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The post-Gaussian effective potential inD=2+2« dimensions is evaluated for the Ginzburg–Landau theory
of superconductivity. Two- and three-loop integrals for the post-Gaussian correction terms inD=2+2« dimen-
sions are calculated and« expansions for these integrals are constructed. InD=2+2« fractal dimensions the
Ginzburg–Landau parameter turned out to be sensitive to« and the contribution of the post-Gaussian term is
larger than that forD=3. Adjusting« to the recent experimental data onksTd for the high-Tc cuprate super-
conductor Tl2Ca2Ba2Cu3O10, we found that«=0.21 is the best choice for this material. The result clearly
shows that, in order to understand high-Tc superconductivity, it is necessary to include the fluctuation contri-
bution as well as the contribution from the dimensionality of the sample. The method gives a theoretical tool
to estimate the effective dimensionality of samples.
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I. INTRODUCTION

The Ginzburg–LandausGLd theory of superconductivity1

had been proposed long before the famous BCS microscopic
theory of superconductivity was discovered. A few years af-
ter the appearance of the BCS theory, Gorkov derived the GL
theory from the BCS theory.2 Since then, the GL theory has
remained as a main theoretical model in understanding su-
perconductivity. It is highly relevant for the description of
both type-I sRef. 3d and type-II superconductors, even
though the original BCS theory is inadequate to treat both
materials. The success of the GL theory in the study of mod-
ern problems of superconductivity lies in its universal effec-
tive character in which the details of the microscopic model
are unimportant.

Even at the level of mean-field approximationsMFAd, the
GL theory yields significant information such as the penetra-
tion depths,d and the coherence lengthsjd of the supercon-
ducting samples. Many unconventional properties of super-
conductivity connected with the breakdown of the simple
MFA have been studied both analytically4 and numerically
using the GL theory.5 In particular, the fluctuations of the
gauge field were studied recently by Camardaet al.6 and
Abreu et al.7 in the Gaussian approximation of the field
theory. The effective mass parameters of the Gaussian effec-
tive potential,V and D, were interpreted as inverses of the
coherence lengthj=1/V and the penetration depth,=1/D,
respectively.

In our previous paper8 we estimated corrections to the
Gaussian effective potential for the Us1d scalar electrody-
namics, which represents the standard static GL model of
superconductivity. Although it has been shown that the cor-
rection is significant inD=3 dimensions, it was not large
enough to explain the experimental findings. At the same
time, we have investigated the role of quasi-two-
dimensionality in high-Tc superconductivity, by calculating
the Gaussian effective potential forD=2+2«. It was found
that the dimensional contribution at the Gaussian approxima-
tion level gives the correction in the right direction, but is not

large enough to explain the experimental data.8 However, it
is known that fluctuation contributions are much larger in
lower dimensions. Therefore, it is necessary to investigate
whether the post-Gaussian correction terms inD=2+2« di-
mensions provide a significant contribution to the mean-field
result, in order to understand the layered structure of high-Tc
superconductivity. In the present paper, we study the role of
the post-Gaussian contributions inD=2+2« dimensions by
using the method developed in Ref. 8.

The paper is organized as follows. In Sec. II the GL action
is introduced and basic equations are derived; in Sec. III, the
theoretical results forD=2+2« will be compared to existing
high-Tc experimental data, so that the role of fractal dimen-
sions can be discussed. In the Appendixes we calculate two-
and three-loop integrals inD=2+2« dimensions and give
some auxiliary formulas.

II. BASIC EQUATIONS FOR THE EFFECTIVE MASSES

The Hamiltonian of the model and explicit expressions for
the effective potential in EuclideanD-dimensional space
were given in Refs. 6–8. Here we give the main points for
convenience. The effective potential, i.e., the free-energy
density,Veff=F /V is defined as

Veff = − ln Z s1d

where the partition function is

Z =E Df DAT expH−E dDx H +E dDx jf + s jWA ·AW dJ .

s2d

The Hamiltonian density is given by

H =
1

2
s¹W 3 AW d2 +

1

2
s¹W fd2 +

1

2
m2f2 + lf4 +

1

2
e2f2A2

+
1

2h
s¹W AW d2 s3d

where we have introduced a gauge-fixing term with the limit
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h→0 being taken after the calculations are carried out. Note
that we are using natural units employingj0 scoherence
length at zero temperatured and Tc scritical temperatured as
the length and the energy scales, respectively, introduced by9

m→ mj0
−1, x → xj0,

e2 → e2j0
−1Tc

−1, l → lj0
−1Tc

−1. s4d

Using the method introduced in Refs. 8, 10, and 11 one
finds the following effective potential:

Veff = VG + DVG s5d

whereVG is the Gaussian part,

VG = I1sVd +
1

2
I1sDd +

1

2
m2f0

2 + lf0
4 +

1

2
I0sVdfm2 − V2

+ 6lI0sVd + 12lf0
2g + I0sDdf− D0

2 + e2I0sVd + e2f0
2g,

andDVG is the correction part,

DVG = F−
1

2
e4I2sDd − 18I2sVdl2Gf0

4

+ H− 3lI2sVdf− V2 + m2 + 2I0sDde2 + 12lI0sVdg

− e2I2sDdf− D2 + e2I0sVdg − 8l2I3sV,Vd

−
2

3
e4I3sD,VdJf0

2 −
1

8
I2sVdf− V2 + m2 + 2I0sDde2

+ 12lI0sVdg2 −
1

2
I2sDdf− D2 + e2I0sVdg2

−
1

12
e4I4sD,Vd −

1

2
l2I4sV,Vd. s6d

In the above the following integrals are introduced:

I0sMd =E dDp

s2pdD

1

sM2 + p2d
,

I1sMd =
1

2
E dDp

s2pdD lnsM2 + p2d,

I2sMd =
2

s2pdD E dDk

sk2 + M2d2 ,

I3sM1,M2d =
1

s2pd2D E dDkdDp

sk2 + M1
2dsp2 + M1

2dssk + pd2 + M2
2d

,

I4sM1,M2d =
1

s2pd3D E dDkdDpdDq

sk2 + M1
2dsp2 + M1

2dsq2 + M2
2d

3
1

fsk + p + qd2 + M2
2g

. s7d

For D=3−2«, these integrals were calculated in dimensional

regularization in Ref. 12 and forD=2+2« in Appendix A of
the present paper.

The parametersV andD are determined by the principle
of minimal sensitivitysPMSd:

] Veff

] V
= FVsm,l,«,V̄,D̄,f̄0d = 0,

] Veff

] D
= FDsm,l,«,V̄,D̄,f̄0d = 0, s8d

where we denote optimal values ofV and D by V̄ and D̄,
respectively, andf̄0 is a stationary point defined from the
equation

] Veff

] f0
= Ffsm,l,«,V̄,D̄,f̄0d = 0. s9d

For the reader’s convenience the explicit expressions for

FVsm,l ,« ,V̄ ,D̄ ,f̄0d , FDsm,l ,« ,V̄ ,D̄ ,f̄0d, and

Ffsm,l ,« ,V̄ ,D̄ ,f̄0d are given in Appendix B.

III. RESULTS AND DISCUSSION

The solutions of Eqs.s8d ands9d are related to the experi-

mentally measured GL parameterk as k=, /j=V̄ / D̄. We
make an attempt to reproduce recent experimental data on
ksTd for the high-Tc cuprate superconductor
Tl2Ca2Ba2Cu3O10 sT,-2223d.13

For this purpose, we adopt the usual linearT dependence
of the parametrization ofm andl as

m2 = m0
2s1 − td + tmc

2,

l = l0s1 − td + tlc,

t = T/Tc, s10d

and calculatek by solving the nonlinear equationss8d and
s9d. Due to the parametrizations10d, the model has in general
six input parameters:m0

2, l0, mc
2, lc, j0 scoherence lengthd,

andTc scritical temperatured. The experimental values for the
cuprate T,-2223 arej0=1.36 nm andTc=121.5 K. To deter-
mine the other four parameters we used the following strat-
egy. For each given«, the parametersm0

2 andl0 are fitted to
the experimental values ofj and , at zero temperature:j0
=1.36 nm,,0=163 nm. In dimensionless units, Eq.s4d, we

have V̄0=V̄st=0d=1 and D̄0=D̄st=0d=j0/ l0=0.0083,
which are used to calculatem0

2 and l0 from the coupled
equationss8d ands9d. This procedure gives the« dependence
of m0

2 which is presented in Fig. 1ssolid lined. As in the case
of the Gaussian approximation,8 m2 remains positive only for
very small values of«, although the nonlinearity produces
severalm2=0 solutions in this case. We believe that this
smallness again indicates the reliability of the present post-
Gaussian approximation method.
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The parametersmc
2 and lc are fixed in a similar way for

each given«. Actually the quantum fluctuations shiftmc
2

from its zero value given by the MFA. On the other hand, the
exact experimental values ofmc

2 andlc are unknown, since
the GL parameter atT=Tc is poorly determined. For this
reason, we used the experimental values ofjc and,c at very
close points to the critical temperaturetc=0.98, which cor-
responds toV̄c=V̄stcd=1/jc=0.128 and D̄c=D̄stcd=1/,c
=0.0043skc=29.6d. Then solving Eqs.s8d and s9d numeri-
cally with respect tomc andlc, we fix these parameters.

After having fixed the input parameters, the temperature
dependences ofV̄std ,D̄std, as well as the GL parameterk

=V̄std / D̄std are established by solving the gap equations nu-
merically for each«. Clearly, the solutions of the nonlinear
gap equations are not unique. In numerical calculations we
separated the physical solutions by observing the sign off̄0

2,
which should be positive and the effective potential at the
stationary pointVeffsf̄0d should has a real minimum at this
point. For «ù0.1, there is a possibility to adjust« to the
recent experimental data onksTd for the high-Tc cuprate su-
perconductor Tl2Ca2Ba2Cu3O10.

13 Our calculations show that
the best choice of« is found to be«=0.21. The appropriate
kstd is presented in Fig. 2ssolid lined. The dashed line in this
figure showskstd for D=3. This fitting process allows us to
get an estimation of the effective dimensionality of the high-
Tc superconducting materials.

IV. SUMMARY

In the present paper, we have carried out two- and three-
loop calculations on the Ginzburg–Landau effective potential

beyond the Gaussian approximation forD=2+2« fractal di-
mensions. The result clearly shows that the higher-order cor-
rections need to be substantially large to explain the existing
experimental data.

This result strongly suggests that in order to explain the
experimental data on high-Tc superconductivity it is neces-
sary to include the fluctuation contribution as well as the
contribution from the quasi-two-dimensionality. We have
found that the GL parameter is rather sensitive to« when the
loop corrections to the simple Gaussian approximation are
taken into account. The optimal value of« for the cuprate
T,-2223 is«=0.21. It would be interesting to estimate the
optimal « in fractal dimensions for other cuprates also.

It is to be noted that we have calculated two- and three-
loop integrals inD=2+2« dimensions using the method of
dimensional regularization.
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FIG. 1. The parameterm2 of the GL model vs« in fractal di-
mensionD=2+2«. The solid and dashed lines are for the tempera-
turesT=0 and 0.6Tc, respectively.

FIG. 2. The GL parameterk in D=2+2« ssolid lined and inD
=3 sdashed lined cases calculated in the post-Gaussian
approximation.
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APPENDIX A: EXPLICIT EXPRESSION FOR THE LOOP
INTEGRALS IN D=2+2« DIMENSIONS

Here, we consider the loop integrals defined in Eqs.s7d in
D=2+2« dimensions. In dimensional regularization the in-
tegrals I0smd , I1smd, and I2smd can be easily calculated in
momentum space:

I0smd =E dDp

s2pdD

1

sm2 + p2d

= Segm2

4p
D−« 2pD/2

GsD/2ds2pdDE
0

` kD−1dk

sk2 + m2d

= Segx

4p
D−« Gs− «d

s4pd1+«

= −
1

4p
H1

«
− lnsxd + «Fp2

12
+

ln2sxd
2

G + Os«2dJ ,

I1smd =
1

2
E dDp

s2pdD lnsk2 + m2d

= −
m2

8p
H1

«
− 1 − lnsxd

+ «Flnsxd +
p2

12
+ 1 +

ln2sxd
2

G + Os«2dJ ,

I2smd = 2E dDp

s2pdDsk2 + m2d2 =
1

2m2p
h1 − « lnsxd + Os«2dj,

sA1d

with x=m2/m2.
Two- and three-loop integralssI3 and I4d require a little

more effort. It is more convenient to evaluate them in coor-
dinate space rather than in momentum space, since

I3sM1,M2d =
1

s2pd2D E dDk dDp

sk2 + M1
2dsp2 + M1

2dfsk + pd2 + M2
2g

= Segm2

4p
D«E dDr G1

2srdG2srd,

I4sM1,M2d =
1

s2pd3D E dDk dDp dDq

sk2 + M1
2dsp2 + M1

2dsq2 + M2
2d

3
1

fsk + p + qd2 + M2
2g

= Segm2

4p
D«E dDr G1

2srdG2
2srd, sA2d

where Gnsrd is the Fourier transform of the propagator
1/sk2+Mn

2d sn=1,2d:

Gsrd =E dDk eikr

s2pdDsk2 + m2d
=

s2pd−D/2mD−2

smrdD/2−1 KD/2−1smrd,

sA3d

and Knszd is the modified Bessel function. In dimensional
regularization, forD=2+2« , Gsrd is simplified as

Gsrd = Segx

2
D−« smrd−«

2p
K«smrd. sA4d

Now, substituting Eq.sA4d into Eq. sA3d one notices that
unlike in the case ofD=3−2«, in D=2+2« dimensions there
is no singularity at smallr and hence the integration can be
performed directly fromr =0 to ` without splitting the radial
integration into two regions with small and larger.

The case with equal masses,M1=M2;m, can be done
analytically:

INsmd =
2−N«segx/4d«s1−Nd

s2pdN−1m2Gs1 + «d
ĨNs«d,

ĨNs«d =E
0

`

t1+2«ft−«K«stdgNdt, sA5d

for N=3, 4, where the integralsĨ3s«d and Ĩ4s«d are expressed
in term of the hypergeometric functions:

Ĩ3s«d =
Gs«dGs1 − «d

23+« H4«ÎpGs1 − 2«d
Gs3/2 −«d

32F1F1,1 − 2«;
3

2
− «;

1

4
G

− 2Gs1 − «d 2F1F1,1 −«;
3

2
;
1

4
GJ s« ø 0.5d,

sA6d

Ĩ4s«d =
Gs«dGs1 − «d

8

3H«G2s− «d
4« 3F2F1,1 −«,

1

2
+ «;

3

2
,1 + 2«;1G

+
2G2s− «d«
4«s2« − 1d 3F2F1

2
,1,1 − 2«;

3

2
− «,1 +«;1G

−
4«ÎpGs1 − 3«dGs1 + «dGs− 2«d

Gs3/2 − 2«d

32F1F1 − 3«,
1

2
− «;

3

2
− 2«;1GJ s« ø 1/3d.

sA7d

The method of Ref. 14 gives the following« expansion:
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I3smd =
1

4p2m2f0.5917 +«s0.6629 − 1.1835 lnxd + Os«2dg,

I4smd =
1

8p3m2f1.188 −«s2.759 + 3.5656 lnxd + Os«2dg,

sA8d

which is used in our practical calculations.
The case with nonequal masses is rather complicated and

cannot be done analytically in general. However, in the par-
ticular case whena;M2/M1,1 sRef. 15d the problem may
be overcome by expansion in power series ina. We shall
illustrate this approximation forI3sM1,M2d below. Using
Eqs.sA3d and sA4d one obtains

I3sM1,M2d = Segm2

4p
D«E G1

2srdG2srddDr

=
1

4p2M1
2Gs« + 1d

Fx1x2 exps2gd
2

G−«

Ĩ3sa,«d,

sA9d

where

Ĩ3sa,«d =E
0

`

tK«
2stdsatd−«K«satd. sA10d

Now using the series expansion ofKnszd,

Knszd =
GsndGs1 − nd

2
Hz−nF 2n

Gs1 − nd
+

2n−2z2

Gs2 − nd
+ Osz4dG

− znF 2−n

Gs1 + nd
+

2−n−2z2

Gs2 + nd
+ Osz4dGJ , sA11d

one may expand the factorsatd−«K«satd in power series ofa
and integrate Eq.sA10d analytically to obtain

Ĩ3sa,«d = −
«2Gs«dG2s− «d

24s2« − 1ds2« − 3d2«

3hs2« − 1ds2« − 3dsa2« − a2 − 6d − 3a−2«

3f4« − 6 +a2s2« − 1dg + Osa4dj. sA12d

Inserting Eq.sA12d into Eq.sA9d one obtains the followinge
expansion:

I3sM1,M2d =
1

864p2M1
2„108s1 − ln ad − 3a2s6 ln a − 5d

+ «ha2f− 18 ln2a + s36 lnx1 + 18dln a

− 30 lnx1 + 4g − 216 lnx1 − 108 ln2a + 216

+ 216 lnx1ln a + Os«2dj…. sA13d

Similarly, one may calculateI4sM1,M2d to obtain itse ex-
pansion:

I4sM1,M2d =
1

1728p3M1
2„4a2s2 + 9 ln2a − 6 ln ad − 108 ln2a

+ 190.9588 lna − 280.5109 +«ha2f72 ln3a

− s60 + 108 lnx1dln2a + s72 lnx1 − 28dln a

− 24 lnx1 + 23.4519g − 360 ln3a + s547.8351

+ 324 lnx1dln2a − s572.8764 lnx1

+ 337.6413dln a + 841.5330 lnx1 − 806.1519

+ Os«2dj…. sA14d

where, for simplicity, we used explicit values of constants
such asg , zs3d , lns2d, etc.

APPENDIX B: THE GAP EQUATIONS

Here the explicit expressions for the gap equations deter-
mined by the PMS are presented. Taking the derivative of
Veff by V and using the results of Appendix A one gets

]Veff

]V
; FVsm,l,«,V̄,D̄,f̄0d = 0.0362

l2

«2 +
l

«F0.075sV̄2 − m2d − 0.108lSln
m2

V̄2
+ 1D − 0.911f̄0

2l + 0.145l2ln2 m2

V̄2

+ fs0.290 + 1.823f̄0
2dl2 + 0.151lsm2 − V̄2dgln

m2

V̄2
+ 0.064l2s1 + 3f̄0

2d2 + sm2 − V̄2df0.039sm2 − V̄2d + 0.954lf̄0
20.151lg

− 0.108l2ln3 m2

V̄2
+ f0.113sV̄2 − m2dl − l2s0.326 + 1.367f̄0

2dgln2 m2

V̄2
+ fsV̄2 − m2ds0.954lf̄0

2 + 0.227m2dl

− 0.039sV̄2 − m2dg − l2s0.133 + 5.729f̄0
4 + 3.215f̄0

2dGln
m2

V̄2
− l2s0.960f̄0

2 + 5.72f̄0
4 + 0.144d

+ «fsV̄2 − m2ds0.954lf̄0
2 − 0.062ld − 0.039sV̄2 − m2dg + Os«2d = 0. sB1d

Similarly, the second gap equation is given by
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]Veff

]D
; FDsm,l,«,V̄,D̄,f̄0d =

s0.334V̄2 − 0.319ld
«

+ s0.639l − 0.334V̄2dln
m2

V̄2
+ s0.319l − 0.334V̄2dln

m2

D̄2

+ s4.015l − 4.205V̄2df̄0
2 − 1.003V̄2 + 0.334m2 + «Hs0.167V̄2 − 0.479ldln2 m2

V̄2Fs0.334V̄2 − 0.639ldln
m2

D̄2
+ 1.003V̄2

− 0.334m2 − 4.015lf̄0
2Gln

m2

V̄2
+ fs4.205V̄2 − 4.015ldf̄0

2 + 0.334V̄2 + 0.334m2gln
m2

D̄2
− 0.262l − 4.943V̄2D̄2

+ 8.410V̄2f̄0
2 + 0.275V̄2J + Os«2d = 0. sB2d

In the above equationsf̄0 is a stationary point satisfying the following equation:

] Veff

] f0
; Ffsm,l,«,V̄,D̄,f̄0d =

lV̄2D̄2s0.456l − 0.477V̄2d
«

+ s0.477V̄2 − 0.911ldln
m2

V̄2
− s5.729l − 2V̄2df̄0

2 + 0.477sV̄2 − m2d

− 0.119l +
V̄2m2

2l
+Hf0.683l − 0.238V̄2gln2 m2

V̄2
+ f5.729lf̄0

2 + 0.477sm2 − V̄2d + 0.239lgln
m2

V̄2
+ 0.240l

− 0.392V̄2J« + Os«2d = 0. sB3d

In deriving the equationssB1d–sB3d we have used the« expansion of the loop integrals given in Appendix A and the
numerical values ofj0,Tc, ande. For the cuprate Tl2Ca2Ba2Cu3O10 these values are

j0 = 1.36 nm, Tc = 121.5 K,

e2 = 16pakBTcj0/"c = 0.000 0264. sB4d
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