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I. INTRODUCTION

Superfluid, or quantum, turbulence continues to attract
both experimental and theoretical study. A special form of
superfluid turbulence that accompanies a thermal counter-
flow in superfluid4He at temperatures above about 1 K was
discovered in the 1950s;1 it takes the form of a self-
sustaining tangle of vortex lines in the superfluid component,
the tangle being maintained by the force of mutual friction
that acts between the lines and the normal fluid. This form of
turbulence has no classical analogue. Much more recently,
there has been study of the analogue of classical grid turbu-
lence in which the turbulence is produced by steady motion
of a grid through the fluid. In the classical case such turbu-
lence is approximately homogeneous and isotropic. At high
Reynolds number it is characterized by a Richardson cascade
in which energy flows in a cascade from large eddies, con-
taining most of the turbulent energy, to small eddies in which
it is dissipated by viscosity. In the steady state and over the
range of eddy size that is not significantly affected by vis-
cosity sthe inertial ranged, the energy is distributed among
different eddy sizes according to the Kolmogorov spectrum2

Eskd = Ce2/3k−5/3, s1d

where Eskddk is the energy per unit mass associated with
wave numbers with magnitudes in the rangedk swe are
working in terms of a spatial Fourier transform of the veloc-
ity fieldd. The Kolmogorov constantC is of order unity, and
e is the rate at which energy per unit mass flows down the
cascadesenergy being conserved in the inertial regimed. The
Kolmogorov spectrum does not provide an exact description
of the turbulence, but it is sufficient for our present purposes.

Extensive experimental study of fully developed grid tur-
bulence in superfluid4He above 1 K has now been
published,3 along with theoretical discussion of the
results.3–6 It turns out that the quantum and classical cases
are very similar. Turbulence in the superfluid component
must again involve a tangle of quantized vortices, with a
characteristic spacing that we denote by,. Fork,!1 there is
a quasiclassicalinertial range in which the two fluids have
the same turbulent velocity field, this matching of the two
velocity fields ensuring that there is negligible dissipation

from mutual friction. Flow of the superfluid on a scale
greater than, is achieved by partial polarization of the vor-
tex tangle. The magnitude of the normal-fluid viscosity is,
accidentally, such that eddies in the normal fluid suffer neg-
ligible viscous dissipation as long as they are larger than,.
For eddies with size of order, or less than,, the velocity
fields in the two fluids are no longer matched because that in
the superfluid component is strongly dominated by the quan-
tization of circulation, so that there is then dissipation by
mutual friction, accompanied by viscous dissipation in the
normal fluid. Thus the basic structure of grid turbulence is
the same in both the quantum and classical cases: an inertial
range with a single velocity field, described by the Kolmog-
orov spectrum, fork,!1, and dissipation fork,ù1, dissi-
pation in the quantum case being due to a combination of
mutual friction and normal-fluid viscosity. The existence of
the quasiclassical Kolmogorov spectrum is strongly sup-
ported by experiment,3,7 although there is as yet no formal
theoretical demonstration that the superfluid component must
behave classically on scales greater than,.

This simple form of quantum grid turbulence owes its
existence to a very small normal-fluid viscosity. Recent at-
tention has turned to possible forms of turbulence in super-
fluid 3He-B, which is probably similar in the present context
to superfluid4He, except that the normal fluid is extremely
viscous. Flow through a grid could therefore lead to turbu-
lence in the superfluid component, but hardly in the normal
component. The normal fluid must therefore remain essen-
tially at rest, and a force of mutual friction must act on the
superfluid component on all length scales. In this paper we
aim to discuss the possible character of grid turbulence in
this case. Discussions relevant to our subject have recently
been published by Volovik and his collaborators,8–10 and we
shall compare their conclusions with our own. In order to
facilitate comparison our mathematical formulation will,
where appropriate, be similar to that used by Volovok.

In Sec. II we discuss briefly the ideas underlying grid
turbulence in a classical fluid because important aspects of
these ideas carry over to the quantum case. Quantum grid
turbulence can be modified by the presence of a stationary
normal fluid in two ways: it can introduce a damping of the
superfluid turbulence through the action of mutual friction;
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and it can lead to the generation of extra turbulence in the
manner that operates in a counterflow heat current. We dis-
cuss these matters in Sec. III: the form of the mutual friction
is discussed firstsSec. III Ad; then the effect of the damping
in a way that is only semi-quantitative but which emphasizes
the essential physicssSec. III Bd; and then in a way that leads
to more quantitative predictionssSecs. III C and III Dd. In
Sec. III E we show that the generation of extra turbulence is
likely to be unimportant, and in Sec. III F we summarize our
conclusions. In Sec. IV we compare our results with those of
Volovik; earlier papers by Volovik8,9 led to conclusions very
different from our own, although this difference seems to
have disappeared in the most recent paper.10

In order to simplify the discussion we shall assume that
the grid turbulence exists in a steady state. That is, we as-
sume that energy is injected continuously into the largest
eddies, as a rate equal to the ultimate rate of dissipation of
energy, so that the characteristics of the cascade, such as its
energy spectrum, are independent of time. We believe that
the essential physics remains the same if, as is often the case,
the turbulence is decaying; indeed, this belief underlies the
existing discussions of grid turbulence in superfluid4He.

II. GRID TURBULENCE IN A CLASSICAL FLUID

We start with some discussion of classical grid turbulence
at high Reynolds number, which will allow us to formulate
some general ideas that we can apply later to the quantum
case. Flow of the classical fluid obeys the Navier-Stokes
equation

]u

]t
+ su · ¹ du = −

1

r
¹ p + n¹2u, s2d

wheren is the kinematic viscosity. We suppose that the grid
produces eddies on a length scaleR and with characteristic
velocity U, at a high Reynolds number, Re=UR/n. Owing to
the action of the nonlinear term in the Navier-Stokes equa-
tion, energy is transferred from the scaleR to smaller scales,
which we denote byr. This process is believed to occur in a
cascade, transfer taking place in steps with gradually de-
creasingr. A large Reynolds number, means that the nonlin-
ear term in the Navier-Stokes equation is more important
than the viscous term, so that this transfer takes place ini-
tially with conservation of energy; i.e., we have aninertial
regime. Eventually, energy passes to eddies sufficiently small
that viscous dissipation can operate and the cascade is termi-
nated.

We see from the form of the Navier-Stokes equation that
the characteristic time associated with the nonlinear transfer
of energy from eddies of sizer and characteristic velocityur
is the “turnover time”tr =r /ur. It follows that eddies of size
r lose energy per unit mass at a rate of order

e =
ur

2

tr
=

ur
3

r
. s3d

In a steady-state inertial cascade, this rate of lossstransferd of
energy must be the same for allr. It follows that within the
inertial regime

ur = e1/3r1/3, s4d

apart from a constant of order unity. We note thatur
2/2,

which is the energy per unit mass associated with eddies of
size r, can be obtained from the Kolmogorov spectrumfEq.
s1dg by integratingEskd over a range ofk of order r−1 cen-
tered onk=r−1, which leads tour

2,e2/3r2/3, in agreement
with Eq. s4d.

This steady-state inertial cascade can exist only as long as
it is not disrupted by viscous dissipation. Now the time taken
for viscous dissipation to damp out motion on the length
scaler is given by

td =
r2

n
. s5d

It follows that the inertial-range cascade can exist only as
long as

td @ tr . s6d

This condition can be written

Rer @ 1, s7d

where the “scale-dependent Reynolds number” Rer is given
by

Rer =
rur

n
. s8d

Viscous dissipation sets in when Rer ,1, i.e., when

r = rd = Sn3

e
D1/4

. s9d

The scalerd is the Kolmogorov dissipation length at which
viscous dissipation sets in, and the inertial cascade is termi-
nated.

This argument does not allow us to understand the precise
way in which the Kolmogorov spectrum is modified as the
scale of the turbulence approaches the Kolmogorov dissipa-
tion length. A more complete argument can be based on the
idea that the flow of energy toward larger wave numbers can
be described as a diffusion of energy ink space. It can be
shown that this diffusion must obey a nonlinear diffusion
equation, which can be written, for the case of homogeneous,
isotropic turbulence, in the formsfor a recent application of
this idea seed11

1

k2

d

dk
Sk2Dskd

dE8

dk
C = nk2E8skd, s10d

whereE8skdd3k is the turbulent energy associated with wave
vectors in the ranged3k, and the diffusion coefficientDskd is
given by

Dskd = „E8skd…1/2k9/2. s11d

Such a diffusion equation does not have a rigorous basis and
must be used with caution, but it helps to understand the
processes that are occurring. We note that theEskd of Eq. s1d
is related toE8skd by the relationEskd=4pk2E8skd. It is easy
to show analytically that, in the limitk! rd

−1, Eq. s10d yields
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the Kolmogorov spectrums1d, wheree=4pk2DskddE8 /dk is
the constant rate at which energy flows down the inertial-
range cascade; but a full numerical solution yields also the
form of the cutoff ask approachesrd

−1.

III. SUPERFLUID GRID TURBULENCE WITH A
STATIONARY NORMAL FLUID

We first discuss the form of the mutual frictionsSec.
III A d and then formulate an argument that is analogous to
that leading to Eq.s9d, but taking into account the mutual
friction acting on the turbulence in the superfluid component
sSec. III Bd. Our conclusions are confirmed and elaborated,
first in Sec. III C, where we present an analysis based on an
analog of the diffusion equations10d, and then in Sec. III D,
where we discuss the behavior on very small length scales.

A. The force of mutual friction

Let us consider a coarse-grained average superfluid veloc-
ity u, obtained by averaging over small volumesdV that are
significantly larger than,3, where , is the mean spacing
between the vortex lines in the turbulent superfluid. We make
the reasonable assumption the vortex lines withindV move
with an average velocity that is close tou, but we make no
assumption about the configuration of vortex lines withindV.
sIn this respect our approach is different from that of Volo-
vik, as we discuss later.d The resulting force of mutual fric-
tion per unit volume can then be written as

f = arskLu, s12d

wherek is the quantum of circulationsh/2m3 for superfluid
3He-Bd, andL=,−2 is the length of vortex line per unit vol-
ume. The forcef is antiparallel tou; for the sake of simplic-
ity we have neglected any component of the mutual friction
perpendicular tou sit is not obvious how to calculate this
transverse component in the case when the vortex lines are
more or less randomd. The value of the dimensionless param-
etera allows for any averaging over different vortex orien-
tations withindV.

It is important to understand the nature of the frictional
force f. We shall assume that in the steady state to which we
are confining our attention, the lengthL of vortex line per
unit volume is essentially constant, apart from small fluctua-
tions, the effect of which we shall mention later. There is
little doubt that this assumption is justified in the case when
most of the vorticity in concentrated at the largest wave num-
bers ssmallest eddiesd, so that the configurations of vortex
line within the volume,3 are almost random, the large-scale
motion being produced by a relatively small polarization of
the random tangle. The random tangle evolves on length
scales and time scales that are much smaller than those in-
volved in the evolution of turbulence on scales larger than,,
so that fluctuations affecting the large scale motion are rela-
tively small. Although the vorticity is indeed usually concen-
trated at the largest wave numbers, there are, as we shall see
later, circumstances where this condition is violated; in this
case we must reexamine our assumptions, as explained in
Sec. III C.

If the fluctuations are indeed small, the whole factor mul-
tiplying u in Eq. s12d is essentially constant, so that the fric-
tional force is linear inu. This important point was first
discussed very soon after it was recognized that mutual fric-
tion is due to vortex lines.1,12 We are interested in the effect
of the mutual friction on turbulent motion on different length
scales. We can therefore usefully carry out a Fourier analysis
of the velocity field, so that a Fourier componentuk relates to
motion on the length scalek−1. We see immediately that the
effect of mutual friction on this Fourier component is de-
scribed by the linear equation

u̇k = − guk, s13d

whereg=akL. It follows that the mutual friction causesuk to
decay with a time constant given by

td8 =
1

g
, s14d

which is independent ofk. In other words, mutual friction
gives rise to the decay of an eddy of sizer at a rate that is
independent ofr. The corresponding dissipation per unit
mass per unit wave number, given by

ek
sfd = guk

2, s15d

is also independent of length scale, although it is propor-
tional to uk

2. We can easily convert Eq.s15d to give a rate of
dissipation of energy per unit mass in an eddy of sizer

er
sfd = gur

2. s16d

In some of Volovik’s papers he seems to have argued that
Eq. s16d should have a fundamentally different form. We
have therefore included in the Appendix an argument con-
firming our own view and based on a Fourier transform of
the equation of motion used by Volovik himself.

B. Comparison of characteristic times

We shall now proceed with an argument that parallels that
in Sec. II. Let us assume that in the absence of dissipation
there is an inertial-range cascade in the superfluid compo-
nent, with a Kolmogorov spectrum. Taking into account dis-
sipation due to mutual friction, we suggest, in analogy to Eq.
s6d, that the inertial-range cascade will still exist provided
that

td8 @ tr , s17d

wheretr =r /ur. This condition can be written in terms of an
effective scale-dependent Reynolds number as

Re8r =
ur

gr
@ 1. s18d

Substituting forur from the Kolmogorov spectrums4d, we
find that

Re8r =
e1/3

gr2/3. s19d

Thus we arrive at the rather curious result that the effective

THEORY OF QUANTUM GRID TURBULENCE IN… PHYSICAL REVIEW B 71, 024513s2005d

024513-3



Reynolds numberdecreaseswith increasingr. It appears
therefore that dissipation will be important in eddieslarger
than the size given by

r = rd8 = S e

g3D1/2

. s20d

Therefore we conclude that an inertial-range cascadesno sig-
nificant dissipationd can exist only onlength scales that are
significantly less than rd8.

A grid moving in a classical fluid with velocityU0 pro-
duces eddies at an early stage with a characteristic velocityU
sproportional to, but a little less than,U0d and size of order
the mesh sizeM of the grid, although there is subsequently
some flow of energy into larger eddies as well as the flow
into smaller eddies. Flow into the larger eddies saturates be-
cause eddies cannot be larger than the size of the channel in
which the grid moves. In superfluid4He a similar situation
obtains, although the large eddies must in this case be
formed from arrays of vortex lines that are partly polarized.
Eventually an inertial-range Kolmogorov spectrum is estab-
lished for wave numbers smaller than the inverse of the Kol-
mogorov dissipation length in the classical case or the in-
verse of the vortex-line spacing, in superfluid 4He. Our
analysis so far suggests strongly that, for the case of a sta-
tionary normal fluid, such an inertial-range Kolmogorov
spectrum cannot be established if the largest eddies have a
linear size greater thanrd8. If, however, the width of the chan-
nel in which the grid moves is such that the largest eddies
have a linear size less significantly less thanrd8, then it seems
likely that an inertial-range Kolmogorov spectrum can still
be established, the mutual friction having only a small effect.
In Sec. III C we confirm and extend these conclusions by
solving the appropriate diffusion equation for the flow of
energy ink space. If an inertial-range Kolmogorov spectrum
can indeed exist over a range of wave numbers, even in the
presence of a stationary normal fluid, then we must ask how
the turbulent energy, flowing at ratee down the inertial-range
cascade, is eventually dissipated; we address this question in
Sec. III D.

C. Use of thek-space diffusion equation

In Sec. II we outlined a treatment of the Kolmogorov
spectrum in a classical fluid and the cutoff resulting from the
action of viscosity, based on a nonlinear diffusion equation
that aimed to describe the diffusive flow of turbulent energy
toward higher wave numbers. We can treat the case of super-
fluid turbulence in the presence of a stationary normal fluid
by a similar method, as we now describe. As in the classical
case, we warn that this treatment is not rigorous.

The appropriate diffusion equation, analogous to Eq.s10d,
has the form

1

k2

d

dk
Sk2Dskd

dE8skd
dk

C =
E8skd

td8
= gE8skd, s21d

as we see immediately from Eq.s15d. We have assumed that
the turbulence is isotropic, so thatE8 is a function ofk only.
If there were no mutual friction the solution of this equation

is easily shown to be of the Kolmogorov form

E8skd = S 3

44p
D2/3

e2/3k−11/3= 0.078e2/3k−11/3, s22d

wheree is the rate of flow of energy per unit mass of super-
fluid down the cascade.fWe are assuming that Eq.s21d, to-
gether with Eq.s11d for the diffusion coefficient, holds in the
presence of the damping due to mutual friction. The validity
of these equations depends probably on the idea that the
inertial interactions responsible for the transfer of energy in a
cascade are local ink-space, and we see no reason why mu-
tual friction should invalidate this idea.g We write the solu-
tion of Eq. s21d in the form

E8skd = 0.078„eskd…2/3k−11/3, s23d

whereeskd is now a function ofk, a decrease ineskd with
increasingk being due to the loss of energy through mutual

friction. We introduce dimensionless variablesẽsk̃d and k̃,
defined by

ẽsk̃d =
eskd
es`d

; k̃ = „es`d…1/2g−3/2k, s24d

wherees`d is the value ofeskd in the limit k→`, and we

find that ẽsk̃d obeys the differential equation

d2ẽsk̃d

dk̃2
− S4.50

k̃
Ddẽsk̃d

dk̃
= 5.38k̃−8/3

„ẽsk̃d…2/3. s25d

This equation can be solved numerically by the fourth-order
Runge-Kutta method, and we require that the solution does

not diverge ask̃→`. A satisfactory solution exists only if
es`d is nonzero, and we make the reasonable assumption that

as k̃→` , dẽsk̃d /dk̃→0. The required solution is shown in
Fig. 1.

To understand the significance of this solution, suppose
that turbulent energy is injected at the length scaleR, where
this scale is of order the width of the channel in which the
grid moves. Eddies larger thanR cannot be generated, and
therefore the minimum value ofk is k0=R−1. In Fig. 2 we

FIG. 1. sColor onlined The solution of Eq.s25d with the bound-
ary conditions explained in the text.
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plot the value ofeskd /esk0d againstk/k0, derived from Fig. 1,
for two extreme cases: R@ (es`d /g3)1/2; and R
! (es`d /g3)1/2. A Kolmogorov spectrum would correspond
to eskd /esk0d=1 fi.e., deskd /dk=0 for all kg, and in both
cases the energy input atk0 is of orderU3/R. We see that in
the former case there is a large,k-dependent reduction in
eskd, corresponding to a large dissipative reduction inEskd
below the Kolmogorov value; while in the latter case the
Kolmogorov spectrum is hardly changed. This is in accord
with our conclusions in Sec. III A. We note, however, that in
the former caseeskd tends to a small, but finite constant
when k is sufficiently large, so that the Kolmogorov form

still holds at these high values ofk sk̃@1d.
We must, however, make a comment about the distribu-

tion of vorticity with wave number. In Fig. 3 we plotk̃1/3ẽ2/3,
which is proportional to thespectrumof the square of the

vorticity, againstk̃. The total mean-square vorticity associ-
ated with a range of length scales is obtained by integrating
this spectrum over the corresponding range of wave num-
bers. It is then easily seen that for some values ofk and some
conditions ssmall k0, large mutual frictiond the total root-
mean-square vorticitysroughly the vortex line densityd asso-
ciated with wave numbers less thank can be comparable
with that associated with wave numbers greater thank sre-
member thatk cannot exceed,−1, as explained in Sec. III Dd.
Our treatment of the effect of mutual friction at wave number
k sincluding that in the Appendixd is probably valid only if

the root-mean-square vorticity is concentrated at wave num-
bers significantly greater thank. Otherwise, mutual friction
as it affects the quasiclassical eddies at wave numberk may
undergo large fluctuations that reflect the time evolution of
eddies larger thank−1 sincluding their decay by mutual fric-
tiond, these fluctuations involving not only the line density
but also the orientation of polarized line configurationssre-
member that the force of mutual friction is anisotropic with
respect to this orientation relative to the flowd. This situation
requires further study. Qualitatively, the time constanttd8 of
Eq. s14d may still be relevant, but there may be complicated
coupling between motion on different length scalesssee Ap-
pendixd.

D. Behavior at large wave numbers

We have based our discussion thus far on a course-grained
average superfluid velocity, obtained by averaging over small
volumesdV that are significantly larger than,3; therefore,
our conclusions apply only on length scales down to values a
little in excess of,. Indeed, it is clear that superfluid turbu-
lence of the type described in Secs. III B and III C, which we
describe asquasiclassical, can exist only on length scales
significantly larger than, swave numbers significantly
smaller than,−1d. Otherwise the scale of the turbulence be-
comes comparable with or less than the vortex-line spacing,
so that the motion is dominated by the quantization of circu-
lation or, equivalently, by the discrete nature of quantized
vortex lines.4,6 In particular there can no longer be a Kol-
mogorov spectrum, even when the mutual friction is very
small. In this section we discuss how the turbulence can be
expected to behave as the wave numberk approaches and
then exceeds the value,−1.

We shall suppose initially that the mutual friction is not

too large, so that the conditionk̃@1 holds whenk,,−1; in
that case, a Kolmogorov spectrum can be expected to hold
over a reasonably wide range of wave numbers significantly
less than,−1. On the scale,, however, the characteristic
velocity can no longer be obtained from the Kolmogorov
spectrum, but rather must be given by6

FIG. 2. sColor onlined eskd /esk0d plotted againstk/k0 for two
values of Q=Rg3/2(es`d)−1/2. Upper graph:Q=25; lower graph:
Q=0.1.

FIG. 3. sColor onlined Variation of vorticity with wave
number.
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u,
2 =

bk2

,2 , s26d

where the numerical factorb is of order unity. Now we make
the reasonable assumption that the velocityur in the Kol-
mogorov spectrum of Eq.s4d joins smoothly to Eq.s26d
when r =,.6 Thus we find that

e = b3/2k3,−4, s27d

wheree is now the energy flux in the region of the Kolmog-

orov spectrumk̃.1. It follows that we can write for the
velocity in the quasiclassical inertial rangesKolmogorov
spectrumd

ur
2 = bSk2

,2DS r

,
D2/3

. s28d

We note that if we combine Eq.s20d with Eq. s27d we find

rd8 = Sb3/4

a3/2D,, s29d

which does not depend explicitly one. We showed in Secs.
III B and III C that an inertial-range Kolmogorov spectrum
can exist only at scalesr , rd8. We see now thatr must also be
greater than,. Therefore the condition that an inertial-range
Kolmogorov spectrum can exist over a significant range of
length scales is thatrd8 /,@1, and therefore thata!1.
fStrictly speaking Eq.s26d holds only if the motion of a
particular element of vortex line is governed by the local
velocity generated by the rest of the line and by other lines,
which means that the motion is not seriously perturbed by
mutual friction. This is indeed the case ifa!1, as noted in,6

so that our analysis is self-consistent.g
The existence of quasi-classical inertial-range behavior

sKolmogorov spectrumd implies that there must be dissipa-
tion, equal to the energy flow ratee, at some length scale less
thansdVd1/3. We must now ask how and on what length scale
this dissipation occurs, ifa is significantly less than unity.

First we estimate the dissipation due to mutual friction on
length scales of order,. Per unit mass of helium, and for the
casea!1, this dissipation must be of order

e, = aSrs

r
DkLu,

2 = aSrs

r
Dbk3,−4. s30d

We see from Eqs.s27d and s30d that the ratio

e,

e
= aSrs

r
Db−1/2. s31d

Thus the requirementa!1 implies thate, /e!1, so that
there is negligible dissipation down to the scale,. Therefore
we must search for dissipative processes on smaller length
scales.

A situation in which there is no dissipation on length
scales down to and including, has already been discussed in
connection with dissipation in superfluid4He at temperatures
below 1 K. In the case of turbulence in superfluid4He in an
unbounded volume, two processes that operate on scales less
than, have been identified:6 dissipation during the reconnec-

tion of vortex lines and dissipation associated with Kelvin
waves with wave numberq exceeding,−1, such waves being
produced by the close approach, or actual reconnection, of
two vortex linessor two parts of the same lined, followed by
the transfer of energy within a Kelvin-wave cascade to
higher wave numbers. A preliminary discussion of dissipa-
tion by Kelvin waves has been given in Refs. 6,13, showing
that Kelvin waves can produce the necessary dissipation by
mutual friction at a wave number given by

qc, , a−1/2. s32d

For a!1, qc,@1. In the limit of zeroa the Kelvin waves
are dissipated by radiation of phonons, at a wave number
given by

qc8 , Sc,

k
D3/4

, s33d

wherec is the speed of sound in the helium. In the case of
superfluid3He-B the Kelvin waves can also be absorbed by
the Caroli-Matricon bound states within the cores of the vor-
tex lines. Neither this absorption process nor that associated
directly with actual vortex reconnections involves mutual
friction; our paper is concerned only with the effect of mu-
tual friction, and therefore we have not taken these other
processes into account.

E. Possible generation of extra turbulence by relative motion
of normal and superfluid components

So far we have assumed that the relative motion of the
two fluids has no effect other than to damp the turbulence in
the superfluid. However, we know from our experience of
heat flow in superfluid4He that such relative motion can lead
to the generation of turbulence, in the form of a self-
sustaining vortex tangle that is more or less random on the
scale of the mean-vortex separation. We shall show that this
process is likely to have a negligible effect on our conclu-
sions.

We shall suppose that within a large eddy of sizer, char-
acteristic velocityur, the counterflow of the two fluids leads
to the generation of an extra length of vortex line similar to
that observed in steady counterflow in an infinitely wide
channel. This will lead to an overestimate of the extra length
because it neglects both the finite time that is required to
generate this line, in comparison to the turnover time, and
the fact that the eddy has a finite size,ur perhaps comparable
to the critical velocity known to exist for counterflow turbu-
lence in a finite channel.

It is easily shown that the extra length of line per unit
volume is given by

L0 = S2px1a

x2
D2Sur

k
D2

= S2px1a

x2
D2 b

,2S r

,
D2/3

, s34d

where x1,0.3 and x2,1 are dimensionless parameters,1

and where we have made use of Eq.s28d. We write L=,−2,
and therefore
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L0

L
= bS2px1a

x2
D2S r

,
D2/3

, a2S r

,
D2/3

. s35d

We confine our attention to the quasiclassical inertial range,
for which r must be less thanrd8, given by Eq.s29d. Then the
maximum value of the ratioL0/L becomes

SL0

L
D

max
= b3/2S2px1

x2
D2

a , a. s36d

But the existence of a significant quasiclassical inertial range
depends ona being small compared with unity, as we have
seen. It follows that within the quasiclassical inertial range
L0!L, and that, therefore, the generation of extra line by
counterflow can be neglected, at least within this quasiclas-
sical inertial range.

F. Summary of overall behavior

For simplicity we suppose that the Kelvin-wave processes
discussed in Sec. III D provide the dominant source of dis-
sipation at length scales less than,. Then our conclusions are
summarized concisely in Fig. 4.

In the limit of zeroa there is a quasiclassical regimeswith
a Kolmogorov spectrumd on length scales greater than, and
a Kelvin-wave cascade, terminated by phonon radiation, on
length scales less than,. As a increases the Kelvin wave
cascade starts to be terminated at a larger length scaleswave-
lengthd by mutual friction, and the largest eddies in the qua-
siclassical regime start to be strongly damped. Asa tends
toward unity, the range of length scales separating the
Kelvin-wave cutoff and the onset of strong damping of the
quasiclassical eddies narrows and it disappears neara=1.
For a.1 there can be no turbulent motion that is not
strongly damped.

It is possible to construct for our theory a “flow-phase
diagram” analogous to that in Fig. 1 of Ref. 8, this earlier
diagram being based, as we now see it, on an inadequate
theory, as explained in Sec. IV. We have included discussion
of such a diagram in another paper recently been submitted
for publication.14

IV. COMPARISON TO TREATMENT BY VOLOVIK ET AL.

Volovik’s treatment is based on a coarse-grained averaged
equation of motion for the superfluid component, which he
writes in the form

]u

]t
+ ¹ m = u 3 v + av̂ 3 sv 3 ud, s37d

for the case where, as here, the transverse component of the
mutual friction is neglected, and wherev is the coarse-
grained vorticity. This equation is valid only if the vortex
lines within the volumedV used in the course-grained aver-
aging are aligned. Our own treatment was not restricted in
this way, and, indeed, we have already argued that withindV
the vortex lines are likely to be arranged as an approximately
random tangle.

The classical Reynolds number for types of flow, in which
there is a single length scaleR and a single velocity scaleU,
is simply the ratio of the order of magnitude of the inertial
term in the Navier-Stokes equation to that of thesviscousd
dissipative term. Applying this idea to Eq.s37d, in which the
last term relates to dissipation by mutual friction, we see that
an effective Reynolds number might be taken as Reeff=a−1,
which is, interestingly, not dependent on velocity. Indeed it
was found by Finneet al.15 that Reeff does determine whether
or not spin-up of superfluid3He-B is turbulent, although in a
context where the vortex density is so low that course-
grained averaging is hardly justified; and Volovik tries to
emphasize the importance of Reeff in more general contexts,
including fully developed turbulence. However, for fully de-
veloped turbulence there are many length scales, and our
analysis of Sec. III B led us to a more complicated scale-
dependent Reynolds number, given by Eq.s18d, the introduc-
tion of which seems to us essential to an understanding of
such turbulence.

The ideas described in earlier sections were first presented
at an informal meeting in the Low Temperature Laboratory
of the Helsinki University of Technology in Finland toward
the end of 2003, and a first draft of our paper was distributed
as a preprint in March 2004. At the time of the first informal
presentation Volovik8 had formulated an approach that was
very different from that given here. This approach was modi-
fied in response to our comments,9 but the dissipative effect
of mutual friction was still different from that discussed here.
In an earlier version of our paper we argued that Volovik’s
formulation was not correct, and that it led to incorrect tur-
bulent energy spectra. Within the last few weeks Volovik, in
collaboration with L’vov and Nazarenko,10 has further modi-
fied his approach, and it seems now to agree with our own,
the turbulent energy spectrum proposed being similar to that
displayed in our Fig. 1. They derive this spectrum from an
analytical argument, which leads to a wave number depen-
dence ask−3 for small k. The spectrum derived from our
numerical studies has the same form. We conclude that our
two treatments are now in at least partial agreement, al-
though the formulations remain rather different.

FIG. 4. Different turbulent regimes for different values ofr /,
anda.
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APPENDIX

We investigate rather formally the effect of mutual fric-
tion on superfluid motion described by Eq.s37d. In this equa-
tion there is course-grained averaging over volumessb3d
containing a significant number of vortices but within which
the vortices are assumed to be completely polarized. We are
interested in the effect of the mutual friction termav̂3 sv
3ud; in particular, we are interested in its effect on eddies of
sizer @b. The inertial termu3v gives rise to the transfer of
energy to smaller eddies in a time of order the turnover time
tr =r /ur, where ur is the characteristic velocity associated
with the eddies of sizer. The mutual friction gives rise to the
decay of these relatively large eddies in a timetd8. In Sec.
III A we argued thattd8=1/sakLd. Here we argue that this
result follows also from Eq.s37d. We assume that the vortic-
ity is concentrated at the highest wave numbers.

To estimatetd8 we shall investigate solutions of the equa-
tion

]usrd
]t

= qv̂srd 3 fvsrd 3 usrdg, s38d

where, following Volovik, we have now replaceda by the
more generalq=a / s1−a8d, a8 being related to the trans-
verse component of the mutual friction. We introduce a new
vector, defined by

jsrd = uvsrdu1/2v̂srd, s39d

so that Eq.s38d can be written

]usrd
]t

= qjsrd 3 „jsrd 3 usrd…. s40d

We Fourier analyze the velocity andj fields in space, and
hence obtain

o
k1

u̇sk1dexpsik1 · rd = q o
k2,k3,k4

jsk2d 3 fjsk3d 3 usk4dg

3expfisk2 + k3 + k4d · rg. s41d

We multiply Eq.s41d by exps−ik ·rd and integrate over space,
so obtaining

u̇skd = q o
k2,k3

jsk2d 3 „jsk3d 3 usk − k2 − k3d…. s42d

Let us neglect all terms in the double summation in Eq.s42d
for which k2+k3Þ0; we consider these terms later. Then we
have

u̇skd = qo
k1

jsk1d 3 „j * sk1d 3 uskd…, s43d

where we have used the fact that, becausejsrd is real,
js−k1d=j* sk1d.

Let the vectork relate to eddies of sizer. The vectors
jsk1d have a significant amplitude only whenk1@k because
the vorticity is concentrated at the highest wave numbers.

The components of the vectors in Eq.s43d are generally
complex numbers. We write

jxsk1d = j̄xsk1dexp„iwxsk1d…, s44d

wherej̄xsk1d is real, and similarly for the other components
of jsk1d. Then

jxsk1djx
*sk1d = j̄xsk1dj̄xsk1d. s45d

Now the triple-vector product in Eq.s43d can be written as

„jsk1d ·uskd…j * sk1d − „jsk1d · j * sk1d…uskd. s46d

Suppose that at some instantuskd has only az-component.
We are interested in only the component of Eq.s43d the
direction ofuskd, since we are concerned with the dissipative
effect of the mutual friction. Thus we are interested in thez
component of Eq.s46d, which is equal to

− „jxsk1djx
*sk1d + jysk1djy

*sk1d…uzskd. s47d

Thus, using Eq.s45d, we find that

u̇zskd = − qo
k1

„j̄x
2sk1d + j̄y

2sk1d…uzskd. s48d

Let the direction of the vectorj̄sk1d be defined by spherical
polar anglesusk1d, fsk1d. Then Eq.s48d can be written

u̇zskd = − qo
k1

j̄2sk1dfsin2 usk1dsin2 fsk1d

+ sin2 usk1dcos2 fsk1dguzskd

= − qo
k1

j̄2sk1dsin2 usk1duzskd. s49d

Let us now average Eq.s49d over a timestd small compared
with the lifetime of the eddies of sizer but large compared
with the lifetime of the smallest eddies, which account for
most of the vorticity. We obtain

ku̇zskdl = − qo
k1

kj̄2sk1dsin2 usk1duzskdl, s50d

wherek…l denotes averaging over the timet. Although dur-

ing this time j̄2sk1d and sin2 usk1d must undergo large fluc-
tuationssbecause the turnover time atk1 is much less thantd
the fluctuations inuzskd, which relate to the slow motion of
an eddy of sizer, must surely be smallfthey must be mini-
mized by the summation in Eq.s50dg. We can therefore ne-
glect the fact thatuzskd fluctuates and write simply
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u̇zskd = − qo
k1

kj̄2sk1dsin2 usk1dluzskd. s51d

We now make the reasonable assumption that the fluctua-

tions in usk1d and in j̄2sk1d are uncorrelated. Then Eq.s51d
can be written

u̇zskd = − qo
k1

kj̄2sk1dlksin2 usk1dluzskd. s52d

But ksin2 usk1dl= 2
3. Therefore

u̇zskd = −
2

3
qo

k1

kj̄2sk1dluzskd. s53d

From Parseval’s theorem we have

o
k1

kj̄2sk1dl = kj2srdl. s54d

But kj2srdl is the mean value of the modulus of the vorticity.
As discussed in Ref. 4 this mean value is equal tokL. It
follows that

td8 =
3

2qkL
, s55d

in essential agreement with Eq.s14d.
In writing down Eq. s43d we neglected many terms in

the double summation in Eq.s42d. These terms serve to
couple the velocityuskd to other Fourier components of the
velocity field. Physically, this coupling is due to local fluc-
tuations in the vortex line density. The coupling adds to the
effect of the inertial termu3v, and it must therefore have
some effect on any Richardson-Kolmogorov cascade. We
guess that it is relatively small, especially for small values
of a.

We note that our final resultfEq. s55dg is consistent with
the usual expression for the attenuation of second sound1,16

due to an array of vortex lines with random orientationsin
this case the vectork is the wave vector of the second
soundd.
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