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Temperature dependence of specific heat and penetration depth of anisotropic-gap
Bardeen-Cooper-Schrieffer superconductors for a factorizable pairing potential
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An explicit expression for the temperature dependence of the specific heat of clean anisotropic-gap super-
conductors is derived within the weak-coupling BCS approximation. The specific heat is presented as a
functional of the superconducting gap on the Fermi surface. The obtained formula interpolates between the
correct low coupling jump al, and the low-temperature behavior for< T;. For isotropic superconductors,
the formula gives a relation between the specific heat and the superconducting gap. For anisotropic supercon-
ductors, the interpolation formula incorporates averaging of powers of the gap anisotropy function over the
Fermi surface and provides a suitable set for fitting model Hamiltonians to experimental data. The work of the
interpolation formula is illustrated bgi) the Pokrovsky formula for the specific heat junip) Gor’kov and
Melik-Barkhudarov formulas for the Ginzburg-Landau coefficiefits} the Moskalenko two-band formula for
the specific heat jumgjv) the temperature dependence of the specific heat for the two-band model, applicable
to MgBy; (v) the two-dimensionati-wave model, applicable for YB&u;O,_s; and(vi) the Zhitomirsky and
Rice triplet p-wave model with horizontal line nodes for,.8uQ,. The temperature dependence of the pen-
etration depth is illustrated by fitting the general theoretical formula to the experimental data for, MgB
YBa,Cuw0;_s5 and the triplet superconductor,Bu0;.
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I. SPECIFIC HEAT volume divided by the Boltzmann’s constdqgt
S(T)=-2n,Inn,+ (1 -ny)n(l-ny), (1

Virtually all recently studied superconductors exhibit con-
siderable anisotropy of the Superconducting %DT) over where the factor 2 tak_es into ?:lCCOUﬂt the Spln de_generacy and
the Fermi surface,=E. Despite the strong-coupling effects the overline denotes integration over thedimensional mo-
and influence of disorder, which are all essential as a rule, fof?€ntum space
a qualitative analysis it is particularly useful to start with the (" “ d°p
weak-coupling BCS approximation for clean superconduct- fp:f f )

. ) - o — (27h)
ors. In this case, very often model factorizable pairing poten-
tials give an acceptable accuracy for the preliminary analysis The Fermi filling factors of independent Fermions
of the experimental data.

The aim of the present work is twofold. First, we shall n :; 7 = & (3)
derive an explicit interpolation formula for the temperature P exp2z)+1 P 2T’
dependence of the §peC|f|c he@tT). The form.ula is for- whereT is the temperature timdsg;, are expressed by spec-
mally exact for factorizable pairing kernels, which are a con,m of superconductor
sequence of the approximative separation in the supercon-
ducting order parameter derived in the BCS weak-coupling E,= \'§§+ A% & =ep~Er. (4)
approximation by Pokrovskii.Our formula reproduces the
specific heat jump derived by PokrovsKior arbitrary weak-

f(p). (2)

Here we have to emphasize that for a model factorizable
. , . pairing potentiaV, ;= x,xq the gap function is always sepa-
coupling kerngls and Gor'kov and Me_llk-Barkhuda%o'g- rable as a product of a temperature-dependent function that
sults for the Ginzburg-LandalGL) coefficients of an aniso- can be associated with the GL order param@éF) and a

tropic superconductor. That is why we believe that therigid temperature-independent function of the momenjgm

suggested formula can be useful for the analysis of experirhe nontrivial resukis that this separation of the variables is
mental data when only gap anisotropy and band structure argsymptotically correct in the BCS weak-coupling limit for an
known. Second, within the same system of notions, Weyrpjtrary kernel, which is generally nonfactorizable. In fact, a
present the recent results by Kogdar the penetration depth  factorizable kernel is a fairly unnatural property that, how-
A(T) and propose for the zero-scattering case formulas thaver, can occur if the pairing interaction is local, intra-
may be used for experimental data processing. atomic, and located in a single atom in the unit cell. This is
We begin with the entropy of a Fermi system per unitthe special case of thed interaction at the copper si& in
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the CuQ plane? The separability ansatz, though, shall be 1 *
employed here to obtain a general interpolation formula for- 0i(2) = f 0a(2dz=1, (13
mally exact for factorizable kernels. We assume that the gap *
anisotropy functiony, is known either as a result of solving the other term of the specific heat
the general BCS equation &, inferred from experimental
data processing, or merely postulated within some model Ca=T3,8(n,T)drn(T) (14)
Hamiltonian, which is often the case for the high-
temperature and exotic superconductors.

With the above remarks, we will derivé&T) for the sepa- Cr=a(n,D[-dp(T)]a(T,~T). (15
rable gap

2coskz J_

can be written as

Equation (12) is actually a Maxwell-type equatiod,dF
Ay(M =Q(Mxp (5) =drd,F, where F is the free energyS=-(d:F), and A
==(d,F)y; cf. Ref. 7.

and a factorizable kernélWe apply the ansatt5) to the Differentiating Eq.(8) we obtaindA=0 and

BCS gap equatidh

d°g  1-2n = U
Ap(T):J (Zﬂﬁ)DVp,q 2E, IA4(T), (6) T @Al m  blym o

and use the convention that a positive sign\bf, corre- where the functions andb represent a generalization of the
sponds to the attraction of charge carriers and a negativ@'— coefficients for arbitrary temperature and order parameter

potential energy of interaction. Substituting here 7¢(3) —
b(7,T)=-(0 =—— , 17
and introducingn=|Q|?, we obtain a transcendental equa-
tion for the temperature dependence of the Q&) (2 = ™ l(tanhz __1 ) (19)
14,3)2\ z  cositz/’
GA(n,T) =1,
2 ) -
tanh f Oy(2)dz=1, (19
Aln,T) = (XPZE—ZE> (8) —co
P . . .
where we have used the identity 1r,2tanhz, and the cou- and¢ is the Riemann zeta function. Then
ling constant is defined b&=1/A(0,T.). Details on the 2 472 [¥2a.(z) P
P g i ; G ( : C) : CA = @ = _[_nga(—p)]e(Tc_T) (20)
derivation of the trial function approximatidrieq. (7)] and b~ 723 Yoz
the numerical solution of Eq8) for T.<wp are given in XpSblop
Appendix A. and
For the specific heat of the superconducting phase per unit ———
volume divided bykg we have Ca_ 12 [Xp8:(%)] oT.-T) 21)
== BT, .
_ oE C,  7L(3) X306(2p)0(2p)
C(T) =TdS(»(T),T) = 2E,dnp, =C, + Cy, 9

The functionsg;(z,), i=a,b,c, introduced in Refs. 7 and 8,

whered;=d/dT. HereC, is the “normal” part of the specific have sharp maximum at the Fermi surface and in a good

heat Y
approximation we have
P
C(T) =T(0r9),= -9z, (10 o A
R X502 = 2Toe(rilyp) Yo=2%, (22
where
where
@=2_Z2_ Jw (2)dz=1 (11) 0
WO ootz )% ’ ri(y) = f G(\E+yAdx,  x= f_%
and (dr...), is the temperature differentiation for the
constant-order parameter. For zero-order paramete) at r0)=1, r(=)=0, i=ab.c. (23)
T, and aboveC, is just the specific heat of the normal phase ' Co ' "
Cn(T)=C,(T, 7=0). We define averaging over the Fermi surface
Introducing —_—
foo(&p) —
= = =
B i e (=8 w=uE)=dE)., (24
CY( 7]1T) =" (0—'TA)77 - (&WS)T - 2T2 ’ (12)
where vg is the density of electron states per unit energy,
where volume, and spin at the Fermi level. In such a way we obtain
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C(T) = 57 Tre(relyp)) (25) Fou(7,T) = a(0,T)(T - T9|QP + 3b(0,T)Q*.  (3D)
and The simplest method to calculate the GL coefficients is to
diﬁerentiité the free energy after a-v transformations
Ca_ 12 (dralyp)?0(T=T) 20 F(7,T)=H-TS Then
= 3 .
C, 743 (xpro(Yp)Xre(Yp)) a(0,T) = (3,F)r(n=0,T=T),
At T, where the gap is small angl0)=1 this formula gives )
the Pokrovski result for the reduced specific heat jump b(0,To) =(7,F)r(7=0,T=Ty). (32)
202 If a Van Hove singularityVHS) is close to the Fermi level,
AC _ 12 (27) then the formulas for GL coefficients are slightly modified

Cn(To)  74(3) (xp

For the GL coefficient Eq412) and(17), the approximation
(22) gives

2 +o0
a(0,Ty) = %(_Qf V(Eg + 2T X)ga(X)dX,

_ TR [

P(0.T) = 8rT: J...

a(nT) = TOGr(Ay/2T)), V(Er + 2T g (X)X,

+oo

C,,(TC)=§772TC J W(Eg + 2T X)ge(X)dx. (33

-0

b7 )= e (/2 (28)

. . . Some important references on the influence of the VHS on
Then the specific heat takes the simple GL form for arbitraryy, properties of superconductors and pioneering works on

temperatures the two-band model are given in Ref. 8. Let us evaluate the
5 upper limit that can give a VHS. Let us take the one-
Cc(T) =Cy(77,T)+TM0(TC—T). (29) dimensional(1D) density of states/(E)«1/VE-E,ys and

b(»,T) Er=Eyus=0; there is no doubt that this mathematical illus-
tration is unphysical. In this case we have for the reduced

Here, for the functions on the right-hand side we have subgpecific heat jump\C/Cy(T,), Eq. (27), an additional factor
stituted the thermal equilibrium value of the order parameter

7(T)=|Q(T)[?, obtained from the solution of Ed8). This * ) 2
BCS formula(29) is an example how good the physical in- f ga(X)dx
tuition was in the phenomergology of superconductivity. Ac- - —
cording to the Gorter-Casinfimodel the specific heat is a 2 2

sum o?a “normal” part and another thermF? governed by the f 9e(X )d?(J G5(X)lx

temperature dependence of the order parameter and having

exactly the GL form. The Gorter-Casimir two-fluid model Although this mathematical example is not realistic, it can be
has very simple physical grounds. In the self-consistent apseen that the VHS emulates qualitatively strong-coupling
proximation, the entrop$(T,A(T)) is a function of the tem- corrections to the BCS theory: an enhancement of
perature and a temperature-dependent order param€ker AC/Cy(Te) and 2,,(0)/ Tc. Another simulation of strong-
The temperature differentiatioB(T)=T(dS/dT) inevitably ~ coupling effects can be demonstrated by a simple model den-
gives two terms in Eq(9). According to the general idea by Sity of states, corresponding to the case of layered cuprates
Landaul® the order parameter is an adequate notion for de-

scription of second-order phase transitions, regardless of the v(§)=1+klin .
concrete particle dynamics. Theexpansion by Wilson and ¢~ Evms|
Fisher is only an ingenious realizqtion pf the same Landay, illustration, we solve the equation
idea when the influence of fluctuations is essential.

0

=251, Xx\E. (34)

0 0

(35

Again, at T, the general formulas Eq(28) give the “D tanh(\ & + A%(T)/2T) i
Gor’kov and Melik-Barkhudard¥result for the GL coeffi- f Ny 1(§dé=G (36)
cients e \
taking wp=10, G=1/2, and k=10. The Z
7{(3)ve =[2A(0)/T)/ (27! y) versusEyys/ T, plot is given in Fig. 1.

a(o,TC>:;—z<x§>, b(0,To) = od. (30

8772T§ It can be seen that 7% enhancement corresponds,tg
=T,. Thus, the influence of the VHS on the specific heat is
This result can be directly derivé@rom the variational free  much stronger than on th&(0)/T, ratio.

energyF(#,T) of the superconductor, which close Tg has Let us also recall the general GL formula for the specific

the GL form heat jump afT,
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1.1 2
872 oa +Cyr
Cu(T) = Ve [C187Talyd) + Coraly))] . (42)
o8| 74(3) C18Te(y) + Cor o(Y2)
& 106 For the jump of the specific heat this formula reduces to the
R AN 4
= \\ Moskalenkd* result
=)
i Lo N 2 2\2
N AC 12 (Cixi1+Cxa) (43)
102 Cu(Td  7¢(3) cxi+cs
L I 5 3\ which is, in fact, a special case of the Pokrovskirmula

E, /T [Eqg. (27)] applied to the two-band model. For application of
the two-band model to the specific heat of Mgihe reader
FIG. 1. Z=[2A(0)/T.]/ (27! y) vs Eyns/ T, computed for the s referred to Ref. 13.
model density of states E¢35). Note that 7% enhancement corre-  The analysis of the specific heat for MgBives perhaps

sponds toEys=Tc and the maximum enhancement<9%. the best corroboration of the BCS results due to Pokrovskii
and Moskalenkd# Solving the Eliashberg equation and per-
a%0,T,) forming first-principle calculations for the specific heat of
AC=T, bOT.) - (37)  MgB,, Golubovet al. (Ref. 15, Fig. 3 derived 65% reduc-
11 C

tion of the specific heat jump &i.. On the other hand, Egs.
The two-band model provides probably the simplest pos{27) and (43), using the parameters from Ref. 15, give

sible illustration of the derived formula for the specific heat(x??/(x*)=58% reduction of the\C/Cy(T,) ratio. The 7%

(for pioneering references on the two-band model see Reflifference between those two estimates is in the range of the

8). The model is applicable with a remarkable accutaty  experimental accuracy, and the Eliashberg corrections to the

MgB,—a material that has been in the limelight in the phys-BCS result is difficult to extract. Unfortunately, the groups

ics of highT, superconductivity over past years. solving the Eliashberg equation have not compared their re-
For the normal specific heat we have sults to the classical results of the BCS theory for anisotropic
superconductotsin order to analyze several percent strong-
C,(T) = %WZTVF[Clrc(yl) +Cor o(Yo)], (39) coupling corrections to the specific heat jump for MgB

In the single-band casg=1 and Eq.(42) gives a simple
Where relation between the specific heat and the BCS isotropic gap

c(T) 12 ri(y)
A A = Sy
p=ol =22 =, (39 o @y “

2T 2T
where y(T)=A(T)/2T. For anisotropic superconductors,
and ¢, and cove are the densities of states for the two functions of the gap have to be averaged independently on
bands of the superconductor. Abolg or in the case of the Fermi surface; this is the interpretation of the general
strong magnetic field8> B, we have formulas[Eq. (28) and Eq.(29)]. Thus, we have the natural
generalization

Cn(T) = 2720 T. (40) - 12 Wy
r
As pointed out earlier, within the weak-coupling BCS ap- o (re(yp)) + 73 —p—p—X4a Y , (45)
proximation, Pokrovskli has proved the general separation n(T) {3 Xpro(yp))

of the variablegEq. (5)] that for a two-band superconductor
results in a weakly temperature-dependent gap rafio ! . .
For illustration, we now apply this general formula to

=A/A,=x1/x,. For MgB, determination of the two gaps . A,
has been carried out by directional poin'[-contact.three typical cases and the results are shown in Fig) te

spectroscopy in single crystals. One can see that for modeI'SOtmpiC'gap BCS modet,=1, familiar from a number of

6-18 (j; i i
evaluations the temperature dependence of the gap ratFSthoc’kSl’ (ii) the two-dimensiona{2D) d-wave super-
could be neglected conductory,=cos 2p, tane=p,/p,; and(iii) a two-band su-

For the moments of the gap we ha¥e perconductor,=c,=1/2, for which the gap ratio parameter
is taken to reproduce the same reduced specific heat jump of

wherey(T)=A,(T)/2T=x,Q(T)/2T.

A P N the d-wave superconductd®=\3+y8=2.41 or 0.41
<ani<_e)> =& riys) sz/iz(y2), i=ab,c (41 The latter two models are often applied to analyze the
2T (€18 + )" behavior of Cu®@ or MgB, superconductors. Note also the

qualitative difference. For d-wave superconductor we have
where the normalization is irrelevant in further substitutiona quadratic specific heat at<T., whereas for a two-band
in the GL coefficients. Finally, for the second GL order- superconductor we have the exponential behav@im)
parameter term of the specific heat below Theve obtain cexp(—A,/2T) (see also Fig. B
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25 14 have taken into account four nodal points. In such a way Eq.
——— isotropic gap ,,/ i (10) giVeS
222 St P
cmeTy=8 T Jm—qsdq 689,
%1.5 5 v “ mh?ugvely costtq T RPuavE]
% { L7 (47
.,f‘/," where we have used I6)/7~6.89[cf. Ref. 19, Eq. 2.9
05 T This result together with Eq.(40) gives for the
<N superconducting-to-normal specific heat ratio
% 02 04 06 08 10 c T
TIT, —(t<1)=1.0475——t, (48)
Cy A VEUAUE

FIG. 2. (Color online Superconducting-to-normal specific heat
ratio C(T)/C\(T) vs the reduced-temperature T/ T, according to
Eq. (45 computed for(i) an isotropic-gap BCS superconductor
(dashed ling (i) a two-band superconducta;=c,=1/2 with a

wheret=T/T, is the reduced temperature. The penetration
depth has a similar linear low-temperature behavior for
d-wave superconductors.

gap ratio paramete$=2.41 (dash-dotted ling and (iii) the 2D
d-wave superconductoy,=cos 2p, tane=p,/py (solid line). Note

Very often fluctuations of stoichiometry and crystal de-
fects make the theory of homogeneous crystal inapplicable

that for t>0.2 two of the curves would be experimentally Close to the critical region. Lél.(r) be a weakly fluctuating

indistinguishable.

Gaussian field of the space vector Hence, the simplest

] ) possible empirical model is to apply a Gaussian kernel to the
Consider now the low-temperature behavior of the speyeoretically calculated curve. Then for the heat capacity we

cific heat per unit area for a 2@-wave superconductor. pave

Close to a node, the gap is proportional to the momentum

component along the Fermi contaig(0) = v,p;. The corre- o = +°° Co it _(t=t)?[ dt 49
sponding superfluid velocity, is much smaller than the v = . theo)€X 2(A1)? | At\2r (49)

Fermi velocityvg, which parametrizes the dependence of the
normal excitations energ¥,~vep; as a function of the The philosophy of applying the convolution technique to all
transversal to the Fermi contour momentum component. Faheoretical curves with singularities was advocated in the

the groundstate quasiparticle spectrum we hakg
| 22

~ \Juipf+vEpt. It is convenient to introduce the dimension-

less variables);=v,p,/2T and g,=vep;/ 2T. In terms of the
latter we have for the area element in momentum space

dpdp. _ (2T)?27qdg_ 2EdE

4 - - y
(2mh)?  vavp 2mh)?2 whuave

(46)

whereq=1/qi+05=2,=E,/ 2T, and for axial symmetric func-
tions we can use polar coordinatésf. Ref. 19. Here we

2

[e) exp. data, Ref. 11 & oL
——— fit, Eq. (45) &
—  fit, Eq. (49)

15

CTyC(T)

0.5

02 04 06 08 1.0
/T,
FIG. 3. (Color online Comparison between the

superconducting-to-normal specific heat ra@id@)/C\(T); the the-
oretical curve is computed following Ref. 13 with=0.49, 6=2.9
(solid line) and the experimental data for MgRre taken from Ref.

book by Migdal?® Such an empirically smeared curve with
At=0.027 describes better the experimental data for MgB
close to T, TAt=1.1K, B,(0)=2.5T, and B (0)At
=750 G. The result is depicted in Fig. 3, where the smeared
theoretical curve is compared to the experimental ata.
order to achieve a good fit of the theory to the experimental
data we have treater] and § as fitting parameter&f. Refs.
11, 13, 21, and 22 The values used;=0.49 andé=2.9 are
slightly different from the set of parameters used later for
computing the penetration depth, but are still in agreement
with different spectroscopic evaluations. In order to reach the
analogous quality of the fit oE(T) for cuprates we have to
take into account simultaneously the gap anisotropy and the
VHS in the general expressioh&q. (12) and Eq.(17)].

An analogous to Eq49) smearing of the fluctuation mag-
netization above; reads

_ ’ (T(’; - Tc)z
M(B,T—Tc) = Mtheor(B’T_Tc)eX —m
dT,
X /_—C (50)
V27T AL

However, for big fluctuations off, we have to take into
account the appearance of superconducting domains. Such a
precise investigation of fluctuations in the magnetization of
Nb and Sn in the past led to the discovery of twinning-plane

11 (circles. The theoretical curve is convoluted with a GaussianSuperconductivity. For analytical GL results for twinning-

kernel [Eq. (49)], chosen to fit best the experimental ddtst
=0.027. The experimental dathare digitized from Fig. 3 of Ref.
13.

plane superconductivity see Ref. 23.
Here we wish to emphasize that a large body of experi-
mental data foB,(T) are strongly influenced by the disor-
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der. It is imperative to cut off a region of width At or For a heuristic consideration of the result by Kogjam
B.o(0)At close toB(T,) if we wish to determineB.,(T) by  T=0 see Ref. 24. AT=0 the Fermi surface is shifted as a
extrapolation of properties from the superconducting phasegid object in the momentum space under the influence of
or fluctuation behavior of the normal phase. Various spurioushe electromagnetic field. This shift of all conduction elec-
curvatures oB,(T) have been reported merely as a result oftrons explains why for the penetration depth the influence of

disorder of the crystals. VHS is less essential than the influence on the heat capacity.
The increase of the kinetic energy of all conduction electrons
Il. ELECTRODYNAMIC BEHAVIOR is actually the increase of the Gibbs free-energy density

— 2\\ 2i2 i
An analysis of the London penetration-depth tensor, simi-AG_(llz‘gOC JA7)%. At finite temperatures the number of su-

lar to that carried out by Kogan in Ref. 3, gives perfluid electrons isq(A,/2T) times smaller.
The penetration depths @t=0 can be also expressed by

_ e? the optical masses and the Hall constant of the normal metal
[)\ Z(T)]arﬁ: S_ZVF<rd(yp)vaU,8>1 a!B: X1y121 (51) at hlgh magnetlc f|e|d

oc?
where _ e 1
IN20)]p= oz (M,
Iy Np_ Pep o
Vp=—"7, My=—"=—— (52
Jp p dp d°p
. . —=2e a3
are the band velocity and effective mass and R, L <k (2mh)3
“ 1 2 (-3/2
ro(y) = (y/w)zg0 (y/m)? + <n+ 5) . (53 f d*p =) 3g S oy
ml= Zfo=Er (2mh)* P _ ~epEF (2mh)v, PP
ra(y) = 76@)(ylm? <1, ry(=)=1. f d’p f dp
3 3
For comparison, the conductivity tensor of the normal phase ep<Er (2mh1) ep<Er (2mh1)
in the 7, approximation reads (59)
Oap™= 2VFez<TpvaUB>- (54)  the last equation being a consequence of the Gauss theorem
3 _ :
For penetration depths along the principal crystal axes Wefap<EEd p(a/ap)—gl_igszFdSp, wheredS, is the element of the
have in the two-band model Fermi surface oriented along the outward normal. For an
extensive discussion on galvanomagnetic properties of nor-
M2 = M2(0)rg(yn) + Ao 5(0)rg(ya), (55)  mal metals and inclusion of hole pockets with volume den-

sity n, for R;*=e(n,—n;) see the textbook by Lifshitz and
Pitaevskif® or the monograph by Lifshitz, Azbel, and
Kaganov?® The Bernoulli effect can be easily observed in
almost compensated superconductors for whigk n, and
the Hall constant is bigger.

where for uniaxial crystals, such as MgBhere are only
four constantsi, 1(0)=\,1(0), A 2(0)=)\y »(0), \,1(0), and
N;2(0). These can be obtained from electron-band
calculationg’?

e? In the superconducting phase the Hall consfantcan be
-2 Ab(T) . . .

[A (T)]aB:_S 22 > Gfd o [ determined by the Bernoulli potential

0 b=1,2
1
; Ap(T) Ap=-TR. N(T)i% (59
=2 (xbz(o»a,;rd(%), (56) 280C”
b=1,2

. . generalization for the anisotropic case can be obtained by the
where the band indek labels the leaf of the Fermi surface gpvious replacememzjzajahiﬁjﬁ. Here we suppose that
over which the averaging of the electron velocities is carried < (T), j. being the critical current. If the magnetic fied
out. For a discussion and details see the review by Kogaps parallel to the surface of a bulk superconductor this for-
and Bud'ko® There is a natural “Eliashbergization” of this mula gives

result(cf. Refs. 15, 22, and 25-27

BZ
°° 2 ® 2 Ap=—-R,—. (60)
. ée _ E 2mTAD . 2mTAD 240
d 2T (A2+0)2)3/2 <2 ~2 1372’ . . i i i
n=0 \2p ™ ®n n=0 [Ap(wn) + wn,p] All charge carriers interact with the electric potentiglbut

(57) only the superfluid partcry(A,/2T) creates kinetic energy.

- The constancy of the electrochemical potential in the super-
where w,=(2n+1)#T are the Matsubara frequencie8,,  conductor gives the change of the electric potential, i.e., the
=Zy(wp) @y, Ap(@n) =Zy(wp)Ap(wn) andZ,(w,) is the normal-  Bernoulli effect. For the temperature-dependent condensa-
ization factor. Analogous expressions can be worked out fotion energyAGz—Bg(T)IZ,uo the corresponding change of
the specific heat. the electric potential is given by
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_, BiD ‘ . :
AQD = Roo . (6 1) = — — isotropic-gap -
20 0.8 O  MgB, Ref. 30 Y
—+— two-band fit P4
. . o YBCO, Ref. 19 oY
For complete determination of the Hall const@ht, the pen- Eos 2D d-wave fit oS Jm
etration depth\(T), and the optical mass of conduction elec- % ’
trons in a clean superconductaf. Ref. 24, Eq.(20)], % o
PN(
m= % (62) 0.2
Soc Roc

we have to investigate the Bernoulli effect for thidy,,
<\(T), and thick,dg, > \(T), superconducting films of the
same materialM.,=2m can be called effective mass of the  FIG. 4. (Color onling In-plane normal fluid density 1
Cooper pairs; this parameter can be significantly increasedi?(0)/\3(T) vs reduced temperatute=T/ T, computed for three
by disorder. cases{i) isotropic-gap BCS superconductaashed ling (ii) two-

For the temperature dependence of the electrochemicabnd superconductor MgBwith parameters;=0.59, §=7.1/2.8
potential of the normal phase we ha\ref. 29, Eq.(12.16] (dash-dotted ling and(iii) 2D d-wave superconductdsolid line).
The experimental points for YB&u;O,_s (squares are digitized
from Ref. 19, and the corresponding theoretical®idave curve is
calculated according to E468) with the renormalization factor
=1.4. Some experimental points for MgHcircles are digitized
Close to a VHS the influence of the energy derivative of theffom Fig. 9 of Ref. 30(for details see the original work
density of states can be significant and measurable.

The entropy and specific heat related to the volume den-
sity of the free energy of superconducting condensation

_ 12 V' (Eg)

= T?.
6 v(Ep)

eAo (63

Wy 1t W, o=1, (V%) = Cy(v2)1 + Cx(v2)s. (67)

B%(T)/2u, can be determined by electric capacitor measure
ments, applying surface-temperature oscillations. For discu
sions of possible experimental setups see Ref. 24 and ref
ences therein.

It is a matter of technical calculations to verify the iden-

tity
1 21-3/2 +oo dx
/ 2+<n+—>] +f —_—
[(y ™ 2 — 2 cosRVX? +y?

(64)

(ylm)?2

n=0

11

which transcribes into the form

ra(y) +rq(y) =1. (65)

In such a way theelectrodynamic behavioof a supercon-
ductor can be expressed in terms of the functions, defined f
description of itsthermodynamic behaviotJsing Eqs.(65)

A

and(51) we obtain
-2 <ra<_E>UaUB>

20l (avp

Within the framework of London electrodynamicgy(T)
=1-N\%(0)/\%(T) is the normal fluid density angg(T)
=\2%(0)/\?(T) is the superfluid one, having total charge den-
sity pT)/R... For a two-band superconductor, E¢s6) and
(66) give for the penetration depth along the principal crystal
axes

pn(T)=1-

\2(0) _
NA(T)

Ay(T)

2T

(v2)
b= Cp ;:}i;,

2 W bld

b=1,2

ps(T) =

For a set of parameters see the review by Kogan and

§§ud’ko.3 We take$=7.1/2.8 according to the spectroscopic
d

atd331 (see also the point contact spectroscopy data in Ref.
32). In Fig. 4 we compare our theoretical calculation with the
experimental data fok(T) by Carrington and Manzan®.
Here we takec;=0.59, which givesw,,~w,,~0.5. The
functionsr;(y) for i=a,b,c,d can be easily programmed for
the purposes of experimental data processing. The graphs of
ri(y) and the correspondingj(z) functions are given in Figs.

5 and 6. The temperature dependence of the penetration
depthA(T) is also programmed for isotropic-gap, two-band,
and model 2Dd-wave superconductors. In the 2iDwave
case the theoretical result is compared to the experimental
datd® for YBa,Cu;0,_s which is also depicted in Fig. 4.
The linear dependence of A2(0)/\%(T) at low tempera-
tures for YBaCuzO,_ is discussed in Eq2.10 of Ref. 19.

%or a 2Dd-wave superconductor the general form{iz.

(51)] gives

1.0

FIG. 5.
(i=a,b,c,d).

(Color onlineg Plot of the ri(y) functions
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0.5 1 T
@
04 08
03 06
G Q' — — = isotropic-gap
s e .—.— 2D triplet, Eq. (70)
S 04]....... 2D triplet, Eq. (71)
o ——— 3D triplet, Eq. (69)
5 0.2
0
0.0 0/2.5 1
o Sr,RuO,, Ref. 35 4
- . . A SrRuO,, Ref.37 1
FIG. 6. (Color onling Plot of theg;(z) functions(i=a,b,c). 2|| === isowopicgmp 8Zi8
.—-— 2D tiplet, Eq. (70) f)
i e s e 2D triplet, Eq. (71)
\20) f” ( BmadT) )dcp g T
TN=——= ry| Z——— cos -, (68 2
ps(T) (T ), ¢ 2T % 2w (68 S
&}

where the temperature dependence of the order parameter is
described in the Appendix. We are using an oversimplified
model for cuprate superconductivity for which are neglected
(i) the anisotropy of the Fermi velocityr(p) along the S RU0, Ref. 38
Fermi contour(ii) higher harmonics of the gap functia), ——- isotwopic-gap
along the Fermi contour, ardi ) the influence of VHS of the ] D B0,
density of states slightly below the Fermi level. For compari- & |- 2D triplet, Eq. (71)
son between angle resolved photoemission spectroscopy

(ARPES data and a lattice model for highs spectrum see
Fig. 3 of Ref. 4.

Let us assume now that the order parameter for
YBa,Cu;0,_5 is Z times higher than the BCS prediction.
This could be due to the influence of VHS or, which is more 75 ©
important, strong coupling effects. Inserting he&el1.4 we %.0 02 04 06 08 10
can see that such a renormalization well describes the tem- /T,
perature dependence of the penetration depth in the whole
temperature interval. Finally, we have a good working BCS- FIG. 7. (Color onling Sr,RuG;,. () Reduced order parameter
like formula. In fact, significantly highen,,(0)/T, than  for the Zhitomirsky and Rice mod¢Eq. (69)] (solid line), the 2D

BCS prediction is in agreement with the ARPES data. vertical line nodes moddEq. (70)] (dot-dashed ling and for the
2D model by Deguchgt al. [Eq. (71)] (dotted ling. (b) Specific

heat ratioC(T)/Cy(T) for the Zhitomirsky and Rice modékolid
lll. THE CASE FOR Sr ;RuO, line), the 2D vertical line nodes modéflash-dotted ling and for

Our approach is also applicable to the triplet superconthe Deguchiet al. model (dotted ling. The experimental points
ductor SERuQ, (for a review, see Ref. 33We adopt the (circles from Ref. 35 are digitized from Fig. 1 of Ref. 34c)

promising gap anisotropy model by Zhitomirsky and Rite, Normal fluid density 12(0)/\%(T) corresponding to the gap an-
which givesE =\”§2+|A 12, with isotropy model469)—(71). The experimental point&ircles from
P tep TRl Ref. 38 are digitized from Fig. 2 of Ref. 39. We should note that the

15
o

1-A2O)AX(D)
o
S

P o ¥ p,a pa ., pa p,C model with vertical line nodes predicts spontaneous breaking of the
‘Ap|2 o | sin? ? cos’ _2% +cos ? sir? _2% cos j symmetry of the penetration depth in thb plane.
(69

Rice3* their model with horizontal line nodgsee also Ref.
wherep,al/#, pjalti, pc/h e (0,2m). For the Fermi surface 36) describes the experimental data better than a model with
we take a simple cylinderspzs(v’p§+p§) with radius Vertical line _nodes. For i_IIustration, in I_:ig. 7 we present also
pra/f~0.93 7. Our calculations are depicted in Fig. 7. In our calculations for a simple 2D vertical line nodes model

this model calculation we have taken into account only oneVith gap anisotropy function

band responsible for superconductivity. Although it is aot (pa

priori clear how “good” this assumption is, our curve repro- Xp & Sln(g)- (70)
duces the theoretical curve by Zhitomirsky and Ricand

passes close to the experimental points by Nishizakil®®  Similar model was studied by Nishizakit al3° (see also
This promising success encouraged us to present the theor@ig. 26 in the review by Mackenzie and Magi#d

ical prediction for the penetration depth calculated from Eq. From an aesthetic point of view our preferences are for
(66). According to the conclusions by Zhitomirsky and the recent model for the gap anisotropy by Deguethal 37
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|Ap|2 x sir(palh) + sinz(pya/ﬁ)_ (72) ACKNOWLEDGMENTS
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IV. DISCUSSION AND CONCLUSIONS 2004.

Let us discuss now the specific heat. We have shown that _
for factorizable kernefsthe specific heat can be represented APPENDIX: ORDER PARAMETER EQUATION FOR
as a sum of a “normal” compone@t,(T) and a term depen- ANISOTROPIC-GAP SUPERCONDUCTORS

dent on the order paramet€x(T), which has the same form  Foliowing Ref. 1, let us scrutinize the derivation of and
as in the GL theory. There is one detail that is worth focusinghe solution to Eq(8). The gap anisotropy function will have

on: for thes-d model for high superconductivitythe ker-  nonzero values only in a narrow region near the Fermi sur-
nel is indeed separable because the contact interaction is Iggce

calized in a single atom in the lattice unit cell. One should
only substitute the spectrum of the superconductofT at Xp = xpBwp =€), Te<wp <Eg. (A1)

<Te in the known expression for the GL coefficients from | a1 the differential volume in the momentum space can be

classical work of Gor’kov and Melik-Barkhudarévrhe fi- separated to Fermi surface elemetand a normal element
nal expression for the specific heat is a generalization of thapt

result of Pokrovskit The derived formulas can be easily

programmed for fitting the experimental data of anisotropic
superconductors. For the jump of the specific heat at the
critical temperature AC|TC:CA(TE) general consideration _
has already been given in Ref. 7. The derived formula is noRR€turning to Eq(8) we have

d i)
d°p=dpdS= —dS  ve(p) = ‘—E‘ . (A2
Vg &p

exact, but interpolates between the correct low-temperature G y: deds
behavior and the result by Pokrovskfor the specific heat 5 3€ £ tanhzy) 6(wp — [£))—— =1, (A3)
jump atT.. That is why we believe that our interpolation (2mh) 2E UF

formula[Eqg. (29)] can be useful for preliminary analysis of \yhere¢ denotes integration over the Fermi surface. With the
the experimental data for the specific heat in superconduclccount of the energy cutof, the latter reads

ors; for experimental data processing the accuracy could be

comparablée.g., with the accuracy of the Debye formula for G ds,

the phonon heat capacjty W% v_FXp
We illustrated our formulas foC(T) and A\ (T) for the

isotropic-gap BCS model and three of the best investigatedccording to Eq.(24) we have for the density of states

anisotropic-gap superconductors Y,BaO0,;_5, SLRUO,

and MgB,. The nature of superconductivity for those super- :Tf)= f Se-E )dsd—S: 1 é d_S

conductors is completely different: high- and lowT,, F P (2mh)P P T @an)P T ve

phonon- and exchange-mediated, singlet and triplet Cooper (A5)

pairs. In all those cases the derived formulas work with an

acceptable accuracy; in some cases we even have quanti@imilarly, the averaging over the Fermi surface can be rep-

tive agreement and for highs cuprates we have shown what resented as a surface integral

the BCS analysis can give. We conclude that the statistical

properties of the superconductdteermodynamidcC(T) and (f(p)) = ijg Lf(p). (AB)

kinetic \(T)] are determined mainly by the gap anisotropy, ve J (27h)Pve

irrespective of the underlying pairing mechanism, and thg, ihese notation EqA4) reads

“0 tanh(\ € + A/2T)

[
0 VE+ Af,

dé=1. (A4)

approximative weak coupling separation of variables

Ay(T)=Q(T)x, is an adequate approach. It is worth applying szo tanh(V& + Ag/zT)d 1 1 (A7)
: _ X ==,

the derived formulas fo€(T) and\(T) for every new super P/ V/§2+ AS T

conductor. Often after the synthesis of a new superconductor,
single crystals are not available and only the data for heavhere A\gcs= G is the dimensionless BCS coupling con-
capacity C(T) can help the theory to distinguish between stant.

different models for the gap anisotropy even before detailed At T=T,, whereA,=0 andE,=|&,|, substitutingx=¢£/2T
spectroscopic investigation is performed. we obtain

024520-9



MISHONOV, KLENOV, AND PENEV

tanhx 1
<xp>J dx=——, M=-Ds1. (A8
Ngcs 2T,
Now the identity
M
tanhx 4
f = |n(—7|v|) (A9)
0 o
gives
1
T, = 20p~ exp(— 2—) (A10)
™ (Xp\BCs
Analogously, afT=0 we have
“p d 1
xﬁf = 52 =—. (A11)
0o VE+AN0)/  Ascs
Then taking into account thaip> A (0) we have
“ ¢ ( [ W ) 2wp
=In +/1+—|=Ih—
o VE+AZ A Al gl
(A12)

As we will see later, it is convenient to modify the normal-
ization of the order parameter and gap anisotropy function

- _X (xg Inlxpl)
Xp__Ev Q QXaw  Xav= €X _u .
Xav <Xp>

(A13)

The renormalizing multipliery,, is chosen in order for the
renormalized gap anisotropy function to obey the relation

()(p In )(p> 0. (A14)
For the two-band model this gives
= Cle ch§
Xav= X1 "X27% (A15)
and one can easily verify that
C1X; In[xa| + c2x3 Infx| = 0 (A16)
Similarly, using
/2 T
f cog ¢ In|cosg|de = 8 In(e/4) (A17)
0
we obtain for a 2Dd-wave superconductor
2
Xp(®) = T cos 2p,
2
f Xa(@)In[Xy(¢)|de=0. (A18)
0

Using the approximatiorfA12) with a renormalized order
parameter and gap anisotropy function, from E§ll) we
derive

PHYSICAL REVIEW B71, 024520(2009

0) = 2w .
Qo= Dexp( <X5>)\BCS>

This equation together witfA10) gives the well-known
BCS relation for the renormalized order parameter for aniso-
tropic superconductots

2Q(0)
T.

(A19)

2_77
Y

We assume that the density of stai€E) is almost constant
in the energy intervaEg+2T..

The renormalization does not change the gagT)
:przé}p, butina sensé(T) is the “true” BCS gap for an
anisotropic superconductor. For=0 the BCS model gives
for d-wave superconductors;(0) =A 4, COS 2p, Where

~ 3.53. (A20)

2w 2
——==4.28.
Y e

2Amax

T (A21)

However, for cuprates we have to take into account the in-
fluence of Van Hove singularity and strong coupling correla-
tions. As we fitted from the temperature dependence of the
penetration depth for YB&uO,_s, we have 40% bigger
gap AmaX:ZAffxs) and A,,/T.=~6.0. In such a way the
thermodynamic behavior is in agreement with the spectro-
scopic data. This is a good hint in favor of the Landau-
Bogoliubov quasiparticle picture applied to high-cuprates.
For MgB, taking ¢;=0.44 andA;(0)=7.1 meV andA,(0)

=2.8 we obtain’y;=1.17 and x,=0.46. Then Q(0)

=A4(0)/y1=A,(0)/x,~6.08 meV=70.6 K. For the critical
temperatureT,=39 K we obtain 2(0)/T,~3.62, which
agrees with the BCS ratigA20) within 3% accuracy as

found in Ref. 13
For arbitrary temperatures using the identity

tanh)—z(: _exil’ (A22)
Eq. (A7) reads
(ol i) =
Xp 0 \/§2+AS(T) Agcs
d¢

=2 XEJwD
0
Ve + AZ(T)[ —‘Q> +11
(A23)

Substituting here Wgcs from Eq. (A1l) and taking into
account thawp > |A(0)| approximation[Eq. (A12)], we ob-
tain the Pokrovskii equation

p{ <x§F(2yp>>} 2y = TXe G _ A
1 p 1
Y Xavt T

(A24)

where
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_A(M _QM _ QM
A0 Q) (o)

q) (A25) 175

1.5

F(x)
c—-— F(x<<1)
——— Fa>>1)

is the reduced order parametec§=<1 as a function of the 2

reduced temperaturet=T/T.. In physical variables § 1
Pokrovskit equation reads 0.75
A 05 e
- ,
in 20, (XGF(AQ(T)T)),=0. (A26) 025

————]

%.0 05 1.0 15 20 25 30 35 40
x

A,(0)

The functionF(x) associated with the right-hand side of Eq.
(A23) is defined by an integral, for which we have one inte- FIG. 8. (Color onling Plot of theF(x) function. The approxi-
gral and two different summation formulas, convenient formations toF(x) for x<1 andx>1 are given by Eqgs(A29) and

small and large argumenifs (A30), respectively.
o 2w
Fx) = f—oo VU2 + xz[exm;(jij'u2 +x%) + 1] nq=- JO 2 co§(2¢>)F<% COS(Z(P)%)Z_:L;'
B J ” du (A31)
o expxcoshu) +1
- ~ 1 1 The numerical solution for the squared reduced order param-
=In ;( + 27721 {(ZI "D - - 1)2712] eterg?(t) is shown in Fig. 9. The linear dependence near the

critical temperaturé=1 corresponds to the GL approxima-
* tion. In Fig. 10 the squared reduced order parameter for
=-2> (- 1)"Ko(nx), (A27) MgB, (two-band model withc;=0.44, 6=7.1/2.9 is com-
n=1 pared to the experimental data from Ref. 31.

) As a last problem, let us derive the factorizable kekigl
where for large arguments we have the approximate formulgg 5 result from the BCS equatiod). For wp<Eg, Eq. (6)

reads
2T _ 1 9 225
2Ko(x>1) =~ | —€ X(l——+ 2——3).
X 8x 128&° 397X
“D tanHE,/2T d
(A28) Aq(T) zﬁ Vq DAPJ I’( p/ )dgp %D
: . . Fs 0 Ep (2h) v
Physically, herex=A/T, u=¢/T and the upper integration "
bound wp/T has been replaced by. For this function we v oA b tanf(EP_IZT)dg (A32)
have the approximate formulas F\ et E, P p'
Fx<1) ~In = + — @) (A29)
X 87 ' At T=T, [cf. Egs.(A8)—«(A10)] this formula gives
F(x> 1) = 2Ky(X). (A30) 1
The Euler constant isy=e“~1.781072418 and{(3) 08
~1.202 056 903, wher¢ is the Riemann zeta function. A S
plot of the functionF(x) is shown in Fig. 8. In the preprint = 06[71--- e
version of this papét a simple G-+ code for numerical ~§04 —— 2Ddwave

evaluation ofF(x) is provided. For fast calculations one has
to take only several terms of the expansipag. (A27)]. The 02
:= sign in Eq.(A24) represents an iterative assignment in
which we use the initial approximatiag=1. 0
The BCS order-parameter equatioh24) is not specific v s ke T,TO'6 98 14
for the physics of superconductivity. Recently, Abrikiébv ¢
has derived the same equation for the temperature depen- FIG. 9. (Color onlind Squared reduced order parameter
dence of the amplitude of spin density waves in cuprates. QT)/Q30) vs reduced temperature=T/T, For the two-band
For 2D d-wave superconductors the Pokrovskii equationmodel, thec, and § parameters are chosen so as to simulating a
(A24) reads d-wave CuQ:c,=1/2, 5=2.41.
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2
I ERAR ISR A0 ={ Vgpin[ =22 |a,) . (A39)
N © QO
0.8 N p p
g > Within the weak-coupling BCS approximation, in the inte-
0.6 N grant
Ne O A Ref.31 N
D 0.4 ® A, Ref.31 O \\ 2 2
- 'r,qg::p. \\. In( |Aa()8)|> = In<—~wD) = Inx,| (A40)
02 &P = P Q(0)
9 the first term is much bigger than the second one. For details

0
0.0 0.2 0.4 0.6 0.8 1.0 L.
TIT we refer to the original work by PokrovsRybut, roughly

’ speaking, 1f2wp/AL(0)]~const>1. Within the latter ap-
FIG. 10. (Color onling Squared reduced order parameter proximation forA,(0) we obtain again the same eigenvalue
Q*(T)/Q(0) vs the reduced temperatute T/ T, for MgB; (solid  problem and this constitutes the proof that the momentum
line) with ¢;=0.44,5=7.1/2.8. The experimental points for MgB  dependence of the gap is rigid. Hence we derive the separa-
(circles are digitized from Ref. 31. tion of the variables\,(T) ~Q(T)x,. When the term Ify,|
in Eq. (A40) is small it can be treated perturbatively, and
2ywp according to the normalization EGA14) its influence dimin-
Ag(To) = ve |”<?><Vq,pAp>p- (A33) ishes. The properties of this approximative separation of the
¢ variables can be simulated by a factorizable kernel
Let us also mention the dimensions of the variables. Since
the integration [---[d3p/(27%)3] has a dimension of Vop= 2 VoW — Voxgxp, (A41)
1/volume, thenv, ,, being a Fourier component of potential n
energy, has dimension of energyolume. For example, the
Coulomb potentiak?/r has a dimension of energy and its
Fourier transformation
Ame? € ia (VapWp= Vol (¥R =1. (A42)
2 - Te' dor (A34)

whereV,, are the eigenvalues anlf;ifjm are the corresponding
eigenvectors of the problem

In other words, the factorizable approximatifqgs. (A41)
and(7)] works well when the influence of smaller eigenval-

has a dimension of energyvolume. The same holds for the | o is small.

contact attraction in the BCS model potentiélf)=-G4(r) Generally speaking, the separability ansatz is a Tow-
having a constant Fourier componen@.—Trli,\ density of  5phroximationT, should be much smaller than all other en-
statesve has a dimension ofenergy<volume™, Ay andE,  grqy parameters: energy cutoff, Debye frequency for phonon
have a dimension of energy, and the Fermi surface averagingperconductors, exchange integrals for exchange mediated

brackets<___} reprgsentadimensionless operation. ' superconductivity, the Fermi energy, and the bandwidths,
_ Letthe dimensionless parametgy denotes the maximum  Room-temperature superconductivity is not yet discovered,
eigenvalue of the problem but the good message is that we have still a simple approxi-
mation acceptably working for all superconductors. For the-

(Vg.pXp’p = VoXa» (A35) ptaoly g p

oretical models the accuracy of the separable approximation
and x,, is the corresponding eigenvector, with normalizationcan be easily probed when investigating the angle between

<X12J>:1' The comparison of Eq$A35) and (A33) gives the order parameter at different temperatures, e.g.,
2 AYTALT,
T, =220 exp(— ) (A36) arccos— B 2 1o} =< (A43)
T VFVO \'<|Ap(T)| ><|Ap(Tc)| >
which is identified with Eq(A10) and we obtain or
{(XqVapXplap A
o , , T)ALT
G=Vy= <X2>p . (A37) arccos p( ) p( J <1. (A44)
P

VT T

As the maximal eigenvalue is sought, one can apply in this h | . d th . for th
case the Krilov iterations Those angles are just zero Bt and the expressions for the

specific heat jump and the GL coefficients is correct. Only
Xé‘”’fl) o <qung‘)>p, <(Xg‘+1))2> =1, (A38)  for T—0 some small deviations can be observed, but in that
0 case one can tregt, as a trial function in a variational ap-
starting from some solutionlike trial vect ). Then the gap proach.

anisotropy functiony, is just the limit of the Krilov itera- The performed analysis shows that the separation of the
tions y. variables Eq.(5) due to Pokrovskyand consequent factor-
For%’zo, the gap equatiofA32) gives izable kernel Eq(7) are tools to apply the weak-coupling
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BCS approximation to anisotropic-gap superconductors. Theameter is an immanent property of the BCS théofhe
factorizable kernel gives a simple solution to the gap equaaccuracy of the separable approximation is higher if the other
tion, the nontrivial detail being that this separability can beeigenvalues of the pairing kernel are much smaller than the
derived by the BCS gap equation. The factorizable kernel hasyaximal one. This is likely to be the situation for tksed

also been discussed by Markowitz and Kadahafid em- model for layered cupratésyhere thes-d pairing amplitude
ployed, e.g., by Cler to investigate the effect of gap an- Joqis much bigger than the phonon attraction and the other
isotropy in pure and superconductors with nonmagnetic iminteratomic exchange integrals. In order for us to clarify this
purities. Factorizable kernels are now used in many works oimportant approach to the theory of superconductivity,
exotic superconductors. However, in none of them is menwe have given here a rather methodical derivation of the
tioned that the separability of the superconducting order paPokrovsky theory.
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