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We present general symmetry arguments that show the appearance of doubly degenerate states protected
from external perturbations in a wide class of Hamiltonians. We construct the simplest spin Hamiltonian
belonging to this class and study its properties both analytically and numerically. We find that this model
generally has a number of low energy modes which might destroy the protection in the thermodynamic limit.
These modes are qualitatively different from the usual gapless excitations as their number scales as the linear
size (instead of volume) of the system. We show that the Hamiltonians with this symmetry can be physically
implemented in Josephson junction arrays and that in these arrays one can eliminate the low energy modes with
a proper boundary condition. We argue that these arrays provide fault tolerant quantum bits. Further we show
that the simplest spin model with this symmetry can be mapped to a very specialZ2 Chern-Simons model on
the square lattice. We argue that appearance of the low energy modes and the protected degeneracy is a natural
property of lattice Chern-Simons theories. Finally, we discuss a general formalism for the construction of
discrete Chern-Simons theories on a lattice.
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I. INTRODUCTION

It is generally accepted that a quantum computer would
have an enormous advantage over the classical one for the
solution of many fundamental and practically important
problems.1–3 However, its practical implementation presents
a formidable challenge mostly because of the conflicting re-
quirements posed by scalability and decoupling from the en-
vironment. In particular, all scalable designs are based on the
solid state devices but these are plagued by a strong deco-
herence. Quantitatively, in physics it is conventional to mea-
sure the decoherence by the quality ratio,Q, that is equal to
the product of the decoherence time and a typical energy gap
while in computer science one uses the error rate,R, defined
as the probability of an error per time required for an indi-
vidual operation. In order to avoid excitations of higher en-
ergy states all operations should be performed slowly on the
scale of the inverse energy gap, soR@1/Q. The problem
posed by the omnipresence of the decoherence in solid state
devices is exacerbated by the fact that the error correction
codes4,6 require a small error rate for individual qubits(at the
very least 10−3 per logical operation that translates into the
quality factors larger than 104) and lead to a huge increase in
the number of qubits, effectively replacing one qubit by a
lattice with L3L qubits with largeL.5 Further, the efficient
error correction requires that operations are donesimulta-
neouslyon all L3L qubits encoding a single error free bit
which makes this scheme rather unrealistic. An alternative
would be to use individual qubits with a very high quality
factor, much greater than 108, which would allow one to
perform calculations without(or with very little) error cor-
rection. If the noise couples linearly to the energy difference
between two states of the qubit representing 0 and 1, this
would mean that the physical noise should be less than 10−8

times than all other energy scales of the device. It is difficult

to imagine a solid state physical system that is so well
screened from the outside noise, in particular, it is difficult to
imagine a Josephson junction, a Cooper box or SET where
the motion of stray charges do not result in a significant 1/f
noise in electric or magnetic fields or in the strength of the
Josephson couplings. Further, a significant energy difference
between the two states of a qubit results in a phonon
emission7 that limits the quality factor of a typical Josephson
device by 104. So, the only logical possibility is that the
physical noises do not affect the energy difference between
lowest energy states in the lowest orders(one or more) in the
strength of the noises. This is in principle possible because
the effect of the physical noise is always represented by the
sum of local physical operators(charge, current, etc.). In the
limiting case when the noise does not affect the energy dif-
ference between the two states in any finite order, these states
form a protected subspace of the Hilbert space.8 Of course,
the formation of such truly protected space becomes possible
only for an infinite system. The implementation of these
models in solid state(Josephson junction) devices was sug-
gested in Refs. 9–11. From a practical view point it is im-
portant to consider simpler but smaller systems which are
protected from the noise in the given order,n, i.e., which are
not affected by all physical noises in all orders less thann.
Clearly, any device in which two levels representing 0 and 1
have a finite energy difference is susceptible to the fluctua-
tions in the physical quantity that sets this energy scale. For
instance, in a Cooper box this would be the Josephson,EJ,
and a charging energy,EC, of the individual Josephson junc-
tion. Thus, even this limited protection can occur only when
the two “working” levels are degenerate.

It is well known that the stable degeneracy of the quantum
levels is almost always due to a high degree of the symmetry
of the system. Examples are numerous: time inversion in-
variance ensures the degeneracy of the states with half inte-
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ger spin, rotational symmetry results in a degeneracy of the
states with nonzero momentum, etc. In order for the degen-
eracy to be stable with respect to the local noise, one needs
that the sufficient symmetry remains even if a part of the
system is excluded. The simplest example is provided by the
six Josephson junctions connecting four superconducting is-
lands(so that each island is connected with every other).12 In
this mini array all islands are equivalent, so it is symmetric
under all transformations of the permutation groupS4. This
group has a two-dimensional(2D) representation and thus,
pairs of the exactly degenerate states. With the appropriate
choice of the parameters one can make these doublets the
ground state of the system. The noise acting on one super-
conducting island reduces the symmetry to the permutation
group of the three elements which still has two-dimensional
representations. So, this system is protected from the noise in
the first ordersn=2d. The goal of this paper is to discuss
designs giving the systems that are protected from the noise
in the higher orders. Note that systems with higher symmetry
groups, such as five junctions connected by ten junctions
(group S5) typically do not have two-dimensional represen-
tations, so in these systems one can typically get much
higher degeneracy but not higher protection.

Generally, one gets degenerate states if there are two sym-
metry operations, described by the operatorsP and Q that
commute with the Hamiltonian but do not commute with
each other. IffP,QguClÞ0 for anyuCl, all states are at least
doubly degenerate. Local noise term is equivalent to adding
other terms in the Hamiltonian which might not commute
with these operators thereby lifting the degeneracy. Clearly,
in order to preserve the degeneracy one needs to have two
sets(of n elements each), hPij and hQij of noncommuting
operators, so that any given local noise field does not affect
some of them; further, preferably, any given local noise
should affect at mostone Pi andQi. In this case, the effect of
the noise appears whenn noise fields actsimultaneously, i.e.,
in the nth order in the noise strength. Another important re-
striction comes from the condition that these symmetry op-
erators should not result in a higher degeneracy of the ideal
system. For two operators,P and Q that implies that
fP2,Qg=0 andfP,Q2g=0. Indeed, one can construct the de-
generate eigenstates of the Hamiltonian starting with the
eigenstate,u0l, of H and Q and acting on this state withP.
The resulting state,u1l should be different from the original
one becauseP andQ do not commute:fP,QguClÞ0 for any
C. In a doubly degenerate system, acting again on this state
with the operatorP one should get back the stateu1l, so
fP2,Qg=0. For a set of operators, the same argument implies
that in order to get a double degeneracy(and not more) one
needs thatfPiPj ,Qg=0 andfP,QiQjg=0 for anyi, j . Indeed,
in this case one can diagonalize simultaneously the set of
operatorshQij, hQiQjj and hPiPjj. Consider a ground state,
u0l, of the Hamiltonian which is also an eigenstate of all
these operators. Acting on it with, sayP1, we get a new state,
u1l, but sinceu1l~ sPiP1dP1u0l=PisP1P1du0l~ Piu0l all other
operators of the same set would not produce a new state.

In the rest of the paper we introduce models that possess
the symmetries satisfying these conditions(Sec. II), discuss
their possible implementations in Josephson junction net-

works (Sec. III) and show that they are equivalent to the
Chern-SimonsZ2 gauge theory(Secs. IV and V). Section VI
summarizes our results.

II. SPIN MODEL

The conditions discussed at the end of the previous sec-
tion are fully satisfied by the spinS=1/2 model on a square
n3n array described by the Hamiltonian

H = − Jxo
i,j

si,j
x si,j+1

x − Jzo
i,j

si,j
z si+1,j

z . s1d

Here s are Pauli matrices, note that the first term couples
spins in the same row of the array while the second couples
them along the columns. It is not important for the following
discussion whether the boundary conditions are periodic or
free, but since the latter are much easier to implement in a
hardware we shall assume them in the following. Further, the
signs of the couplings are irrelevant because for a square
lattice one can always change it by choosing a different spin
basis on one sublattice. For the sake of argument, we as-
sumed that the signs of the couplings are ferromagnetic; this
is also a natural sign for Josephson junction implementations
in Sec. III. The Hamiltonian(1) was first introduced in Ref.
13 as a model for the anisotropic exchange interaction in
transition metal compounds but its properties remain largely
unclear.

The Hamiltonian(1) has two sets of the integrals of mo-
tion, hPij and hQij with n operators each

Pi = p
j

si,j
z ,

Qj = p
i

si,j
x ,

i.e., eachPi is the row product ofsi,j
z while Qj is the column

product ofsi,j
x . ConsiderPi operator first. It obviously com-

mutes with the second term in the Hamiltonian and because
the first term contains twosi,j

x operators in the same row,Pi
either contains product ofsi

z and s j
z or none of them. Be-

cause different Pauli matrices anticommute,Pi commutes
with each term in the Hamiltonian(1). Similarly, fQi ,Hg=0.
Clearly, differentPi commute with themselves,Pi

2=1 and
similarly fQi ,Qjg=0 and Qi

2=1, but they do not commute
with each other

hPi,Qjj = 0,

fPi,Qjg2 = 4 s2d

so fPi ,QjguClÞ0 for any uCl, thus in this model all states
are at least doubly degenerate. Further, becausePiPj contains
two si,j

z in any column, such product commutes with allQk
operators and similarlyfQkQl ,Pig=0. Thus, we conclude that
in this model all states are doubly degenerate, there is no
symmetry reason for larger degeneracy and that this degen-
eracy should be affected by the noise only in thenth order of
the perturbation theory.

To estimate the effect of the noise(which appears in this
high order) one needs to know the energy spectrum of the
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model and what are its low energy states. All states of the
system can be characterized by the set,hli = ±1j, of the ei-
genvalues ofPi operators(or alternatively by the eigenvalues
of the Qj operators). The degenerate pairs of states are
formed by two sets,hlij and h−lij, and each operatorQj

interchanges these pairs:Qihlij=h−lij. We believe that dif-
ferent choices ofhli = ±1j exhaustall low energy states in
this model, i.e., that there are exactly 2n low energy states.
Note that this is a somewhat unusual situation; normally one
expectsn2 modes in a 2D system and thus 2n2

low energy
states. The number 2n low energy states is natural for a one-
dimensional system and would also appear in two-
dimensional systems if these states are associated with the
edge. Here, however, we cannot associate them with the edge
states because they do not disappear for the periodic bound-
ary conditions. We cannot prove our conjecture in a general
case but we can see that it is true when one coupling is much
larger than the other and we have verified it numerically for
the couplings of the same order of magnitude. We start with
the analytic treatment of theJz@Jx case.

When one coupling is much larger than the others it is
convenient to start with the system where these others are
absent and then treat them as small perturbations; in the limit
Jx=0 all columns are independent and the ground state of
each column is a Ising ferromagnet. The ground state of each
column is doubly degenerate:u1l j =piu↑ li j and u2l j =piu↓ li j
giving us 2n degenerate states in this limit. Excitations in
each column are static kinks against the background of these
states; each kink has energy 2Jz. Including nowJx coupling,
we see that it creates two kinks in each of the neighboring
columns thereby increasing the energy of the system by 8Jz
so the lowest order of the perturbation theory is small in
Jx/8Jz. The splitting between the 2n states occurs due to the
high order processes which flip all spins in two columns. In
the leading approximation one can calculate the amplitude of
this process ignoring other columns. Thus, for this calcula-
tion we can consider the model with only two columns that
can be mapped onto a single Ising chain in the transverse
field in the following manner. The ground state of two inde-
pendent columns belongs to the sector of the Hilbert space
characterized by allPiPj =1; it is separated from the rest of
the spectrum by the gap of the order of 2Jz. Further, the
Hamiltonian does not mix this sectors with differentPi, so in
order to find the low energy states, it is sufficient to diago-
nalize the problem in the sectorPi =1. In this sector only two
states are allowed in each row:u↑ ↑ l andu↓ ↓ l, in the basis of
these states the Hamiltonian is reduced to

Hcol = − 2Jzo
i

ti
zti+1

z − Jxo
i

ti
x, s3d

wheret are Pauli matrices acting in the space ofu ↑ ↑ l and
u ↓ ↓ l states. This leads to the splitting 2D<sJx/2Jzdns2Jzd
(see Appendix A for the details of this calculation) between
the symmetric and antisymmetric combinations of the two
ferromagnetic chains in this problem. Thus, we conclude that
the effective Hamiltonian of the low energy states in the full
system is

H = Do
j

t̂ j
xt̂ j+1

x ,

wheret̂ are Pauli matrices acting in the space ofu1l and u2l
states describing the global state of the whole column. This
effective low energy model also describes a ferromagnetic
chain in which the excitations(static kinks) are separated
from the degenerate ground state by the gap 2D. In the basis
of these 2n low energy states the operatorsQj = t̂ j

x.
We conclude that in the limitJz@Jx2

n low energy states
form a narrow(of the order ofD) band inside a much larger
gap,Jz, characterized by different eigenvalues ofQj opera-
tors and by one valuePiPj =1. In the opposite limitJx@Jz
low energy states form a narrow band inside the gap of size
Jx characterized by different eigenvalues ofPj operators and
by the same valueQiQj =1. Consider now the effect of a
weak noise in the former limit. To be more specific, we con-
sider the effect of the additional single site fields

Hn = o
i,j

hi,j
z si,j

z + hi,j
x si,j

x .

The first term shifts(up or down) the energies of each ferro-
magnetic column byHi

z=oihi,j
z while the second term gives

the transitions between up and down states in each column.
These transitions appear only in the ordern of the perturba-
tion theory, so their amplitude is exponentially small:
Hj

x=spihij
x /JzdJz. Thus, when projected onto the low energy

subspace this noise part becomes

Hn = o
j

Hj
zt̂ j

z + Hj
xt̂ j

x.

The effect of the first term on the ground state degeneracy
appears in thenth order of the perturbation theory inHj

z/D
and so it is much bigger than that of the second term because
D becomes exponentially small asn→` for Jx!Jz. Note
that although the effect of thehi,j

z si,j
z noise appears only in

the large order of the pertubation theory, it is not small be-
cause of the small energy denominator in this parameter
range. Similarly, we expect that in the opposite limit,Jz
!Jx, the low lying states are characterized by the set of
eigenvalues ofPi operators, the effect of thehi,j

x si,j
x grows

rapidly while the effect of thehi,j
z si,j

z noise decreases with the
Jx increase. We conclude that in the limits when one coupling
is much larger than another(Jz@Jx or Jz!Jx), the gap closes
very quickly (exponentially) and the nonlinear effect of the
appropriate noise grows rapidly with the system size. These
qualitative conclusions should remain valid for all couplings
except a special isotropicsJx=Jzd point unless the system
undergoes a phase transition near this point(at some
Jx/Jz= jc,1).

In order to check these conclusions we have numerically
diagonalized small spin systems containing up to 5 by 5
spins subjected to a small random fieldhi,j

z flatly distributed
in the interval(−d /2, d /2). We see that indeed the gap closes
rather fast away from the specialJx=Jz point (Fig. 1) but
remains significant nearJz=Jx point where it clearly has a
much weaker size dependence. Interestingly, the gap be-
tween the lowest 2n states and the rest of the spectrum ex-
pected in the limitsJz@Jx or Jz!Jx appears only atJx/Jz
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. jc with a practically size independentjc<1.2. We also see
that the conditionPi =1 eliminates all low lying states in the
Jz!Jx limit where the lowest excited state inPi =1 sector is
separated from the ground state by a large gap and in fact
provides a lower bound for all high energy states. The special
nature of this state appears only atJx/Jz. jc. Clearly, the
system behaves quite differently near the isotropic point and
away from it but the size limitations do not allow us to
conclude whether these different regimes correspond to two
different phases(with the “isotropic” phase restricted to a
small range of parametersjc

−1,Jx/Jz, jc) or it is a signature
of the critical region which becomes narrower as the size
increases. Although we do not see any appreciable change in
jc with the system size, our numerical data do not allow us to
exclude the possibility thatjc tends to unity in the thermo-
dynamic limit. We conclude that numerical datafavor inter-
mediate phase scenario. In contrast to this, the analytical re-
sults for two and three chains indicate that the transition
occurs only atJz=Jx point. Namely, both two and three chain
models with periodic boundary conditions in the transverse
direction can be mapped onto solvable models with transi-
tion at Jz=Jx: in the case of two chains the problem is
mapped onto the exactly solvable Ising model in transverse
field as described above while the three chain model is
mapped(see Appendix B) onto the four states Potts model in

a similar way. The latter is not exactly solvable in the whole
parameter range but it obeys the exact duality that allows one
to determine its critical point,14,15 further, its exponents can
be determined from the conformal field theory.16 The map-
ping of the three chain problem onto the Potts model is pos-
sible because the number of states of three spin rung for a
given value of the conservedP operator is four while the
number of different terms in the Hamiltonian that couples the
adjacent rungs is three. For a larger number of chains the
number of states in each rung grows exponentially while the
number of terms in the Hamiltonian grows only linearly
making such mappings impossible. In this sense two and
three chain models are exceptional and it is fairly possible
that the intermediate phase appears in models with larger
number of chains.

Finally, we checked the effect of thehi,j
z si,j

z on the ground
state degeneracy splitting, and our results are shown in Fig.
2. We see that, as expected, this disorder becomes relevant
for Jx!Jz while in the opposite limit its effect quickly be-
comes unobservable. We conclude that at(and perhaps near)
isotropic point, the gap closes slowly with the system size
and the effect of even significant disordersd=0.1d becomes
extremely small for the medium sized systems.

Although it is not clear how fast the gap closes in ther-
modynamic limit (if it closes exponentially fast the system
never becomes truly protected from the noise because the
effect of the high order terms might get very large), our
numerical results clearly indicate that medium size(4 by 4 or
5 by 5) systems provide an extremely good protection from
the noise suppressing its effect by many orders of magnitude.
This should be enough for all practical purposes. Further, if it
is possible to construct the systems wherePiPj =1 (in other
words with an additional term in the Hamiltonian
HP=−Doi j PiPj with significantD), this would eliminate the
dangerous low energy states, leading to a good protection for

FIG. 1. Energy spectrum of the 535 and 434 systems in the
units ofJz coupling as a function ofJx/Jz. We show energies of the
lowest 40 states for 535 (upper pane) and lowest 20 states for the
434 system(lower pane). One clearly sees that at large anisotropy
a well-defined low energy band is formed which contains 25 states
for 535 system and 24 states for 434 one. In order to verify that
low energy states are in one-to-one correspondence withPi eigen-
values for largeJx/Jz we have calculated the second lowest eigen-
state inPi =1 sector(first one is the ground state). As shown in the
lower pane by the dashed line, this state indeed has a large gap for
Jx/Jz*1.2.

FIG. 2. Ground state splitting by random field inz direction for
535 and 434 systems. The random field acted on each spin and
was randomly distributed in the interval(20.05,0.05). Note that the
effect of the random field inz direction becomes larger forJx!Jz as
expected. Because nearJx=Jz isotropic point the gap for 535 sys-
tem is significantly smaller than the gap for the 434 system, this
relatively large disorder has almost the same effect on these systems
atJx,Jz. We have verified numerically that decrease of the disorder
by a factor of 2 leads to dramatically smaller effects for 535 sys-
tem confirming the scalingE1−E0~dn. For Jx/Jz.1.2 the differ-
enceE1−E0 is difficult to resolve numerically.
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all couplings strengthsJxùJz. Indeed, in this case, we can
repeat the previous analysis and conclude that the effects of
the noise appear only in thenth order and that now the per-
turbation theory in the “dangerous” noise,Hj

z, implies the
expansion inHj

z/D whereD is no longer exponentially small
but is the coefficient in the HamiltonianHP. Thus, in this
case these higher order terms become small.

III. JOSEPHSON JUNCTION IMPLEMENTATIONS

The basic ingredient of any spin 1/2 implementation in
Josephson junction array is the elementary block that has two
(nearly degenerate) states. One of the simplest implementa-
tion is provided by a four Josephson junction loop[shown as
rhombus in Fig. 3(a)] penetrated by magnetic fluxF0/2.17,18

Classically, this loop is frustrated and its ground state is de-
generate: it corresponds to the phase differences ±p /4 across
each junction constituting the loop. Two states(spin “up”
and “down”) then correspond to the states with phase differ-
ence ±p /2 across the rhombus. For an isolated rhombus a
nonzero(but small) charging energy,EC=e2/2C, would re-
sult in the transitions between these two states with the am-
plitude

r < EJ
3/4EC

1/4e−sÎEJ/EC s4d

thereby lifting this degeneracy. Heres is the numerical coef-
ficient of the order of unity that was found in Ref. 10,s
<1.61 andEJ is the Josephson energy of each junction.

A. Simplest Josephson junction array

We begin with the Josephson junction array that has two
sets of the integrals of motion,hPij andhQij discussed above,
which is shown in Fig. 3. This array contains rhombi with
junctions characterized by Josephson and charging energies
EJ*EC and weaker vertical junctions characterized by the
energieseJ, eC. As we explain below, although this array
preserves the integrals of motion,hPij andhQij, it maps onto
a spin model that differs from Eq.(1); we consider more
complicated arrays that are completely equivalent to spin
model (1) in the next subsection. The state of the system is
fully characterized by the state of each rhombi(described by
the effective spin 1/2) and by the small deviations of the
continuous superconducting phase across each junction from
its equilibrium (classical) values. Ignoring for the moment
the continuous phase, we see that the potential energy of the
array shown in Fig. 3 is given by

Hz = − eJo
i,j

ti,j
z ti+1,j

z , ti,j
z ; p

k, j

si,k
z . s5d

Physically, the variableti,j
z describes the phase of the right

most corner of each rhombi with respect to the left
(grounded) superconducting wire modulop. The right super-
conducting wire(that connects the right most corners of the
rhombi in the last column) ensures that the phase differences
along all rows are equal. In the limit of a large phase stiffness
this implies that the number of the rhombi with the phase
differencep /2 should be equal for all rows modulus 2. This
constraint does not allow an individual rhombus flip, instead
a flip of one rhombus should be always followed by a flip of
another in the same row. If, however, the phase stiffness is
low, the flip of one rhombus can be also compensated by the
continous phase deformations in the other rhombi constitut-
ing this row; we derive the conditions at which we can ex-
clude these processes below. The simplest allowed process is
the simultaneous flip of two rhombi in one row

Hx = − o
i,j ,k

J̃xs j − kdsi,j
x si,k

x , s6d

whereJ̃xskd is the amplitude to flip two rhombi a distancek
apart. Both potential(5) and kinetic(6) energies commute
with the integrals of motion,hPij andhQij, so that we expect
that the main feature of this model, namely, the existence of
the protected doublets, will be preserved by this array.

As explained in the previous section, in order to achieve a
really good protection one needs to eliminate all low energy
states(except for the degenerate ground state) characterized
by different values of thehPij and hQij operators. The array
shown in Fig. 3 has a boundary condition implyingPiPj =1
for any i, j because in this array the sum along each row of
the phases across individual rhombus should be equal for all

rows. Thus, for a sufficiently large tunneling amplitudeJ̃xskd

FIG. 3. Schematics of the array equivalent to the spin model
with the interaction(5) in the vertical direction.(a) The main ele-
ment of the array, the superconducting rhombus frustrated by mag-
netic flux F0/2. Josephson energy of each rhombus is minimal for
u=0 andu=−p /2. Significant charging energy induces the transi-
tions u=0↔u=−p /2 between these energy minima.(b) The array
geometry. The superconducting boundary conditions chosen here
ensure thatPiPj =1 thereby eliminating all low lying states in the
appropriate regime.(c) The requirement that continuous phase does
not fluctuate much while the discrete variables have large fluctua-
tions is easier to satisfy in very big arrayssL.20d if one replaces
the vertical links by the rhombi with junctions withẽJ, ẽC frustrated
by the fluxF0sd+1/2d.
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this array should have two degenerate ground states sepa-
rated from the rest of the spectrum by a large gap. Physically,
these two states correspond to two different values of the
phase difference along each row. The quantitative condition

ensuring that tunneling amplitudeJ̃xskd is large enough de-

pends on the range ofJ̃xskd. The simplest situation is realized
if only the nearest neighboring rhombi flip with the signifi-
cant amplitude,Jx. Because flip of the two nearest rhombi is
equivalent to the flip of the phase on the island between
them, in this case the spin model(5) and(6) is equivalent to
the collection of independent vertical Ising chains with
Hamiltonian

H = − o
i,j

eJti,j
z ti+1,j

z − Jxti,j
x .

For Jx@2eJ each chain described by this Hamiltonian has a
unique ground state separated by theD=2Jx from the rest of
the spectrum. As the ratioeJ/Jx grows, the gap decreases.

In the opposite limiting case of a very long range

J̃xskd=Jx, one can treat the interaction(6) in the mean field
approximation

Hx = − JxLxksi,k
x lo

i,j
si,j

x . s7d

At large Jx the ground state of this system is also a doublet
(characterized byksi,k

x l= ±1) with all other excitations sepa-
rated by the gapD=2LxJx from the rest of the spectrum. As
we increase the vertical coupling,eJ, the gap for the excita-
tions gets smaller. At very largeeJ the Hamiltonian is domi-

nated by the ferromagnetic coupling in the vertical direction,
so in this regime there are many low energy states corre-
sponding to two possible magnetizations of each column.
The magnitude ofeJ for which the gap decreases signifi-
cantly can be estimated from the first order correction ineJ.
The dominant contribution comes from the transitions in-
volving rhombi of the outmost rows. They occur with ampli-
tude eJ and lead to the states with energyD, so we expect
that as long aseJ&D, the system has a doubly degenerate
ground state separated from the other states by gap of the
order ofD.

The amplitude,J̃xskd, for the simultaneous flip of two
rhombi can be found from the same calculation that was used
in Ref. 10 to calculate a single rhombus flip and the simul-
taneous flip of three rhombi. IfeC@EC, the contribution of
the vertical links to the total kinetic energy of the supercon-
ducting phase is small and can be treated as a small pertur-
bation, in this case

J̃xskd < EJ
3/4EC

1/4e−2sÎEJ/ECs1+ckEC/eCd, s8d

where c,1. Here the factor 2 in the exponential appears
because in this process one changes simultaneously the
phases across two neighboring rhombi. Note that although
the relative change in the action due to vertical links is al-
ways small, their contribution might suppress the flips of all
rhombi except the nearest neighbors ifEJEC/eC

2 @1. Note
that even a relatively largeeC (so thatEC/eC!1) can be
sufficient to suppress the processes involving non-nearest
neighbors. We conclude that the low energy states become
absent as long as

eJ , Lef fJx, s9d

where Lef f = 1/2 if EJEC/eC
2 @ 1 and Lef f < minseC/ÎEJEC,Ld if EJEC/eC

2 ! 1.

These estimates assume that the main contribution to the
capacitance comes from the junctions and ignores the contri-
bution from the self-capacitance. If the self-capacitance is
significant, the processes involving more than one island be-
come quickly suppressed.

We now consider the effect of the continuous fluctuations
of the superconducting phase. Generally, a finite phase rigid-
ity allows single rhombus flip, described by theoi j t̃si j

x term
in the effective spin Hamiltonian. This term does not com-
mute with the intergrals of motionPi and thereby destroys
the protected doublets. However, for a significant phase ri-
gidity the energy of a state formed by a single rhombus flip,
Usf, is large. If, further, the amplitudet̃ of these processes is
small: t̃!Usf, the states corresponding to single flips can be
eliminated from the effective low energy theory and the pro-
tection is restored. Ift̃.Usf, the protection is lost.

We thus begin our analysis of the effects of the finite
phase rigidity with the consideration of the dangerous single

rhombus flips. Generally, the continuous phase can be repre-
sented as the sum of two parts: the one that it is due to the
vortices and the spin-wave part which does not change the
phase winding numbers. As usual inXY systems, it is the
vortex part that is the most relevant for the physical proper-
ties. In particular, in these arrays it is the vortex part that
controls the dynamics of the discrete subsystem. Notice that,
unlike the conventional arrays, the arrays containing rhombi
allow two types of vortices: half vortices and full vortices
because of the double periodicity of each rhombi. The flip of
the individual rhombi is equivalent to the creation of the pair
of half vortices. If the ground state of the system contains a
liquid of half vortices, these processes become real and the
main feature of the Hamiltonian, namely the existence of two
sets of anticommuting variables, is lost. We now estimate the
potential energy of the half vortex and of the pair associated
with single flip,Usf, and amplitude to create such pair,t̃. We
begin with the potential energy which is different in different
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limits. Let us consider the simpler limiting case when rhombi
flips do not affect the rigidity in the vertical direction; it
remainseJ. Further, we have to distinguish the case of a very
large size in horizontal direction and a moderate size because
the contribution from the individual chains can be domini-
nant in a moderate system ifEJ@eJ. In a very large system
of linear sizeL with rigidity eJ in the vertical direction the
potential energy of one vortex is

Ev = pÎEJeJ lnsLd s10d

while the energy of the vortex-antivortex pair at a large dis-
tanceR from each other is

UvsRd = pÎEJeJ lnsRd. s11d

These formulas can be derived by noting that at large scales
the superconducting phase changes slowly which allows one
to use the continuous approximation for the energy density:
E= 1

2EJs]xfd2+ 1
2eJs]zfd2. Rescaling then thex coordinate by

x→ x̃ÎEJ/eJ we get an isotropic energy density
E= 1

2
ÎEJeJs¹fd2. The continuous approximation is valid if

both rescaled coordinatesx̃, z*1. Thus, in a system with
EJ,eJ the formulas(10) and(11) remain approximately cor-
rect even at small distancesR,1, so a flip of a single rhom-
bus creates a half vortex–anti-half vortex pair with energy
Ep<EJ but the formulas become parametrically different in a
strongly anisotropic system. Consider first the limiteJ=0.
Here the chains of rhombi are completely decoupled and the
energy of two half vortices separated by one rhombus in the
vertical direction(the configuration created by a single flip)
is due to the phase gradients in only one chain,
Usf

s0d=p2EJ/ s2Ld, which appear because the ends of the chain
have the phase fixed by the boundary superconductor. A very
small coupling between the chains addsUsf

s1d=s2/pdeJL to
this energy, so the total potential energy of the single flip
inside the array is

Usf = p2EJ/s2Ld + s4/pdeJL L ! ÎEJ/eJ. s12d

This formula is correct as long as the second term is much
smaller than the first one; they become comparable at
L=ÎEJ/eJ and at largerL the potential energy associated
with the single flip saturates at

Usf = gÎEJeJ L @ ÎEJ/eJ, s13d

whereg<3.3 Qualitatively, a single flip leads to the continu-
ous phase configuration where phase gradients are significant
in a narrow strip in thex direction of the lengthÎEJ/eJ and
width ,1. The phase configuration resulting from such a
process is shown in Fig. 4. These formulas assume that the
rigidity of the superconducting phase remainseJ which is,
strictly speaking, only true if the discrete variables are per-
fectly ordered in the vertical direction. Indeed, the coupling
in the vertical direction containseJ cossfdt i,j

z t i+1,j
z which

renormalizes toeJ cossfdkt i,j
z t i+1,j

z l in a fluctuating system.
In the opposite limit of strongly fluctuating rhombi, the av-
erage value ofkt i,j

z t i+1,j
z l becomes small, we can estimate it

from the perturbation theory expansion ineJ which sets the
lowest energy scale of the problem:kt i,j

z t i+1,j
z l<eJ/ sLef fJxd

which renormalizes the value ofeJ

eJ → ẽJ =
eJ

2

Lef fJx
.

This renormalized value ofeJ should be used in the estimates
of the vortex energy(12) and(13). This does not affect much
the estimates unless the system is deep in the fluctuating
regime.

Unlike potential energy, the single flip processes occur
with the amplitude

t̃ = EJ
3/4EC

1/4e−sÎEJ/EC s14d

in all regimes. This formula neglects the contribution of the
continuous phase to the action of the tunneling process. The
reason is that both the potential energy(13) of the half vortex
and the kinetic energy required to change the continuous
phase are much smaller than the corresponding energies of
the individual rhombus,EJ, EC. In order to estimate the ki-
netic energy, consider the contribution of the vertical links
(horizontal links give equal contribution). There are roughly
ÎEJ/eJ such links, so their effective charging energy is about
eC

ÎeJ/EJ. If all junctions in this array are made with the
same technology their Josephson energies and capacitances
are proportional to their areas, soeJ/EJ=EC/eC;h; in the
following we shall refer to such junctions assimilar. In this
case the array is characterized by two-dimensionless param-
eters,h!1 andEJ/EC@1, and the additional contribution to
the charging energy,h1/2EC

−1, coming from vertical links is
smaller than the one of the individual rhombi,EC

−1, and thus
do not change the dynamics.

We conclude that the dangerous real single flip processes
become forbidden ift̃!Usf wheret̃ is given by Eq.(14) and
Usf by Eqs.(12) and (13). This condition is not difficult to
satisfy in a real array because amplitudet̃ is typically much
smaller thanEJ. Further, for moderately sized arrays(with
L=5−10which already provide a very good protection) the

FIG. 4. Phase variation along the horizontal axis after a flip of a
single rhombus(solid curve) and after consecutive flips of two
rhombi (thick curve) located at a distance twice the core size of
each rhombi,ÎEJ/eJ. The horizontal axis shows the distance,
X=ÎeJ/EJx, measured in the units of the vortex core size.
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energy of a single rhombus flip is only slightly smaller than
EJ, so the conditiont̃!Usf is not really restrictive. Note,
however, that in order to eliminate low energy states of the
discrete subsystem we also need to satisfy the condition(9)
which implies that the tunneling processes should occur with
a significant amplitude. While this might be difficult in the
infinite array made from the similar junctions(with the same
product of charging and Josephson energies), this is not re-
ally a restrictive condition for moderately sized arrays. One
can choose, for instance, for a system ofL3L rhombi with
L=5−10 Josepshon contacts withEJ=10EC. This choice
would givet̃<0.35EC andJx<0.2EC for a system of discon-
nected horizontal chains. The conditiont̃!Usf is well satis-
fied. Choosing now the vertical links witheJ=0.5EC and
correspondingeC=20EC we getLef f<5, so that the condition
(9) is satisfied as well and there are no low energy states. It
is more difficult, however, to eliminate the low energy states
in the infinite array of coupled chains shown in Fig. 3 and to
satisfy the conditiont̃!Usf at the same time, especially if all
junctions are to be similar in the sense defined above. This
can be achieved, however, by replacing the vertical links by
rhombi frustrated by the fluxF=s1/2+ddF0 with d!1 with
each junction characterized byẽJ&EJ and eC*EC. These
rhombi would provide a significant rigidity to the continuous
phase fluctuations(with effective rigidity ẽJ) but only weak
coupling seJ=dẽJd between discrete degrees of freedom.

Finally, we discuss the effect of the finite phase rigidity on
the amplitude of the two rhombi processes,Jxskd. The con-
dition that real single flip processes do not occur does not
exclude the virtual processes that flip consequitively two
rhombi in the same chain. This would lead to an additional

contribution to J̃xskd (8). To estimate this contribution we
note that immediately after two flips the continuous phase
has a configuration shown in Fig. 4, which is associated with
the energy,Usf. The amplitude for two such consecutive

flips is t̃ 2/Usf; it can become of the order ofJ̃xskd in a large
system(whereUsf is small). However, the amplitude of the
full process involves additional action which further sup-
presses this amplitude. This happens because the two con-
secutive flips lead to the high energy virtual state sketched in
Fig. 4 and in order to get back to the low energy state the
resulting continuous phase has to evolve dynamically. To es-
timate the action corresponding to this evolution, we note
that its dynamics is controlled byÎEJ/eJ junctions with
charging energyeC. For the estimate we can replace these
junctions by a single junction with capacitive energy
eC

ÎeJ/EJ. Thus, the final stage of this process leads to the
additional term in the actiondS,EJ/eC=hsEJ/ECd. Depend-
ing on the parameter,ÎEJEC/eC=hÎEJ/EC, this additional
contribution to the action is smaller or bigger than the total
action, but even if it is smaller, it is still large compared with
unity if EJ@eC. In this case, the processes that do not change
the continuous phase dominate. We emphasize again that in
any case the transitions involving two flips in the same row
commute with both integrals of motionP, Q and thus do not
affect the qualitative conclusions of the previous section. For
practically important similar junctions, it means the follow-
ing. If h@ÎEC/EJ only nearest rhombi flip with the ampli-
tude Jx given by Eq.(8). If ÎEC/EJ@h@EC/EJ the flips

occur for the rhombi in the same row if they are closer than
Lef f,h−1ÎEC/EJ. Finally, for h!EC/EJ the distance be-
tween flipped rhombi exceeds the size of the half vortex and
the two rhombi flips in a largesL@ÎEJ/eJd array happen via
virtual half vortices in the continuous phase.

In the discussion above we have implicitly assumed su-
perconducting boundary conditions such as shown in Fig. 3.
These boundary conditions imply that in the absence of sig-
nificant continuous phase fluctuationsPiPj =1. Physically, it
means that if the array as a whole is a superconductor, it still
has two states characterized by the phase difference,Df=0
or p between the left and the right boundaries even in the
regime where individual phases in the middle fluctuate
strongly between values 0 andp. In this regime of strong
discrete phase fluctuations, the external fields are not coupled
to the global degree of freedomDf describing the array as a
whole. In principle, it is also possible to have a similar array
with open boundary conditions but in this case it is more
difficult to eliminate low lying states because there is no
reason for the constraintPiPj =1 in this case.

B. Array equivalent to a spin model with local interactions

In order to construct the array equivalent to the spin
model (1) we need to couple the rhombi in such a way that
the transitions involving only one rhombus in a row are not
allowed but the superconducting phase varies significantly
between one rhombus and the next in the row. This is
achieved if rhombi are connected in a chain by a weak Jo-
sephson link, characterized by Josephson energyeJ and Cou-
lomb energyeC, so thatEJ*eJ andeC!EC, as shown in Fig.
5(b). In this case the simultaneous tunneling of two rhombi
which does not change the phase difference across the weak
junction is not affected, its amplitude,Jx, is still given by Eq.
(8).

In this array the flip of a single rhombus is due to two
alternative mechanisms. The first one is that it involves the
creation of the half vortex(as discussed in the previous sub-
section) and does not involve the change in the phase accross
the weak junction. Alternatively, it can be due to the phase
flip by p across the weak junction. BecauseeC!EC this
process is slow and its amplitude is low

t = EJ
3/4eC

1/4e− s8ÎEJ/eC,

wheres8<1. Further, this process increases the energy of the
system byeJ, so if its amplitude is small:t!eJ it can be
completely neglected. Normally junctions with smaller Jo-
sephson energy,eJ&EJ, have a bigger charging energy, not a
smaller one as required here. To avoid this problem, we note
that these weak junctions can be in practice implemented as
two junction superconducting quantum interference device
(SQUID) loops containing the fluxF=s1/2+ddF0 as shown
in Fig. 5(c). The effective Josephson coupling provided by
such loop iseJ=sins2pddEJ

s0d (whereEJ
s0d is the energy of the

individual junction) while its effective charging energy is
eC=EJ

s0d /2. This allows one to use bigger junctions for these
weak junctions and has another advantage in that it provides
an additional controlling parameter on the system. This con-
struction seems somewhat similar to the partially frustrated
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rhombi that one needs to introduce as vertical links in large
arrays discussed in the previous subsection[Fig. 3(c)] but it
serves a completely opposite purpose: it increases the density
of the full vortices while keeping the discrete variables
coupled. The partially frustrated rhombi, on the other hand,
suppress the fluctuations of the continous phase while allow-
ing independent fluctuations of the discrete variables in dif-
ferent rows. Such a dramatic difference is made possible by
a combination of two reasons. First, the frustration has a
different effect on these elements: in the case of the SQUID
loops half flux eliminates the Josephson coupling completely
while in a case of rhombi it leads to the exact degeneracy
between two discrete states and to a rigidity for the continu-
ous phase. Second, the values of the charging energies are
rather different: in the case of SQUID loops the charging
energy of its junctions completely dominates all processes in
which phase changes across this loop thereby prohibiting the
single rhombus flips. In the case of partially frustrated
rhombi their charging energy is of the order of the charging
energy of the contacts in horizontal rhombi and thus it sup-
presses the double flips of distant rhombi in one chain but
has relatively minor effect on the nearest ones.

The Jz interaction between the spins is provided by the
pairs of the weak Josephson contacts as shown in Fig. 5(d)
with the Josephson energyeJ&EJ and charging energy
eC*EC. These junctions do not affect the tunneling process
of each rhombi but provide the weak interaction between
them of the form(1) with the strength

Jz = eJ. s15d

Similar to the array discussed in the previous subsection, we
have to choose the parameters so that the energy of the half
vortex and states resulting from a single flip is sufficiently
high compared to the amplitude of the single flips. The dis-
cussion of the previous subsection carries over to this array.
The only change is that the energy of the vortex in the infi-
nite system contains the weakest link in the horizontal direc-
tion, i.e.,eJ instead ofEJ

t̃ ! Usf,

Usf = p2eJ/s2Ld + s4/pdeJL L ! ÎeJ/eJ,

Usf = gÎeJeJ L @ ÎeJ/eJ.

Finally, we have to ensure that the phases of the consecutive
rhombi are decoupled and the interaction between discrete
degrees of freedom is purely local. This is satisfied if the
continuous phase across weak junctions fluctuates strongly,
i.e., that the energy of a usual(not half) vortex is smaller
than the kinetic energy:ÎeJeJ!eC. Physically, it means that
the array as a whole is an insulator, similar to the topological
insulator considered in Ref. 11 due to the full vortices that
move in a vertical direction thereby decoupling different col-
umns of rhombi. This condition does not contradict the con-
dition t̃!Usf because the latter involves the exponentially
small amplitude of flipping a single rhombus. If both condi-
tions are satisfied the absolute value of the phase on each
island constituting a rhombus fluctuates but the difference
across the rhombus remains a slow varible taking two dis-
crete values and it flips only simultaneously with the other
one in the same row. Note that the interaction between dis-
crete variables belonging to one column is due to the loop
formed by these rhombi and two vertical junctions; it is
therefore always local by construction, its value is given by
Eq. (15). Repeating the arguments of the previous subsec-
tion, we see that in order to suppress the simultaneous flips
of distant rhombi in the same row one needs also to satisfy
the conditionEJEC/eC

2 @1, but in contrast to the case of the
regime discussed there, here the conditions on the vertical
junctions are not difficult to satisfy because one does not
need to keep the long range order in a continuous phase.
Under these conditions the dynamics of the array is de-
scribed by the Hamiltonian(1).

Although in this regime the system as a whole is an insu-
lator, it does not allow a half vortex to move across. So,
physically, the two states of the global system can be ob-
served in the array with the periodic boundary conditions
shown in Fig. 5. Here two different states correspond to the
half vortex trapped or not trapped inside the big loop formed
by the array as a whole due to the periodic boundary condi-
tions.

IV. LATTICE CHERN-SIMONS GAUGE THEORIES
WITH A FINITE ABELIAN GROUP

In this section we discuss the general properties of the
Chern-Simons theories with discrete gauge groupZn. Con-

FIG. 5. Schematics of the array.(a) The elementary Josephson
circuit emulating spin 1/2 consists of a four junction loop penetrated
by magnetic fluxF0/2. (b) Implementation of the spin chain by
Josephson junction loops; here elementary rhombi are connected by
weak links, the appropriate parameters for these links can be ob-
tained if each link in fact consists of two elementary Josephson
junctions as shown in(c). (d). Full array implementing the spin
model (1). The natural boundary conditions for this array are peri-
odic, i.e., the pointA should be connected toA8, B to B8, etc.
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tinuousChern-Simons theories received a lot of attention in
the past because they provide a natural mechanism for the
flux attraction to the charged particles which thereby change
their statistics.19 In spite of some technical difficulties, it is
possible to construct lattice versions of Chern-Simons
theories,20,21 at least forcontinuousgroups. The case of a
discretegauge group is slightly more delicate because one
cannot define canonically conjugate pairs such as the “mag-
netic” sAijd and the “electric”s] / i ]Aijd variables. Before we
discuss the peculiarities associated with discrete groups, we
briefly recapitulate the main properties of the continuous
Chern-Simons theories with the noncompact and compact
Us1d groups which we describe in the Hamiltonian formal-
ism that we need to generalize these models to discrete
groups. TheUs1d Chern-Simons model is usually described
by the Lagrangian

L =
1

2
lsȦx

2 + Ȧy
2d −

1

2
mB2 + nsȦxAy − ȦyAxd, s16d

whereB=]xAy−]yAx and dots stand for time derivatives. We
have used the gauge in which the time componentA0 of the
vector potential is zero. Because of this, we shall use only
invariance under time-independent gauge transformations in
this discussion. The canonical variables conjugate toAx and

Ay are, respectively,Px=lȦx+nAy and Py=lȦy−nAx. The
gauge transformations of the classical fieldsAr are the usual
onesAr→Ar+]rf, but because of the Chern-Simons term
this also induces a transformation of the conjugate fields
Pr→Pr+ners]sf, whereexy=−eyx=1.

In quantum theory,Pr and Ar become operators with
the commutation relationfPr ,Amg=−idr,msr −r8d and the
gauge transformation is generated by the operatorRf

defined by Rf=ed2rRsrdfsrd with Rsrd=]rPrsrd+nBsrd,
since fRsrd ,Arsr8dg=−i]rdsr −r8d and fRsrd ,Prsr8dg=
−iners]sdsr −r8d. In more physical terms, introducing an

electric field(which is equal tolȦ in the classical theory) by
Ex=Px−nAy and Ey=Py+nAx, the generator of the gauge
transformations can be expressed byRsrd=]rEr+2nB. It is
simple to check that the gauge transformations commute
among themselves and also commute with the Hamiltonian
densityH= 1

2lE2− 1
2mB2. In the absence of matter, the equa-

tions of motion for the fields read

Ėr + ersS2n

l
Es + m]sBD = 0, s17d

lḂ = ers]rEs. s18d

This yields a massive branch of excitations, which are no
longer purely transverse, but also develop a longitudinal
component proportional ton. Their dispersion relation is
l2vk

2=4n2+lmk2. These propagating modes are then pushed
to very high energies in the limit wherel!n. In the pres-
ence of static external chargesei at positionsr i, the Gauss
constraint becomes:Rsrd=oieidsr −r id. In the ground state,
these charges induce a static field configuration according to:
s2n−lm /2n¹2dBsrd=oieidsr −r id. So each particle is bound
to a flux tube carrying a flux equal toei /2n and smeared over

a typical lengthj=slmd1/2/n. The pure Chern-Simons limit
is then recovered asj goes to zero. In this limit, when one
particle of chargee1 goes around another chargee2, the total
wave function of the system is multiplied by an Aharonov-
Bohm phase factor equal to expfise1e2/2ndg, so we a get a
factor expfise1e2/2ndg upon exchanging these two particles.
We note that in the limitm→0, H commutes with operators

P̃m=Pm+nemhAh. These operators provide a generalization
of the usual shift operatorssPmd for the Chern-Simons
theory. Physically, the additional term in these operators ap-
pears because in the presence of Chern-Simons one cannot
only shift fields, one has also to change the phase of the
wave function accordingly.

We now turn to the lattice versions of the Chern-Simons
theory. For the sake of simplicity, we shall work here on a
square lattice, although these constructions could be general-
ized to other periodic systems. In this case, the vector poten-
tial describing the gauge field is defined on the links of the
lattice, and will be denoted byAij for the oriented link con-
necting sitesi and j . If we reverse the orientation of the link,
we obtainAji =−Aij . We shall adopt the Hamiltonian descrip-
tion from now on. In the absence of a Chern-Simons term,
the local electric fields are simply the canonical conjugate
operatorsPi j of the Aij ’s. The corresponding commutation
relations become

fAij ,Aklg = 0,

fPi j ,Pklg = 0,

fAij ,Pklg = idsi j d,skld.

The natural lattice Hamiltonian whose continuum limit is the
same as before reads

H =
1

2l
o

,i j .

Pi j
2 +

m

2o
i jkl

sAij + Ajk + Akl + Alid2. s19d

In the presence of a Chern-Simons term, the electric field
operators are modified. The electric fieldEij will contain,
besidesPi j , terms associated with the vector potential in the
direction perpendicular to the linksi j d. On a square lattice,
there are four links immediately perpendicular to this link,
and containing either sitei or j . Let us denote byNsi j d this
set of four links. To reflect the signs which appear in the
continuous version discussed above, the links inNsi j d have
to be oriented in such a way as whensi j d runs from left to
right, skld runs from bottom to top, as illustrated in Fig. 6(a)
below.

With these notations, the lattice Hamiltonian in the pres-
ence of a Chern-Simons term may be written as

HCS=
1

2l
o

,i j .
SPi j −

n

4 o
skld[Nsi j d

AklD2

+
m

2o
i jkl

sAij + Ajk + Ak, + Alid2. s20d

The important fact is that the generalized electrical field op-
eratorsEij =Pi j −n /4oskld[Nsi j dAkl no longer commute. The
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relation fExsrd ,Eysr8dg=−2indsr −r8d from the continuous
case becomes now:fEij ,Eklsr8dg=−i/2n, wheneverskld is one
of the four links in Nsi j d. Here si j d is oriented along the
positivex axis, andskld along the positivey axis. The appar-
ent difference in the normalization of the delta function on
the right-hand sides of these expressions is compensated by
the fact thatNsi j d contains four elements.

The energy spectrum for the eigenmodes associated with
this system now reads

l2vk
2 = 4n2 cos2Skx

2
Dcos2Sky

2
D + 4lmXsin2Skx

2
D + sin2Sky

2
DC .

This spectrum is specially interesting in the limit wherem
goes to zero, since then it exhibits lines of zero modes at the
boundaries of the first Brillouin zone, namely forkx= ±p or
ky= ±p. These modes are directly related to two remarkable
nonlocal conservation laws which appear in the limit of van-
ishing m. More precisely, for each row and each column, we

may define two conserved quantitiesP̃row andQ̃column in the
following way:

P̃row = o
j[row

s− 1dxjEj ,j+x̂, s21d

Q̃column= o
j[column

s− 1dyjEj ,j+ŷ. s22d

Unlike the row and column operators discussed in Sec. II
these operators mutually commute. Note that in them=0
limit, the system exhibits a large set oflocal conserved quan-

tities P̃i j , i.e., one for each link, defined by

P̃i j = Pi j + n
4oskld[Nsi j d Akl. s23d

Similar to the local electric fields, these variables do not
mutually commute, so they cannot be simultaneously diago-
nalized. Furthermore, they are not invariant under gauge
transformations, since the electric field operators are gauge

invariant and sinceEij −P̃i j =−n /2oskld[Nsi j dAkl which is
clearly gauge dependent. This situation is very similar to
what occurs in the process of quantizing the motion of a
particle on a plane in the presence of a uniform perpendicular
magnetic field. The local electrical field operators are analo-
gous to the gauge invariant velocity operators,P−eA, in the
particle problem. Because of the magnetic field, the two

components of this vector no longer commute. Since the vec-
tor potentialA is not translation invariant, the usual transla-
tion operators have to be combined with gauge transforma-
tions in order to commute with the kinetic energysP−eAd2.
These deformed generators of translations are analogous to

the two components of the vectorP̃=P+eA. Apparently, the
only way to construct gauge-invariant symmetry operators in
the lattice gauge model is to use the nonlocal combinations

P̃row and Q̃column defined in Eqs.(21) and (22). Note that a
model with similar conservation laws, for interacting Bosons
on a square lattice, has been analyzed in Ref. 22.

A next step is to construct a lattice Chern-Simons gauge
theory for the continuous butcompact Us1d group. This is
simply achieved in the absence of a Chern-Simons term, by
assuming that the vector potential variablesAij areperiodic,
with a period chosen, for instance, equal to 2p. This implies
that the spectrum of the conjugate operatorsPi j arediscrete,
containing only integer values. Because of this, the form of
the Hamiltonian has to be modified from Eq.(19) above, and
a natural choice respecting the requirements of gauge invari-
ance and periodicity in the gauge potentials reads

H =
1

2l
o

,i j .

Pi j
2 − mo

i jkl

cossAij + Ajk + Akl + Alid2. s24d

Using this Hamiltonian as a starting point we add a Chern-
Simons term by the standard deformation of the electrical
operators

HCS=
1

2l
o

,i j .
SPi j −

n

4 o
skld[Nsi j d

AklD2

− mo
i jkl

cossAij + Ajk + Akl + Alid2. s25d

We now discuss what can be the Hilbert space associated
with this Hamiltonian. This is a nontrivial problem because
we can no longer impose the periodicity in the local gauge
potentials in the usual way, assuming that the wave function
of the system considered as a function of theAij ’s is 2p
periodic with respect to anyAij . This is not possible because
the naive shift operatorSij

naive=exps−i2pPi jd that changesAij

into Aij +2p no longer commutes with the kinetic part of the
Hamiltonian. The appropriate definition of these shift opera-

tors becomesSij =exps−i2pP̃i jd, with the P̃i j defined in Eq.
(23). In order to construct invariant states under this full set
of shift operators, we need them to be mutually commuting.
This is realized only for a discrete set of values ofn=m/p,
wherem is any integer. Thus, the compact gauge theory is
compatible with the Chern-Simons term only for special,
“quantized,” values ofn (see also Refs. 23 and 24). This
statement is very similar to the well-known fact that in order
to quantize the problem of a particle on a torus in a perpen-
dicular uniform magnetic field, the total magnetic flux
through this torus should be an integer multiple of the flux
quantumh/e. In one particle problem this requirement sim-
ply expresses the need for mutual commutation between two
magnetic translations that are used to construct the torus
from an infinite plane.

FIG. 6. (a) An oriented linksi j d (dashed line) and the four ori-
ented links adjacent to it(thick lines) which enter in the setNsi j d.
(b) For a given sitei, the loopLsid defined in text(thick lines).
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Note that, even for these special values ofn, the
Hilbert space of the theory is peculiar because the shift
operators Sij are not gauge invariant. More precisely,
let us denote the generator of the gauge transformation send-
ing Aij into Aij +a, for any site j connected to sitei by

Uisad=exps−iao j
sidP̃i jd. In this expression, the sum is taken

over the nearest neighborsj of site i. Clearly, these unitary
operators commute with the Hamiltonian(25). For a sitei,
and a links jkd belonging toLi, whereLi is the oriented loop
[see Fig. 6(b)] defined by the edges of the square built from
four elementary plaquettes whose center is located at sitei,
we have the following relations:

UisadSjk = e±ipnaSjkUisad. s26d

The sign in the phase factor depends on the orientation of the
link s jkd, and is negative if it is oriented alongLi. This
equation implies thatone cannot enforce at the same time a
condition of gauge invariance on the physical states,
and invariance of the wave function under the2p shift
operators. If we choose to work in a basis of eigenvectors for
the gauge transformations, namely statesuCl satisfying
Uisad=expsiaQiduCl, whereQi is the electrical charge at site
i, applyingSjk to uCl for s jkd in Li modifies the chargeQi

by ±m if n=m/p. Conversely, a subspace where
SjkuCl=eiu jkuCl is not gauge invariant, since after applying
Uisad on such states, we get the new periodic conditions
with u jk8 =u jk+pna, for any link s jkd belonging toLi with
the corresponding orientation. However, it appears that
ok

s jdu jk8 =ok
s jdu jk becausepk

s jdSjk=Ujs2pd commutes with any
gauge transformation. This relation shows that the gauge in-
variant quantityo k

s jdu jk is nothing but 2pQj modulo 2p.
The properties of this model have been investigated by

several groups. In the absence of a Chern-Simons term, the
periodicity of theUs1d gauge field allows quantum tunneling
processes where the local flux on a plaquette changes by
±2p. In a 211 dimensional path integral description, these
instantons(called here monopoles) interact via a Coulomb-
like 1/r potential, leading to Debye screening in this mono-
pole plasma. The proliferation of such tunneling events
drives the system into a phase where the magnetic variables
Aij are strongly disordered, and in which external static elec-
tric charges interact by a confining potential increasing lin-
early with their separation.25,26 In the presence of a Chern-
Simons term, the properties of the monopole plasma are
deeply altered, and several groups have reached the conclu-
sion that a linear interaction now binds pairs of monopoles of
opposite charges, thus destroying the confinement of electri-
cal charges.21,27,28

To extend this construction to a discreteZn group, we
replace the continuous vector potential on the link joining
sites i and j by Aij =2/pnpij , wherepij is an integer. In the
absence of a Chern-Simons term, the generator of the gauge
transformation based at sitei sendingpjk into pjk+d ji −dki is
Ui =p j

sidpi j
+, in analogy with the continuous case discussed

above. The unitary operatorpi j
+ is analogous to the operator

expf−is2/pndpi jg of the continuous model, namely it trans-
forms Aij into Aij +2p /n or equivalentlypij into pij +1. In
order to attach flux to particles, the generatorUi has to be

modified by a phase factor exps−isv /4df2p /ng2os jkd[Li
pjkd,

where thes jkd’s belong to the loopLi already defined above
[see Fig. 6(b)]. For each value ofn, we define the generators
by

Ui = p
j

sid

pi j
+ expS− i

n

4
S2p

n
D2

o
s jkd[Lsid

pjkD . s27d

This definition preserves the fact that these generators mutu-
ally commute. Note that since the generatorsUi commute
simultaneously with the local fluxes, a convenient gauge-
invariant basis of the Hilbert space is obtained by simulta-
neous diagonalization of the local fluxes and theUi’s. With a
discrete basis to describe each link, the kinetic part in the
Hamiltonian(25) has to be modified. The most natural way
to do this is to replace the local electrical fieldEij by a
gauge-invariant operatorEi j

+ which shiftsAij by the minimal
possible amount 2p /n. This operator is defined as follows:

Ei j
+ = pi j

+ expSi
n

4
S2p

n
D2

o
skld[Nsi j d

pklD .

The Hamiltonian may now be written as

HCS= −
1

ln
o

,i j .

sEi j
+ + Ei j

−d

− mo
i jkl

cosX2p

n
spij + pjk + pkl + plidC2

, s28d

whereEi j
− is the Hermitian conjugate ofEi j

+. To recover the
Hamiltonian (25) in the limit wheren becomes very large,
we notice thatEi j

+ acts in the same way as expf−is2p /ndEijg,
therefore we have to chooseln so that 2s2p /nd2ln

−1=l−1.
With these notations, the operators shifting the link vari-

ablespij by one unit, and which commute with all the gauge-
invariant kinetic termsEi j

± read

p̃i j
+ = pi j

+ expS− i
n

4
S2p

n
D2

o
skld[Nsi j d

pklD
since they are analogous to expf−is2p /ndP̃i jg in the continu-
ous model. The 2p shift operatorsSij previously introduced
are then equal tosp̃i j

+dn. Note that the parametern is quan-
tized, in the same way as before(namelyn=m/p, with inte-
germ), since we impose the model to be periodic whenpij is
changed intopij +n. More precisely, as for the compactUs1d
group, this notion of periodicity requires the mutual commu-
tation between all the 2p shift operatorsSij . Models obtained
from two values ofn which differ by an integer multiple of
2n2/p are clearly identical. We also note that changingm
into 2n2−m amounts to replacing all the phase factors enter-
ing in the definition of various operators such asUi by their
complex conjugates, and the corresponding models exhibit
similar properties. In the special casem=n2, the operatorsEi j

+

mutually commute, so this case is equivalent tom=0. There-
fore, it is sufficient to choosem in the set of integers between
0 andn2−1. Among thosen2 possible values ofn, there is an
interesting subset ofn values for whichm is an integer mul-
tiple of n. If this condition holds, the generators of the el-
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ementary gauge transformationsUi defined in Eq.(27) com-
mute with all the 2p shift operatorsSjk. It is then possible to
apply simultaneouslythe condition of gauge invariance and
the periodic boundary conditionsSjkuCl= uCl for the allowed
physical states.

If n=0, the resulting discrete gauge theory(without
Chern-Simons term) has two regimes according to the rela-
tive size of the two terms entering inHCS. When m@ln

−1,
Hsn=0d describes a phase where localized flux excitations,
called fluxons, have the energy gapm(1−coss2p /nd). In this
phase, quantum fluctuations of the magnetic variablespij are
small, and the effective interaction between two static exter-
nal electric charges varies logarithmically with their separa-
tion. Notice that this phase owes its existence to thediscrete
nature of the symmetry group, as illustrated by the vanishing
of the corresponding energy gap asn is taken to infinity. A
small ln

−1 term simply gives some amount of dispersion to
these excitations. Whenl is decreased further below a criti-
cal valueln

c, the fluxon gap closes, and the system enters the
charge confining disordered phase similar to the one obtained
in the compact Us1d case, for all values ofl.

Let us first consider the effect of a switching on a Chern-
Simons term in the former regime, where the potential en-
ergy (proportional tom) dominates. Whenln is very large,
we do not expect the flux binding mechanism to operate.
Indeed, a unit charge at sitej corresponds to imposing the
Gauss law constraintUkuCl=expfis2p /ndd jkguCl. Whenln

−1

is small, it is energetically more favorable to keep a vanish-
ing flux everywhere, because of the low value of the kinetic
term compared to the fluxon gap. So we expect the flux
attachment mechanism to work only ifln is smaller than a
critical valueln

* . Whenln is further reduced, belowln
c, the

fluxon gap eventually closes, and the qualitative properties of
the system change drastically. In Sec. V we present a simple
perturbative estimate of the critical valueln

c and argue that it
is in fact equal toln

* , i.e., both transitions happen simulta-
neously. As already discussed for the case of the compact
Us1d group, the presence of the Chern-Simons term modifies
deeply the picture obtained for vanishingn in the strongly
fluctuating regime of smallln. Note that, by contrast to the
n=0 case, analysis of thel→0 limit is difficult since theEij
operators no longer commute if they involve two perpen-
dicular links sharing a common site. In then→` limit, we
expect to recover the continuous, butcompact Us1d, theory
for which we still do not know how to write down explicitly
the ground state wave function, even in thel→0 limit.

V. MAPPING CHERN-SIMONS THEORIES ONTO SPIN
MODELS

Here we shall study in more detail the interesting limit of
the vanishing magnetic energy and show explicitely how, in
then=2 case, it maps precisely on the models studied in the
beginning of this paper. As we have discussed, it is possible
to propose a design of Josephson junction arrays which di-
rectly implements this limit.

As a first step, it is convenient to introduce a basis in the
Hilbert space of gauge invariant states(i.e., statesuCl such
that UiuCl=0 for any sitei), which keeps track of the flux

variables. For any square plaquettesi jkl d centered atr , the
corresponding fluxsr is the integerpij +pjk+pkl+pli . For any
flux configurationhsrj, we may then define a gauge-invariant
quantum stateuCshsrjdl. Our main task is to represent the
algebra of gauge invariant operatorsEi j

+ in such a basis.
These operators obey two families of constraints. First we
have

Ei j
+E jk

+ = expSi2p
m

n2DE jk
+ Ei j

+ . s29d

Here the sign corresponds to the geometry when links jkd is
perpendicular tosi j d and located on its left. Notions of left
and right are defined for an observer moving along the link
in agreement with its orientation. We have used the condition
n=m/p. Second, these operators are related to the generators
of local gauge transformations by

p
j

sid

Ei j
+ = expSi2p

m

n2o
r

sid

srDUi . s30d

As usual, the product in the left-hand side runs over the
nearest neighbors of sitei, whereas the sum in the right-hand
side involves the four plaquettes adjacent toi. In this expres-
sion, attention should be paid to the ordering of the various
operators. We assume that the two operators involving bonds
along a given direction directly follow each other. Once this
is enforced, any of the eight possible residual permutations
compatible with this criterion does not change the result. For
any oriented linksi j d, let us call r (resp. r 8) the adjacent
plaquette located at the left(resp. right) of si j d. The operator
Ei j

+ decreases the local fluxsr8 and increasessr by one unit.
We see thatEi j

+ should be proportional tosr
+sr8

− up to a phase
factor which depends on the configuration of local fluxes on
the whole lattice. This phase factor is required in order to
satisfy the constraints(29) and(30) above. In a general case
this phase factor might become a very nonlocal function of
the flux configuration but it remains simple in the case of
Z2m=2 model. We discuss now its construction in different
cases, starting with the simplest ones.

We start with the simplest casen=2, andm=2. Then, the
electrical operatorsEi j

+ on two adjacent and perpendicular
links anticommute.Furthermore, according to Eq.(26), the
generators of the local gauge transformations commute with
the shift operatorsSjk=sp̃ jk

+ d2. It is then possible to impose
simultaneouslythe gauge invariance constraint and theZ2
periodicity on the links. As a result, the two operatorssr

+ and
sr

− are equal. We may then represent the above algebra by the
following Pauli operators, associated with a quantum Ising
model attached to the plaquettes of the lattice

Ei j
+ = sr

xsr8
x for vertical sij d s31d

or

Eij
+ = sr

zsr8
z for horizontalsi j d s32d

expsipsrd = sr
y. s33d
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The symmetry operators defined in Eqs.(21) and(22) are
easily generalized to the case of a discrete group. We now
have

P̃r = p
j[rowsrd

E j ,j+x̂
signs jd, s34d

Q̃s = p
j[columnssd

E j ,j+ŷ
signs jd. s35d

In these equations, the symbol signs jd stands for1 or 2,
according to the parity ofxj (resp.yj) in the first (resp. sec-
ond) equation, row(r) denotes row number r and column(s)
denotes column number s. For a generic(not boundary) row
and column these operators commute.

It is now possible to recover the symmetry operationsPi
andQj introduced in Sec. II for Chern-Simons theories with
proper boundary conditions. First, notice that forZ2 model

operatorsP̃r and Q̃s correspond to the product of twoP (or

two Q) operators:P̃r=PrPr+1 when expressed in terms of the
spin operators of Sec. II. If operatorP0=1 is trivial sP0=1d,
P̃1=P1 and we can recover a singlePr operator taking the
product of allPr8 operators withr8, r. In terms of the gauge
theory, the Chern-Simons Hamiltonian[Eq. (28)] in its
m=0 limit should not contain the dynamical variables(gauge
fields) associated with the bonds along the edge of the lattice.

In this case the operatorsP̃1 andQ̃1 indeed do not commute
because they contain only one pair of noncommuting electric
fields located in the corner of the lattice. With this assump-
tion, we obtain two families of operators commuting with the
Chern-Simons Hamiltonian atm=0

Pr = p
yjøyrowsrd

E j ,j+x̂
signs jd,

Qs = p
xjøxcolumnssd

E j ,j+ŷ
signs jd.

Here signs jd is defined as above. These operators satisfy the
generalized commutation relations

PrQs = expSi2p
m

n2DQsPr. s36d

In the special casem=2, these operators anticommute. Using
Eqs.(31) and (32) above, we may write

Pr = p
r[rowsrd

sr
z,

Qs = p
r[columnssd

sr
x.

We now discuss the mapping in a more general case.
First, we assume that the generators of local gauge transfor-
mations still commute with the shift operatorsSjk on the
links. According to Eq.(26), this requiresm to be a multiple
of n. In this case, we may still view the local fluxessr as
defined modulon. This implies in particular thatssr

+dn can be

chosen to act as the identity operator. After enforcing the
gauge invariance and theZn periodicity in the bond variables,
we may representEi j

+ as

Ei j
+ = exp(iAr ,r8shsrjd)sr

+sr8
− . s37d

The “statistical” gauge fieldAr ,r8 should not be confused
with the original link variablesAij . This new entity is im-
posed to us by the necessity to satisfy the constraints(29)
and(30). Note that as usual, there is a large amount of free-
dom in the definition ofAr ,r8, reflecting the arbitrariness in
choosing a global phase for each stateuCshsrjdl. If we could
ignore the first constraint(29), our system of fluxons would
be completely equivalent to a collection of particles obeying
fractional statistics, since the second constraint(30) relates
the total statistical flux seen by a fluxon hopping around an
elementary plaquette of the dual lattice centered ati, to the
number of fluxons in the immediate neighborhood ofi. The
presence of the first constraint is an original feature of fluxon
dynamics in Chern-Simons theories.

Let us now show how to construct explicitly one realiza-
tion for this statistical gauge fieldAr ,r8. This amounts to
making a definite choice for the global phase of the basis
statesuCshsrjdl. If we have one fluxon on the plaquette cen-
tered atr , it is possible to represent this by a string-like
configuration of bond variablespijsr d such thatpij vanishes
on any horizontal bond, and on most vertical bonds, with the
exception of all the links located on the same row asr and on
its right, for which it takes the value 1. This may be summa-
rized by the following definition:

ur l = Pinv p
si j d.r

Ei j
+u0l.

Here, the operatorPinv is the projector on the subspace of the
gauge invariant states. The notationsi j d. r stands for all the
links si j d on the right-hand side of the plaquette centerr and
on the same row, and the reference stateu0l is simply the
state where all the bond variablespij are equal to 0. For a
general flux configurationhsrj, we simply choose a reference
configurationpijshsrjd obtained by superposing the configu-
rations associated with each fluxon excitation in the system.
Therefore, the integerspijshsrjd are defined as follows. They

FIG. 7. The electrical field operator,Ei0i1
moves one flux quan-

tum from the plaquetter to r8. In order to represent this process in
the gauge where all horizontal linksAij are 0, we use the gauge
transformation on the string of sitesi1. . .in that produce the electric
field operators on vertical links(shown by light arrow) and the
phase factors associated with the shaded area. In the flux represen-
tation the effect of vertical electric field is to remove the flux from
plaquetter and to add one flux to plaquetter8. Note that the phase
factors associated with all plaquettes exceptr and r8 are doubled.
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are equal to zero for anyhorizontalbondsi j d. For avertical
bond, we set

pijshsrjd = o
r,si j d

sr .

Using this, we define

uCshsrjdl = Pinvp
si j d

sEi j
+dpij shsr jdu0l. s38d

We could have used operatorspi j
+ instead ofEi j

+ to gener-
ate a state with the same desired flux configurationhsrj, but
the advantage ofEi j

+ is that they commute with the projector
Pinv. These statesuCshsrjdl form a complete basis of the
gauge invariant subspace, since any configurationhpijj of
bond variables producing the flux patternhsrj may be de-
duced from the configurationhpijshsrjdj by a gauge transfor-
mation. With this choice of gauge, we have

Ei j
+ = sr

+sr8
− s39d

for any vertical link si j d. This means thatAr ,r8 vanishes
whenever the vector joiningr and r 8 is equal to ±x̂. For a
horizontal link si j d oriented from left to right, we make a
repeated use of the second constraint(30) above for all the
sites k located on the same row assi j d and on its right,
which, if applied on a gauge invariant state, yields

Ei j
+ = expSi2p

m

n2ssr + sr8 + 2 o
r9.r ,r8

sr9dDMi j ,

where the “string” operatorMi j is defined by

Mi j = p
skld.r

Ekl
+ p

skld.r8

Ekl
− .

As before,r (resp.r 8) denotes the adjacent plaquette located
above (resp. below) the oriented link si j d. The notation
skl d. r refers to all the vertical linksskl d on the right of
plaquetter and on the same row. In our gauge the string
operator becomes

Mi j uhsrjl = sr
+sr8

− uhsrjl.

Finally, we get

Ei j
+ = sr

+sr8
− expXi2p

m

n2Ssr + sr8 + 2 o
r9.r ,r8

sr9DC , s40d

where the formula applies only on the gauge invariant sub-
space. This shows that

expsiAr ,r8d = expXi2p
m

n2Ssr + sr8 + 2 o
r9.r ,r8

sr9DC
whenever the vector joiningr and r 8 is equal to ±ŷ. The
right-hand side of this expression is most of the time highly
nonlocal. The only exception is the case when 2m is an in-
teger timesn2. For m chosen in the intervalf0,n2−1g, this
occurs only when 2m=n2, which requiresn to be even. If
this condition is satisfied, we get

expsiAr ,r+ŷd = exp„ipssr + sr8d….

In physical terms, this set of models corresponds to an effec-
tive Bose statistics for fluxons.

Let us now address the most general case. Since accord-
ing to Eq.(26), exchangingUi andSjk involves a phase fac-
tor expf±i2psm/ndg, we may always diagonalize simulta-

neously the local gauge generatorsUi with the operatorsSjk
n8

wheren8 is equal ton divided by the greatest common divi-
sor of m and n. This implies that dimension of the Hilbert
space associated with one flux is increased toN=nn8 and we
may view the local fluxes as elements ofZN. All the expres-
sions already written are then valid. In particular, we may
check that expsiAr ,r8d is unchanged, if we changesr into
sr +Nbr , wherebr is any integer.

The representation in terms of fluxes constructed in this
section becomes especially convenient when the gap of a
single fluxon is the largest energy scale in the problem which
occurs ifm. .ln

−1 [see Hamiltonian(28)]. In this limit, the
term proportional toln

−1 induces tunneling processes where a
fluxon jumps from a plaquette to one of its neighbors. Using
the constraints(29) and (30) and, we see that the operator
which moves a fluxon around the elementary plaquette of the
dual lattice centered at sitei is simply equal toUi, provided
that it acts on a state with only one fluxon on a plaquette
adjacent to i. Indeed, this operator may be written as:
Ei,i−ŷ

+ Ei,i−x̂
+ Ei,i+ŷ

+ Ei,i+x̂
+ ; notice that this ordering is different from

Eq. (30). To recast this product in the form of the latter
expression, one may permute the last two operators on the
right, which according to Eq.(29) produces a phase factor
expf−i2psm/n2dg. But for a state with exactly one fluxon
located next to sitei, this factor is exactly cancelled by the
term expfi2psm/n2dor

sidsrg present in Eq.(30), leaving only
the local gauge generatorUi. This shows that a single fluxon
moves in this limit as a free quantum particle on the dual
lattice, with an energy spectrum

eskd = mX1 − cosS2p

n
DC − 2ln

−1(cosskxd + cosskyd).

This spectrum is gapped as long asl remains larger thanln
c

given by

1

ln
c =

m

4
X1 − cosS2p

n
DC . s41d

These equations neglect the renormalization of the fluxon
spectrum by the fluctuations, but we expect that it remains
qualitatively correct when these fluctuations are taken into
account. In particular, even in the regime of the strong fluc-
tuations, close to the transition, the picture of the fluxons
moving with a spectrumeskd=de+s1/2mdk2 should remain
valid at sufficiently long scales as long asln.ln

c. For a
system with an external chargeQi located at sitei, we have
Ui =expfis2pndQig, so a single fluxon will experience the
usual Aharonov-Casher effect from this static charge, inde-
pendently of the value of the Chern-Simons coefficientn.
Since this interference effect always raises the value of the
fluxon energy, in comparison to the caseQi =0, we see that
the flux attachment mechanism predicted in the continuous
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Us1d Chern-Simons theory does not operate as long as the
single fluxon spectrum remains gapped. In the notations of
this section[cf. (IV ) above], this implies thatln

* =ln
c.

VI. CONCLUSION

We presented(Sec. II) the general symmetry analysis of
physical systems with protected degeneracies, i.e., with de-
generacies that are exponentially weakly affected by local
perturbations. We have shown that such protected degenera-
cies appear in a system described by a wide class of Hamil-
tonians that commute with two sets of integrals of motion,
hPij and hQjj but which do not commute themselves. These
sets of noncommuting operators should allow for a finite
dimensional representation. In the simplest case, ifPiPj and
QkQ, commute with all other operators the algebra of these
operators allows two-dimensional representation and the
states of the system are exactly doubly degenerate. For the
effect of local perturbations to become really small in the
thermodynamic limit one also needs that the gap to the low
energy excitations remains finite.

We have explicitly constructed a two-dimensional lattice
spin model with local interactions and which has these inte-
grals of motion. In this model all states are exactly doubly
degenerate. The behavior of this spin model is characterized
by the dimensionless parameter,Jz/Jx which physically cor-
responds to the anisotropy of the couplings in different di-
rections. We were able to treat it analytically in the regime of
large (or small) values of this parameter. In this regime the
spectrum of the system contains 2L low energy modes where
L is the linear size of the spin array. The gap between these
modes and the ground state decreases exponentially with the
system size. The number of these low energy modes is the
same as would be the number of edge states but, unlike the
latter, they are not sensitive to the boundary conditions. In
order to check the validity of these conclusions for all values
of Jz/Jx we have also performed the diagonalization of small
arrays(up to 25 spins) and concluded that the gap to low
energy states remains a decreasing function of the system
size for all values but this decrease becomes very slow for
Jz/Jx,1. It remains unclear to us, however, whether the sys-
tem exhibits a new phase at these values of the parameter or
this apparently slower decrease of the gap is a consequence
of a critical behavior.

We have suggested and studied(Sec. III) two designs of
the Josephson junction arrays and showed that their effective
low energy Hamiltonians satisfy the symmetry requirements
described above and thus their states are doubly degenerate
and protected from the external noise. The simplest of these
arrays can be mapped onto a spin model with nonlocal inter-
actions. The nonlocality of these interactions, however, is not
important for the protection from the external noise. Further,
in these systems one can completely eliminate the dangerous
low energy modes by appropriate boundary conditions. The
mapping of the Josephson junction array onto a spin system
with symmetric Hamiltonian implies that the continuous su-
perconducting phase can be integrated out. We have exam-
ined the conditions when this can be done and when low
energy degrees of freedom corresponding to the continuous

phase are irrelevant. Summarizing the requirements for a
physical Josephson junctions we conclude that they are rela-
tively easy to satisfy in medium sized arrays(up to 10310
elements) which should be quite sufficient to get a noise
suppression by ten orders of magnitude.

The spin models studied in Sec. II can also be mapped
onto a discrete Chern-Simons theory on a lattice. In order to
establish this mapping we have constructed(Sec. IV) a
Hamiltonian framework for lattice Chern-Simons theories
with Abelian groups. We argued that, in contrast to the con-
tinuous theories, such theories generally have low energy
modes corresponding to the excitations with large momen-
tum, comparable to the inverse lattice spacing. Further, we
showed that in a theory with a compact group(in particular,
in a theory with discrete group) the Chern-Simons coeffi-
cient,n, is quantized similar to the quantization of the mag-
netic flux through the torus:n=p /m. In the gauge invariant
space of magnetic fluxes the kinetic part of the Hamiltonian
of these theories can be described as a flux dynamics. Due to
the presence of Chern-Simons term the motion of fluxes inx
and z directions does not commute. In the simplest case of
theZ2, m=2 theory, the fluxes take only two values and their
motions in x and z directions anticommute allowing us to
map this theory onto the spin model studied in Sec. II. In a
general case the Hamiltonian in flux representation becomes
very nonlocal but still this representation is convenient in the
limit of large magnetic energy when the fluxes are rare. Us-
ing this limit, we show that the flux attachment to the charge
only occurs if a single fluxon is gapless.

The main theoretical issue raised by Sec. IV and V of the
paper is the precise connection between lattice and continu-
ous versions of Chern-Simons theories. For the continuous
case, there is a sharply isolated ground state subspace, whose
degeneracy directly reflects the topology of the two-
dimensional space on which the model is defined. In a recent
series of papers,30,31 various descriptions of these models(in
terms of wave functions defined on equivalence classes of
loops) have been advocated to construct candidate lattice
models which would exhibit a ground state sector equivalent
to a pure(topological) Chern-Simons theory. The approach
we have followed here starts from a direct quantization of a
lattice Hamiltonian inspired from the continuous Chern-
Simons theory with an additional kinetic term. We found that
such construction typically leads to the degenerate modes
attached to the Brillouin zone boundary; it remains to be
investigated whether or not the presence of these modes
spoils the expected properties of continuous models(such as
statistical transmutation of external charges). It would be
also interesting to see whether these degeneracies remain for
other lattice structures. Finally, extending this construction to
non-Abelian discrete groups is clearly desirable, from the
perspective of enlarging the set of unitary operations gener-
ated by adiabatic exchanges between charge and/or vortex
excitations.8,32,33
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APPENDIX A: EXACT SOLUTION OF TWO CHAIN
PROBLEM

For the diagonalization of the Hamiltonian(3) it is con-
venient to rotate the Pauli matrices:t i

z→ s̃ i
x, ti

x→ s̃ i
z and use

the Jordan-Wigner fermionic representation(see Ref. 29)

s̃i
+ = ai

+ expH ipo
i8=1

i−1

ai8
+ ai8J ,

s̃i
− = expH− ipo

i8=1

i−1

ai8
+ ai8Jai ,

s̃ i
z = 2ai

+ai − 1 sA1d

so that Eq.(3) takes the form

H = 2JzHo
l=1

n−1

sal
+ − aldsal+1 + al+1

+ d + 2Lo
l=1

n

sal
+al − 1/2dJ ,

sA2d

whereL=Jx/2Jz. By means of the Bogoliubov-like transfor-
mation the Hamiltonian(A2) can be diagonalized

H = o
k

Eks2bk
+bk − 1d,

wherebk
+, bk are the fermionic operators of the eigenmodes

with eigenenergies

Eskd = 2Jz
ÎL2 + 1 + 2L cosk.

The quasicontinuous spectrum of this Hamiltonian can be
found from the quantization rule for the quasimomentumk

ksn + 1d − arctanS sink

L + cosk
D = pm sA3d

with integerm. For L.1 this equation has exactlyn distinct
nontrivial solutions, and the set of the corresponding eigen-
functions is complete. It is not the case forL,1, however.
Here the number of the continuous spectrum eigenstates is
only n−1, so that there should be one additional mode—the
bound state. To find the latter one should look for complex
solutions of the dispersion Eq.(A3). Substituting
k=p+ ig, we arrive at

gsn + 1d =
1

2
lnH L − eg

L − e−gJ sA4d

and, introducing e−g=L+x with small x!1, we get
x<fs1/Ld−LgL2sn+1d, so that and the bound state energy are

2D = 2Esp + igd < 4Jzf1 − sJx/2Jzd2gsJx/2Jzdn. sA5d

The formula(A5) is valid for sJx/2Jzdn!1. In the fermionic
representation the bound-state eigenfunction is localized near
the ends of the chain within the rangej,−ln L. The local-
ized character of the mode responsible for the ground state
doublet splitting is, however, an artifact of the nonlocal rep-
resentation(A1) and, apparently, does not have much physi-
cal meaning.

A similar result for the splitting can also be obtained for
an Ising chain with periodic boundary conditions. Here the
chain does not have ends, and the dispersion equation has
only solutions, corresponding to the continuous spectrum.
The splitting arises from the following effect: the effective
boundary conditions for the Jordan-Wigner fermionsa are
periodic or antiperiodic, depending on the parityI of their
total number(the latter is a good quantum number)

kn= H 2pm, for I = 1,

2psm+ 1/2d, for I = − 1
sA6d

with m=0,1, . . . ,L−1.
The energy of the first excited state is just due to this

effect; it comes not from any specific single-particle state,
but from the entire Fermi sea of the filled energy levels, each
of which is slightly shifted when the parityI is changing

2D = o
m=0

n−1 HESk =
2pm

n
D − ESk =

2psm+ 1/2d
n

DJ .

sA7d

Using the Poisson summation formula we arrive at the result

2D < 4JzÎ1 − sJx/2Jzd2

pn
sJx/2Jzdn, sA8d

which differs from(A5) only in the preexponential factor.

APPENDIX B: THE CRITICAL POINT OF THREE CHAIN
PROBLEM

We consider a three-strings ladder with periodic boundary
conditions along each rung. The corresponding Hamiltonian
reads

H = − Jzo
i=1

n−1

o
j=1

3

si j
z si+1j

z − Jxo
i=1

n

o
j=1

3

si j
x si j +1

x , sB1d

where j =4 is identical toj =1. We introduce a basis of four
statescm (with m=0, 1, 2, 3) on a particular rungi, corre-
sponding to the sector with allPi =1

c0 = 1↑
↑
↑ 2, c1 = 1↑

↓
↓ 2, c2 = 1↓

↑
↓ 2, c3 = 1↓

↓
↑ 2 .

Then(up to an irrelevant additive constant) the Hamiltonian
(B1) can be rewritten as
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H = − 4Jzo
i=1

n−1

dmimi+1
− Jxo

i=1

n

Gi ,

where the matrixG

Ĝ =1
0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0
2 ,

plays a role, similar to that of thesx-operator for the two
chain problem. This is the Hamiltonian of the one-
dimensionalq=4 Potts model in a “transverse field.”

Consider now an asymmetric classic two-dimensional
q=4 Potts model with the Hamiltonian

bH2d = − Kzo
ik

dmikmi+1k
− Kxo

ik

dmikmik+1
. sB2d

The transfer matrix for this system(in the k direction) is

T̂ = expHKzo
i

n−1

dmimi+1Jp
i=1

n

s1̂eKx + Ĝid , sB3d

where 1̂is 434 unity matrix. Using the identity

ehĜ =
1

4
hse3h + 3e−hd + se3h − e−hdĜj

for matrix G, we can rewrite(B3) in the form

T̂ = C expHKzo
i

n−1

dmimi+1
+ ho

i

n

GiJ , sB4d

where C is an irrelevant constant andh is determined by
eKx=se4h+3d / se4h−1d.

The line of critical points for the asymmetric two-
dimensionalq=4 Potts model is governed by the relation
(see Ref. 14)

seKx − 1dseKz − 1d = 4;

in terms ofKz, h this relation takes the simple formKz=4h.
On the other hand, the matrix(B4) describes the time evolu-
tion of the quantum system with the Hamiltonian(B1) and
with 4Jz=Kz/Dt, Jx=h/Dt, whereDt→0 is an infinitesimal
time interval. Thus, we conclude, that the quantum phase
transition in our initial three chain system takes place at the
symmetric pointJx=Jz.

Unfortunately, the solution of the two-dimensionalq=4
Potts model away from the critical line is not known and, in
contrast to the exactly solvable two-chain model, we cannot
find the dependence of the gapD on the parameterJx/Jz in
the full range of this parameter.

*Also at: Landau Institute for Theoretical Physics, Kosygina 2,
Moscow, 117940 Russia.

1P. W. Shor,Proceedings of the 35th Symposium on the Founda-
tions of Computer Science, Los Alamitos, CA(IEEE, New York,
1994).

2A. Ekert and R. Jozsa, Rev. Mod. Phys.68, 733 (1996).
3A. Steane, Rep. Prog. Phys.61, 117 (1998).
4P. W. Shor, Phys. Rev. A52, R2493(1995).
5E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J. Math. Phys.

43, 4452(2002).
6J. Preskill, Proc. R. Soc. London, Ser. A454, 385 (1998).
7L. B. Ioffe, V. B. Geshkenbein, Ch. Helm, and G. Blatter(unpub-

lished).
8A. Yu. Kitaev, Ann. Phys.(N.Y.) 303, 2 (2003).
9L. B. Ioffe, M. V. Feigel’man, A. Ioselevich, D. Ivanov, M.

Troyer, and G. Blatter, Nature(London) 415, 503 (2002).
10L. B. Ioffe and M. V. Feigel’man, Phys. Rev. B66, 224503

(2002).
11B. Douçot, M. V. Feigel’man, and L. B. Ioffe, Phys. Rev. Lett.

90, 107003(2003).
12M. V. Feigel’man, L. B. Ioffe, V. B. Geshkenbein, P. Dayal, and

G. Blatter, Phys. Rev. Lett.92, 098301(2004).
13K. I. Kugel and D. I. Khomskii, Sov. Phys. Usp.25, 231 (1982).
14R. J. Baxter,Exactly Solvable Models in Statistical Mechanics

(Academic, London, 1982), Chap. 12.
15F. Y. Wu, Rev. Mod. Phys.54, 235 (1982).

16V. S. Dotsenko and V. A. Fateev, Nucl. Phys. B240, 312(1984).
17See, e.g., G. Blatter, V. B. Geshkenbein, and L. B. Ioffe, Phys.

Rev. B 63, 174511(2001).
18B. Douçot and J. Vidal, Phys. Rev. Lett.88, 227005(2002).
19D. Arovas, J. R. Schrieffer, F. Wilczek, and A. Zee, Nucl. Phys. B

251, 117 (1985).
20D. Eliezer and G. W. Semenoff, Phys. Lett. B286, 118 (1992).
21M. C. Diamantini, P. Sodano, and C. A. Trugenberger, Phys. Rev.

Lett. 71, 1969(1993).
22A. Paramekanti, L. Balents, and M. P. A. Fisher, Phys. Rev. B66,

054526(2002).
23O. Alvarez, Commun. Math. Phys.100, 279, (1985).
24M. Henneaux and C. Teitelboim, Phys. Rev. Lett.56, 689(1986).
25A. M. Polyakov, Phys. Lett.59B, 82, (1975).
26A. M. Polyakov, Nucl. Phys. B120, 429 (1977).
27R. D. Pisarski, Phys. Rev. D34, 3851(1986).
28I. Affleck, J. Harvey, L. Palla, and G. Semenoff, Nucl. Phys. B

328, 575 (1989).
29E. Fradkin, Field Theories of Condensed Matter Systems

(Addison–Wesley, New York, 1991), Chap. IV.
30M. Freedman, C. Nayak, K. Shtengel, K. Walker, and Z. Wang,

cond-mat/0307511.
31M. Freedman, C. Nayak, and K. Shtengel, cond-mat/0309120.
32C. Mochon, Phys. Rev. A67, 022315(2003).
33C. Mochon, quant-ph/0306063.

DOUÇOT et al. PHYSICAL REVIEW B 71, 024505(2005)

024505-18


