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An explicit expression for the temperature dependence of the specific heat of clean anisotropic-gap super-
conductors is derived within the weak-coupling BCS approximation. The specific heat is presented as a
functional of the superconducting gap on the Fermi surface. The obtained formula interpolates between the
correct low coupling jump atTc and the low-temperature behavior forT!Tc. For isotropic superconductors,
the formula gives a relation between the specific heat and the superconducting gap. For anisotropic supercon-
ductors, the interpolation formula incorporates averaging of powers of the gap anisotropy function over the
Fermi surface and provides a suitable set for fitting model Hamiltonians to experimental data. The work of the
interpolation formula is illustrated bysid the Pokrovsky formula for the specific heat jump;sii d Gor’kov and
Melik-Barkhudarov formulas for the Ginzburg-Landau coefficients;siii d the Moskalenko two-band formula for
the specific heat jump;sivd the temperature dependence of the specific heat for the two-band model, applicable
to MgB2; svd the two-dimensionald-wave model, applicable for YBa2Cu3O7−d; and svid the Zhitomirsky and
Rice triplet p-wave model with horizontal line nodes for Sr2RuO4. The temperature dependence of the pen-
etration depth is illustrated by fitting the general theoretical formula to the experimental data for MgB2,
YBa2Cu3O7−d, and the triplet superconductor Sr2RuO4.
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I. SPECIFIC HEAT

Virtually all recently studied superconductors exhibit con-
siderable anisotropy of the superconducting gapDpsTd over
the Fermi surface«p=EF. Despite the strong-coupling effects
and influence of disorder, which are all essential as a rule, for
a qualitative analysis it is particularly useful to start with the
weak-coupling BCS approximation for clean superconduct-
ors. In this case, very often model factorizable pairing poten-
tials give an acceptable accuracy for the preliminary analysis
of the experimental data.

The aim of the present work is twofold. First, we shall
derive an explicit interpolation formula for the temperature
dependence of the specific heatCsTd. The formula is for-
mally exact for factorizable pairing kernels, which are a con-
sequence of the approximative separation in the supercon-
ducting order parameter derived in the BCS weak-coupling
approximation by Pokrovskii.1 Our formula reproduces the
specific heat jump derived by Pokrovskii1 for arbitrary weak-
coupling kernels and Gor’kov and Melik-Barkhudarov2 re-
sults for the Ginzburg-LandausGLd coefficients of an aniso-
tropic superconductor. That is why we believe that the
suggested formula can be useful for the analysis of experi-
mental data when only gap anisotropy and band structure are
known. Second, within the same system of notions, we
present the recent results by Kogan3 for the penetration depth
lsTd and propose for the zero-scattering case formulas that
may be used for experimental data processing.

We begin with the entropy of a Fermi system per unit

volume divided by the Boltzmann’s constantkB

SsTd = − 2np ln np + s1 − npdlns1 − npd, s1d

where the factor 2 takes into account the spin degeneracy and
the overline denotes integration over theD-dimensional mo-
mentum space

fp =E
−`

`

¯ E
−`

` dDp

s2p"dD fspd. s2d

The Fermi filling factors of independent Fermions

np =
1

exps2zpd + 1
, zp ;

Ep

2T
, s3d

whereT is the temperature timeskB, are expressed by spec-
trum of superconductor

Ep = Îjp
2 + uDpu2, jp = «p − EF. s4d

Here we have to emphasize that for a model factorizable
pairing potentialVp,q~xpxq the gap function is always sepa-
rable as a product of a temperature-dependent function that
can be associated with the GL order parameterQsTd and a
rigid temperature-independent function of the momentumxp.
The nontrivial result1 is that this separation of the variables is
asymptotically correct in the BCS weak-coupling limit for an
arbitrary kernel, which is generally nonfactorizable. In fact, a
factorizable kernel is a fairly unnatural property that, how-
ever, can occur if the pairing interaction is local, intra-
atomic, and located in a single atom in the unit cell. This is
the special case of thes-d interaction at the copper sitessd in
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the CuO2 plane.4 The separability ansatz, though, shall be
employed here to obtain a general interpolation formula for-
mally exact for factorizable kernels. We assume that the gap
anisotropy functionxp is known either as a result of solving
the general BCS equation atTc, inferred from experimental
data processing, or merely postulated within some model
Hamiltonian, which is often the case for the high-
temperature and exotic superconductors.

With the above remarks, we will deriveCsTd for the sepa-
rable gap

DpsTd = QsTdxp s5d

and a factorizable kernel.5 We apply the ansatzs5d to the
BCS gap equation6

DpsTd =E dDq

s2p"dDVp,q
1 − 2nq

2Eq
DqsTd, s6d

and use the convention that a positive sign ofVp,q corre-
sponds to the attraction of charge carriers and a negative
potential energy of interaction. Substituting here

Vp,q < Gxpxq s7d

and introducingh;uQu2, we obtain a transcendental equa-
tion for the temperature dependence of the gapQsTd

GAsh,Td = 1,

Ash,Td ; Sxp
2 tanhzp

2Ep
D , s8d

where we have used the identity 1−2np=tanhzp and the cou-
pling constant is defined byG;1/As0,Tcd. Details on the
derivation of the trial function approximationfEq. s7dg and
the numerical solution of Eq.s8d for Tc!vD are given in
Appendix A.

For the specific heat of the superconducting phase per unit
volume divided bykB we have

CsTd = TdTSshsTd,Td = 2EpdTnp = Cn + CD, s9d

wheredT=d/dT. HereCn is the “normal” part of the specific
heat

CnsTd ; Ts]TSdh =
p2

3
gcszpd, s10d

where

gcszd ;
6

p2

z2

cosh2 z
, E

−`

`

gcszddz= 1, s11d

and s]T. . .dh is the temperature differentiation for the
constant-order parameter. For zero-order parameter,h=0 at
Tc and above,Cn is just the specific heat of the normal phase
CNsTd=CnsT,h=0d.

Introducing

ash,Td ; − s]TAdh = − s]hSdT =
xp

2gaszpd
2T2 , s12d

where

gaszd ;
1

2 cosh2 z
, E

−`

`

gaszddz= 1, s13d

the other term of the specific heat

CD ; T]hSsh,TddThsTd s14d

can be written as

CD = ash,Tdf− dThsTdgusTc − Td. s15d

Equation s12d is actually a Maxwell-type equation]h]TF
=]T]hF, where F is the free energy:S=−s]TFdh and A
=−s]hFdT; cf. Ref. 7.

Differentiating Eq.s8d we obtaindA=0 and

− dThsTd = U s]TAdh

s]hAdT
U

hsTd
= Ua

b
U

hsTd
, s16d

where the functionsa andb represent a generalization of the
GL coefficients for arbitrary temperature and order parameter

bsh,Td ; − s]hAdT =
7zs3d

16p2T3xp
4gbszpd, s17d

gbszd ;
p2

14zs3d
1

z2S tanhz

z
−

1

cosh2 z
D , s18d

E
−`

`

gbszddz= 1, s19d

andz is the Riemann zeta function. Then

CD = T
a2

b
=

4p2

7zs3d
fxp

2gaszpdg2

xp
4gbszpd

usTc − Td s20d

and

CD

Cn

=
12

7zs3d
fxp

2gaszpdg2

xp
4gbszpdgcszpd

usTc − Td. s21d

The functionsgiszpd, i =a,b,c, introduced in Refs. 7 and 8,
have sharp maximum at the Fermi surface and in a good
approximation we have

xp
ngiszpd < 2TnFkxp

nrisypdl, yp ;
Dp

2T
, s22d

where

r isyd ; E
−`

`

gisÎx2 + y2ddx, x =
jp

2T
,

r is0d = 1, r is`d = 0, i = a,b,c. s23d

We define averaging over the Fermi surface

kfpl =
fpdsjpd

nF
, nF = nsEFd = dsjpd, s24d

where nF is the density of electron states per unit energy,
volume, and spin at the Fermi level. In such a way we obtain
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CnsTd = 2
3p2TnFkrcsypdl s25d

and

CD

Cn

=
12

7zs3d
kxp

2rasypdl2usTc − Td
kxp

4rbsypdlkrcsypdl
. s26d

At Tc, where the gap is small andr is0d=1 this formula gives
the Pokrovskii1 result for the reduced specific heat jump

DC

CNsTcd
=

12

7zs3d
kxp

2l2

kxp
4l

. s27d

For the GL coefficient Eqs.s12d ands17d, the approximation
s22d gives

ash,Td =
nF

T
kxp

2rasDp/2Tdl,

bsh,Td =
7zs3dnF

8p2T2 kxp
4rbsDp/2Tdl. s28d

Then the specific heat takes the simple GL form for arbitrary
temperatures

CsTd = Cnsh,Td + T
a2sh,Td
bsh,Td

usTc − Td. s29d

Here, for the functions on the right-hand side we have sub-
stituted the thermal equilibrium value of the order parameter
hsTd= uQsTdu2, obtained from the solution of Eq.s8d. This
BCS formulas29d is an example how good the physical in-
tuition was in the phenomenology of superconductivity. Ac-
cording to the Gorter-Casimir9 model the specific heat is a
sum of a “normal” part and another therm, governed by the
temperature dependence of the order parameter and having
exactly the GL form. The Gorter-Casimir two-fluid model
has very simple physical grounds. In the self-consistent ap-
proximation, the entropyS(T,DsTd) is a function of the tem-
perature and a temperature-dependent order parameterDsTd.
The temperature differentiationCsTd=TsdS/dTd inevitably
gives two terms in Eq.s9d. According to the general idea by
Landau,10 the order parameter is an adequate notion for de-
scription of second-order phase transitions, regardless of the
concrete particle dynamics. Thee expansion by Wilson and
Fisher is only an ingenious realization of the same Landau
idea when the influence of fluctuations is essential.

Again, at Tc the general formulas Eq.s28d give the
Gor’kov and Melik-Barkhudarov2 result for the GL coeffi-
cients

as0,Tcd =
nF

Tc
kxp

2l, bs0,Tcd =
7zs3dnF

8p2Tc
2 kxp

4l. s30d

This result can be directly derived7 from the variational free
energyFsh ,Td of the superconductor, which close toTc has
the GL form

FGLsh,Td < as0,TcdsT − TcduQu2 + 1
2bs0,TcduQu4. s31d

The simplest method to calculate the GL coefficients is to
differentiate7 the free energy after au-v transformations

Fsh ,Td=H̄−TS. Then

as0,Tcd = s]hFdTsh = 0,T = Tcd,

bs0,Tcd = s]h
2FdTsh = 0,T = Tcd. s32d

If a Van Hove singularitysVHSd is close to the Fermi level,
then the formulas for GL coefficients are slightly modified8

as0,Tcd =
kxp

2l
Tc
E

−`

+`

nsEF + 2Tcxdgasxddx,

bs0,Tcd =
7zs3dkxp

4l
8p2Tc

2 E
−`

+`

nsEF + 2Tcxdgbsxddx,

CnsTcd =
2

3
p2TcE

−`

+`

nsEF + 2Tcxdgcsxddx. s33d

Some important references on the influence of the VHS on
the properties of superconductors and pioneering works on
the two-band model are given in Ref. 8. Let us evaluate the
upper limit that can give a VHS. Let us take the one-
dimensionals1Dd density of statesnsEd~1/ÎE−EVHS and
EF=EVHS=0; there is no doubt that this mathematical illus-
tration is unphysical. In this case we have for the reduced
specific heat jumpDC/CNsTcd, Eq. s27d, an additional factor

FE
0

`

gasx̃2ddx̃G2

E
0

`

gcsx̃2ddx̃E
0

`

gbsx̃2ddx̃

= 2.51, x̃ ~ ÎE. s34d

Although this mathematical example is not realistic, it can be
seen that the VHS emulates qualitatively strong-coupling
corrections to the BCS theory: an enhancement of
DC/CNsTcd and 2Dmaxs0d /Tc. Another simulation of strong-
coupling effects can be demonstrated by a simple model den-
sity of states, corresponding to the case of layered cuprates

nsjd = 1 +k ln
1

uj − EVHSu
. s35d

For illustration, we solve the equation

E
−vD

vD tanhsÎj2 + D2sTd/2Td

2Îj2 + D2sTd
nsjddj = G−1 s36d

taking vD=10, G=1/2, and k=10. The Z
;f2Ds0d /Tcg / s2p /gd versusEVHS/Tc plot is given in Fig. 1.
It can be seen that 7% enhancement corresponds toEVHS
=Tc. Thus, the influence of the VHS on the specific heat is
much stronger than on theDs0d /Tc ratio.

Let us also recall the general GL formula for the specific
heat jump atTc
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DC = Tc
a2s0,Tcd
bs0,Tcd

. s37d

The two-band model provides probably the simplest pos-
sible illustration of the derived formula for the specific heat
sfor pioneering references on the two-band model see Ref.
8d. The model is applicable with a remarkable accuracy11 to
MgB2—a material that has been in the limelight in the phys-
ics of high-Tc superconductivity over past years.

For the normal specific heat we have

CnsTd = 2
3p2TnFfc1rcsy1d + c2rcsy2dg, s38d

where

y1 =
D1

2T
, y2 =

D2

2T
, c1 + c2 = 1, s39d

and c1nF and c2nF are the densities of states for the two
bands of the superconductor. AboveTc or in the case of
strong magnetic fieldsB.Bc2 we have

CNsTd = 2
3p2nFT. s40d

As pointed out earlier, within the weak-coupling BCS ap-
proximation, Pokrovskii1 has proved the general separation
of the variablesfEq. s5dg that for a two-band superconductor
results in a weakly temperature-dependent gap ratiod
=D1/D2=x1/x2. For MgB2 determination of the two gaps
has been carried out by directional point-contact
spectroscopy12 in single crystals. One can see that for model
evaluations the temperature dependence of the gap ratio
could be neglected.

For the moments of the gap we have13

Kxp
nriSDp

2T
DL =

c1dnrisy1d + c2r isy2d
sc1d2 + c2dn/2 , i = a,b,c s41d

where the normalization is irrelevant in further substitution
in the GL coefficients. Finally, for the second GL order-
parameter term of the specific heat below theTc we obtain

CDsTd =
8p2

7zs3d
nFT

fc1d2rasy1d + c2rasy2dg2

c1d4rcsy1d + c2rcsy2d
. s42d

For the jump of the specific heat this formula reduces to the
Moskalenko14 result

DC

CNsTcd
=

12

7zs3d
sc1x1

2 + c2x2
2d2

c1x1
4 + c2x2

4 , s43d

which is, in fact, a special case of the Pokrovskii1 formula
fEq. s27dg applied to the two-band model. For application of
the two-band model to the specific heat of MgB2, the reader
is referred to Ref. 13.

The analysis of the specific heat for MgB2 gives perhaps
the best corroboration of the BCS results due to Pokrovskii1

and Moskalenko.14 Solving the Eliashberg equation and per-
forming first-principle calculations for the specific heat of
MgB2, Golubovet al. sRef. 15, Fig. 3d derived 65% reduc-
tion of the specific heat jump atTc. On the other hand, Eqs.
s27d and s43d, using the parameters from Ref. 15, give
kx2l2/ kx4l=58% reduction of theDC/CNsTcd ratio. The 7%
difference between those two estimates is in the range of the
experimental accuracy, and the Eliashberg corrections to the
BCS result is difficult to extract. Unfortunately, the groups
solving the Eliashberg equation have not compared their re-
sults to the classical results of the BCS theory for anisotropic
superconductors1 in order to analyze several percent strong-
coupling corrections to the specific heat jump for MgB2.

In the single-band casec1=1 and Eq.s42d gives a simple
relation between the specific heat and the BCS isotropic gap

CsTd
CNsTd

= rcsyd +
12

7zs3d
ra

2syd
rbsyd

, s44d

where ysTd=DsTd /2T. For anisotropic superconductors,
functions of the gap have to be averaged independently on
the Fermi surface; this is the interpretation of the general
formulasfEq. s28d and Eq.s29dg. Thus, we have the natural
generalization

CsTd
CNsTd

= krcsypdl +
12

7zs3d
kxp

2rasypdl2

kxp
4rbsypdl

, s45d

whereypsTd=DpsTd /2T=xpQsTd /2T.
For illustration, we now apply this general formula to

three typical cases and the results are shown in Fig. 2:sid the
isotropic-gap BCS modelxp=1, familiar from a number of
textbooks;16–18 sii d the two-dimensionals2Dd d-wave super-
conductorxp=cos 2w, tanw=py/px; andsiii d a two-band su-
perconductorc1=c2=1/2, for which the gap ratio parameter
is taken to reproduce the same reduced specific heat jump of
the d-wave superconductorsd=Î3±Î8=2.41 or 0.41d.

The latter two models are often applied to analyze the
behavior of CuO2 or MgB2 superconductors. Note also the
qualitative difference. For ad-wave superconductor we have
a quadratic specific heat atT!Tc, whereas for a two-band
superconductor we have the exponential behaviorCsTd
~exps−D2/2Td ssee also Fig. 3d.

FIG. 1. Z;f2Ds0d /Tcg / s2p /gd vs EVHS/Tc computed for the
model density of states Eq.s35d. Note that 7% enhancement corre-
sponds toEVHS=Tc and the maximum enhancement is<9%.
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Consider now the low-temperature behavior of the spe-
cific heat per unit area for a 2Dd-wave superconductor.
Close to a node, the gap is proportional to the momentum
component along the Fermi contourDps0d<vDpl. The corre-
sponding superfluid velocityvD is much smaller than the
Fermi velocityvF, which parametrizes the dependence of the
normal excitations energyjp<vFpt as a function of the
transversal to the Fermi contour momentum component. For
the groundstate quasiparticle spectrum we haveEp

<ÎvD
2pl

2+vF
2pt

2. It is convenient to introduce the dimension-
less variablesq1=vDpl /2T andq2=vFpt /2T. In terms of the
latter we have for the area element in momentum space

4
dpldpt

s2p"d2 = 4
s2Td2

vDvF

2pq dq

s2p"d2 =
2EdE

p"2vDvF
, s46d

whereq=Îq1
2+q2

2=zp=Ep/2T, and for axial symmetric func-
tions we can use polar coordinatesscf. Ref. 19d. Here we

have taken into account four nodal points. In such a way Eq.
s10d gives

CnsT ! Tcd =
16

p"2

T2

vDvF
E

0

` q3dq

cosh2 q
< 6.89

T2

"2vDvF
,

s47d

where we have used 18zs3d /p<6.89 fcf. Ref. 19, Eq. 2.9g.
This result together with Eq. s40d gives for the
superconducting-to-normal specific heat ratio

Cn

CN
st ! 1d = 1.047

Tc

"2nFvDvF
t, s48d

where t=T/Tc is the reduced temperature. The penetration
depth has a similar linear low-temperature behavior for
d-wave superconductors.

Very often fluctuations of stoichiometry and crystal de-
fects make the theory of homogeneous crystal inapplicable
close to the critical region. LetTcsr d be a weakly fluctuating
Gaussian field of the space vectorr . Hence, the simplest
possible empirical model is to apply a Gaussian kernel to the
theoretically calculated curve. Then for the heat capacity we
have

Cstd =E
−`

+`

CtheorstdexpH−
st − t8d2

2sDtd2 J dt8

DtÎ2p
. s49d

The philosophy of applying the convolution technique to all
theoretical curves with singularities was advocated in the
book by Migdal.20 Such an empirically smeared curve with
Dt=0.027 describes better the experimental data for MgB2
close to Tc; TcDt<1.1 K, Bc2s0d=2.5 T, and Bc2s0dDt
=750 G. The result is depicted in Fig. 3, where the smeared
theoretical curve is compared to the experimental data.11 In
order to achieve a good fit of the theory to the experimental
data we have treatedc1 andd as fitting parametersscf. Refs.
11, 13, 21, and 22d. The values usedc1=0.49 andd=2.9 are
slightly different from the set of parameters used later for
computing the penetration depth, but are still in agreement
with different spectroscopic evaluations. In order to reach the
analogous quality of the fit ofCsTd for cuprates we have to
take into account simultaneously the gap anisotropy and the
VHS in the general expressionsfEq. s12d and Eq.s17dg.

An analogous to Eq.s49d smearing of the fluctuation mag-
netization aboveTc reads

MsB,T − Tcd =E MtheorsB,T − Tc8dexpH−
sTc8 − Tcd2

2sTcDtd2 J
3

dTc8

Î2pTcDt
. s50d

However, for big fluctuations ofTc we have to take into
account the appearance of superconducting domains. Such a
precise investigation of fluctuations in the magnetization of
Nb and Sn in the past led to the discovery of twinning-plane
superconductivity. For analytical GL results for twinning-
plane superconductivity see Ref. 23.

Here we wish to emphasize that a large body of experi-
mental data forBc2sTd are strongly influenced by the disor-

FIG. 2. sColor onlined Superconducting-to-normal specific heat
ratio CsTd /CNsTd vs the reduced-temperaturet=T/Tc according to
Eq. s45d computed forsid an isotropic-gap BCS superconductor
sdashed lined, sii d a two-band superconductorc1=c2=1/2 with a
gap ratio parameterd=2.41 sdash-dotted lined, and siii d the 2D
d-wave superconductorxp=cos 2w, tanw=px/py ssolid lined. Note
that for t.0.2 two of the curves would be experimentally
indistinguishable.

FIG. 3. sColor onlined Comparison between the
superconducting-to-normal specific heat ratioCsTd /CNsTd; the the-
oretical curve is computed following Ref. 13 withc1=0.49,d=2.9
ssolid lined and the experimental data for MgB2 are taken from Ref.
11 scirclesd. The theoretical curve is convoluted with a Gaussian
kernel fEq. s49dg, chosen to fit best the experimental datasDt
=0.027d. The experimental data11 are digitized from Fig. 3 of Ref.
13.
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der. It is imperative to cut off a region of widthTcDt or
Bc2s0dDt close toBc2sTcd if we wish to determineBc2sTd by
extrapolation of properties from the superconducting phase
or fluctuation behavior of the normal phase. Various spurious
curvatures ofBc2sTd have been reported merely as a result of
disorder of the crystals.

II. ELECTRODYNAMIC BEHAVIOR

An analysis of the London penetration-depth tensor, simi-
lar to that carried out by Kogan in Ref. 3, gives

fl−2sTdgab =
e2

«0c
22nFkrdsypdvavbl, a,b = x,y,z, s51d

where

vp =
]«p

]p
, mp

−1 =
]vp

]p
=

]2«p

]p2 s52d

are the band velocity and effective mass and

rdsyd ; sy/pd2o
n=0

` Fsy/pd2 + Sn +
1

2
D2G−3/2

, s53d

rdsyd < 7zs3dsy/pd2 ! 1, rds`d = 1.

For comparison, the conductivity tensor of the normal phase
in the tp approximation reads

sab = 2nFe2ktpvavbl. s54d

For penetration depths along the principal crystal axes we
have in the two-band model

la
−2sTd = la,1

−2 s0drdsy1d + la,2
−2 s0drdsy2d, s55d

where for uniaxial crystals, such as MgB2, there are only
four constants:lx,1s0d=ly,1s0d, lx,2s0d=ly,2s0d, lz,1s0d, and
lz,2s0d. These can be obtained from electron-band
calculations,24

fl−2sTdgab =
e2

«0c
22nF o

b=1,2
cbrdSDbsTd

2T
Dkvavblb

= o
b=1,2

slb
−2s0ddabrdSDbsTd

2T
D , s56d

where the band indexb labels the leaf of the Fermi surface
over which the averaging of the electron velocities is carried
out. For a discussion and details see the review by Kogan
and Bud’ko.3 There is a natural “Eliashbergization” of this
result scf. Refs. 15, 22, and 25–27d:

rdSDp

2T
D = o

n=0

`
2pTDp

2

sDp
2 + vn

2d3/2 → o
n=0

`
2pTD̃p

2

fD̃p
2svnd + ṽn,p

2 g3/2
,

s57d

where vn=s2n+1dpT are the Matsubara frequencies,ṽn,p

=Zpsvndvn, D̃psvnd=ZpsvndDpsvnd andZpsvnd is the normal-
ization factor. Analogous expressions can be worked out for
the specific heat.

For a heuristic consideration of the result by Kogan3 at
T=0 see Ref. 24. AtT=0 the Fermi surface is shifted as a
rigid object in the momentum space under the influence of
the electromagnetic field. This shift of all conduction elec-
trons explains why for the penetration depth the influence of
VHS is less essential than the influence on the heat capacity.
The increase of the kinetic energy of all conduction electrons
is actually the increase of the Gibbs free-energy density
DG=s1/2«0c

2dl2j2. At finite temperatures the number of su-
perfluid electrons isrdsDp/2Td times smaller.

The penetration depths atT=0 can be also expressed by
the optical masses and the Hall constant of the normal metal
at high magnetic field

fl−2s0dgab =
e

«0c
2

1

R`

sm−1dab,

1

R`

= 2eE
«p,EF

d3p

s2p"d3 ,

m−1 =

E
«p,EF

d3p

s2p"d3mp
−1

E
«p,EF

d3p

s2p"d3

=

R
«p=EF

dSp

s2p"d3vp
vp ^ vp

E
«p,EF

d3p

s2p"d3

,

s58d

the last equation being a consequence of the Gauss theorem
e«p,EF

d3ps] /]pd=r«p=EF
dSp, wheredSp is the element of the

Fermi surface oriented along the outward normal. For an
extensive discussion on galvanomagnetic properties of nor-
mal metals and inclusion of hole pockets with volume den-
sity nh for R`

−1=esne−nhd see the textbook by Lifshitz and
Pitaevskii28 or the monograph by Lifshitz, Azbel, and
Kaganov.29 The Bernoulli effect can be easily observed in
almost compensated superconductors for whichne<nh and
the Hall constant is bigger.

In the superconducting phase the Hall constantR` can be
determined by the Bernoulli potential

Dw = − R`

1

2«0c
2l2sTd j2; s59d

generalization for the anisotropic case can be obtained by the
obvious replacementl2j2→ jalab

2 jb. Here we suppose that
j ! jcsTd, jc being the critical current. If the magnetic fieldB
is parallel to the surface of a bulk superconductor this for-
mula gives

Dw = − R`

B2

2m0
. s60d

All charge carriers interact with the electric potentialw, but
only the superfluid part~rdsDp/2Td creates kinetic energy.
The constancy of the electrochemical potential in the super-
conductor gives the change of the electric potential, i.e., the
Bernoulli effect. For the temperature-dependent condensa-
tion energyDG=−Bc

2sTd /2m0 the corresponding change of
the electric potential is given by
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Dw = R`

Bc
2sTd

2m0
. s61d

For complete determination of the Hall constantR`, the pen-
etration depthlsTd, and the optical mass of conduction elec-
trons in a clean superconductorfcf. Ref. 24, Eq.s20dg,

m=
el2s0d
«0c

2R`

, s62d

we have to investigate the Bernoulli effect for thin,dfilm
!lsTd, and thick,dfilm @lsTd, superconducting films of the
same material.Mcp;2m can be called effective mass of the
Cooper pairs; this parameter can be significantly increased
by disorder.

For the temperature dependence of the electrochemical
potential of the normal phase we havefRef. 29, Eq.s12.16dg

eDw =
p2

6

n8sEFd
nsEFd

T2. s63d

Close to a VHS the influence of the energy derivative of the
density of states can be significant and measurable.

The entropy and specific heat related to the volume den-
sity of the free energy of superconducting condensation
Bc

2sTd /2m0 can be determined by electric capacitor measure-
ments, applying surface-temperature oscillations. For discus-
sions of possible experimental setups see Ref. 24 and refer-
ences therein.

It is a matter of technical calculations to verify the iden-
tity

sy/pd2o
n=0

` Fsy/pd2 + Sn +
1

2
D2G−3/2

+E
−`

+` dx

2 cosh2Îx2 + y2

= 1, s64d

which transcribes into the form

rasyd + rdsyd = 1. s65d

In such a way theelectrodynamic behaviorof a supercon-
ductor can be expressed in terms of the functions, defined for
description of itsthermodynamic behavior. Using Eqs.s65d
and s51d we obtain

rNsTd = 1 −
fl−2sTdgab

fl−2s0dgab

=
KraSDp

2T
DvavbL

kvavbl
. s66d

Within the framework of London electrodynamics,rNsTd
=1−l2s0d /l2sTd is the normal fluid density andrSsTd
=l2s0d /l2sTd is the superfluid one, having total charge den-
sity rSsTd /R`. For a two-band superconductor, Eqs.s56d and
s66d give for the penetration depth along the principal crystal
axes

rSsTd =
la

2s0d
la

2sTd
= o

b=1,2
wa,brd

DbsTd
2T

, wa,b = cb

kva
2lb

kva
2l

,

wa,1 + wa,2 = 1, kva
2l = c1kva

2l1 + c2kva
2l2. s67d

For a set of parameters see the review by Kogan and
Bud’ko.3 We taked=7.1/2.8 according to the spectroscopic
data13,31 ssee also the point contact spectroscopy data in Ref.
32d. In Fig. 4 we compare our theoretical calculation with the
experimental data forlsTd by Carrington and Manzano.30

Here we takec1=0.59, which giveswa,1<wa,2<0.5. The
functionsr isyd for i =a,b,c,d can be easily programmed for
the purposes of experimental data processing. The graphs of
r isyd and the correspondinggiszd functions are given in Figs.
5 and 6. The temperature dependence of the penetration
depthlsTd is also programmed for isotropic-gap, two-band,
and model 2Dd-wave superconductors. In the 2Dd-wave
case the theoretical result is compared to the experimental
data19 for YBa2Cu3O7−d, which is also depicted in Fig. 4.
The linear dependence of 1−l2s0d /l2sTd at low tempera-
tures for YBa2Cu3O7−d is discussed in Eq.s2.10d of Ref. 19.
For a 2D d-wave superconductor the general formulafEq.
s51dg gives

FIG. 4. sColor onlined In-plane normal fluid density 1
−l2s0d /l2sTd vs reduced temperaturet=T/Tc computed for three
cases:sid isotropic-gap BCS superconductorsdashed lined, sii d two-
band superconductor MgB2 with parametersc1=0.59, d=7.1/2.8
sdash-dotted lined, andsiii d 2D d-wave superconductorssolid lined.
The experimental points for YBa2Cu3O7−d ssquaresd are digitized
from Ref. 19, and the corresponding theoretical 2Dd-wave curve is
calculated according to Eq.s68d with the renormalization factorZ
=1.4. Some experimental points for MgB2 scirclesd are digitized
from Fig. 9 of Ref. 30sfor details see the original workd.

FIG. 5. sColor onlined Plot of the r isyd functions
si =a,b,c,dd.
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rSsTd =
l2s0d
l2sTd

=E
0

2p

rdSZ
DmaxsTd

2T
cos 2wDdw

2p
, s68d

where the temperature dependence of the order parameter is
described in the Appendix. We are using an oversimplified
model for cuprate superconductivity for which are neglected
sid the anisotropy of the Fermi velocityvFspd along the
Fermi contour,sii d higher harmonics of the gap functionDp
along the Fermi contour, andsiii d the influence of VHS of the
density of states slightly below the Fermi level. For compari-
son between angle resolved photoemission spectroscopy
sARPESd data and a lattice model for high-Tc spectrum see
Fig. 3 of Ref. 4.

Let us assume now that the order parameter for
YBa2Cu3O7−d is Z times higher than the BCS prediction.
This could be due to the influence of VHS or, which is more
important, strong coupling effects. Inserting hereZ=1.4 we
can see that such a renormalization well describes the tem-
perature dependence of the penetration depth in the whole
temperature interval. Finally, we have a good working BCS-
like formula. In fact, significantly higherDmaxs0d /Tc than
BCS prediction is in agreement with the ARPES data.

III. THE CASE FOR Sr 2RuO4

Our approach is also applicable to the triplet supercon-
ductor Sr2RuO4 sfor a review, see Ref. 33d. We adopt the
promising gap anisotropy model by Zhitomirsky and Rice,34

which givesEp=Îjp
2+ uDpu2, with

uDpu2 ~ Fsin2 pxa

2"
cos2

pya

2"
+ cos2

pxa

2"
sin2 pya

2"
Gcos2

pzc

2"
,

s69d

wherepxa/", pya/", pzc/"P s0,2pd. For the Fermi surface
we take a simple cylinder«p<«sÎpx

2+py
2d with radius

pFa/"<0.93p. Our calculations are depicted in Fig. 7. In
this model calculation we have taken into account only one
band responsible for superconductivity. Although it is nota
priori clear how “good” this assumption is, our curve repro-
duces the theoretical curve by Zhitomirsky and Rice34 and
passes close to the experimental points by NishiZakiet al.35

This promising success encouraged us to present the theoret-
ical prediction for the penetration depth calculated from Eq.
s66d. According to the conclusions by Zhitomirsky and

Rice,34 their model with horizontal line nodesssee also Ref.
36d describes the experimental data better than a model with
vertical line nodes. For illustration, in Fig. 7 we present also
our calculations for a simple 2D vertical line nodes model
with gap anisotropy function

xp ~ sinSpxa

2"
D . s70d

Similar model was studied by NishiZakiet al.35 ssee also
Fig. 26 in the review by Mackenzie and Maenod.33

From an aesthetic point of view our preferences are for
the recent model for the gap anisotropy by Deguchiet al.37

FIG. 6. sColor onlined Plot of thegiszd functionssi =a,b,cd.

FIG. 7. sColor onlined Sr2RuO4. sad Reduced order parameter
for the Zhitomirsky and Rice modelfEq. s69dg ssolid lined, the 2D
vertical line nodes modelfEq. s70dg sdot-dashed lined, and for the
2D model by Deguchiet al. fEq. s71dg sdotted lined. sbd Specific
heat ratioCsTd /CNsTd for the Zhitomirsky and Rice modelssolid
lined, the 2D vertical line nodes modelsdash-dotted lined, and for
the Deguchiet al. model sdotted lined. The experimental points
scirclesd from Ref. 35 are digitized from Fig. 1 of Ref. 34.scd
Normal fluid density 1−l2s0d /l2sTd corresponding to the gap an-
isotropy modelss69d–s71d. The experimental pointsscirclesd from
Ref. 38 are digitized from Fig. 2 of Ref. 39. We should note that the
model with vertical line nodes predicts spontaneous breaking of the
symmetry of the penetration depth in theab plane.
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uDpu2 ~ sin2spxa/"d + sin2spya/"d. s71d

Such types of anisotropy can be derived in the framework of
quasi-two-dimensional exchange models for perovskite su-
perconductivity of the type of the considered for CuO2 plane
in Ref. 4. The theoretical prediction corresponding to Eq.
s71d is also illustrated in Fig. 7 together with the experimen-
tal data by Deguchiet al.37

IV. DISCUSSION AND CONCLUSIONS

Let us discuss now the specific heat. We have shown that
for factorizable kernels5 the specific heat can be represented
as a sum of a “normal” componentCnsTd and a term depen-
dent on the order parameterCDsTd, which has the same form
as in the GL theory. There is one detail that is worth focusing
on: for thes-d model for high-Tc superconductivity4 the ker-
nel is indeed separable because the contact interaction is lo-
calized in a single atom in the lattice unit cell. One should
only substitute the spectrum of the superconductor atT
,Tc in the known expression for the GL coefficients from
classical work of Gor’kov and Melik-Barkhudarov.2 The fi-
nal expression for the specific heat is a generalization of the
result of Pokrovskii.1 The derived formulas can be easily
programmed for fitting the experimental data of anisotropic
superconductors. For the jump of the specific heat at the
critical temperatureuDCuTc

=CDsTc
−d general consideration

has already been given in Ref. 7. The derived formula is not
exact, but interpolates between the correct low-temperature
behavior and the result by Pokrovskii1 for the specific heat
jump at Tc. That is why we believe that our interpolation
formula fEq. s29dg can be useful for preliminary analysis of
the experimental data for the specific heat in superconduct-
ors; for experimental data processing the accuracy could be
comparablese.g., with the accuracy of the Debye formula for
the phonon heat capacityd.

We illustrated our formulas forCsTd and lsTd for the
isotropic-gap BCS model and three of the best investigated
anisotropic-gap superconductors YBa2Cu3O7−d, Sr2RuO4,
and MgB2. The nature of superconductivity for those super-
conductors is completely different: high-Tc and low-Tc,
phonon- and exchange-mediated, singlet and triplet Cooper
pairs. In all those cases the derived formulas work with an
acceptable accuracy; in some cases we even have quantita-
tive agreement and for high-Tc cuprates we have shown what
the BCS analysis can give. We conclude that the statistical
properties of the superconductorsfthermodynamicCsTd and
kinetic lsTdg are determined mainly by the gap anisotropy,
irrespective of the underlying pairing mechanism, and the
approximative weak coupling separation of variables1

DpsTd=QsTdxp is an adequate approach. It is worth applying
the derived formulas forCsTd andlsTd for every new super-
conductor. Often after the synthesis of a new superconductor,
single crystals are not available and only the data for heat
capacity CsTd can help the theory to distinguish between
different models for the gap anisotropy even before detailed
spectroscopic investigation is performed.
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APPENDIX: ORDER PARAMETER EQUATION FOR
ANISOTROPIC-GAP SUPERCONDUCTORS

Following Ref. 1, let us scrutinize the derivation of and
the solution to Eq.s8d. The gap anisotropy function will have
nonzero values only in a narrow region near the Fermi sur-
face

xp = xpusvD − ujpud, Tc ! vD ! EF. sA1d

Later, the differential volume in the momentum space can be
separated to Fermi surface elementdSand a normal element
dpt

dDp = dptdS=
d«

vF
dS, vFspd = U ]«p

]p
U . sA2d

Returning to Eq.s8d we have

G

s2p"dD R E xp
2

2Ep
tanhszpdusvD − ujpud

d«dS

vF
= 1, sA3d

wherer denotes integration over the Fermi surface. With the
account of the energy cutoffvD the latter reads

G

s2p"dD R dS

vF
xp

2E
0

vD tanhsÎj2 + Dp
2/2Td

Îj2 + Dp
2

dj = 1. sA4d

According to Eq.s24d we have for the density of states

nF = dsjpd =
1

s2p"dD E ds« − EFdd«
dS

vF
=

1

s2p"dD R dS

vF
.

sA5d

Similarly, the averaging over the Fermi surface can be rep-
resented as a surface integral

kfspdl =
1

nF
R dS

s2p"dDvF
fspd. sA6d

In these notation Eq.sA4d reads

Kxp
2E

0

vD tanhsÎj2 + Dp
2/2Td

Îj2 + Dp
2

djL =
1

GnF
=

1

lBCS
, sA7d

wherelBCS;GnF is the dimensionless BCS coupling con-
stant.

At T=Tc, whereDp=0 andEp= ujpu, substitutingx=j /2T
we obtain
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kxp
2lE

0

M tanhx

x
dx=

1

lBCS
, M =

vD

2Tc
@ 1. sA8d

Now the identity

E
0

M tanhx

x
dx= lnS4g

p
MD sA9d

gives

Tc = 2vD
g

p
expS−

1

kxp
2llBCS

D . sA10d

Analogously, atT=0 we have

Kxp
2E

0

vD dj

Îj2 + Dp
2s0dL =

1

lBCS
. sA11d

Then taking into account thatvD@Dps0d we have

E
0

vD dj

Îj2 + Dp
2

= lnS vD

uDpu
+Î1 +

vD
2

uDpu2
D < ln

2vD

uDpu
.

sA12d

As we will see later, it is convenient to modify the normal-
ization of the order parameter and gap anisotropy function

x̃p =
xp

xav
, Q̃ = Qxav, xav ; expH kxp

2 lnuxpul
kxp

2l J .

sA13d

The renormalizing multiplierxav is chosen in order for the
renormalized gap anisotropy function to obey the relation

kx̃p
2 ln x̃p

2l = 0. sA14d

For the two-band model this gives

xav = x1
c1x1

2
x2

c2x2
2
, sA15d

and one can easily verify that

c1x̃1
2 lnux̃1u + c2x̃2

2 lnux̃2u = 0. sA16d

Similarly, using

E
0

p/2

cos2 w lnucoswudw =
p

8
lnse/4d sA17d

we obtain for a 2Dd-wave superconductor

x̃pswd =
2
Îe

cos 2w,

E
0

2p

x̃p
2swdlnux̃pswdudw = 0. sA18d

Using the approximationsA12d with a renormalized order
parameter and gap anisotropy function, from Eq.sA11d we
derive

Q̃s0d = 2vD expS−
1

kxp
2llBCS

D . sA19d

This equation together withsA10d gives the well-known
BCS relation for the renormalized order parameter for aniso-
tropic superconductors1

2Q̃s0d
Tc

=
2p

g
< 3.53. sA20d

We assume that the density of statesnsEd is almost constant
in the energy intervalEF±2Tc.

The renormalization does not change the gapDpsTd
=Qxp=Q̃x̃p, but in a senseQ̃sTd is the “true” BCS gap for an
anisotropic superconductor. ForT=0 the BCS model gives
for d-wave superconductorsDps0d=Dmaxcos 2w, where

2Dmax

Tc
=

2p

g

2
Îe

< 4.28. sA21d

However, for cuprates we have to take into account the in-
fluence of Van Hove singularity and strong coupling correla-
tions. As we fitted from the temperature dependence of the
penetration depth for YBa2Cu3O7−d, we have 40% bigger
gap Dmax=ZDmax

sBCSd and 2Dmax/Tc<6.0. In such a way the
thermodynamic behavior is in agreement with the spectro-
scopic data. This is a good hint in favor of the Landau-
Bogoliubov quasiparticle picture applied to high-Tc cuprates.
For MgB2 taking c1=0.44 andD1s0d=7.1 meV andD2s0d
=2.8 we obtain x̃1<1.17 and x̃2<0.46. Then Q̃s0d
=D1s0d / x̃1=D2s0d / x̃2<6.08 meV=70.6 K. For the critical

temperatureTc=39 K we obtain 2Q̃s0d /Tc<3.62, which
agrees with the BCS ratiosA20d within 3% accuracy as
found in Ref. 13

For arbitrary temperatures using the identity

tanh
x

2
= 1 −

2

ex + 1
, sA22d

Eq. sA7d reads

Kxp
2E

0

vD dj

Îj2 + Dp
2sTdL −

1

lBCS

= 27xp
2E

0

vD dj

Îj2 + Dp
2sTdFexpSÎj2 + Dp

2sTd
T

D + 1G8 .

sA23d

Substituting here 1/lBCS from Eq. sA11d and taking into
account thevD@ uDps0du approximation,fEq. sA12dg, we ob-
tain the Pokrovskii equation

qª expH−
kxp

2Fs2ypdl
kxp

2l J, 2yp =
p

g

xp

xav

q

t
=

Dp

T
,

sA24d

where
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qstd =
DpsTd
Dps0d

=
QsTd
Qs0d

=
Q̃sTd

Q̃s0d
sA25d

is the reduced order parameter 0øqø1 as a function of the
reduced temperaturet=T/Tc. In physical variables
Pokrovskii1 equation reads

ln
DpsTd
Dps0d

+ kxp
2FsDpsTd/Tdlp = 0. sA26d

The functionFsxd associated with the right-hand side of Eq.
sA23d is defined by an integral, for which we have one inte-
gral and two different summation formulas, convenient for
small and large arguments40

Fsxd ; E
−`

` du
Îu2 + x2fexpsÎu2 + x2d + 1g

= 2E
0

` du

expsx coshud + 1

= ln
p

gx
+ 2po

l=1

` F 1

s2l − 1dp
−

1
Îx2 + s2l − 1d2p2G

= − 2o
n=1

`

s− 1dnK0snxd, sA27d

where for large arguments we have the approximate formula

2K0sx @ 1d <Î2p

x
e−xS1 −

1

8x
+

9

128x2 −
225

3972x3D .

sA28d

Physically, herex=D /T, u=j /T and the upper integration
boundvD /T has been replaced bỳ. For this function we
have the approximate formulas

Fsx ! 1d < ln
p

gx
+

7

8p2zs3dx2, sA29d

Fsx @ 1d < 2K0sxd. sA30d

The Euler constant isg=eC<1.781 072 418 andzs3d
<1.202 056 903, wherez is the Riemann zeta function. A
plot of the functionFsxd is shown in Fig. 8. In the preprint
version of this paper41 a simple C11 code for numerical
evaluation ofFsxd is provided. For fast calculations one has
to take only several terms of the expansionsfEq. sA27dg. The
ª sign in Eq. sA24d represents an iterative assignment in
which we use the initial approximationq=1.

The BCS order-parameter equationsA24d is not specific
for the physics of superconductivity. Recently, Abrikisov42

has derived the same equation for the temperature depen-
dence of the amplitude of spin density waves in cuprates.

For 2D d-wave superconductors the Pokrovskii equation
sA24d reads

ln q = −E
0

2p

2 cos2s2wdFS 2p

gÎe
coss2wd

q

t
Ddw

2p
.

sA31d

The numerical solution for the squared reduced order param-
eterq2std is shown in Fig. 9. The linear dependence near the
critical temperaturet=1 corresponds to the GL approxima-
tion. In Fig. 10 the squared reduced order parameter for
MgB2 stwo-band model withc1=0.44, d=7.1/2.8d is com-
pared to the experimental data from Ref. 31.

As a last problem, let us derive the factorizable kernels7d
as a result from the BCS equations6d. For vD!EF, Eq. s6d
reads

DqsTd =R
FS

Vq,pDpE
0

vD tanhsEp/2Td
Ep

djp
dSp

s2p"dDvF

= nFKVq,pDpE
0

vD tanhsEp/2Td
Ep

djpL
p

. sA32d

At T=Tc fcf. Eqs.sA8d–sA10dg this formula gives

FIG. 8. sColor onlined Plot of theFsxd function. The approxi-
mations toFsxd for x!1 andx@1 are given by Eqs.sA29d and
sA30d, respectively.

FIG. 9. sColor onlined Squared reduced order parameter
Q2sTd /Q2s0d vs reduced temperaturet=T/Tc For the two-band
model, thec1 and d parameters are chosen so as to simulating a
d-wave CuO2:c1=1/2, d=2.41.
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DqsTcd < nF lnS2gvD

pTc
DkVq,pDplp. sA33d

Let us also mention the dimensions of the variables. Since
the integration e¯ fd3p/ s2p"d3g has a dimension of
1/volume, thenVq,p, being a Fourier component of potential
energy, has dimension of energy3volume. For example, the
Coulomb potentiale2/ r has a dimension of energy and its
Fourier transformation

4pe2

k2 =E e2

r
e−ik·rd3r sA34d

has a dimension of energy3volume. The same holds for the
contact attraction in the BCS model potentialVsr d=−Gdsr d
having a constant Fourier component −G. The density of
statesnF has a dimension ofsenergy3volumed−1, Dp andEp

have a dimension of energy, and the Fermi surface averaging
bracketsk…l represent a dimensionless operation.

Let the dimensionless parameterV0 denotes the maximum
eigenvalue of the problem

kVq,pxplp = V0xq, sA35d

andxp is the corresponding eigenvector, with normalization
kxp

2l=1. The comparison of Eqs.sA35d and sA33d gives

Tc =
2gvD

p
expS−

1

nFV0
D , sA36d

which is identified with Eq.sA10d and we obtain

G = V0 =
kxqVq,pxplq,p

kxp
2lp

. sA37d

As the maximal eigenvalue is sought, one can apply in this
case the Krilov iterations

xq
sn+1d ~ kVq,pxp

sndlp, ksxp
sn+1dd2l = 1, sA38d

starting from some solutionlike trial vectorxp
s0d. Then the gap

anisotropy functionxp is just the limit of the Krilov itera-
tions xp

s`d.
For T=0, the gap equationsA32d gives

Dqs0d =KVq,p lnS 2vD

Q̃s0dux̃pu
DDpL

p

. sA39d

Within the weak-coupling BCS approximation, in the inte-
grant

lnS 2vD

uDps0duD = lnS 2vD

Q̃s0d
D − lnux̃pu sA40d

the first term is much bigger than the second one. For details
we refer to the original work by Pokrovsky,1 but, roughly
speaking, lnf2vD /Dps0dg<const@1. Within the latter ap-
proximation forDps0d we obtain again the same eigenvalue
problem and this constitutes the proof that the momentum
dependence of the gap is rigid. Hence we derive the separa-
tion of the variablesDpsTd<QsTdxp. When the term lnuxpu
in Eq. sA40d is small it can be treated perturbatively, and
according to the normalization Eq.sA14d its influence dimin-
ishes. The properties of this approximative separation of the
variables can be simulated by a factorizable kernel

Vq,p = o
n

VnCq
sndCp

snd → V0xqxp, sA41d

whereVn are the eigenvalues andCp
snd are the corresponding

eigenvectors of the problem

kVq,pCp
sndlp = VnCq

snd, kuCp
sndu2l = 1. sA42d

In other words, the factorizable approximationfEqs. sA41d
and s7dg works well when the influence of smaller eigenval-
ues is small.

Generally speaking, the separability ansatz is a low-Tc
approximation;Tc should be much smaller than all other en-
ergy parameters: energy cutoff, Debye frequency for phonon
superconductors, exchange integrals for exchange mediated
superconductivity, the Fermi energy, and the bandwidths.
Room-temperature superconductivity is not yet discovered,
but the good message is that we have still a simple approxi-
mation acceptably working for all superconductors. For the-
oretical models the accuracy of the separable approximation
can be easily probed when investigating the angle between
the order parameter at different temperatures, e.g.,

arccos
kDp

* sTdDpsTcdl
ÎkuDpsTdu2lkuDpsTcdu2l

! 1 sA43d

or

arccos
Dp

* sTdDpsTcd
Î uDpsTdu2 uDpsTcdu2

! 1. sA44d

Those angles are just zero atTc and the expressions for the
specific heat jump and the GL coefficients is correct. Only
for T→0 some small deviations can be observed, but in that
case one can treatxp as a trial function in a variational ap-
proach.

The performed analysis shows that the separation of the
variables Eq.s5d due to Pokrovsky1 and consequent factor-
izable kernel Eq.s7d are tools to apply the weak-coupling

FIG. 10. sColor onlined Squared reduced order parameter
Q2sTd /Q2s0d vs the reduced temperaturet=T/Tc for MgB2 ssolid
lined with c1=0.44,d=7.1/2.8. The experimental points for MgB2

scirclesd are digitized from Ref. 31.
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BCS approximation to anisotropic-gap superconductors. The
factorizable kernel gives a simple solution to the gap equa-
tion, the nontrivial detail being that this separability can be
derived by the BCS gap equation. The factorizable kernel has
also been discussed by Markowitz and Kadanoff5 and em-
ployed, e.g., by Clem,43 to investigate the effect of gap an-
isotropy in pure and superconductors with nonmagnetic im-
purities. Factorizable kernels are now used in many works on
exotic superconductors. However, in none of them is men-
tioned that the separability of the superconducting order pa-

rameter is an immanent property of the BCS theory.1 The
accuracy of the separable approximation is higher if the other
eigenvalues of the pairing kernel are much smaller than the
maximal one. This is likely to be the situation for thes-d
model for layered cuprates,4 where thes-d pairing amplitude
Jsd is much bigger than the phonon attraction and the other
interatomic exchange integrals. In order for us to clarify this
important approach to the theory of superconductivity,
we have given here a rather methodical derivation of the
Pokrovsky theory.
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