTc

2−T2d and b=s1/2n2dgT2. Below we com-
pare the surface potential with the bulk potential. The bulk
potential includes pairing forces proportional to density de-
rivatives ]a /]n and ]b /]n. The temperature dependence is
essential in this point as]Tc/]nÞ0. After we have evaluated
derivatives, we can use the usual limiting parameters of the
GL theorya=−s1/ndgTcsTc−Td andb=s1/2n2dgTc

2.
To complete the description of the GL free energy we

recall that the charge of the Cooper pair equals twice the
electron chargee* =2e. The massm* =2m depends on impu-
rities and has to be fitted, e.g., from the GL coherence length
using j2m*gsTc

2−T2d=n"2. For niobium we useTc=9.5 K
andg=719 J/sm3K2d giving «con=1.63104 J/m3. The elec-
tron density isn=2.231028/m2, so that the condensation
energy per particle is«con/n=4.59meV. For pure niobium
the effective mass ism=1.2me and the GL parameter isk
=0.78.

A. The surface potential

To proceed we have to derive the GL equation for the GL
wave functionc. For the assumed thin layer, induced cur-
rents are proportional to the layer widthL and they are neg-
ligible in the limit L!l. The vector potentialA thus has the
same value as in the absence of the superconducting layer
andB is practically constant in thin layers.23

From the minimum of the free energy we arrive at the GL
equation

s− i" ¹ − e*Ad2

2m* c = − ac − bucu2c. s6d

This equation is solved numerically with the help of the it-
eration procedure described in Ref. 24.

Before we enter a discussion of numerical results pre-
sented in the next section, it is useful to express the surface
potential as a function of the amplitude of the GL wave

function. To this end we multiply Eq.s6d by c̄ which yields

s1/2m*dc̄s−i"¹−e*Ad2c=−aucu2−bucu4. If we substitute
this relation into the free energys5d, we find that the free
energy is the negative value of the quartic termfel=
−1

2bucu4. The surface potentials1d thus attains the simple
form

ef0 =
1

2n
bucu4. s7d

At this point we can stress the first effect of the surface
dipole. According to Eq.s7d, the electrostatic potential is
proportional toucu4. In contrast, the internal potential used by
Blatter et al.

efBl =
gTc

n

]Tc

]n
ucu2 s8d

is proportional toucu2. The different order of the amplitude
does not ruin the basic idea of the proposed experiment—the
electrostatic potential at the surface can be used to monitor
the GL wave function.

B. Upper estimate of the amplitude

It is possible to establish an upper estimate of the ampli-
tude of the electrostatic potential. The minimum of the po-
tential s7d is at a vortex center, whereef0→0 since ucu2
→0. The potentialef0 reaches its maximum somewhere be-
tween vortices. The magnetic field in the Abrikosov vortex
lattice suppresses the amplitude of the GL wave function
compared to its valuec`

2 =−a /b in the nonmagnetic state.
Therefore fromucu2øc`

2 one obtains an upper estimate of
the maximum as

ef0 ø
1

2n

a2

b
=

«con

n
4s1 − td2. s9d

Here we have useda=s−4«con/nds1−td, where t=T/Tc, to
highlight that close to the critical temperature the amplitude
of the potential vanishes ass1−td2.

To illustrate how the surface dipole changes the surface
potential we compare the full potentials7d with the internal
potentials8d. For the amplitude of the internal potentials8d
one has the upper estimate

efBl ø −
gTc

n

]Tc

]n

a

b
=

«con

n

] ln Tc

] ln n
8s1 − td. s10d

For niobium one finds from the McMillan formula the value
1
2gTcs]Tc/]nd=6.78meV, see Ref. 11. This corresponds
to ] ln Tc/] ln n=0.74. Numerical factors of the surface
potential s9d and the internal potentials10d are thus quite
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comparable. What makes the difference is the temperature
dependence.

C. Lower temperatures

The above upper estimate of the potential amplitude is
based on the zero free energy at the vortex center and the
finite free energy in the nonmagnetic state. These values can
be easily estimated also at temperatures far fromTc. Indeed,
as long as the free energy is adjusted to vanish in the normal
state, it has to be zero at the vortex center, where the super-
conducting condensate vanishes. The free energy in the non-
magnetic state can be taken from the thermodynamic mea-
surements in the formfel=−«cons1−t2d2. Accordingly, the
upper estimate of the amplitude of the potential is

ef0 ø
«con

n
s1 − t2d2. s11d

This estimate applies to any temperature. Of course, it ap-
proaches Eq.s9d for t→1.

Similarly we can use the relation between the GL wave
function and the superconducting density 2ucu2=ns together
with the phenomenological lawns=ns1−t4d to obtain the es-
timate of the internal potential

efBl ø
«con

n

] ln Tc

] ln n
2s1 − t4d. s12d

For t→1 this estimate goes to Eq.s10d.
One can see that for low temperatures,t!1, estimates

s11d and s12d yield comparable amplitudes of the potential.
This indicates that at low temperatures the surface dipole is
less effective in reducing the surface potential.

IV. NUMERICAL RESULTS FOR NIOBIUM

Now we discuss the electrostatic potential with the help of
numerical results. To be specific, we use material parameters
of niobium.

Figure 1 displays the GL wave functionv;ucu2/c`
2,

where c` is the GL wave function in the absence of the
magnetic field 2c`

2 =ns1−t4d. The profile ofv is compared
with the surface electrostatic potentialf0 according to Eq.
s7d near the critical temperatureT=0.95Tc.

In the first row we show the result for niobium withk
=1.5. The low magnetic fieldB=0.06Bc2 already falls into
the limit of isolated vortices, because vortex cores are well
separated and the superconducting fraction between them
reaches its nonmagnetic value with less than 1% difference.
The amplitude of the electrostatic field is thus well described
by the estimates11d.

Compared to the superconducting fraction, the electro-
static potential is much flatter in the center of the vortex.
This feature directly follows from formulas7d. At the vortex
centerx2+y2=r2→0, the superconducting fraction quadrati-
cally vanishes withr , v~ r2. According to Eq.s7d the poten-
tial vanishes there with the fourth order ofr, f0~ r4. We
believe that this will be possible to be observed in future
measurements.

The second row in Fig. 1 withk=0.78 corresponds to
pure niobium. We choose the magnetic field close to the
upper critical fieldB=0.7818Bc2, when the superconducting
fraction is suppressed to less than 1/3 of its nonmagnetic
value. In this regime the GL wave function is well approxi-
mated by the asymptotic solution due to Abrikosov.25

FIG. 1. The relative supercon-
ducting fractionv= ucu2/c`

2 sleft
columnd and the electrostatic po-
tentialf sright columnd at the sur-
face of the superconductor with
the Abrikosov vortex lattice. The
distances are normalized to the
vortex separation. The tempera-
ture T=0.95Tc is used for both
cases, the GL parameterk and the
magnetic field are specified for
each row. Material parameters are
of niobium.
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A. Estimate from the Abrikosov solution

For B close toBc2, the amplitude of the GL wave function
undergoes rapid changes while its shape remains nearly un-
changed. As in Fig. 1 we express the superconducting frac-
tion 2ucu2/n in terms of its non-magnetic value 2uc`u2/n=1
− t4 as the relative superconducting fractionv= ucu2/ uc`u2.

For the fixed shape of the GL wave function, the mean
kvl=s1/Vdedrv and its fluctuationkv2l=s1/Vdedrv2 are
proportional askv2l=bAkvl2, where the Abrikosov coeffi-
cient for the triangular lattice isbA =1.16. Taking 1−b with
b=B/Bc2 as a small perturbation, one finds that the free en-
ergy s5d has the minimum whenkv2l=kvls1−bd. The mean
and the fluctuations thus read as follows.sFor details of the
derivation see Ref. 25. In the limit of the thin layer the term
kv2l /2k2 disappears as it follows from the induced magnetic
field.d

kvl =
1

bA
s1 − bd, kv2l =

1

bA
s1 − bd2. s13d

With the help of the mean valuess13d we can express the
mean values of the electrostatic potentials. The surface po-
tential s7d with the surface dipole included has the mean
value

kef0l =
«con

n
s1 − t2d2 1

bA
s1 − bd2. s14d

If we extend the estimate by Blatteret al. to magnetic fields
close to the critical field, we find that it has the mean value

kefBll =
«con

n

] ln Tc

] ln n
2s1 − t4d

1

bA
s1 − bd. s15d

Comparings14d with s15d one can see that due to the
surface dipole, the electrostatic potential vanishes close to
the upper critical field ass1−bd2, rather than 1−b without
the dipole. We expect that this dependence on the magnetic
field might be one of experimentally well accessible tests of
the presence of the surface dipole.

B. Effect of the surface dipole

As already mentioned the surface dipole is responsible for
the flat region of the potential at the center of the vortex. In
this section we discuss the role of the surface dipole in more
detail.

In Fig. 2 we compare the present theory yielding formula
s7d with three approximations. First, if one neglects the sur-
face dipole, the surface potential becomes equal to the inter-
nal potential11

ef = −
1

2m*n
c̄s− i" ¹ − e*Ad2c +

]«con

]n

2ucu2

n

−
T2

2

]g

]n
S ucu2

n
+

ucu4

2n2D . s16d

The material parameters for niobium]«con/]n=8.71meV
and 1

2s]g /]ndTc
2=3.85meV, are derived in Ref. 11.

Second, the surface dipole results from the pairing forces.
As long as one does not account for the surface dipole, per-

haps it is better to neglect also other pairing forces. In this
approximation the surface potential equals the first term of
Eq. s16d which covers the inertial and Lorentz forces.

Third, following Blatter et al. we take a single vortex
located atx,y=0. Its GL wave function is modeled by the
Clem ansatz26 v<1−jv

2/ sx2+y2+jv
2d. The vortex radiusjv

found from the minimum of the free energy is given byjv
=jÎ2Î1−K0

2sjv /ld /K1
2sjv /ld, whereK0 andK1 are modified

Bessel functions. According to the approximation of Khom-
skii and Kusmartsev3 adopted by Blatteret al., we take only
the second term of Eq.s16d with ]«con/]n< 1

2gTcs]Tc/]nd
=6.78meV.

The potentials plotted in Fig. 2 can be sorted into two
groups. The internal potentials16d and Blatter’s result are
very similar except for some minor differences following
from the Clem model and the neglect of]g /]n. The potential
s7d with the surface dipole included, and the approximation
by inertial and Lorentz forces are much smaller than the
potentials from the first group.

FIG. 2. Various approximations of the electrostatic potential at
the surface. The parametersT=0.95Tc, k=1.5, andB=0.06Bc2

correspond to the upper row in Fig. 1. The symmetric linesssolidd
are cuts along thex axis, the nonsymmetric linessdashedd are cuts
along they axis in Fig. 1. The line “present theory” is given by Eq.
s7d, the line “no surface dipole” by Eq.s16d, the line “inertial 1
Lorentz” corresponds to the first term of Eq.s16d, and the line
“Blatter et al.” is according to Ref. 1.

FIG. 3. Detail of Fig. 2.
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To compare our potentials7d with the approximation by
inertial and Lorentz forces, we have expanded the scale in
Fig. 3. The numerical result clearly shows that the approxi-
mation by inertial and Lorentz forces has a very different
profile. Briefly, above the Abrikosov vortex lattice the sur-
face dipole cancels the major part of the contribution of pair-
ing forces. On the other hand, it is not possible to avoid the
full calculation and to replace the action of the surface dipole
by simply omitting the pairing forces.

Figure 4 shows the different potentials fork=0.78 corre-
sponding to pure niobium of the lower row in Fig. 1. Most of
the features are identical to the situation of largerk in the
upper row in Fig. 1 and in Fig. 2. But, in the internal poten-
tial s16d the GL wave function is now suppressed by the
magnetic field compared to Blatter’s approach. Indeed, the
Clem approximation is derived for the limit of low magnetic
fields and thus it does not cover the suppression.

The detail presented in Fig. 5 demonstrates that the full
theory and the approximation by inertial and Lorentz forces
result in very different profiles of the electrostatic potential.
One can see that the neglect of pairing forces leads to the
potential of much larger amplitude and the wrong sign.

V. SUMMARY

We have evaluated the electrostatic potential above the
surface of a thin superconducting layer with the Abrikosov
vortex lattice. It has been shown that the surface dipole
strongly modifies the magnitude of this potential, in particu-
lar when the GL wave function has a small magnitude. This

is due to the relationf0~ ucu4, see Eq.s7d, while without the
dipole one findsfBl ~ ucu2.

According to various mechanisms to suppress the GL
wave function, we can outline possible cases for which the
presented theory can be tested. At the vortex coreucu2~ r2 so
that f0~ r4 while fBl ~ r2. At temperatures close to the criti-
cal temperaturet→1, ucu2~1−t, thereforef0~ s1−td2 while
fBl ~1−t. Finally, at magnetic fields close to the upper criti-
cal field, b→1, ucu2~1−b so that f0~ s1−bd2 while fBl

~1−b. Of course, there are rich experimental realizations
with mesoscopic superconducting devices.

We would like to mention the limitations of our approach.
First, the formula for the surface potential has been derived
only for the magnetic field parallel to the surface. According
to its interpretation in terms of the pairing energy we believe
that it also applies for the perpendicular field, nevertheless,
its validity should be tested. Second, the local approximation
of the surface dipole requires the BCS coherence lengthj0 to
be much smaller than the GL coherence lengthj. This is
satisfied at temperatures close the critical temperature, while
one can expect sharper spatial profiles at lower temperatures.
For this region of lower temperature, however, our results
have to be taken only qualitatively.
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