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Ginzburg—Landau theory of superconductivity at fractal dimensions
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The post-Gaussian effective potentialDr=2+2¢ dimensions is evaluated for the Ginzburg—Landau theory
of superconductivity. Two- and three-loop integrals for the post-Gaussian correction tebm®i2s dimen-
sions are calculated andexpansions for these integrals are constructed #2 +2¢ fractal dimensions the
Ginzburg—Landau parameter turned out to be sensitiveand the contribution of the post-Gaussian term is
larger than that foD=3. Adjustinge to the recent experimental data &fil) for the highT, cuprate super-
conductor TJCaBa,Cu;04o, we found thate=0.21 is the best choice for this material. The result clearly
shows that, in order to understand highsuperconductivity, it is necessary to include the fluctuation contri-
bution as well as the contribution from the dimensionality of the sample. The method gives a theoretical tool
to estimate the effective dimensionality of samples.
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I. INTRODUCTION large enough to explain the experimental datdowever, it
is known that fluctuation contributions are much larger in
The Ginzburg-Landa(GL) theory of superconductivity lower dimensions. Therefore, it is necessary to investigate
had been proposed long before the famous BCS microscopighether the post-Gaussian correction term®m2 +2= di-
theory of superconductivity was discovered. A few years afimensions provide a significant contribution to the mean-field
ter the appearance of the BCS theory, Gorkov derived the Gkesult, in order to understand the layered structure of Righ-
theory from the BCS theory/Since then, the GL theory has superconductivity. In the present paper, we study the role of
remained as a main theoretical model in understanding sithe post-Gaussian contributions =2+ 2 dimensions by
perconductivity. It is highly relevant for the description of using the method developed in Ref. 8.
both type-l (Ref. 3 and type-ll superconductors, even  The paper is organized as follows. In Sec. Il the GL action
though the original BCS theory is inadequate to treat boths introduced and basic equations are derived; in Sec. Ill, the
materials. The success of the GL theory in the study of modtheoretical results fob =2+ 2= will be compared to existing
ern problems of superconductivity lies in its universal effec-high-T, experimental data, so that the role of fractal dimen-
tive character in which the details of the microscopic modelsions can be discussed. In the Appendixes we calculate two-
are unimportant. and three-loop integrals iD=2+2¢ dimensions and give
Even at the level of mean-field approximatiMFA), the  some auxiliary formulas.
GL theory yields significant information such as the penetra-
tion depth(¢) and the coherence lengté) of the supercon-  !I- BASIC EQUATIONS FOR THE EFFECTIVE MASSES

ducting samples. Many unconventional properties of super- The Hamiltonian of the model and explicit expressions for
conductivity connected with the breakdown of the simplethe effective potential in Euclidea®-dimensional space
MFA have been studied both analyticdlignd numerically  were given in Refs. 6—8. Here we give the main points for

using the GL theory. In particular, the fluctuations of the convenience. The effective potential, i.e., the free-energy
gauge field were studied recently by Camaetaal® and density,Veg=F/V is defined as

Abreu et al’ in the Gaussian approximation of the field

theory. The effective mass parameters of the Gaussian effec- Ver=—InZ D
tive potential,{) and A, were interpreted as inverses of the \yhere the partition function is

coherence lengtl§=1/Q and the penetration depth=1/A,

respectively. - I Dy i PA
In our previous papérwe estimated corrections to the z fDd)DAT exp{ fd XH+Jd Xjg+ (i A)}'

Gaussian effective potential for the(l) scalar electrody- )
namics, which represents the standard static GL model of

superconductivity. Although it has been shown that the corThe Hamiltonian density is given by

rection is significant inD=3 dimensions, it was not large 1. . 1. 1 1
enough to explain the experimental findings. At the same H==(V X A)2+ =(V )2+ —mlg? + N* + €2 p?A?
time, we have investigated the role of quasi-two- 2 2 2 2
dimensionality in high¥, superconductivity, by calculating 1 -

the Gaussian effective potential for=2+2¢. It was found + 2—(VA)2 3
that the dimensional contribution at the Gaussian approxima- K

tion level gives the correction in the right direction, but is notwhere we have introduced a gauge-fixing term with the limit
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n— 0 being taken after the calculations are carried out. Noteegularization in Ref. 12 and fdd=2+2¢ in Appendix A of

that we are using natural units employirdg (coherence
length at zero temperatyrend T, (critical temperatureas

the present paper.
The parameter§)l and A are determined by the principle

the length and the energy scales, respectively, introductd byf minimal sensitivity(PMS):

m—mé&t,  x— xé&,

& — 5T NG (4)

Using the method introduced in Refs. 8, 10, and 11 one

finds the following effective potential:
Veit = Vg + AVg (5)

whereV is the Gaussian part,

Ve =1,(Q) + %Il(A) + %mzdf) +Npg + %IO(Q)[mZ -0?

+ BN o(Q) + LA G3] + 1o(A)[ - AZ+ €21 (Q) + 2453,

and AV is the correction part,
1
AVg = [- 5 ,(A) - 181 2((2))\2} b

+ {— 3N (Q)[— Q2+ P + 215(A)e? + 121 (Q)]

- 1,(A)[- A%+ 14(Q)] - 8\215(Q,Q)

-2 4|3<A,m}¢02— S1AO)- 07+ 17+ 24)¢7

F 1RGO - 18- A7+ 1)

_1a N
SE1AA,.0) - 3,(Q,0). (6)

In the above the following integrals are introduced:
M
olM) = J(z =T
1( d°p
ILM)== | —=In(M?+p?
l( ) Zf (27T)D n( +p),

M) = 2 f d°k
2( )_(27T)D (k2+M2)2’

(Mo M) = 1 f dPkdPp
ST m® ) (@ + M (P2 + MI((k+p)P+ MY’
dkdPpdPq
1,(M,M,) =
M, M2) (277)3Df(k2+Mi)(p2+M§)(q2+M§)

X ! 2 57
[(k+p+q)*+M3]

)

aV, ——
ST:FMmm@ALA¢&:Q

J Vef'f

= =F,(m\,8,0,A, o) =0, 8)

where we denote optimal values 6f and A by Q andK,

respectively, and;o is a stationary point defined from the
equation

I Veg

=F m\,e,Q,A, ¢o) =0. 9
T = FumAe, 0., o) (©)

For the reader’'s convenience the epr|C|t expressions for
Fo(m,e,Q A, q50) Fa(m,e,Q,A, ), and

Fs(m,\, e, Q,A, d;o) are given in Appendix B.

Ill. RESULTS AND DISCUSSION

The solutions of Eq¥8) and(9) are related to the experi-

mentally measured GL parameteras «=¢/&=Q/A. We
make an attempt to reproduce recent experimental data on
k(T) for the highT. cuprate superconductor
TI,CaBa,Cu;04, (T€-2223.13

For this purpose, we adopt the usual lindadependence
of the parametrization afh and\ as

m? = mi(1 - 7) + M,
N=No(1-7)+ 7A,

T=T/T, (10

and calculatex by solving the nonlinear equatiort8) and

(9). Due to the parametrizatiqi 0), the model has in general
six input parametersg, Ao, M, A, & (coherence lengih
andT, (critical temperature The experimental values for the
cuprate T-2223 are£,=1.36 nm andl;=121.5 K. To deter-
mine the other four parameters we used the following strat-
egy. For each given, the parameterm% and\ are fitted to
the experimental values @f and ¢ at zero temperature,
=1.36 nm,€,=163 nm. In dimensionless units, E@), we
have Qy=Q(7=0)=1 and Ay =A(7=0)=£,/1;=0.0083,
which are used to calculatm(z) and A\, from the coupled
equationd8) and(9). This procedure gives thedependence

of mg which is presented in Fig. @solid line). As in the case

of the Gaussian approximatiémy remains positive only for
very small values ok, although the nonlinearity produces
severalm?=0 solutions in this case. We believe that this
smallness again indicates the reliability of the present post-

For D=3-2¢, these integrals were calculated in dimensionalGaussian approximation method.
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FIG. 1. The parameter? of the GL model vse in fractal di-
mensionD=2+2¢. The solid and dashed lines are for the tempera- T/Tc

turesT=0 and 0.6, respectively.
FIG. 2. The GL parametet in D=2+2¢ (solid line) and inD

The _parameterm§ and\; are fixed in a similar way for =3 (dashed ling cases calculated in the post-Gaussian
each givene. Actually the quantum fluctuations shlfng approximation.
from its zero value given by the MFA. On the other hand, the

exact experimental values af? and \. are unknown, since . L :
the GL parameter aT=T, is poorly determined. For this Peyond the Gaussian approximation =2 +2 fractal di-

reason, we used the experimental valueg.adnd ¢, at very ~ Mmensions. The result clearly shows that the higher-order cor-
close points to the critical temperaturg=0.98, which cor-  ections need to be substantially large to explain the existing
responds t0Q.=Q(r,)=1/£,=0.128 andA.=A(r)=1/¢ experllmental data. . .
:0%043K :ZQCG) El'ﬁ)en sgfving Eqs(8) ar?d (9()TCr)1umeric- This result strongly suggests that in order to explain the
cally with crespect tam, and )., we fix these parameters. experimental data on high: superconductivity it is neces-

After having fixed the input parameters, the temperatur ary to include the fluctuation contribution as well as the
— ' contribution from the quasi-two-dimensionality. We have

dependences di}(r),A(7), as well as the GL parameter found that the GL parameter is rather sensitive tghen the
=((7)/A(7) are established by solving the gap equations nutgop corrections to the simple Gaussian approximation are
merically for eache. Clearly, the solutions of the nonlinear taken into account. The optimal value effor the cuprate
gap equations are not unique. In numerical calculations we¢.2223 ise=0.21. It would be interesting to estimate the
separated the physical solutions by observing the sigtgof  optimal e in fractal dimensions for other cuprates also.
which should be positive and the effective potential at the |t is to be noted that we have calculated two- and three-
stationary pointVei(¢o) should has a real minimum at this loop integrals inD=2+2¢ dimensions using the method of
point. Fore=0.1, there is a possibility to adjust to the dimensional regularization.

recent experimental data odfT) for the highT, cuprate su-

perconductor TICaBa,Cu;0,,.22 Our calculations show that

the best choice of is found to bes=0.21. The appropriate ACKNOWLEDGMENTS
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APPENDIX A: EXPLICIT EXPRESSION FOR THE LOOP
INTEGRALS IN D=2+2¢ DIMENSIONS

Here, we consider the loop integrals defined in Egsin
D=2+2: dimensions. In dimensional regularization the in-
tegralsly(m), 1,(m), andl,(m) can be easily calculated in
momentum space:

o) = J 2 )D<m2+p2)

w 247 D/2 o kD—ldk

( 477) I'(D/2)2m)P ), (k*+nP)
-(52)
“\an) (@mt

In?(x)
2

oo

__i{1_|n()+8[ﬂ_2+
47 12

dD
1,(m) = % f ﬁln(kﬁ 119}

m2

1
:—g{;—l—h‘(x)

In?(x)

oo

>—{1-eIn(x) + O(e?)},

+s[ln(x)+ﬂ—2+1+
12

2(m) = 2f(z) D2+ P2 2mPrr
(A1)

with x=u?/m?.
Two- and three-loop integrald; and l,) require a little

more effort. It is more convenient to evaluate them in coor-

dinate space rather than in momentum space, since

d®k d°p
(PP + M2)[(k+ p)>+ M2]

1
13M1M2) = 15 25 f (C+M

|

[4(M1,Mp) =

e'yMZ e

. ) f d°r G3(r)Gy(r),

d®k dPp dPq
D(P?+ MH(G? + M)

=]
2m)3 ] (K¥+M
" 1

[(k+p+g)?+M3]

2\ e
:(e;—‘;) f dPr G2(r)GA(r),

(A2)
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dPk &k

G(r) =f (27

)Pk +m?)

(27T)_D/2 D-2

(mr) D/2-1

Kpjz-1(mr),

(A3)

and K, (z) is the modified Bessel function. In dimensional
regularization, foD=2+2s, G(r) is simplified as

2
Now, substituting Eq(A4) into Eqg. (A3) one notices that
unlike in the case dD=3-2¢, in D=2+ 2¢ dimensions there
is no singularity at smalt and hence the integration can be
performed directly front =0 toc without splitting the radial
integration into two regions with small and large

The case with equal masséd;=M,=m, can be done
analytically:

~#(mn)~°
2

G(r)= ( K.(mr). (A4)

2—N8(e'yxl4)s(l N)
m)NPT(1 +e)

Iy(m) = N(S)

Tu(e) = f ) 2ok ()N, (A5)
0

for N=3, 4, where the integraTg(s) andT4(s) are expressed
in term of the hypergeometric functions:

s I'(e)[(1-¢) { 4\ 7T (1 - 2¢)
23+ T'(3/2 -¢)
szl{l,l - 29;§ - s;l}
2 4

31
—2I'(1-¢) ,F; |:11 EZ]} (e<0.5),
(A6)
~|4(8) _ I’(s)f‘él -g)
el?(-¢) 1 3 2%

X 20 3F2 1,1—8,2+8,2,1+ 1
A e)e F[ 1,1- 293 1+ -1}
4(2e-1)% 32" ST

~ 48\"7TF(1 -3)'(1+e)'(-2¢)

I'(3/2 - 2%)
XZFl[l—Ss,%—s 2—28;1:|} (e < 1/3).
(AT)

where G(r) is the Fourier transform of the propagator

1/(K2+M?) (n=1,2):

The method of Ref. 14 gives the followingexpansion:
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5(m) = %z;mz[0-5917 +£(0.6629 — 1.1835 I) + O(£?)],

1
ly(m) = £—=—[1.188 ~2(2.759 + 3.5656 ) + 0(s2)],

(A8)

which is used in our practical calculations.

The case with nonequal masses is rather complicated and|,(M,;,M,) =
cannot be done analytically in general. However, in the par-

ticular case whemr=M,/M; <1 (Ref. 15 the problem may
be overcome by expansion in power seriesainWWe shall
illustrate this approximation foi;(Mq,M,) below. Using
Egs.(A3) and(A4) one obtains

Y,,2\ ¢
15(My,M,) = (‘Z‘; ) f G2(r)Gy(r)d°r
_ 1 {xlxz exp(2y) ]‘ST (@)
T 4mMT (e + 1) 2 SAED
(A9)
where
Ta(a,e) = f i tK2(t) (at) K (at). (A10)
0
Now using the series expansion §f(z),
rwra-»| [ 2 2727 ]
K@= {Z [I‘(l—v)+l“(2—v)+o(z4)
27 2727
i {mw) "Ta+n) +O(Z4)”' (ALY

one may expand the factéat) °K,(at) in power series of
and integrate EqA10) analytically to obtain

IVest
Q)
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_ T (e)[ (- &)

24(2e - 1)(2e - 3)2°
x{(2e = 1)(2e - 3)(a’e — a®— 6) = 3™ %
X[4e - 6 + a?(2e — 1)] + O(a?)}. (A12)

Inserting Eq(A12) into Eq.(A9) one obtains the following
expansion:

~Ia(a,s) =

————(1081 - In@) - 32?6 Ina - 5)
86472M? @l

+e{a?[- 18 IrPa+ (36 Inx; + 18)In a
-301Inx, + 4] - 216 Inx, — 108 Irfa + 216
+216 InxyIn a + O(e?)}). (A13)

Similarly, one may calculaté,(M4,M,) to obtain itse ex-
pansion:

1,(M,M,) = 2(2+91Irfa-6Ina) - 108 Ifa

m@a
+190.9588 Inx — 280.5109 +{a?[ 72 I«

- (60 + 108 Inx;)Ina + (72 Inx;, — 28)In &

- 24 Inx, + 23.4519 - 360 Irfa + (547.8351

+ 324 Inx;)Ina - (572.8764 Ik,
+337.6413In a + 841.5330 Inx; — 806.1519
+0(&?)}). (A14)

where, for simplicity, we used explicit values of constants

such asy, (3), In(2), etc.

APPENDIX B: THE GAP EQUATIONS

Here the explicit expressions for the gap equations deter-
mined by the PMS are presented. Taking the derivative of

Vet by Q) and using the results of Appendix A one gets

2

QZ

- )\2 A . 2 .
= Fo(mX,2,0,A, ) = 0.0362 + —[0.075(92 —m?) - 0.108\<In% + 1) - 091162\ + 014522
& € Q
_ — 2 . — — .
+[(0.290 + 1.8235)\? + 0.15]\ (n? - QZ)]ln“:2 +0.0642(1 + 3¢3)% + (m? = 0?)[0.039n7 — Q?) + 0.954 ¢50.151\ ]
Q

Mz Py = ,uz - —
- 0.108\2In3:2 +[0.11302 - m?)\ - \%(0.326 + 1.361)8)]In2:2 +[(Q2 - m?)(0.954 ¢ + 0.22FP)\

Q Q

_ _ _ 2 _ _
-0.03902% - n?)] - \?%(0.133 + 5.729; + 3.215¢§)] In% - 2\2(0.960p3 + 5.72p3 + 0.144
Q

+&[(Q% - m?)(0.954 ¢ — 0.062) — 0.03902 - m?)] + O(e?) = 0. (B1)

Similarly, the second gap equation is given by
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2

V. ——— (0.331%-0.319 — —
o _ (e A, o) = ) 4 (0.639 - 0.3340) I~ + (0.319% - 0.3340)In
JA € 02 A2
_ _ _ ,U«2 _ MZ _
+(4.015\ - 4.209)?) b5 — 1.003)2 + 0.3347 + &4 (0.16 1% - 0.479\)In2:2 (0.3340° - 0.639\)In:2 +1.007?
Q A
_ ﬂz — _ _ ,U~2 —
- 0.3341% - 4.015\ 3 In:2 +[(4.209)% - 4.015.) 5+ 0.334)2 + 0.334n2]ln:2 - 0.262 — 4.943)2A?
Q A
+8.41M%H% + 0.275_22} +0(s2) = 0. (B2)
In the above equationgo is a stationary point satisfying the following equation:
aV. —— \Q2A%(0.456\ - 0.4770)?) — u? — —
07 (;: =F4(m\,g,Q,A, ¢g) = +(0.4770% - 0.91]2\)In§ = (5.729 - 20?) ¢ + 0.477Q? - nP)
-0.119 + +{[0.683\ - 0.233)2]In2:2 +[5.72Q g5+ 0.47Tm? - Q?) + 0.239\]In:2 +0.240\
Q Q
- 0.392(_22}8 +0() =0. (B3)

In deriving the equation$B1)—(B3) we have used the expansion of the loop integrals given in Appendix A and the
numerical values oy, T, ande. For the cuprate FCaBa,Cu;0,, these values are

=136 nm, T,=1215K,

€? = 16makg T &/fc=0.000 0264. (B4)
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