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A theory is developed to describe grid turbulence in a superfluid in the case where the normal fluid is held
stationary, as would be the case for superffliig-B in which the normal fluid is very viscous. The theory is
a straightforward development of earlier work, reviewed by Vinen and Niepdelaow Temp. Phys128 167
(2002], and it shows that on large length scales the turbulence is strongly damped by mutual friction. A
comparison is made with recent work by Volovik and his colleag@<. Volovik, JETP Lett.78, 533(2003;
G. E. Volovik, J. Low Temp. Phydto be publishey and L'vov, Nazarenko, and Volovik, JETP Letto be
published], which was developed while our work was in progress.
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[. INTRODUCTION from mutual friction. Flow of the superfluid on a scale
freater thar? is achieved by partial polarization of the vor-

bo;ugﬁrfgilg{egtraﬁZ?]gn:rr?e’ox{ibclgle gtcfd co:tgwu:csiafofo?g]raoc ex tangle. The magnitude of the normal-fluid viscosity is,
P Y- P accidentally, such that eddies in the normal fluid suffer neg-

superfluid turbulence that accompanies a thermal counter—

. . igible viscous dissipation as long as they are larger than
flow in superfluid*He at temperatures above about 1 K was . . . .
discovered in the 1950sit takes the form of a self- For eddies with size of order, or less thahthe velocity

o . : : fields in the two fluids are no longer matched because that in
sustaining tangle of vortex lines in the superfluid component

the tangle being maintained by the force of mutual frictionthe superfluid component is strongly dominated by the quan-

that acts between the lines and the normal fluid. This form Oflnzatlon of circulation, so that there is then dissipation by

turbulence has no classical analogue. Much more recentl utual friqtion, accompanigd by viscous digsipation in th'e
there has been study of the analogue .of classical grid turb ¥Iormal flu_|d. Thus the basic structure OT grid turbulenpe IS
lence in which the turbulence is produced by steady motiol{he same in bqth the quantum and clas_S|caI cases: an inertial

. . : r|1ange with a single velocity field, described by the Kolmog-
of a grid through the fluid. In the classical case such turbu-orov spectrum, foké <1, and dissipation fok¢=1, dissi-
lence is approximately homogeneous and isotropic. At hig%ﬁation in the duantum éase being due to a com,bination of
Reynolds number it is characterized by a Richardson cascal

in which enerav flows in a cascade from larae eddies. con. utual friction and normal-fluid viscosity. The existence of
gy 9 ’ the quasiclassical Kolmogorov spectrum is strongly sup-

taining most of the turbulent energy, to small eddies in which orted by experimeri/ although there is as yet no formal

it is dissipated b_y viscosity. In th_e s_t_eady state and over .th%eoretical demonstration that the superfluid component must
range of eddy size that is not significantly affected by ViS-p chave classically on scales greater thian

cosity (the mert@l range, the energy Is distributed among This simple form of quantum grid turbulence owes its
different eddy sizes according to the Kolmogorov Specgrumexistence to a very small normal-fluid viscosity. Recent at-

E(k) = C&/3 513, (1)  tention has turned to possible forms of turbulence in super-
fluid *He-B, which is probably similar in the present context
where E(k)dk is the energy per unit mass associated withto superfluid*He, except that the normal fluid is extremely
wave numbers with magnitudes in the randle (we are viscous. Flow through a grid could therefore lead to turbu-
working in terms of a spatial Fourier transform of the veloc-lence in the superfluid component, but hardly in the normal
ity field). The Kolmogorov constar€ is of order unity, and component. The normal fluid must therefore remain essen-
e is the rate at which energy per unit mass flows down theially at rest, and a force of mutual friction must act on the
cascaddenergy being conserved in the inertial regjniehe  superfluid component on all length scales. In this paper we
Kolmogorov spectrum does not provide an exact descriptiomim to discuss the possible character of grid turbulence in
of the turbulence, but it is sufficient for our present purposesthis case. Discussions relevant to our subject have recently
Extensive experimental study of fully developed grid tur- been published by Volovik and his collaboratérs} and we

bulence in superfluid®He above 1K has now been shall compare their conclusions with our own. In order to
published® along with theoretical discussion of the facilitate comparison our mathematical formulation will,
results>=8 It turns out that the quantum and classical casesvhere appropriate, be similar to that used by Volovok.
are very similar. Turbulence in the superfluid component In Sec. Il we discuss briefly the ideas underlying grid
must again involve a tangle of quantized vortices, with aturbulence in a classical fluid because important aspects of
characteristic spacing that we denotetbyrork¢ <1 thereis these ideas carry over to the quantum case. Quantum grid
a quasiclassicainertial range in which the two fluids have turbulence can be modified by the presence of a stationary
the same turbulent velocity field, this matching of the twonormal fluid in two ways: it can introduce a damping of the
velocity fields ensuring that there is negligible dissipationsuperfluid turbulence through the action of mutual friction;

1098-0121/2005/72)/0245139)/$23.00 024513-1 ©2005 The American Physical Society



W. F. VINEN PHYSICAL REVIEW B 71, 024513(2005

and it can lead to the generation of extra turbulence in the u, = €313, (4)
manner that operates in a counterflow heat current. We dis- )
cuss these matters in Sec. IlI: the form of the mutual friction@Part from a constant of order unity. We note thuﬁiZ,.
is discussed firstSec. 11l A); then the effect of the damping vx{hlch is the energy per unit mass associated with eddies of
in a way that is only semi-quantitative but which emphasize$iZ€T, can be obtained from the Kolmogorov spe_cIrLan.
the essential physidSec. Il B); and then in a way that leads (1] by integratingE(k) over a range ok of orderr™ cen-
to more quantitative predictionéSecs. Il C and 11 D. In  tered onk=r"%, which leads tou;~ %2 in agreement
Sec. IIl E we show that the generation of extra turbulence idVith Eq. (4). o _
likely to be unimportant, and in Sec. Ill F we summarize our_ _This steady-state inertial cascade can exist only as long as
conclusions. In Sec. IV we compare our results with those oft i not disrupted by viscous dissipation. Now the time taken
Volovik; earlier papers by Volovik® led to conclusions very for viscous dissipation to damp out motion on the length
different from our own, although this difference seems toscaler is given by
have disappeared in the most recent paper. r2

In order to simplify the discussion we shall assume that 4= —. (5)
the grid turbulence exists in a steady state. That is, we as- v
sume that energy is injected continuously into the largesft follows that the inertial-range cascade can exist only as
eddies, as a rate equal to the ultimate rate of dissipation gbng as
energy, so that the characteristics of the cascade, such as its
energy spectrum, are independent of time. We believe that 4> T (6)
the essential physics remains the same if, as is often the CaSkhis condition can be written
the turbulence is decaying; indeed, this belief underlies the
existing discussions of grid turbulence in superflttite. Re > 1, (7)

where the “scale-dependent Reynolds number’ iRgiven
Il. GRID TURBULENCE IN A CLASSICAL FLUID by

We start with some discussion of classical grid turbulence _ru,

at high Reynolds number, which will allow us to formulate Re=—". (8)

some general ideas that we can apply later to the quantum S ) )

case. Flow of the classical fluid obeys the Navier-Stokes/iscous dissipation sets in when Rel, i.e., when

equation L3\ 14
r=rg= ( ) .

ou 1 € ©
—+(u-V)u=-=-Vp+rVau, (2)
a p The scalery is the Kolmogorov dissipation length at which
wherev is the kinematic viscosity. We suppose that the gridviscous dissipation sets in, and the inertial cascade is termi-
produces eddies on a length scRend with characteristic Nnated. _
velocity U, at a high Reynolds number, REMR/ v. Owing to This argument does not allow us to understand the precise
the action of the nonlinear term in the Navier-Stokes equaway in which the Kolmogorov spectrum is modified as the
tion, energy is transferred from the sc&do smaller scales, Scale of the turbulence approaches the Kolmogorov dissipa-
which we denote by. This process is believed to occur in a tion length. A more complete argument can be based on the
cascade, transfer taking place in steps with gradually deldea that the flow of energy toward larger wave numbers can
creasing . A large Reynolds number, means that the nonlin-Pe described as a diffusion of energykrspace. It can be
ear term in the Navier-Stokes equation is more importanghown that this diffusion must obey a nonlinear diffusion
than the viscous term, so that this transfer takes place ingdguation, which can be written, for the case of homogeneous,
tially with conservation of energy; i.e., we have mertial  isotropic turbulence, in the forrtfor a recent application of
regime Eventually, energy passes to eddies sufficiently smalthis idea seg’
that viscous dissipation can operate and the cascade is termi- 1d dE’
nated. —2—(k2D(k)—) = vk%E’ (K), (10)

We see from the form of the Navier-Stokes equation that k=dk dk
the characteristic time associated with the nonlinear transfeghereE’ (k)d3k is the turbulent energy associated with wave

of energy from eddies of sizeand characteristic velocity,  vectors in the range®k, and the diffusion coefficierd(k) is
is the “turnover time"7, =r/u;. It follows that eddies of size  gjyen py

r lose energy per unit mass at a rate of order
D(K) = (E' (k) 2", (11)

(3 Such a diffusion equation does not have a rigorous basis and
must be used with caution, but it helps to understand the
In a steady-state inertial cascade, this rate of (bssisfej of ~ processes that are occurring. We note thatifie of Eq. (1)
energy must be the same for alllt follows that within the s related toE’ (k) by the relationE(k) =4wk?E’ (k). It is easy
inertial regime to show analytically that, in the Iimk<r51, Eq. (10) yields

u _u
€= —=—.
T r
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the Kolmogorov spectrurl), wheree=4mk’D(k)dE’ /dk is If the fluctuations are indeed small, the whole factor mul-
the constant rate at which energy flows down the inertialdiplying u in Eq. (12) is essentially constant, so that the fric-
range cascade; but a full numerical solution yields also théional force is linear inu. This important point was first
form of the cutoff ask approaches;". discussed very soon after it was recognized that mutual fric-
tion is due to vortex line1? We are interested in the effect
of the mutual friction on turbulent motion on different length
scales. We can therefore usefully carry out a Fourier analysis
of the velocity field, so that a Fourier componeptelates to

We first discuss the form of the mutual frictiocfBec. ~motion on the length scale™. We see immediately that the
Il A) and then formulate an argument that is analogous t&ffect of mutual friction on this Fourier component is de-
that leading to Eq(9), but taking into account the mutual Scribed by the linear equation
friction acting on the turbulence in the superfluid component _—
(Sec. Il B). Our conclusions are confirmed and elaborated, Ui == Yl (13
first in Sec. Ill C, where we present an analysis based on awherey=axL. It follows that the mutual friction causes to
analog of the diffusion equatiofi0), and then in Sec. llID, decay with a time constant given by
where we discuss the behavior on very small length scales.

Ill. SUPERFLUID GRID TURBULENCE WITH A
STATIONARY NORMAL FLUID

1
==, (14

A. The force of mutual friction Y

Let us consider a coarse-grained average superfluid velo#hich is independent ok. In other words, mutual friction
ity u, obtained by averaging over small volum@é that are ~ 9iVes rise to the decay of an eddy of sizat a rate that is
significantly larger than3, where ¢ is the mean spacing mdependent_ofr. The corresppndlng dissipation per unit
between the vortex lines in the turbulent superfluid. We makd&Nass per unit wave number, given by
the reasonable assumption the vortex lines wittvhmove el = w2 (15)
with an average velocity that is close tip but we make no K ke
assumption about the configuration of vortex lines withih ~ is also independent of length scale, although it is propor-
(In this respect our approach is different from that of Volo- tional to uZ. We can easily convert E¢15) to give a rate of
vik, as we discuss laterThe resulting force of mutual fric- dissipation of energy per unit mass in an eddy of size
tion per unit volume can then be written as

f = apsklu, (12

el = 2. (16)

In some of Volovik’s papers he seems to have argued that
wherek is the quantum of circulatioth/2m; for superfluid  Eq. (16) should have a fundamentally different form. We
®He-B), andL=¢"2 s the length of vortex line per unit vol- have therefore included in the Appendix an argument con-
ume. The forced is antiparallel tou; for the sake of simplic- firming our own view and based on a Fourier transform of
ity we have neglected any component of the mutual frictionthe equation of motion used by Volovik himself.
perpendicular tau (it is not obvious how to calculate this
transverse component in the case when the vortex lines are
more or less randomThe value of the dimensionless param-
eter « allows for any averaging over different vortex orien- ~ We shall now proceed with an argument that parallels that
tations within 8V. in Sec. Il. Let us assume that in the absence of dissipation

It is important to understand the nature of the frictionalthere is an inertial-range cascade in the superfluid compo-
force f. We shall assume that in the steady state to which wé@ent, with a Kolmogorov spectrum. Taking into account dis-
are confining our attention, the lengthof vortex line per  sipation due to mutual friction, we suggest, in analogy to Eq.
unit volume is essentially constant, apart from small fluctua{6), that the inertial-range cascade will still exist provided
tions, the effect of which we shall mention later. There isthat
little doubt that this assumption is justified in the case when ,
most of the vorticity in concentrated at the largest wave num- 9> T 17)
bers (smallest eddigs so that the configurations of vortex wherer,=r/u,. This condition can be written in terms of an
line within the volumef® are almost random, the large-scale effective scale-dependent Reynolds number as
motion being produced by a relatively small polarization of
the random tangle. The random tangle evolves on length Re _ U 1 (18)

. ; r .

scales and time scales that are much smaller than those in- yr

volved in the evolution of turbulence on scales larger than Substituting f f the Kol trurid)
so that fluctuations affecting the large scale motion are relaf ubstituting foru, from the KoIMogorov: spectruny), we

B. Comparison of characteristic times

tively small. Although the vorticity is indeed usually concen- ind that

trated at the largest wave numbers, there are, as we shall see L3

later, circumstances where this condition is violated; in this R€ = —p5. (19
case we must reexamine our assumptions, as explained in 4

Sec. llII C. Thus we arrive at the rather curious result that the effective
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Reynolds numbeidecreaseswith increasingr. It appears 100
therefore that dissipation will be important in eddlagger
than the size given by

1/2
rzréz(y%) . (20

Therefore we conclude that an inertial-range cas¢adesig-
nificant dissipation can exist only orlength scales that are
significantly less thang

A grid moving in a classical fluid with velocity, pro-
duces eddies at an early stage with a characteristic veldcity \
(proportional to, but a little less thakly) and size of order 1
the mesh sizél of the grid, although there is subsequently 0.1 o
some flow of energy into larger eddies as well as the flow k
into smallgr eddies. Flow into the larger gddies saturates be_— FIG. 1. (Color onling The solution of Eq(25) with the bound-
cause eddies cannot be larger than the size of the channel i conditions explained in the text.
which the grid moves. In superfluitHe a similar situation
obtains, although the large eddies must in this case be .
formed from arrays of vortex lines that are partly polarized.IS easily shown to be of the Kolmogorov form
Eventually an inertial-range Kolmogorov spectrum is estab- 3 \2B
lished for wave numbers smaller than the inverse of the Kol- E'(k) = (m) E¥B3=0.07821B, (22
mogorov dissipation length in the classical case or the in-
verse of the vortex-line spacing in superfluid*He. Our  wheree is the rate of flow of energy per unit mass of super-
analysis so far suggests strongly that, for the case of a stéluid down the cascad¢We are assuming that E1), to-
tionary normal fluid, such an inertial-range Kolmogorov gether with Eq(11) for the diffusion coefficient, holds in the
spectrum cannot be established if the largest eddies havepsiesence of the damping due to mutual friction. The validity
linear size greater tharj. If, however, the width of the chan- of these equations depends probably on the idea that the
nel in which the grid moves is such that the largest eddiesnertial interactions responsible for the transfer of energy in a
have a linear size less significantly less thgrthen it seems cascade are local ik-space, and we see no reason why mu-
likely that an inertial-range Kolmogorov spectrum can still tual friction should invalidate this idepWe write the solu-
be established, the mutual friction having only a small effecttion of Eq.(21) in the form
In Sec. Il C we confirm and extend these conclusions by )i -
solving the appropriate diffusion equation for the flow of E'(k) = 0.078e(k))* 7, (23
energy ink space. If an inertial-range Kolmogorov spectrumhere e(k) is now a function ofk, a decrease ir(k) with
can indeed exist over a range of wave numbers, even in thgcreasingk being due to the loss of energy through mutual

presence of a stationary _normal fluid, then we must ask hovf/riction. We introduce dimensionless variablééf() and k
the turbulent energy, flowing at ratedown the inertial-range '

10

1000

cascade, is eventually dissipated; we address this question C|jne fined by
Sec. Il D. —~ ek~ ~
€k)=——; k= (e() 2y ¥%, (24)
€(e)
C. Use of thek-space diffusion equation where e(») is the value ofe(k) in the limit k—c, and we

In Sec. Il we outlined a treatment of the Kolmogorov find thatz(k) obeys the differential equation
spectrum in a classical fluid and the cutoff resulting from the _ ~
action of viscosity, based on a nonlinear diffusion equation d’é(k) [ 4.50)\ dé(k) _ 536 55[)?5.  (25)
that aimed to describe the diffusive flow of turbulent energy Ty ¥ oo € :

; dk? k dk
toward higher wave numbers. We can treat the case of super-
fluid turbulence in the presence of a stationary normal fluidThis equation can be solved numerically by the fourth-order

by a similar method, as we now describe. As in the classicaRunge-Kutta method, and we require that the solution does
case, we warn that this treatment is not rigorous. not diverge ak— . A satisfactory solution exists only if
The appropriate diffusion equation, analogous to®@),  ¢(«) is nonzero, and we make the reasonable assumption that
has the form aSEHOO, dE(Nk)/deHO. The required solution is shown in
1d dE’(k)) _E'(K Fig. 1.

@d_k<k2D(k) dk 7l =E'(K), (21) To understand the significance of this solution, suppose

that turbulent energy is injected at the length sdglevhere
as we see immediately from E(L5). We have assumed that this scale is of order the width of the channel in which the
the turbulence is isotropic, so that is a function ofk only.  grid moves. Eddies larger thaR cannot be generated, and
If there were no mutual friction the solution of this equation therefore the minimum value & is k,=R™™. In Fig. 2 we
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FIG. 3. (Color online Variation of vorticity with wave
number.

e(k)
e(ky) the root-mean-square vorticity is concentrated at wave num-
bers significantly greater than Otherwise, mutual friction
as it affects the quasiclassical eddies at wave nurklmeay
undergo large fluctuations that reflect the time evolution of
eddies larger thak™ (including their decay by mutual fric-
tion), these fluctuations involving not only the line density
0.1 0 but also the orientation of polarized line configuratidre-
! k/k0 member that the force of mutual friction is anisotropic with
respect to this orientation relative to the flowhis situation
FIG. 2. (Color onling e(k)/e(ky) plotted againsk/k, for two  requires further study. Qualitatively, the time constahbf
values of Q=Ry*%(e(»)) ™2 Upper graph:Q=25; lower graph: Eq. (14) may still be relevant, but there may be complicated
Q=0.1. coupling between motion on different length scalese Ap-
pendix).

plot the value ofe(k)/ e(ky) againstk/kg, derived from Fig. 1,
for two extreme cases: R>(e(*)/y)Y% and R
<(e()/y*)Y2. A Kolmogorov spectrum would correspond D. Behavior at large wave numbers
to e(k)/e(kg)=1 [i.e., de(k)/dk=0 for all k], and in both
cases the energy input ky is of orderU3/R. We see that in
the former case there is a largedependent reduction in
e(k), corresponding to a large dissipative reductiorEitk)
below the Kolmogorov value; while in the latter case the
Kolmogorov spectrum is hardly changed. This is in accoro{
with our conclusions in Sec. Il A. We note, however, that in
the former casee(k) tends to a small, but finite constant
when k is sufficiently large, so that the Kolmogorov form

We have based our discussion thus far on a course-grained
average superfluid velocity, obtained by averaging over small
volumes 6V that are significantly larger thaf?®; therefore,
our conclusions apply only on length scales down to values a
ittle in excess off. Indeed, it is clear that superfluid turbu-
ence of the type described in Secs. lll B and Il C, which we
describe agjuasiclassical can exist only on length scales
significantly larger thanf (wave numbers significantly
) / ~ smaller than¢™1). Otherwise the scale of the turbulence be-
still holds at these high values &f(k>1). comes comparable with or less than the vortex-line spacing,

We must, however, make a comment about the distribuso that the motion is dominated by the quantization of circu-
tion of vorticity with wave number. In Fig. 3 we pl&i/3%¢3,  lation or, equivalently, by the discrete nature of quantized
which is proportional to thespectrumof the square of the vortex lines*® In particular there can no longer be a Kol-

vorticity, againstk. The total mean-square vorticity associ- M0gorov spectrum, even when the mutual friction is very
ated with a range of length scales is obtained by integratin&ma”- In this section we discuss how the turbulence can be
this spectrum over the corresponding range of wave numeXPected to behave as 1the wave numbepproaches and
bers. It is then easily seen that for some valudsafid some ~then exceeds the value™. o
conditions (small ko, large mutual friction the total root- We shall suppose initially Ehat the mutual friction is not
mean-square vorticitjfroughly the vortex line densifyasso-  too large, so that the conditide> 1 holds wherk~ ¢7%; in
ciated with wave numbers less th&ncan be comparable that case, a Kolmogorov spectrum can be expected to hold
with that associated with wave numbers greater tkdre-  over a reasonably wide range of wave numbers significantly
member thak cannot exceed™, as explained in Sec. IlD  less than¢™. On the scalef, however, the characteristic
Our treatment of the effect of mutual friction at wave numbervelocity can no longer be obtained from the Kolmogorov
k (including that in the Appendixis probably valid only if ~ spectrum, but rather must be given®by
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5 BK® tion of vortex lines and dissipation associated with Kelvin
Ue="p2" (26)  waves with wave number exceeding’~?, such waves being
produced by the close approach, or actual reconnection, of
where the numerical factg is of order unity. Now we make two vortex lines(or two parts of the same linefollowed by

the reasonable assumption that the velocityin the Kol-  the transfer of energy within a Kelvin-wave cascade to

mogorov spectrum of Eq4) joins smoothly to Eq.(26) higher wave numbers. A preliminary discussion of dissipa-

whenr=¢.% Thus we find that tion by Kelvin waves has been given in Refs. 6,13, showing
= B304, 27 tmhat Kelv_in waves can produce the_ necessary dissipation by

utual friction at a wave number given by

wheree is now the energy flux in the region of the Kolmog-

orov spectrum~k> 1. It follows that we can write for the
velocity in the quasiclassical inertial rang&olmogorov

qel ~ a2, (32)

For <1, g.£>1. In the limit of zeroa the Kelvin waves

spectrum are dissipated by radiation of phonons, at a wave number
5 PAVERYE given by
w=8l=l=] - (28)

o)\ e o\ 34

We note that if we combine Eq20) with Eq. (27) we find A ~ (?) ’ (33)
3/4
ry= (%)e (29)  wherec is the speed of sound in the helium. In the case of
o

superfluid®He-B the Kelvin waves can also be absorbed by
which does not depend explicitly an We showed in Secs. the Caroli-Matricon bound states within the cores of the vor-
1B and Il C that an inertial-range Kolmogorov spectrum t€x lines. Neither this absorption process nor that associated
can exist only at scales<r/,. We see now that must also be directly with actual vortex reconnections involves mutual
greater thart. Therefore the condition that an inertial-range friction; our paper is concerned only with the effect of mu-
Kolmogorov spectrum can exist over a significant range ofual friction, and therefore we have not taken these other
length scales is that)/¢>1, and therefore thatv<1. Processes into account.
[Strictly speaking Eq(26) holds only if the motion of a
particular element of vortex line is governed by the local E. Possible generation of extra turbulence by relative motion
velocity generated by the rest of the line and by other lines, of normal and superfluid components
which means that the motion is not seriously perturbed by
mutual friction. This is indeed the casedf< 1, as noted iff,
so that our analysis is self-consistént.

The existence of quasi-classical inertial-range behavio

So far we have assumed that the relative motion of the
two fluids has no effect other than to damp the turbulence in
he superfluid. However, we know from our experience of

Lo o eat flow in superflui¢He that such relative motion can lead
Kolmogorov rumimpli hat there m issipa- . .
(Kolmogorov spectrufimplies that there must be dissipa to the generation of turbulence, in the form of a self-

tion, equal to the energy flow rate at some length scale less - .
g 4 & 9 sustaining vortex tangle that is more or less random on the

than(8V)Y3. We must now ask how and on what length scale . .
A e . scale of the mean-vortex separation. We shall show that this
this dissipation occurs, i is significantly less than unity.

First we estimate the dissipation due to mutual friction onProcess 1s likely to have a negligible effect on our conclu-

. . sions.
length scales of ordef. Per unit mass of helium, and for the - .
casea<1, this dissipation must be of order We shall suppose that within a large eddy of sizehar-

acteristic velocityu,, the counterflow of the two fluids leads

to the generation of an extra length of vortex line similar to
— p_S L 2 — &5 36_4 30 L . Lo . .
&= o kLU= a o Brt (30 that observed in steady counterflow in an infinitely wide
_ channel. This will lead to an overestimate of the extra length
We see from Eqs(27) and (30) that the ratio because it neglects both the finite time that is required to
c generate this line, in comparison to the turnover time, and
—=a| =g 31 e fact that the eddy has a finite sizeperhaps comparable
= of Bo| g1 the fact that the eddy has a finit h bl
€ P to the critical velocity known to exist for counterflow turbu-

Thus the requirementz<1 implies thate,/e<1, so that lence in afinite channel.

there is negligible dissipation down to the scéléherefore It is easily shown that the extra length of line per unit
we must search for dissipative processes on smaller lengifPlume is given by
scales. ) ) ) o3

A situation in which there is no dissipation on length L :<27TX1“) (ﬂ) :<27TX1a> ﬁ(ﬂ) (34)
scales down to and includinghas already been discussed in 0 X2 K X2 e\e)

connection with dissipation in superfluftie at temperatures

below 1 K. In the case of turbulence in superfl@ide in an  where y;~0.3 and y,~1 are dimensionless parametérs,
unbounded volume, two processes that operate on scales lemsd where we have made use of E28). We write L=€2,
than¢ have been identifieBldissipation during the reconnec- and therefore
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IV. COMPARISON TO TREATMENT BY VOLOVIK  ET AL.

Strongly daimped

z quasi-classical Volovik’s treatment is based on a coarse-grained averaged
¢ turbulence ; equation of motion for the superfluid component, which he
Quasi-classical : writes in the form
inertial regime
1

Ju N
Kelvin-wave E +VuzuXow+awX (w0 X u), (37)

cascade

Strongly damped

Kelvinw?ves

for the case where, as here, the transverse component of the

mutual friction is neglected, and whew® is the coarse-

1 o grained vorticity. This equation is valid only if the vortex

lines within the volumesV used in the course-grained aver-

aging are aligned. Our own treatment was not restricted in

this way, and, indeed, we have already argued that witkin

the vortex lines are likely to be arranged as an approximately

Lo_ o 2mxaa\?(r\2%  ,(r\?® 35  random tangle.

L B X2 ¢ @ ¢) (35 The classical Reynolds number for types of flow, in which
there is a single length scafeand a single velocity scalg,

We confine our attention to the quasiclassical inertial rangeis simply the ratio of the order of magnitude of the inertial

for which r must be less tharf,, given by Eq.(29). Then the  term in the Navier-Stokes equation to that of viscous

FIG. 4. Different turbulent regimes for different values rgft
and a.

maximum value of the ratib,/L becomes dissipative term. Applying this idea to E7), in which the
last term relates to dissipation by mutual friction, we see that

<5)) _ 3,2(%>2 _ 36 an effective Reynolds number might be taken agsRe ™,
L)oo X o~ a (36 which is, interestingly, not dependent on velocity. Indeed it

was found by Finnet al1® that Rey does determine whether

But the existence of a significant quasiclassical inertial rang@" not spin-up of superfluidHe-B is turbulent, although in a
depends onx being small compared with unity, as we have context where the vortex density is so low that course-
seen. It follows that within the quasiclassical inertial rangegrained averaging is hardly justified; and Volovik tries to
Lo<L, and that, therefore, the generation of extra line byemphasize the importance of fén more general contexts,

counterflow can be neglected, at least within this quasiclasncluding fully developed turbulence. However, for fully de-
sical inertial range. veloped turbulence there are many length scales, and our

analysis of Sec. Il B led us to a more complicated scale-
dependent Reynolds number, given by E@), the introduc-
tion of which seems to us essential to an understanding of
For simplicity we suppose that the Kelvin-wave processesuch turbulence.
discussed in Sec. Il D provide the dominant source of dis- The ideas described in earlier sections were first presented
sipation at length scales less thérThen our conclusions are at an informal meeting in the Low Temperature Laboratory
summarized concisely in Fig. 4. of the Helsinki University of Technology in Finland toward
In the limit of zeroa there is a quasiclassical regirfweith  the end of 2003, and a first draft of our paper was distributed
a Kolmogorov spectrujnon length scales greater thérand  as a preprint in March 2004. At the time of the first informal
a Kelvin-wave cascade, terminated by phonon radiation, opresentation Volovik had formulated an approach that was
length scales less thafi As a increases the Kelvin wave very different from that given here. This approach was modi-
cascade starts to be terminated at a larger length ésalee-  fied in response to our commenitbut the dissipative effect
length by mutual friction, and the largest eddies in the qua-of mutual friction was still different from that discussed here.
siclassical regime start to be strongly damped.Asends In an earlier version of our paper we argued that Volovik’s
toward unity, the range of length scales separating théormulation was not correct, and that it led to incorrect tur-
Kelvin-wave cutoff and the onset of strong damping of thebulent energy spectra. Within the last few weeks Volovik, in
quasiclassical eddies narrows and it disappears aedr.  collaboration with L'vov and Nazarenk8,has further modi-
For a>1 there can be no turbulent motion that is notfied his approach, and it seems now to agree with our own,
strongly damped. the turbulent energy spectrum proposed being similar to that
It is possible to construct for our theory a “flow-phase displayed in our Fig. 1. They derive this spectrum from an
diagram” analogous to that in Fig. 1 of Ref. 8, this earlieranalytical argument, which leads to a wave number depen-
diagram being based, as we now see it, on an inadequatience ask 3 for small k. The spectrum derived from our
theory, as explained in Sec. IV. We have included discussionumerical studies has the same form. We conclude that our
of such a diagram in another paper recently been submitteivo treatments are now in at least partial agreement, al-
for publication though the formulations remain rather different.

F. Summary of overall behavior
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Let the vectork relate to eddies of size. The vectors
&(k,) have a significant amplitude only whégp>k because
the vorticity is concentrated at the highest wave numbers.

The components of the vectors in Eg4.3) are generally
APPENDIX complex numbers. We write

We investigate rather formally the effect of mutual fric-
tion on superfluid motion described by E§7). In this equa-
tion t_h‘?re IS _cogr_se-gramed averaging over vc_)lu_r(h%)_ where?x(kl) is real, and similarly for the other components
containing a significant number of vortices but within which of £(ky). Then
the vortices are assumed to be completely polarized. We are v
interested in the effect of the mutual friction tefads X (e N T T
X u); in particular, we are interested in its effect on eddies of x(kp) &(ka) = &k éxlKa) . (45)
sizer>b. The inertial termu X o gives rise to the transfer of Now the triple-vector product in Eq43) can be written as
energy to smaller eddies in a time of order the turnover time
7.=r/u,, whereu, is the characteristic velocity associated (&(ky) -u(k)E* (ky) = (Eky) - €* (kp)u(k).  (46)
with the eddies of size. The mutual friction gives rise to the )
decay of these relatively large eddies in a tinje In Sec. ~ Suppose that at some instartk) has only az-component.
Il A we argued thatr;,=1/(axL). Here we argue that this We are interested in only the component of E43) the

&Ky = &(kpexpligyg(ky)), (44)

ity is concentrated at the highest wave numbers. effect of the mutual friction. Thus we are interested in the
To estimater,, we shall investigate solutions of the equa- component of Eq(46), which is equal to
tion x *
= (&dkp &i(ka) + &y(kp) & (KD uLK). (47)

J “ . .

MO _ ior) X [ao(r) X u(®)]. (38 Thus, using Eq(45), we find that
where, following Volovik, we have now replaced by the U, (k) = ‘QKZ (&(Ky) + E(Kkp))uzK). (48

1

more generag=a/(1-a'), ' being related to the trans-
verse component of the mutual friction. We introduce a ne

vector, defined by YL et the direction of the vectog(k,) be defined by spherical

polar angles9(k,), ¢(k4). Then Eq.(48) can be written

&(r) = o(n[Y2o(r), (39) : — ,
u k) =- qE E(ky[sir? o(ky)sin® ¢(ky)
so that Eq.(38) can be written kg
au(r) + sir? 8(k;)cos (k) Ju,(k)
——=q&(r) X (&(r) X u(r)). 40 N .
o - DX (ED>un) 40 =~ a3 Elky)sir? otky)uy(k). (49
k
We Fourier analyze the velocity arddfields in space, and '
hence obtain Let us now average E@49) over a time(7) small compared
with the lifetime of the eddies of sizebut large compared
> ukpexpliky-r)=q X, &k, X [£(ks) X u(ky)] with the lifetime of the smallest eddies, which account for
Ky Ko Kgky most of the vorticity. We obtain

rexilie o i)l (4 (000) = -4 @lk)si? o)), (50)
We multiply Eq.(41) by expg—ik -r) and integrate over space, ke

so obtaining where(...) denotes averaging over the timeAlthough dur-

s L ing this time £(k,) and sirf A(k;) must undergo large fluc-
utk) = qk§3 £lko) X (&lkg) X ulk —kz—ka)).  (42) tuations(because the turnover timelatis much less tham)
the fluctuations iru,(k), which relate to the slow motion of
Let us neglect all terms in the double summation in &&) an eddy of size, must surely be smalthey must be mini-
for which k,+k3# 0; we consider these terms later. Then wemized by the summation in E¢50)]. We can therefore ne-
have glect the fact thati(k) fluctuates and write simply
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U k) = - qu (E(kp)sir® 6(ky))uy(K). (51)

PHYSICAL REVIEW B 71, 024513(2005

3
2qkL’

(55)

’
Tq

We now make the reasonable assumption that the fluctua-

tions in 6(k;) and ingz(kl) are uncorrelated. Then E1)
can be written

40 =~ (Ek)6iE Ak, (52
But (sir? 6(ky))=2. Th;refore
0,0 = - quE Bk, (53
From Parseval’'s theorem we have
(54)

kE (E(ky) = ().

But (£2(r)) is the mean value of the modulus of the vorticity.
As discussed in Ref. 4 this mean value is equakto It
follows that

in essential agreement with EL.4).

In writing down Eq.(43) we neglected many terms in
the double summation in Eq42). These terms serve to
couple the velocityu(k) to other Fourier components of the
velocity field. Physically, this coupling is due to local fluc-
tuations in the vortex line density. The coupling adds to the
effect of the inertial termu X e, and it must therefore have
some effect on any Richardson-Kolmogorov cascade. We
guess that it is relatively small, especially for small values
of a.

We note that our final resul£q. (55)] is consistent with
the usual expression for the attenuation of second sdfnd
due to an array of vortex lines with random orientati@m
this case the vectok is the wave vector of the second
sound.
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