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We present general symmetry arguments that show the appearance of doubly degenerate states protected
from external perturbations in a wide class of Hamiltonians. We construct the simplest spin Hamiltonian
belonging to this class and study its properties both analytically and numerically. We find that this model
generally has a number of low energy modes which might destroy the protection in the thermodynamic limit.
These modes are qualitatively different from the usual gapless excitations as their number scales as the linear
size(instead of volumgof the system. We show that the Hamiltonians with this symmetry can be physically
implemented in Josephson junction arrays and that in these arrays one can eliminate the low energy modes with
a proper boundary condition. We argue that these arrays provide fault tolerant quantum bits. Further we show
that the simplest spin model with this symmetry can be mapped to a very specdlern-Simons model on
the square lattice. We argue that appearance of the low energy modes and the protected degeneracy is a natural
property of lattice Chern-Simons theories. Finally, we discuss a general formalism for the construction of
discrete Chern-Simons theories on a lattice.
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I. INTRODUCTION to imagine a solid state physical system that is so well

It is generally accepted that a quantum computer Wou|d3creened from the outside noise, in particular, it is difficult to
e over the classical one for ti@agine a Josephson junction, a Cooper box or SET where

solution of many fundamental and practically importantthe motion of stray charges do not result in a significarft 1/

problemsi=3 However, its practical implementation presents0iS€ in electric or magnetic fields or in the strength of the
a formidable challenge mostly because of the conflicting reJ0SePhson couplings. Further, a significant energy difference

: o : between the two states of a qubit results in a phonon
quirements posed by scalability and decoupling from the en§missioﬁ that limits the quality factor of a typical Josephson

vironment. In particular, all scalable designs are based on the > . X Aot
solid state devices but these are plagued by a strong dec evice by 16. So, the only logical possibility is that the

herence. Quantitatively, in physics it is conventional to mea hysical noises do not affect the energy difference between

Towest energy states in the lowest ord@se or morgin the

. strength of the noises. This is in principle possible because
the product of the decoherence time and a typical energy gae effect of the physical noise is always represented by the

while in computer science one uses the error ratelefined  gym of local physical operatotsharge, current, etc.In the

as the probability of an error per time required for an indi-jimiting case when the noise does not affect the energy dif-
vidual operation. In order to avoid excitations of higher en-ference between the two states in any finite order, these states
ergy states all operations should be performed slowly on thesrm a protected subspace of the Hilbert spa#. course,
scale of the inverse energy gap, B&>1/Q. The problem  the formation of such truly protected space becomes possible
posed by the omnipresence of the decoherence in solid staggly for an infinite system. The implementation of these
devices is exacerbated by the fact that the error correctiomodels in solid stat€Josephson junctigndevices was sug-
codeé® require a small error rate for individual qubi@t the  gested in Refs. 9—11. From a practical view point it is im-
very least 10° per logical operation that translates into the portant to consider simpler but smaller systems which are
quality factors larger than #pand lead to a huge increase in protected from the noise in the given orderj.e., which are

the number of qubits, effectively replacing one qubit by anot affected by all physical noises in all orders less than
lattice with L X L qubits with largelL.® Further, the efficient Clearly, any device in which two levels representing 0 and 1
error correction requires that operations are dsimeulta- have a finite energy difference is susceptible to the fluctua-
neouslyon all L X L qubits encoding a single error free bit tions in the physical quantity that sets this energy scale. For
which makes this scheme rather unrealistic. An alternativénstance, in a Cooper box this would be the JosephBgn,
would be to use individual qubits with a very high quality and a charging energf, of the individual Josephson junc-
factor, much greater than 8,0which would allow one to tion. Thus, even this limited protection can occur only when
perform calculations withoutor with very little) error cor-  the two “working” levels are degenerate.

rection. If the noise couples linearly to the energy difference It is well known that the stable degeneracy of the quantum
between two states of the qubit representing 0 and 1, thikevels is almost always due to a high degree of the symmetry
would mean that the physical noise should be less thah 10 of the system. Examples are numerous: time inversion in-
times than all other energy scales of the device. It is difficultvariance ensures the degeneracy of the states with half inte-
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ger spin, rotational symmetry results in a degeneracy of thevorks (Sec. 1ll) and show that they are equivalent to the
states with nonzero momentum, etc. In order for the degenchern-Simong., gauge theorySecs. IV and V. Section VI
eracy to be stable with respect to the local noise, one needsimmarizes our results.

that the sufficient symmetry remains even if a part of the

system is excluded. The simplest example is provided by the Il. SPIN MODEL

six Josephson junctions connecting four superconducting is-
lands(so that each island is connected with every oth&in
this mini array all islands are equivalent, so it is symmetric
under all transformations of the permutation grdaip This
group has a two-dimension&2D) representation and thus, H= —JXE o{jO{Hl_JZE Oﬂoﬂlj- (1)
pairs of the exactly degenerate states. With the appropriate oo o '

choice of the parameters one can make these doublets th . . )
ground state of the system. The noise acting on one supe 1€re o are Pauli matrices, note that Fhe first term couples
conducting island reduces the symmetry to the permutatio pins in the same row of th.e array while the second coqples
group of the three elements which still has two-dimensional 1em alpng the columns. Itis not Important for the follpw!ng
representations. So, this system is protected from the noise ?{SCUSS'OH whether the boundary conditions are periodic or

the first order(n=2). The goal of this paper is to discuss ree, but since the latter are muqh easier to_implement in a
. - i . hardware we shall assume them in the following. Further, the
designs giving the systems that are protected from the noise

. ; o signs of the couplings are irrelevant because for a square
in the higher orderg. the that systems with higher S.ymm.em(attice one can always change it by choosing a different spin
groups, such as five junctions connected by ten junctio

(group S;) typically do not have two-dimensional represen'j%)aSIS on one su_blatt|ce. For the.sake of argument, WE as-

tations, o in these systems one can typically get mucﬁumEd that the signs of the couplmg_s are fer_romagnetlc;_th|s

higher ,degeneracy but not higher protection IS also a natural sign for \_]osephson_Jum_:tlon |mplerr_1entat|0ns
: in Sec. lll. The Hamiltoniar{1) was first introduced in Ref.

Generally, one gets degenerate states if there are two SYM3 as a model for the anisotropic exchange interaction in

metry operations, described by the operatBrand Q that transition metal compounds but its properties remain largely
commute with the Hamiltonian but do not commute with unclear

O oy . e e e he Hamitoian) s wo st of h ntegrls of mo-
other terms in the Hamiltonian which might not commutegon’ {Pi} and{Q;} with n operators each
with these operators thereby lifting the degeneracy. Clearly, P.=]] 0%,
in order to preserve the degeneracy one needs to have two i )
sets(of n elements eagh{P,} and {Q,} of noncommuting
operators, so that any given local noise field does not affect o =11
some of them; further, preferably, any given local noise oA
should affect at mostne R andQ;. In this case, the effect of ) ] )
the noise appears whemoise fields acsimultaneouslyi.e.,  I-€., €achP; is the row product ob7; while Q; is the column
in the nth order in the noise strength. Another important re-Product ofay;. ConsiderP; operator first. It obviously com-
Striction comes from the Condition that these Symmetry Opmutes with the second term in the Hamiltonian and because
erators should not result in a higher degeneracy of the idedhe first term contains twe?; operators in the same ro®;
system. For two operators? and Q that implies that either contains product in?a”d(’f or none of them. Be-
[P2,Q]=0 and[P,Q?]=0. Indeed, one can construct the de-cause different Pauli matrices anticommukg, commutes
generate eigenstates of the Hamiltonian starting with thévith each term in the Hamiltoniagi). Similarly, [Q;,H]=0.
eigenstate|0), of H and Q and acting on this state with. ~ Clearly, differentP; commute with themselve?=1 and
The resulting statd1) should be different from the original similarly [Q;,Q;]=0 andQ?=1, but they do not commute
one becausP andQ do not commutefP,Q]|¥)+0 for any  Wwith each other
V. In a doubly degenerate system, acting again on this state (P,Q}=0
with the operatorP one should get back the stalt®), so bl '
[P?,Q]=0. For a set of operators, the same argument implies [P.OP=4 )
that in order to get a double degenergand not morgone b
needs thatP;P;,Q]=0 and[P,Q;Q;]=0 for anyi, j. Indeed, so[Pi,Qj]|\If>¢0 for any |¥), thus in this model all states
in this case one can diagonalize simultaneously the set dre at least doubly degenerate. Further, becBiRgecontains
operators{Q;}, {QQ;} and{P;P;}. Consider a ground state, two o'|ZJ in any column, such product commutes with @||
|0), of the Hamiltonian which is also an eigenstate of alloperators and similarlyQ,Q,, P;]=0. Thus, we conclude that
these operators. Acting on it with, s&y, we get a new state, in this model all states are doubly degenerate, there is no
|1), but since|1) (P;P,)P,|0)=P;(P,P4)|0) e P;|0) all other  symmetry reason for larger degeneracy and that this degen-
operators of the same set would not produce a new state. eracy should be affected by the noise only in mitie order of

In the rest of the paper we introduce models that possedbte perturbation theory.
the symmetries satisfying these conditiq@zc. ll), discuss To estimate the effect of the noigehich appears in this
their possible implementations in Josephson junction nethigh ordej one needs to know the energy spectrum of the

The conditions discussed at the end of the previous sec-
tion are fully satisfied by the spif=1/2 model on a square
nXxn array described by the Hamiltonian
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model and what are its low energy states. All states of the H=AY 73
system can be characterized by the §et= +1}, of the ei- o
genvalues ofP; operatorgor alternatively by the eigenvalues
of the Q; operatorg The degenerate pairs of states are
formed by two sets{\;} and{-\;}, and each operatoQ;
interchanges these pair®{\;}={-\;}. We believe that dif-
ferent choices of\;=+1} exhaustall low energy states in
this model, i.e., that there are exactly [Bw energy states.
Note that this is a somewhat unusual situation; normally oné€

expectsn® modes in a 2D system and thu& 2ow energy

zyates. Thelnumber‘“low e;ergy slgatesl is natural for_a one- gap, J,, characterized by different eigenvalues@f opera-
Imensional system  and would also appear in tWos, g ang by one valu®,P;=1. In the opposite limit,>J,
dimensional systems if these states are associated with ﬂl‘(?w energy states form a narrow band inside the gap of size

edge. I—t|)ere, howiz]ver,dwe car&r_mt associcate ;[]hem Witg_ thk? edge characterized by different eigenvaluesRyfoperators and
states because they do not disappear for the periodic boun y the same valu®Q,=1. Consider now the effect of a

ary conditions. We cannot prove our conjecture in. a generayeak noise in the former limit. To be more specific, we con-
case but we can see that it is true when one coupling is muc, der the effect of the additional single site fields

larger than the other and we have verified it numerically for
the couplings of the same order of magnitude. We start with H,= > hiZjUiZj + hixjo)fj-
the analytic treatment of th& > J, case. o t
When one coupling is much larger than the others it i
convenient to start with the system where these others ar
absent and then treat them as small perturbations; in the lim i .
J,=0 all columns are independent and the ground state e transitions between up anq down states in each column.
each column is a Ising ferromagnet. The ground state of eac.hese transitions appear only n th? ordeof the perturba— )
column is doubly degeneraté), =TI 1); and [2);=IT| | ), tl(';)(rl the)?ry, so their amplltud_e is exponentially small:
giving us 2 degenerate states in this limit. Excitations in Hi = (1ihj/J2)Jz. Thus, when projected onto the low energy
each column are static kinks against the background of thes&/Pspace this noise part becomes
states; each kink has energy,2Including nowJ, coupling, Ho= S HZ + H
we see that it creates two kinks in each of the neighboring n i 1 e
columns thereby increasing the energy of the systemXby 8
so the lowest order of the perturbation theory is small inThe effect of the first term on the ground state degeneracy
J,/8J,. The splitting between the"Xtates occurs due to the appears in theith order of the perturbation theory /A
high order processes which flip all spins in two columns. Inand so it is much bigger than that of the second term because
the leading approximation one can calculate the amplitude oh becomes exponentially small @s— for J,<J,. Note
this process ignoring other columns. Thus, for this calculathat although the effect of thi;o7; noise appears only in
tion we can consider the model with only two columns thatthe large order of the pertubation theory, it is not small be-
can be mapped onto a single Ising chain in the transverseause of the small energy denominator in this parameter
field in the following manner. The ground state of two inde-range. Similarly, we expect that in the opposite limlt,
pendent columns belongs to the sector of the Hilbert space&Jy, the low lying states are characterized by the set of
characterized by alP,P;=1; it is separated from the rest of eigenvalues of; operators, the effect of thi;o7; grows
the spectrum by the gap of the order o, 2Further, the rapidly while the effect of théx’;o7; noise decreases with the
Hamiltonian does not mix this sectors with differéhf so in  Jy increase. We conclude that in the limits when one coupling
order to find the low energy states, it is sufficient to diago-is much larger than anothei, > J, or J,<J,), the gap closes
nalize the problem in the sectBy=1. In this sector only two very quickly (exponentially and the nonlinear effect of the
states are allowed in each rol§:1) and| | | ), in the basis of ~appropriate noise grows rapidly with the system size. These
these states the Hamiltonian is reduced to gualitative conclusions should remain valid for all couplings
except a special isotropi¢l,=J,) point unless the system
undergoes a phase transition near this paiat some
Heo= = 23,2 70y = 3,2 7, ©) JX/JZ:%C~ 1). P Pt
! ! In order to check these conclusions we have numerically
diagonalized small spin systems containing up to 5 by 5
where 7 are Pauli matrices acting in the space| dff) and  spins subjected to a small random fi¢fg flatly distributed
| | |) states. This leads to the splittingh 2 (J,/2J,)"(2J,) in the interval(-6/2, 6/2). We see that indeed the gap closes
(see Appendix A for the details of this calculatjdmetween rather fast away from the specidl=J, point (Fig. 1) but
the symmetric and antisymmetric combinations of the tworemains significant neal,=J, point where it clearly has a
ferromagnetic chains in this problem. Thus, we conclude thatuch weaker size dependence. Interestingly, the gap be-
the effective Hamiltonian of the low energy states in the fulltween the lowest 2states and the rest of the spectrum ex-
system is pected in the limitsl,>J, or J,<J, appears only af,/J,

where7 are Pauli matrices acting in the space bfand|2)
states describing the global state of the whole column. This
effective low energy model also describes a ferromagnetic
chain in which the excitationgstatic kinkg are separated
from the degenerate ground state by the gApIf the basis
f these 2 low energy states the operatdgs= ?J‘

We conclude that in the limif,> J,2" low energy states
form a narrow(of the order ofA) band inside a much larger

he first term shiftgup or down the energies of each ferro-
agnetic column byd{=3;h{; while the second term gives
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FIG. 2. Ground state splitting by random fieldZrdirection for
5X5 and 4x 4 systems. The random field acted on each spin and
was randomly distributed in the intervat0.05,0.05. Note that the
effect of the random field im direction becomes larger fdr<J, as
expected. Because ney=J, isotropic point the gap for 55 sys-
tem is significantly smaller than the gap for thex4 system, this
relatively large disorder has almost the same effect on these systems
atJ,~ J,. We have verified numerically that decrease of the disorder
by a factor of 2 leads to dramatically smaller effects fot 5 sys-
tem confirming the scaling;—Eyx &". For J,/J,>1.2 the differ-
enceE; —Eg is difficult to resolve numerically.

FIG. 1. Energy spectrum of the>X65 and 4x 4 systems in the
units ofJ, coupling as a function al,/J,. We show energies of the
lowest 40 states for 85 (upper pangand lowest 20 states for the
4x 4 system(lower pang. One clearly sees that at large anisotropy

a well-defined low energy band is formed which contaifstates . ) a6
for 5X 5 system and 2states for 4<4 one. In order to verify that be determined from the conformal field theoryrhe map-

low energy states are in one-to-one correspondence Ryitigen-  Ping of the three chain problem onto the Potts model is pos-
values for largel,/J, we have calculated the second lowest eigen-Sible because the number of states of three spin rung for a
state inP;=1 sector(first one is the ground stateAs shown in the ~ given value of the conservel operator is four while the
lower pane by the dashed line, this state indeed has a large gap fopmber of different terms in the Hamiltonian that couples the
3 /3,=1.2. adjacent rungs is three. For a larger number of chains the
number of states in each rung grows exponentially while the
> j. with a practically size independefpt=1.2. We also see number of terms in the Hamiltonian grows only linearly
that the conditiorP;=1 eliminates all low lying states in the making such mappings impossible. In this sense two and
J,<J, limit where the lowest excited state =1 sector is three chain models are exceptional and it is fairly possible
separated from the ground state by a large gap and in fathat the intermediate phase appears in models with larger
provides a lower bound for all high energy states. The speciaiumber of chains.
nature of this state appears only {J,>j.. Clearly, the Finally, we checked the effect of tlg;of; on the ground
system behaves quite differently near the isotropic point andtate degeneracy splitting, and our results are shown in Fig.
away from it but the size limitations do not allow us to 2. We see that, as expected, this disorder becomes relevant
conclude whether these different regimes correspond to twtor J,<J, while in the opposite limit its effect quickly be-
different phasegwith the “isotropic” phase restricted to a comes unobservable. We conclude thateaid perhaps nepr
small range of parametejs'<J,/J,<j.) or it is a signature  isotropic point, the gap closes slowly with the system size
of the critical region which becomes narrower as the sizeand the effect of even significant disord@=0.1) becomes
increases. Although we do not see any appreciable change @xtremely small for the medium sized systems.
jc with the system size, our numerical data do not allow us to  Although it is not clear how fast the gap closes in ther-
exclude the possibility thajt, tends to unity in the thermo- modynamic limit(if it closes exponentially fast the system
dynamic limit. We conclude that numerical ddgevor inter-  never becomes truly protected from the noise because the
mediate phase scenario. In contrast to this, the analytical reeffect of the high order terms might get very laygeur
sults for two and three chains indicate that the transitiomumerical results clearly indicate that medium si4dy 4 or
occurs only atl,=J, point. Namely, both two and three chain 5 by 5 systems provide an extremely good protection from
models with periodic boundary conditions in the transversdhe noise suppressing its effect by many orders of magnitude.
direction can be mapped onto solvable models with transiThis should be enough for all practical purposes. Further, if it
tion at J,=J,: in the case of two chains the problem is is possible to construct the systems whey;=1 (in other
mapped onto the exactly solvable Ising model in transverswords with an additional term in the Hamiltonian
field as described above while the three chain model i$p=-AZ;;P;P; with significantd), this would eliminate the
mappedsee Appendix Bonto the four states Potts model in dangerous low energy states, leading to a good protection for

a similar way. The latter is not exactly solvable in the whole
parameter range but it obeys the exact duality that allows one
to determine its critical pointh!® further, its exponents can
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r ~ E¥EL s B (4)

thereby lifting this degeneracy. Hesas the numerical coef-
ficient of the order of unity that was found in Ref. 19,
~1.61 andE; is the Josephson energy of each junction.

A. Simplest Josephson junction array

We begin with the Josephson junction array that has two
sets of the integrals of motiofi?;} and{Q;} discussed above,
which is shown in Fig. 3. This array contains rhombi with
junctions characterized by Josephson and charging energies
E;=Ec and weaker vertical junctions characterized by the
energiese;, ec. As we explain below, although this array
preserves the integrals of motidi®;} and{Q;}, it maps onto
a spin model that differs from Eq1); we consider more
complicated arrays that are completely equivalent to spin
model (1) in the next subsection. The state of the system is
fully characterized by the state of each rhortd@éscribed by
the effective spin 1/2and by the small deviations of the
continuous superconducting phase across each junction from
(b) its equilibrium (classical values. Ignoring for the moment

the continuous phase, we see that the potential energy of the
FIG. 3. Schematics of the array equivalent to the spin modelrray shown in Fig. 3 is given by

with the interaction(5) in the vertical direction(a) The main ele-
ment of the array, the superconducting rhombus frustrated by mag- H,=- GJE Tizj7i2+1jv 7{] = H afk_ (5)
netic flux ®,/2. Josephson energy of each rhombus is minimal for i ks

0=0 and #=-/2. Significant charging energy induces the transi- . . . .
tions =0+ §=—m/2 between these energy minint) The array Physically, the variable?; describes the phase of the right

geometry. The superconducting boundary conditions chosen hef@0St corner of each rhombi with respect to the left
ensure thaP;P;=1 thereby eliminating all low lying states in the (grounded superconducting wire modute. The right super-
appropriate regimec) The requirement that continuous phase does¢onducting wire(that connects the right most corners of the
not fluctuate much while the discrete variables have large fluctuathombi in the last columnensures that the phase differences
tions is easier to satisfy in very big arragis>20) if one replaces along all rows are equal. In the limit of a large phase stiffness
the vertical links by the rhombi with junctions wih, & frustrated  this implies that the number of the rhombi with the phase
by the fluxdg(5+1/2). differencer/2 should be equal for all rows modulus 2. This
constraint does not allow an individual rhombus flip, instead

all couplings strengthd,=J,. Indeed, in this case, we can flip of one rhombus should be always followed by a flip of

repeat the previous analysis and conclude that the effects gfother in the same row. If, however, the phase stiffness is

the noise appear only in theh order and that now the per- 10, the flip of one rhombus can be also compensated by the

turbation theory in the “dangerous” noise?, implies the ~ continous phase deformations in the other rhombi constitut-
]7 . . . B . .

expansion irtH?/A whereA is no longer exponentially small 9 this row; we derive the conditions at which we can ex-

but is the coefficient in the HamiltoniaHp. Thus, in this clude these processes below. The simplest allowed process is

case these higher order terms become small. the simultaneous flip of two rhombi in one row

Hy=— > 3 ~ Ko 0% (6)
i,j,k

IIl. JOSEPHSON JUNCTION IMPLEMENTATIONS

The basic ingredient of any spin 1/2 implementation inWhereJ(k) is the amplitude to flip two rhombi a distanke
Josephson junction array is the elementary block that has tw@Part. Both potentia{5) and kinetic(6) energies commute
(nearly degenerajestates. One of the simplest implementa- With the integrals of motion{P;} and{Q;}, so that we expect
tion is provided by a four Josephson junction Igshown as  that the main feature of this model, namely, the existence of
rhombus in Fig. 8)] penetrated by magnetic fluky/2.17:18 the protected doublets, will be preserved by this array.
Classically, this loop is frustrated and its ground state is de- As explained in the previous section, in order to achieve a
generate: it corresponds to the phase differeneeisisacross ~ really good protection one needs to eliminate all low energy
each junction constituting the loop. Two statepin “up”  States(except for the degenerate ground stafiearacterized
and “down’) then correspond to the states with phase differDy different values of th¢P;} and{Q;} operators. The array
ence #r/2 across the rhombus. For an isolated rhombus ghown in Fig. 3 has a boundary condition implyiRgP?;=1
nonzero(but smal) charging energyEc=€?/2C, would re-  for anyi, j because in this array the sum along each row of
sult in the transitions between these two states with the anihe phases across individual rhombus should be equal for all

plitude rows. Thus, for a sufficiently large tunneling amplituﬁiek)
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this array should have two degenerate ground states sepaated by the ferromagnetic coupling in the vertical direction,
rated from the rest of the spectrum by a large gap. Physicallyso in this regime there are many low energy states corre-
these two states correspond to two different values of theponding to two possible magnetizations of each column.
phase difference along each row. The quantitative conditioThe magnitude ofe; for which the gap decreases signifi-

ensuring that tunneling amplitudi(k) is large enough de- cantly can be estimated from the first order correctio;in

ends on the ran eﬁ;(k) The simplest situation is realized The dominant contribution comes from the transitions in-
P ge gi{k). Th piest Situati .~ volving rhombi of the outmost rows. They occur with ampli-
if only the nearest neighboring rhombi flip with the signifi-

i litud B flin of the t t thombi i tude €; and lead to the states with energy so we expect
cant arlnptll: et’glx' ﬂgcaufs;eh |p(;1 N wotrr]lea_r?s :j gmt V1S that as long ag;=<A, the system has a doubly degenerate
equivaient to the Tip of the phase on the island DEWeely . g state separated from the other states by gap of the
them, in this case the spin mod®&)) and(6) is equivalent to

. . : . ) ..._order ofA.
the collection of independent vertical Ising chains with . ~ _ _
Hamiltonian The amplitude,J,(k), for the simultaneous flip of two
rhombi can be found from the same calculation that was used
H=-> ¢ T|Z17|Z+1J ﬂ,fj_ in Ref. 10 to calculate a single rhombus flip and the simul-
ij ' taneous flip of three rhombi. lé-> E, the contribution of
the vertical links to the total kinetic energy of the supercon-
aducting phase is small and can be treated as a small pertur-
bation, in this case

For J,> 2¢; each chain described by this Hamiltonian has
unique ground state separated by #fwe2J, from the rest of
the spectrum. As the ratig/J, grows, the gap decreases. ~
In the opposite limiting case of a very long range Jy(k) = ESEY 425 BBl ckEdlec) (8)
J.(k)=J,, one can treat the interacti@f) in the mean field

X where c~1. Here the factor 2 in the exponential appears
approximation

because in this process one changes simultaneously the

_ phases across two neighboring rhombi. Note that although
J LX<OXK>E o] @) the relative change in the action due to vertical links is al-

ways small, their contribution might suppress the flips of all
At large J, the ground state of this system is also a doublethombi except the nearest neighborsEfE-/€2>1. Note
(characterized byo?,)=+1) with all other excitations sepa- that even a relatively largec (so thatEc/ec<1) can be
rated by the gapr=2L,J, from the rest of the spectrum. As sufficient to suppress the processes involving non-nearest
we increase the vertical coupling;, the gap for the excita- neighbors. We conclude that the low energy states become
tions gets smaller. At very large the Hamiltonian is domi- absent as long as

€ < Letdys 9

where Lg=1/2 if EjEJec>1 and Lgs=~min(ec/VEEL) if EjEc/e:<1.

These estimates assume that the main contribution to thdombus flips. Generally, the continuous phase can be repre-
capacitance comes from the junctions and ignores the contrsented as the sum of two parts: the one that it is due to the
bution from the self-capacitance. If the self-capacitance isvortices and the spin-wave part which does not change the
significant, the processes involving more than one island bephase winding numbers. As usual XY systems, it is the
come quickly suppressed. vortex part that is the most relevant for the physical proper-
We now consider the effect of the continuous fluctuationgies. In particular, in these arrays it is the vortex part that
of the superconducting phase. Generally, a finite phase rigidzontrols the dynamics of the discrete subsystem. Notice that,
ity allows single rhombus flip, described by tﬁqto)( term  unlike the conventional arrays, the arrays containing rhombi
in the effective spin Hamiltonian. This term does not com-allow two types of vortices: half vortices and full vortices
mute with the intergrals of motioR; and thereby destroys because of the double periodicity of each rhombi. The flip of
the protected doublets. However, for a significant phase rithe individual rhombi is equivalent to the creation of the pair
gidity the energy of a state formed by a single rhombus flip,of half vortices. If the ground state of the system contains a
Ugr, is large. If, further, the amplitudeof these processes is liquid of half vortices, these processes become real and the
small:T< Uyg;, the states corresponding to single flips can bemain feature of the Hamiltonian, namely the existence of two
eliminated from the effective low energy theory and the pro-sets of anticommuting variables, is lost. We now estimate the
tection is restored. [f> U, the protection is lost. potential energy of the half vortex and of the pair associated
We thus begin our analysis of the effects of the finitewith single flip,Ug;, and amplitude to create such painne
phase rigidity with the consideration of the dangerous singléegin with the potential energy which is different in different
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T2 U= mEyJ/(2L) + (4lmel L <\Eje. (12

Two flips This formula is correct as long as the second term is much

smaller than the first one; they become comparable at
L=vE;/e; and at largerL the potential energy associated
with the single flip saturates at

— ’/_
Ugi= vWEje; L > VEj e, (13)

wherey= 3.3 Qualitatively, a single flip leads to the continu-
ous phase configuration where phase gradients are significant
—r/2 in a narrow strip in thex direction of the length/E,/ e, and
-5 0 5 10 width ~1. The phase configuration resulting from such a
X process is shown in Fig. 4. These formulas assume that the
- , ) ) rigidity of the superconducting phase remaigswhich is,
FIG. 4. Phase variation along the horizontal axis after a flip of astrictly speaking, only true if the discrete variables are per-

single rhombus(solid curve and after consecutive flips of tWo oo rdered in the vertical direction. Indeed, the coupling
rhombi (thick curve located at a distance twice the core size of . 2

, e : . X
each rhombi, VE;/e;. The horizontal axis shows the distance, in the Vgrtlcal direction Sonztalnle COS{(/’)TLJ'T[HJ which
X=\&;/Esx, measured in the units of the vortex core size. renormalizes toe, COS(qb)<7'i,j7'i+l,i> in a fluctuating system.

In the opposite limit of strongly fluctuating rhombi, the av-

- . . N .erage value of 77,77, .) becomes small, we can estimate it
limits. Let us consider the simpler limiting case when rhombi 9 {7, Tive )

flips do not affect the rigidity in the vertical direction; it rom the perturbatllon ther:)ry exglans?nfmwrjch/sets the
remainse,. Further, we have to distinguish the case of a very/OWest energy scale of the problerw{; 7., )~ &)/ (Lesrd,)
large size in horizontal direction and a moderate size becaud#hich renormalizes the value ef

the contribution from the individual chains can be domini- &
nant in a moderate systemHbf;> €;. In a very large system €— €= —
of linear sizeL with rigidity €; in the vertical direction the Lettdx
potential energy of one vortex is This renormalized value af; should be used in the estimates
of the vortex energy12) and(13). This does not affect much
Ev:m’%ln(L) (10) iZgir?]setimates unless the system is deep in the fluctuating

. ] . ] Unlike potential energy, the single flip processes occur
while the energy of the vortex-antivortex pair at a large dis-yjth the amplitude

tanceR from each other is N
"t‘ - Eg/AEé/lle—S\JEJ/EC (14)

U,(R) = ™ E;e; IN(R). (11 in all regimes. This formula neglects the contribution of the
continuous phase to the action of the tunneling process. The

reason is that both the potential ene(@®) of the half vortex

These formulas can be derived by noting that at large scaleg,q the kinetic energy required to change the continuous

the superconducting phase changes slowly which allows ongnase are much smaller than the corresponding energies of
to use the continuous approximation for the energy density,o individual rhombusE,, Ec. In order to estimate the ki-

E:iEMZ'*%GJ(&z(ﬁ)Z- Rescaling then the coordinate by  netic energy, consider the contribution of the vertical links
X—’lx\ﬂfa we get an isotropic energy density (horizontal links give equal contributignThere are roughly
E=3VE;e)(Ve)% The continuous approximation is valid if \E,/e, such links, so their effective charging energy is about
both rescaled coordinatés z=1. Thus, in a system with e.\e;/E,. If all junctions in this array are made with the
E,~ ¢; the formulag10) and(11) remain approximately cor- same technology their Josephson energies and capacitances
rect even at small distanc&s~ 1, so a flip of a single rhom-  are proportional to their areas, s/ E;=Ec/ec= 7, in the
bus creates a half vortex—anti-half vortex pair with energyfollowing we shall refer to such junctions asnilar. In this
E,~ E, but the formulas become parametrically different in acase the array is characterized by two-dimensionless param-
strongly anisotropic system. Consider first the linj=0.  eters,p<1 andE,;/Ec> 1, and the additional contribution to
Here the chains of rhombi are completely decoupled and thehe charging energyy'?E¢!, coming from vertical links is
energy of two half vortices separated by one rhombus in themaller than the one of the individual rhomE", and thus
vertical direction(the configuration created by a single flip do not change the dynamics.
is due to the phase gradients in only one chain, e conclude that the dangerous real single flip processes
U%=72E,/(2L), which appear because the ends of the chai i < Tis gi

sf a1 (2L), pp become forbidden < U4 wheret is given by Eq(14) and
have the phase fixed by the boundary superconductor. A veny; by Eqgs.(12) and(13). This condition is not difficult to
small coupling between the chains add§)=(2/7r)eJL to  satisfy in a real array because amplitiids typically much
this energy, so the total potential energy of the single flipsmaller thanE,. Further, for moderately sized arragsith
inside the array is L=5-10which already provide a very good protectjche
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energy of a single rhombus flip is only slightly smaller thanoccur for the rhombi in the same row if they are closer than
E, so the conditiorf<Ug; is not really restrictive. Note, Le< 7 'VEG/E;. Finally, for p<E/E; the distance be-
however, that in order to eliminate low energy states of theween flipped rhombi exceeds the size of the half vortex and
discrete subsystem we also need to satisfy the condiipn the two rhombi flips in a largél > \E,/ €;) array happen via
which implies that the tunneling processes should occur withirtyal half vortices in the continuous phase.

a significant amplitude. While this might be difficult in the | the discussion above we have implicitly assumed su-
infinite array made from the similar junctiogsith the same  erconducting boundary conditions such as shown in Fig. 3.
product of charging and Josephson enengitfes is not re-  Thege houndary conditions imply that in the absence of sig-
ally a restrictive .cond|t|0n for moderately sized arrays. ON€nisicant continuous phase fluctuatioRgP;=1. Physically, it
can choose, for instance, for a systemLof L rhombi with means that if the array as a whole is a superconductor, it still

L=5-10 Josepshon contacts with;=10E.. This choice h : :
e = . as two states characterized by the phase differehge;0
would givet~0.35% andJ,~0.2 for a system of discon- """, vean the left and the right boundaries even in the

nected horizontal chains. The conditib® Ug; is well satis- regime where individual phases in the middle fluctuate

fied. Choosing now the vertical links witl;=0.595- and strongly between values 0 and In this regime of strong

?S)rzgssg{]s?ilg g %; ZWGE:I? ;Vrf dgtitéfg:rg r?g Itg\?vt é?,ifgoy”g{g?g s ﬁliscrete phase fluctuations, the external fields are not coupled

is more difficult, however, to eliminate the low energy states'© the global degree of freedof) describing the array as a

in the infinite array of coupled chains shown in Fig. 3 and toVNol€. In principle, itis also possible to have a similar array
satisfy the conditiori<U; at the same time, especially if all W.'th open bqundary cond|t'|ons but in this case it is more
junctions are to be similar in the sense defined above. Thidifficult to eliminate low lying states because there is no
can be achieved, however, by replacing the vertical links by€ason for the constraii;P;=1 in this case.
rhombi frustrated by the flup=(1/2+68)®y with §<1 with
each junction characterized B§<E; and ec=E.. These B. Array equivalent to a spin model with local interactions
rhombi would provide asignificant I'Igldlty to the continuous In order to construct the array equiva|ent to the Spin
phase fluctuationgwith effective rigidity’e;) but only weak  model(1) we need to couple the rhombi in such a way that
coupling (e;= J€;) between discrete degrees of freedom.  the transitions involving only one rhombus in a row are not
Finally, we discuss the effect of the finite phase rigidity onallowed but the superconducting phase varies significantly
the amplitude of the two rhombi procességk). The con-  between one rhombus and the next in the row. This is
dition that real single flip processes do not occur does nohchieved if rhombi are connected in a chain by a weak Jo-
exclude the virtual processes that flip consequitively twosephson link, characterized by Josephson eneyand Cou-
rhombi in the same chain. This would lead to an additionalomb energyec, so thatE;= e; ande; <Ec, as shown in Fig.
contribution toJ,(k) (8). To estimate this contribution we 5(b). In this case the simultaneous tunneling of two rhombi
note that immediately after two flips the continuous phasévhich does not change the phase difference across the weak
has a configuration shown in Fig. 4, which is associated witHunction is not affected, its amplituds,, is still given by Eq.
the energy~Ug. The amplitude for two such consecutive (8)-

flips isT2/ Uy it can become of the order 5§(k) in a large In this array the flip of a single rhombus is due to two

system(whereUy, is smal). However, the amplitude of the alternative mechanisms. The first one is that it involves the
y ; ost - ’ np creation of the half vortexas discussed in the previous sub-
full process involves additional action which further sup-

presses this amplitude. This happens because the wo ¢ section and does not involve the change in the phase accross

secutive flips lead to the high energy virtual state sketched ?{Ffe weak junction. Alternatively, it can be due to the phase
P 9 ay ip by 7 across the weak junction. Becausg<E( this

rFelgiJIfinand |n.order to get back to the low energy state thSQrocess is slow and its ampiitude is low

g continuous phase has to evolve dynamically. To e

timate the action corresponding to_this evolution, we note t= Eﬁ"‘eé"‘e‘ s’\s‘%,

that its dynamics is controlled byE,/e; junctions with

Charging energyec. For the estimate we can replace theseWhel’eS’ ~1. Further, this process increases the energy of the
junctions by a single junction with capacitive energy System bye;, so if its amplitude is smallt<e; it can be
ecVe;/ E;. Thus, the final stage of this process leads to theompletely neglected. Normally junctions with smaller Jo-
additional term in the actiodS~ E,/ ec= 7(E,/E¢). Depend- ~ sephson energg,<E;, have a bigger charging energy, not a
ing on the parametew’ﬁ;/ecsz'EJ/Ec, this additional Smaller one as rgquwed here. To qv0|d thl_s pr'oblem, we note
contribution to the action is smaller or bigger than the totalthat these weak junctions can be in practice implemented as
action, but even if it is smaller, it is still large compared with tWO junction superconducting quantum interference device
unity if E;> ec. In this case, the processes that do not chang€SQUID) loops containing the flud=(1/2+)®, as shown

the continuous phase dominate. We emphasize again that i Fig. 5c). The effective Josephson coupling provided by
any case the transitions involving two flips in the same rowsuch loop ise;=sin(2wd)E}” (whereEY is the energy of the
commute with both integrals of motidd, Q and thus do not individual junction while its effective charging energy is
affect the qualitative conclusions of the previous section. FoeC:E(JO)IZ. This allows one to use bigger junctions for these
practically important similar junctions, it means the follow- weak junctions and has another advantage in that it provides
ing. If #>Ec/E; only nearest rhombi flip with the ampli- an additional controlling parameter on the system. This con-
tude J, given by Eq.(8). If VEc/E;> n>EC/E; the flips  struction seems somewhat similar to the partially frustrated
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J,= €. (15
—®— = ‘Do(%+5) Similar to the array discussed in the previous subsection, we
e, & have to choose the parameters so that the energy of the half
(@) E

© E® E® vortex and states resulting from a single flip is sufficiently

high compared to the amplitude of the single flips. The dis-

cussion of the previous subsection carries over to this array.
The only change is that the energy of the vortex in the infi-

nite system contains the weakest link in the horizontal direc-
tion, i.e.,e; instead ofE,

T<Uyg,
Ug= 72e/(2L) + (4lm)esl L < \eyle;,

I /_
USf: ‘)/\*'Q;Q L> \r'eJ/GJ.

Finally, we have to ensure that the phases of the consecutive
rhombi are decoupled and the interaction between discrete
degrees of freedom is purely local. This is satisfied if the
continuous phase across weak junctions fluctuates strongly,
i.e., that the energy of a usuatot halfy vortex is smaller
than the kinetic energyye;e;<e.. Physically, it means that
the array as a whole is an insulator, similar to the topological
d’nsulator considered in Ref. 11 due to the full vortices that
by magnetic flux®y/2. (b) Implementation of the spin chain by move in a vertiqal di.rection_t.hereby decoupling different e
Josephson junction loops; here elementary rhombi are connected by -ns 9f rhombi. This condition dpes not contradict the f:on—
weak links, the appropriate parameters for these links can be offiition t<Ug because the latter involves the exponentially
tained if each link in fact consists of two elementary Josephsorsmall amplitude of flipping a single rhombus. If both condi-
junctions as shown irfc). (d). Full array implementing the spin tions are satisfied the absolute value of the phase on each
model(1). The natural boundary conditions for this array are peri-island constituting a rhombus fluctuates but the difference
odic, i.e., the poin®A should be connected %', B to B’, etc. across the rhombus remains a slow varible taking two dis-
) ) ) ) ) crete values and it flips only simultaneously with the other
rhombi that one needs to introduce as vertical links in largene in the same row. Note that the interaction between dis-
arrays discussed in the previous subsecffag. 3c)] butit et variables belonging to one column is due to the loop
serves a completely opposite purpose: it increases the dens rmed by these rhombi and two vertical junctions; it is

of the full vortices while keeping the discrete variables P I
. . therefore always local by construction, its value is given by
coupled. The partially frustrated rhombi, on the other hanqu. (15). Repeating the arguments of the previous subsec-

suppress the fluctuations of the continous phase while allowtion, we see that in order to suppress the simultaneous flips

ing in ndent fl ions of the discrete variables in dif-"" . .
g independent fluctuations of the discrete variables in d f distant rhombi in the same row one needs also to satisfy

ferent rows. Such a dramatic difference is made possible b . 2 .
a combination of two reasons. First, the frustration has 4N conditionE,Ec/ec>1, but in contrast to the case of the

different effect on these elements: in the case of the SQU”jegime discussed there, here the conditions on the vertical
loops half flux eliminates the Josephson coupling completelyunctions are not difficult to satisfy because one does not
while in a case of rhombi it leads to the exact degeneracy’€ed to keep the long range order in a continuous phase.
between two discrete states and to a rigidity for the continulUnder these conditions the dynamics of the array is de-
ous phase. Second, the values of the charging energies a#eribed by the Hamiltoniaqd).

rather different: in the case of SQUID loops the charging Although in this regime the system as a whole is an insu-

energy of its junctions completely dominates all processes ifator, it does not allow a half vortex to move across. So,

which phase changes across this loop thereby prohibiting theghysically, the two states of the global system can be ob-
single rhombus flips. In the case of partially frustratedserved in the array with the periodic boundary conditions

rhombi their charging energy is of the order of the chargingshown in Fig. 5. Here two different states correspond to the
energy of the contacts in horizontal rhombi and thus it suphalf vortex trapped or not trapped inside the big loop formed

presses the double flips of distant rhombi in one chain bupy the array as a whole due to the periodic boundary condi-
has relatively minor effect on the nearest ones. tions.

The J, interaction between the spins is provided by the
pairs of the weak Josephson contacts as shown in Fity. 5 IV. LATTICE CHERN-SIMONS GAUGE THEORIES

with the Josephson energy;<E; and charging energy WITH A FINITE ABELIAN GROUP
ec=Ec. These junctions do not affect the tunneling process

of each rhombi but provide the weak interaction between In this section we discuss the general properties of the
them of the form(1) with the strength Chern-Simons theories with discrete gauge gr@ypCon-

FIG. 5. Schematics of the arraga) The elementary Josephson
circuit emulating spin 1/2 consists of a four junction loop penetrate
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tinuousChern-Simons theories received a lot of attention ina typical lengthé=(\u)Y?/v. The pure Chern-Simons limit
the past because they provide a natural mechanism for thie then recovered as goes to zero. In this limit, when one
flux attraction to the charged particles which thereby changgarticle of charges; goes around another chargg the total
their statisticd?® In spite of some technical difficulties, it is wave function of the system is multiplied by an Aharonov-
possible to construct lattice versions of Chern-SimonBohm phase factor equal to dx(®;e,/2v)], so we a get a
theories’®2! at least forcontinuousgroups. The case of a factor expi(e,e,/2r)] upon exchanging these two particles.
discretegauge group is slightly more delicate because onene note that in the limiz— 0, H commutes with operators
cannot define canonically conjugate pairs such as the “magy _ry ., A, These operators provide a generalization
netic” (Aj;) and the “electric’(9/i 9A;) variables. Before we ofMtheMusugI sﬂhift operator¢ll,) for the Chern-Simons
discuss the peculiarities associated with discrete groups, Wee oy physically, the additional term in these operators ap-
briefly recapitulate the main properties of the Cont'”uo“%ears because in the presence of Chern-Simons one cannot
Chern-Simons t_heorles W'th.the. noncompact qnd compa nly shift fields, one has also to change the phase of the
U(1) groups which we describe in the Hamiltonian formaI-Wave function accordingly.
ism that we need to generalize these models to discrete e now turn to the lattice versions of the Chern-Simons
groups. TheU(1) Chern-Simons model is usually described yheqry. For the sake of simplicity, we shall work here on a
by the Lagrangian square lattice, although these constructions could be general-
1 . i 1 i i ized to other periodic systems. In this case, the vector poten-
L= NAL+A) - ~uB?+ u(AA ~AA),  (16) tial describing the gauge field is defined on the links of the
2 2 lattice, and will be denoted bxx; for the oriented link con-
whereB=4,A,~d,A, and dots stand for time derivatives. We necting §itesi andj. If we reverse the orienta_ltion_ of the Iin_k,
have used the gauge in which the time compomgnof the — we obtainA; =-A;;. We shall adopt the Hamiltonian descrip-
vector potential is zero. Because of this, we shall use onlyion from now on. In the absence of a Chern-Simons term,
invariance under time-independent gauge transformations ithe local electric fields are simply the canonical conjugate
this discussion. The canonical variables conjugatdtand  operatorsll;; of the Ay’'s. The corresponding commutation

A, are, respectivelylT,=\A,+vA, and IL,=\A,-vA,. The relations become

gauge transformations of the classical fiefgsare the usual [Aj,Ad=0,
onesA,—A,+d,¢, but because of the Chern-Simons term
this also induces a transformation of the conjugate fields [I1;, 1T, ] = 0
Hpﬁ I+ vtepgagt(ﬁ, Wh?l_r[eexy=d—;yx=bl. : " v ’
n quantum theor an ecome operators wi .
q Yo e ’ P (A ] =15, k-

the commutation relatiorfIl,, A, ]=-ig, ,(r—r') and the
gauge transformation is generated by the operd@yr The natural lattice Hamiltonian whose continuum limit is the
defined by R¢=fd2rR(r)¢(r) with  R(r)=d,11,(r)+vB(r), same as before reads

since [R(r),A,(r")]=-id,8(r-r') and [R(r),II,(r")]= 1

-ive,,d,8r—r’). In more physical terms, introducing an H=—> Hﬁ +ﬁ2 (A; +Ajk+AkI+AIi)2- (19
electric field(which is equal tO\A in the classical theopyby 2\ <ij> 2iju

E=IL,-vA, and E =11, +vA,, the generator of the gauge | the presence of a Chern-Simons term, the electric field
transformations can be expressedRly)=3,E,+2vB. ItiS  operators are modified. The electric fief} will contain,
simple to check that the gauge transformations commuigesided;;, terms associated with the vector potential in the
among themselves and also commute with the Hamiltoniagjirection perpendicular to the linkj). On a square lattice,
density=5-E?~5uB2 In the absence of matter, the equa- there are four links immediately perpendicular to this link,

tions of motion for the fields read and containing either siteor j. Let us denote by\(ij) this
) 2 set of four links. To reflect the signs which appear in the
E,+ epU(TE(ﬁ MJUB) =0, (17 continuous version discussed above, the linkdviinj) have

to be oriented in such a way as whep) runs from left to
_ right, (kl) runs from bottom to top, as illustrated in Fig.ap
AB= Ep(rapE(r' (18) below.
This yields a massive branch of excitations, which are no With these notations, the lattice Hamiltonian in the pres-

longer purely transverse, but also develop a Iongitudinafance of a Chern-Simons term may be written as
component proportional ta. Their dispersion relation is 1 v 2
)\2w§:4v2+)\,uk2. These propagating modes are then pushed Hes= PN 2 (Hii 2 > ) Akl)

to very high energies in the limit where<v. In the pres- <ii= (KhEMiD

ence of static external chargesat positionsr;, the Gauss n 5

constraint becomesR(r)==;g4(r-r;). In the ground state, + 52 (A + Ayt A + A)” (20
these charges induce a static field configuration according to: i

(2v=Au/2vV?)B(r)=2;e8(r—r;). So each particle is bound The important fact is that the generalized electrical field op-
to a flux tube carrying a flux equal ®/2v and smeared over erators Ej; =I1j; — v/ 4% ) v(ijyAa NO longer commute. The
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—————————— 3 € A components of this vector no longer commute. Since the vec-
| tor potentialA is not translation invariant, the usual transla-
! tion operators have to be combined with gauge transforma-
Y i tions in order to commute with the kinetic energy—-eA)?.
e VN A A These deformed generators of translations are analogous to
| the two components of the vectbr=P+eA Apparently, the
Y ! only way to construct gauge-invariant symmetry operators in
@ T o > > t~he lattice gauge model is to use the nonlocal combinations

P.ow and bco,umn defined in Eqs(21) and(22). Note that a
FIG. 6. (a) An oriented link(ij) (dashed lingand the four ori- Model with similar conservation laws, for interacting Bosons
ented links adjacent to ithick lineg which enter in the sep(ij). 0N & square lattice, has been analyzed in Ref. 22.

(b) For a given sitd, the loop£(i) defined in textthick lines. A next step is to construct a lattice Chern-Simons gauge
theory for the continuous butompact W1) group. This is

simply achieved in the absence of a Chern-Simons term, by
assuming that the vector potential variabkgsare periodic

with a period chosen, for instance, equal t. Zhis implies
that the spectrum of the conjugate operafdjsarediscrete
containing only integer values. Because of this, the form of
he Hamiltonian has to be modified from E49) above, and

relation [E,(r),Ey(r")]=-2ivé(r-r’) from the continuous
case becomes noWk;;, Ey(r')]=-irzv, whenever(kl) is one

of the four links in \V(ij). Here (ij) is oriented along the
positivex axis, and(kl) along the positivey axis. The appar-
ent difference in the normalization of the delta function on
the right-hand sides of these expressions is compensated Ynatural choice respecting the requirements of gauge invari-

the fact that\ij) contains four elements. _ ance and periodicity in the gauge potentials reads
The energy spectrum for the eigenmodes associated wit

this system now reads 1

K K k k H= = 2 0] - u cosAy +Ajc+ Ag +Ap)”. (24)
Nwf = 412 cos’-(z’()co§(—2¥> + 4)\M(Sinz<zx) + sinz(—¥>)_

2\ > iikl
2 Using this Hamiltonian as a starting point we add a Chern-
This spectrum is specially interesting in the limit whete Simons term by the standard deformation of the electrical
goes to zero, since then it exhibits lines of zero modes at theperators
boundaries of the first Brillouin zone, namely fia/=+ 7 or

2
k,=*. These modes are directly related to two remarkable Ho= i E Y 2 A
. . . . CS ij kI
nonlocal conservation laws which appear in the limit of van- 2\ S 4 ket
ishing . More precisely, for each row and each column, we 5
may define two conserved quantitiBg,,, and Qgojumn in the B '“E COSA + Ajic+ A + Aj)”. (29

following way: K
~ « We now discuss what can be the Hilbert space associated
Prow= E (= DIE; jas, (21)  \with this Hamiltonian. This is a nontrivial problem because
Jerow we can no longer impose the periodicity in the local gauge
~ potentials in the usual way, assuming that the wave function
Qeomn= 2 (= DVEj jug. (22 of the system considered as a function of thgs is 2
J&column periodic with respect to ang;. This is not possible because
Unlike the row and column operators discussed in Sec. Ithe naive shift operatd*®=exp(—i21l;;) that changes;
these operators mutually commute. Note that in the0  into A;+27 no longer commutes with the kinetic part of the
limit, the system exhibits a large setlotal conserved quan- Hamiltonian. The appropriate definition of these shift opera-

tities ﬁij, i.e., one for each link, defined by tors becomezsj:exp(—iZTrﬁij), with the ﬁij defined in Eq.
~ , (23). In order to construct invariant states under this full set
Il = 105 + ZE(H)EM”)AM- (23)  of shift operators, we need them to be mutually commuting.

. L . This is realized only for a discrete set of valuesvefm/ ,
Similar to the local electric fields, these variables do not,herem is any integer. Thus, the compact gauge theory is
mutually commute, so they cannot be simultaneously d'agoc':ompatible with the Chern-Simons term only for special,

nalized. Furthermore, they are not invariant under gaugey antized,” values ofv (see also Refs. 23 and R4This

transformations, since the electric field operators are gaug§atement is very similar to the well-known fact that in order

invariant and sinceE;; —IT; =—v/2% g enijA Which is  to quantize the problem of a particle on a torus in a perpen-
clearly gauge dependent. This situation is very similar todicular uniform magnetic field, the total magnetic flux
what occurs in the process of quantizing the motion of ahrough this torus should be an integer multiple of the flux
particle on a plane in the presence of a uniform perpendiculaguantumh/e. In one particle problem this requirement sim-
magnetic field. The local electrical field operators are analoply expresses the need for mutual commutation between two
gous to the gauge invariant velocity operatd?s,eA in the  magnetic translations that are used to construct the torus
particle problem. Because of the magnetic field, the twdrom an infinite plane.
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Note that, even for these special values maf the  modified by a phase factor e(xp'(v/4)[2w/n]22(jk)eﬁipjk),
Hilbert space of the theory is peculiar because the shifivhere the(jk)’s belong to the loopC; already defined above

operators §; are not gauge invariant. More precisely, [see Fig. @)]. For each value of, we define the generators
let us denote the generator of the gauge transformation sengy

ing Ajj into Ajj+a, for any sitej connected to siteé by i
() =ext(—iaS VT i i i v(2m\?
U;(a) =expl IaE]- H,J'). In t.hIS expression, the sum is .taken u =11 7 ex _IE(_W) D P |- 27)
over the nearest neighbojsof sitei. Clearly, these unitary Y A4\ n/ Gweci
operators commute with the Hamiltonig®5). For a sitei, _ o
and a link(jk) belonging toZ;, whereZ; is the oriented loop This definition preserves the fact that these generators mutu-
[see Fig. @)] defined by the edges of the square built fromally commute. Note that since the generatbkscommute
four elementary plaquettes whose center is located ai,site Simultaneously with the local fluxes, a convenient gauge-

we have the following relations: invariant basis of the Hilbert space is obtained by simulta-
. neous diagonalization of the local fluxes and this. With a
Ui(@)Si = €S Ui(a). (26)  discrete basis to describe each link, the kinetic part in the

Lo . . Hamiltonian(25) has to be modified. The most natural way
The sign in the phase factor depends on the orientation of t L . I
link (jK), and is negative if it is oriented along;. This ht% do this is to replace the local electrical fielg, by a

L . gauge-invariant operatdf; which shiftsA; by the minimal
ggggittli% ':] 'n;?I'Zzltjgzbnii\f;?::éeen;?qm?hzt tgﬁyzigf tsltna]lteeg possible amount 2/n. This operator is defined as follows:

and invariance of the wave function under tRer shift v . v(2m\?

operators If we choose to work in a basis of eigenvectors for &y = m exp(q( n ) 2 pkl)'
the gauge transformations, namely statd® satisfying
Ui(a)=expiaQ;)|¥), whereQ; is the electrical charge at site The Hamiltonian may now be written as
i, applying Sy to [¥) for (jk) in £; modifies the charg€);

(Khei))

by +m if w»=m/w. Conversely, a subspace where |-|CS:-i > (g$+ga

Sl ¥)=€"¥) is not gauge invariant, since after applying n<ij>

U;(@) on such states, we get the new periodic conditions on 2

with 6} =6 +mva, for any link (jk) belonging toL; with —,uz, cos<?(pij + Pjk P + pn)) . (28
the corresponding orientation. However, it appears that ijkl

EE)Hj’k:EE)‘gjk becausdl,’s,=U;(2m) commutes with any where&; is the Hermitian conjugate of;. To recover the
gauge transformation. This relation shows that the gauge in4amiltonian (25) in the limit wheren becomes very large,
variant quantityX ¢ is nothing but 2:Q; modulo 2r. we notice thatj; acts in the same way as éxp(27/n)E;],
The properties of this model have been investigated byherefore we have to choose so that zzw/n)Z)\Elzy\-l,
several groups. In the absence of a Chern-Simons term, the \jith these notations, the operators shifting the link vari-
periodicity of theU(1) gauge field allows quantum tunneling ablesp;; by one unit, and which commute with all the gauge-
processes where the local flux on a plaquette changes byvariant kinetic terms: read
+27. In a 2+1 dimensional path integral description, these . )
instantong(called here monopolgsnteract via a Coulomb- == 2 expl — il’(z_Tf) S D
like 1/r potential, leading to Debye screening in this mono- v 4\ n/ wmeni K
pole plasma. The proliferation of such tunneling events _
drives the system into a phase where the magnetic variablesnce they are analogous to ¢xp2=/n)Il;] in the continu-
Ay are strongly disordered, and in which external static elecous model. The 2 shift operatorsS; previously introduced
tric charges interact by a confining potential increasing lin-are then equal t 7—;;})“_ Note that the parameteris quan-
early with their separatiof.?° In the presence of a Chern- tized, in the same way as befoeamelyv=m/ , with inte-
Simons term, the properties of the monopole plasma argerm), since we impose the model to be periodic wipgris
deeply altered, and several groups have reached the conclghanged intqo;; +n. More precisely, as for the compadt1)
sion that a linear interaction now binds pairs of monopoles ofyroup, this notion of periodicity requires the mutual commu-
opposite charges, thus destroying the confinement of electriation between all the 2 shift operatorsS;. Models obtained
cal chargeg!2728 from two values ofv which differ by an integer multiple of
To extend this construction to a discrétg group, we  2n2/7 are clearly identical. We also note that changing
replace the continuous vector potential on the link joininginto 2n2—m amounts to replacing all the phase factors enter-
sitesi andj by Aj;=2/mnp;, wherep;; is an integer. In the ing in the definition of various operators suchlasby their
absence of a Chern-Simons term, the generator of the gaugemplex conjugates, and the corresponding models exhibit
transformation based at sitesendingpj, into py+Jji =& IS similar properties. In the special case=n?, the operators;
Ui:H;I)WiJ}: in analogy with the continuous case discussednutually commute, so this case is equivalentrts0. There-
above. The unitary operator;; is analogous to the operator fore, it is sufficient to choosm in the set of integers between
exf —i(2/7n)II;] of the continuous model, namely it trans- 0 andn?-1. Among thosa? possible values of, there is an
forms A;; into A;+2m/n or equivalentlyp; into p;+1. In interesting subset af values for whichm is an integer mul-
order to attach flux to particles, the generatrhas to be tiple of n. If this condition holds, the generators of the el-
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ementary gauge transformatiods defined in Eq(27) com-  variables. For any square plaquetigkl) centered at, the
mute with all the 2r shift operatorsS;. It is then possible to  corresponding flux, is the integeip; +pj+ pi+ ;. For any
apply simultaneouslythe condition of gauge invariance and flux configuration{s,}, we may then define a gauge-invariant
the periodic boundary conditior®,|¥)=|¥) for the allowed  quantum staté¥({o;})). Our main task is to represent the
physical states. algebra of gauge invariant operataf§ in such a basis.

If »=0, the resulting discrete gauge theofwithout These operators obey two families of constraints. First we
Chern-Simons terinhas two regimes according to the rela- have
tive size of the two terms entering idcs When u>\;,

H(»=0) describes a phase where localized flux excitations, _ Loomy

called fluxons, have the energy gapl—cog2x/n)). In this Ei€jc= eXp('ZWn_Z)gikg‘i' (29
phase, quantum fluctuations of the magnetic variapjeare . o
small, and the effective interaction between two static exterHere the sign corresponds to the geometry when (jkkis

nal electric charges varies logarithmically with their separaerpendicular tdij) and located on its left. Notions of left
tion. Notice that this phase owes its existence todiserete ~ and right are defined for an observer moving along the link
nature of the symmetry group, as illustrated by the vanishingn agreement with its orientation. We have used the condition
of the corresponding energy gap mss taken to infinity. A »=m/ . Second, these operators are related to the generators
small \-* term simply gives some amount of dispersion toOf local gauge transformations by

these excitations. Whex is decreased further below a criti- . .

cal valuel;, the fluxon gap closes, and the system enters the ]Q[f;* _ i m% U 30
charge confining disordered phase similar to the one obtained i ij = EXR 1em - ar M- (30

in the compact W1) case, for all values oX.

Let us first consider the effect of a switching on a Chern-As usual, the product in the left-hand side runs over the
Simons term in the former regime, where the potential ennearest neighbors of sitewhereas the sum in the right-hand
ergy (proportional tox) dominates. When,, is very large, side involves the four plaguettes adjacent.tim this expres-
we do not expect the flux binding mechanism to operatesion, attention should be paid to the ordering of the various
Indeed, a unit charge at sifecorresponds to imposing the operators. We assume that the two operators involving bonds
Gauss law constrainﬂk|‘lf>:exp[i(277/n)5jk]|\1'>. When)\;l along a given direction directly follow each other. Once this
is small, it is energetically more favorable to keep a vanishis enforced, any of the eight possible residual permutations
ing flux everywhere, because of the low value of the kineticcompatible with this criterion does not change the result. For
term compared to the fluxon gap. So we expect the fluxany oriented link(ij), let us callr (resp.r’) the adjacent
attachment mechanism to work onlyNf, is smaller than a plaquette located at the Idfitesp. righy of (ij). The operator
critical value\,. When\,, is further reduced, below, the Sﬁ decreases the local flux,; and increases, by one unit.
fluxon gap eventually closes, and the qualitative propertigs of\e see thafi’} should be proportional tO':—o'r_/ up to a phase
the system change drastically. In Sec. V we present a simpl@ctor which depends on the configuration of local fluxes on
perturbative estimate of the critical valug and argue that it the whole lattice. This phase factor is required in order to
is in fact equal tok,, i.e., both transitions happen simulta- satisfy the constraint&29) and(30) above. In a general case
neously. As already discussed for the case of the compagkis phase factor might become a very nonlocal function of
U(1) group, the presence of the Chern-Simons term modifieghe flux configuration but it remains simple in the case of
deeply the picture obtained for vanishingin the strongly  7,m=2 model. We discuss now its construction in different
fluctuating regime of smalk,. Note that, by contrast to the cases, starting with the simplest ones.

v=0 case, analysis of the— 0 limit is difficult since theg;; We start with the simplest case=2, andm=2. Then, the
operators no longer commute if they involve two perpen-electrical operatorsS; on two adjacent and perpendicular
dicular links sharing a common site. In the-c limit, we  |inks anticommute Furthermore, according to E¢26), the

expect to recover the continuous, lmgtmpact U1), theory  generators of the local gauge transformations commute with
for which we still do not know how to write down explicitly the shift operatorﬁk:(%j*k)z. It is then possible to impose

the ground state wave function, even in the-0 limit. simultaneouslythe gauge invariance constraint and the
periodicity on the links. As a result, the two operatofsand
V. MAPPING CHERN-SIMONS THEORIES ONTO SPIN o, are equal. We may then represent the above algebra by the
MODELS following Pauli operators, associated with a quantum Ising

. . . . . model attached to the plaquettes of the lattice
Here we shall study in more detail the interesting limit of Plaq

the vanishing magnetic energy and show explicitely how, in & =g, for vertical (ij) (31)

then=2 case, it maps precisely on the models studied in the e

beginning of this paper. As we have discussed, it is possiblg,

to propose a design of Josephson junction arrays which di-

rectly implements this limit. gi’jf = afgf, for horizontal(ij) (32
As a first step, it is convenient to introduce a basis in the

Hilbert space of gauge invariant statge., state§¥) such .

that U;|¥)=0 for any sitei), which keeps track of the flux explima,) = a7. (33
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The symmetry operators defined in E¢&1) and(22) are

easily generalized to the case of a discrete group. We now L--k
have Loy
P= I &7, (34 A
jErow(r) Lo-bloobloobLoobLo_bL_o_Lo_L__1
~ o FIG. 7. The electrical field operataf; ; moves one flux quan-
— nj) 'of - .
Qs= _ H 5js,ljg+yl . (35) tum from the plaquette tor’. In order to0 ;epresent this process in
J€columrts) the gauge where all horizontal links; are 0, we use the gauge

transformation on the string of sités . .i, that produce the electric
field operators on vertical linkgshown by light arrow and the
phase factors associated with the shaded area. In the flux represen-
tation the effect of vertical electric field is to remove the flux from
plaquetter and to add one flux to plaquetté. Note that the phase
factors associated with all plaquettes excepndr’ are doubled.

In these equations, the symbol sign stands for+ or —,
according to the parity of; (resp.y;) in the first(resp. sec-
ond) equation, rowr) denotes row number r and colugsh
denotes column number s. For a gengriot boundary row
and column these operators commute.

It is now possible to recover the symmetry operatiéhs
andQ; introduced in Sec. Il for Chern-Simons theories with
proper boundary conditions. First, notice that for model

operatorsP, and 65 correspond to the product of twi® (or

two Q) operatorsf’r: P.P.;1 when expressed in terms of the
spin operators of Sec. Il. If operat®y=1 is trivial (Py=1),

P,=P; and we can recover a singls operator taking the o i

product of allP,, operators with’ <r. In terms of the gauge  1he “statistical” gauge field4, ;. should not be confused
theory, the Chern-Simons HamiltoniafEqg. (28)] in its  With the original link varlab!esAij. Th]s new entity is im-
w=0 limit should not contain the dynamical variablgsuge P0osed to us by the necessity to satisfy the constraiis
fields) associated with the bonds along the edge of the latticeand(30). Note that as usual, there is a large amount of free-

In this case the operatoEsl andél indeed do not commute dom in the definition otA, ., reflecting the arbitrariness in

because they contain only one pair of noncommuting eIectri(?hOOSing a global phase for each sfalté{o; })). If we could

fields located in the corner of the lattice. With this assumpJ9nore the first constrain®9), our system of fluxons would

tion, we obtain two families of operators commuting with the ]E)e c_omplletely_ equwal_ent toha collect:jon of particles lobeymg
Chern-Simons Hamiltonian at=0 ractional statistics, since the second constréid) relates

the total statistical flux seen by a fluxon hopping around an

chosen to act as the identity operator. After enforcing the
gauge invariance and th& periodicity in the bond variables,
we may represerf; as

5:] = eXF(iAr,r’({a'r}))o':Ur_l- (37)

p= [ e&iow elementary plaguette of the dual lattice centered & the

Jox
Yi=<Yrow(r)

Q= I ew.

Xj<Xcolumr(s)

Here sign(j) is defined as above. These operators satisfy th

generalized commutation relations

number of fluxons in the immediate neighborhood .ofhe
presence of the first constraint is an original feature of fluxon
dynamics in Chern-Simons theories.

Let us now show how to construct explicitly one realiza-
tion for this statistical gauge field4, ,,. This amounts to
gwaking a definite choice for the global phase of the basis
state§ ¥ ({o,})). If we have one fluxon on the plaquette cen-
tered atr, it is possible to represent this by a string-like

S m configuration of bond variables;(r) such thatp; vanishes
PQs= ex;<|277 ?)Qspr- (36)  on any horizontal bond, and on most vertical bonds, with the
exception of all the links located on the same row asid on
In the special casm=2, these operators anticommute. Usingits right, for which it takes the value 1. This may be summa-
Egs.(31) and(32) above, we may write rized by the following definition:

P= 11 o I =P I1 &0).

r erow(r) (ij)>r

Here, the operatdP,,, is the projector on the subspace of the
Q= [l oy gauge invariant states. The notati®j) >r stands for all the
r Ecolums) links (ij) on the right-hand side of the plaquette cemtand
We now discuss the mapping in a more general casen the same row, and the reference sijeis simply the
First, we assume that the generators of local gauge transfostate where all the bond variableg are equal to 0. For a
mations still commute with the shift operato8 on the  general flux configuratiofw, }, we simply choose a reference
links. According to Eq(26), this requiresn to be a multiple  configurationp;;({o;}) obtained by superposing the configu-
of n. In this case, we may still view the local fluxes as rations associated with each fluxon excitation in the system.
defined modula. This implies in particular thato;)" can be  Therefore, the integens;({o}) are defined as follows. They
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are equal to zero for anlyorizontalbond(ij). For avertical eXp(iAr,r+9) =explim(o, + 0y1)).
bond, we set ] )
In physical terms, this set of models corresponds to an effec-
pi{oh = 2 o tive Bose statistics for fluxons.
r<(j) Let us now address the most general case. Since accord-

ing to Eq.(26), exchangingJ; and S involves a phase fac-
tor exg+i2w(m/n)], we may always diagonalize simulta-
W({o})) =Pl [ (55 )Piterd|0y. (39 neously the local gauge generatbiswith the operatorﬁ‘k'

(i) wheren’ is equal ton divided by the greatest common divi-
sor of m and n. This implies that dimension of the Hilbert
space associated with one flux is increaseN+on’ and we
may view the local fluxes as elements/4f. All the expres-
sions already written are then valid. In particular, we may
check that exfA, /) is unchanged, if we change, into
o, +Nb,, whereb;, is any integer.

The representation in terms of fluxes constructed in this
section becomes especially convenient when the gap of a
single fluxon is the largest energy scale in the problem which

55 . (39) occurs if u> >)\ [see Hamiltoniar28)]. In this limit, the
term proportlonal to\ induces tunneling processes where a
for any vertical link (ij). This means that4, . vanishes fluxon jumps from a plaquette to one of its neighbors. Using
whenever the vector joining andr’ is equal to %. For a  the constraintg29) and (30) and, we see that the operator
horizontal link (ij) oriented from left to right, we make a which moves a fluxon around the elementary plaquette of the
repeated use of the second constrgf) above for all the dual lattice centered at siteis simply equal tdJ;, provided
sitesk located on the same row d§) and on its right, that it acts on a state with only one fluxon on a plaquette

Using this, we define

We could have used operators instead of€;: to gener-
ate a state with the same desired flux configuratigs, but
the advantage of;; is that they commute with the projector
Piv- These statei“l'({ar}» form a complete basis of the
gauge invariant subspace, since any configurafig} of
bond variables producing the flux pattefm,} may be de-
duced from the configuratiofp;;({o;})} by a gauge transfor-
mation. With this choice of gauge, we have

which, if applied on a gauge invariant state, yields adjacent toi. Indeed, this operator may be written as:
&, yé‘” & |+y5| i+% hotice that this ordering is different from
5 =exd i27 z(Ur +op +2 s o) | My, Eq. (30)_ To recast this product in the form of the latter
rer expression, one may permute the last two operators on the
right, which according to Eq(29) produces a phase factor
where the “string” operatoiM;; is defined by exd-i2#(m/n?)]. But for a state with exactly one fluxon
located next to site, this factor is exactly cancelled by the
M= 11 & 11 & term exgi2a(m/n?)= "o, ] present in Eq(30), leaving only
K= gay=r’ the local gauge generatbk. This shows that a single fluxon

As beforer (resp.r’) denotes the adjacent plaquette locatedmoves in this limit as a free quantum particle on the dual
above (resp. below the oriented link(ij). The notation lattice, with an energy spectrum

(kl)>r refers to all the vertical linkgkl) on the right of 2

plaguetter and on the same row. In our gauge the string (k) :M(1_00<7>) - 2\, '(cogk,) + cogk,)).

operator becomes
c

This spectrum is gapped as longXasemains larger thai;,

Miil{orh) = oo [{or}). given by
Finally, we get 1 (1 co 5<27T>) 41)
)\,ﬁ 4 n//l

_ - oy M
&j=070y eXP('ZT’nz("r top+2 E f’f”))' (40" These equations neglect the renormalization of the fluxon
ren spectrum by the fluctuations, but we expect that it remains

where the formula applies only on the gauge invariant subqualitatively correct when these fluctuations are taken into

space. This shows that account. In particular, even in the regime of the strong fluc-
tuations, close to the transition, the picture of the fluxons
m . ) _ 5 :
expliA, ;) = exp| i2ma( o + 0y + 2 D o moving Wlth'a' spectrung(k) = Se+(1/2m)k shoulcd remain
’ n o gt valid at sufficiently long scales as long ag>\;. For a

system with an external char@g located at sité¢, we have
whenever the vector joining andr’ is equal to . The  U;=exdi(27n)Q;], so a single fluxon will experience the
right-hand side of this expression is most of the time highlyusual Aharonov-Casher effect from this static charge, inde-
nonlocal The only exception is the case whem2 an in-  pendently of the value of the Chern-Simons coefficient
teger timesn?. For m chosen in the intervdl0,n?-1], this  Since this interference effect always raises the value of the
occurs only when &=n?, which requiresn to be even. If  fluxon energy, in comparison to the ca®g=0, we see that
this condition is satisfied, we get the flux attachment mechanism predicted in the continuous
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U(1) Chern-Simons theory does not operate as long as thghase are irrelevant. Summarizing the requirements for a
single fluxon spectrum remains gapped. In the notations ofhysical Josephson junctions we conclude that they are rela-
this section[cf. (IV) abovéd, this implies that)\;:)\ﬁ. tively easy to satisfy in medium sized arraygp to 10x 10
element$ which should be quite sufficient to get a noise
suppression by ten orders of magnitude.

The spin models studied in Sec. Il can also be mapped

We presentedSec. Il the general symmetry analysis of onto a discrete Chern-Simons theory on a lattice. In order to
physical systems with protected degeneracies, i.e., with deestablish this mapping we have construci&kc. V) a
generacies that are exponentia”y Weak|y affected by |OcaHami|t0nian framework for lattice Chern-Simons theories
perturbations. We have shown that such protected degenerdith Abelian groups. We argued that, in contrast to the con-
cies appear in a system described by a wide class of Hamifinuous theories, such theories generally have low energy
tonians that commute with two sets of integrals of motion,modes corresponding to the excitations with large momen-
{P} and{Q;} but which do not commute themselves. Thesetum, compargble to the inverse lattice spacing. F.urther, we
sets of noncommuting operators should allow for a finite§h0WGd that ina theory with a compact graim part|cular,'
dimensional representation. In the simplest case;ff and ~ in & theory with discrete groypthe Chern-Simons coeffi-
QQ, commute with all other operators the algebra of thesé&i€nt, v, is quantized similar to the quantization of the mag-
operators allows two-dimensional representation and th&etic flux through the torusz=a/m. In the gauge invariant
states of the system are exactly doubly degenerate. For tif@ace of magnetic fluxes the kinetic part of the Hamiltonian
effect of local perturbations to become really small in theOf these theories can be described as a flux dynamics. Due to

thermodynamic limit one also needs that the gap to the lovihe presence of Chern-Simons term the motion of fluxes in
energy excitations remains finite. and z directions does not commute. In the simplest case _of
We have explicitly constructed a two-dimensional latticethe Zz, m=2 theory, the fluxes take only two values and their
spin model with local interactions and which has these inteMotions inx and z directions anticommute allowing us to
grals of motion. In this model all states are exactly doublymap this theory onto the spin model studied in Sec. II. In a
degenerate. The behavior of this spin model is characterizegeneral case the Hamiltonian in flux representation becomes
by the dimensionless paramet&{[\]x which phys|ca”y cor- \_/el’_y nonlocal but St”l- this representatlon is convenient in the
responds to the anisotropy of the couplings in different di-limit of large magnetic energy when the fluxes are rare. Us-
rections. We were able to treat it analytically in the regime ofing this limit, we show that the flux attachment to the charge
large (or smal) values of this parameter. In this regime the Only occurs if a single fluxon is gapless.
Spectrum of the System Containg|ﬁw energy modes Where The.maJn theore“cal |Ssue. ra|Sed by SeC. IV and Vv Of the
L is the linear size of the spin array. The gap between thes@aper is the precise connection between lattice and continu-
modes and the ground state decreases exponentially with tif!S versions of Chern-Simons theories. For the continuous
system size. The number of these low energy modes is thgase, there is a sharply isolated ground state subspace, whose
same as would be the number of edge states but, unlike tHtegeneracy directly reflects the topology of the two-
latter, they are not sensitive to the boundary conditions. Iflimensional space on which the model is defined. In a recent
order to check the validity of these conclusions for all valuesSeries of paper¥,3tvarious descriptions of these modéis
of J,/J, we have also performed the diagonalization of smallterms of wave functions defined on equivalence classes of
arrays(up to 25 spinsand concluded that the gap to low loops hav<_a been advogaped to construct cand|date_ lattice
size for all values but this decrease becomes very slow fof@ @ pure(topologica) Chern-Simons theory. The approach
J,/3,~ 1. It remains unclear to us, however, whether the Syswe.have follpweq he're starts from a direct quantization of a
tem exhibits a new phase at these values of the parameter tice Hamiltonian inspired from the continuous Chern-
of a critical behavior. such construction typically leads to the degenerate modes
We have suggested and studi@ec. 11l) two designs of gttach.ed to the Brillouin zone boundary; it remains to be
the Josephson junction arrays and showed that their effectiygvestigated whether or not the presence of these modes
low energy Hamiltonians satisfy the symmetry requirements$Poils the expected properties of continuous mogslsh as
described above and thus their states are doubly degener&@tistical transmutation of external charge would be
and protected from the external noise. The simplest of thes@ISO interesting to see whether these degeneracies remain for
actions. The nonlocality of these interactions, however, is nofon-Abelian discrete groups is clearly desirable, from the
important for the protection from the external noise. FurtherPerspective of enlarging the set of unitary operations gener-
in these systems one can completely eliminate the dangero@éed by adiabatic exchanges between charge and/or vortex
low energy modes by appropriate boundary conditions. ThéXxcitations32%3
mapping of the Josephson junction array onto a spin system
with symmetric Hamiltonian implies that the continuous su-
perconducting phase can be integrated out. We have exam-
ined the conditions when this can be done and when low We are thankful to L. Faoro, A. Kitaev and J. Vidal for
energy degrees of freedom corresponding to the continuousseful discussions. L.I. is thankful to LPTHE, Jussieu for
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APPENDIX A1 EXACT SOLUTION OF TWO CHAIN A similar result for the splitting can also be obtained for

PROBLEM an Ising chain with periodic boundary conditions. Here the

For the diagonalization of the Hamiltonia8) it is con- chain does not have ends, and the dispersion equation has

venient to rotate the Pauli matrice—57, 7*— & and use only solutions, corresponding to the continuous spectrum.

i i s . . . :
the Jordan-Wigner fermionic representatisee Ref. 29 The splitting arises from the following _effect. thel effective
boundary conditions for the Jordan-Wigner fermiangre

-1 periodic or antiperiodic, depending on the parityf their

o =4 ex im> zf,ai, , total number(the latter is a good quantum numbper
i'=1
K 2am, for1=1, (A6)
- n=
— o 2m(m+1/2), forl=-1
O'i:ex _|7T2 a.i,air ai,
i'=1 with m=0,1,... L-1.
The energy of the first excited state is just due to this
Ti=2a'a -1 (A1) effect; it comes not from any specific single-particle state,
but from the entire Fermi sea of the filled energy levels, each
so that Eq(3) takes the form of which is slightly shifted when the parityis changing
n-1 n
n-1
H=23,0 3 (& - a) (@ + i) + 203 (@ - 1/2) [, A=S E(k: 2111) _ E<k: M) _
=1 =1 =0 n n
(A2) (A7)
whereA =J,/2J,. By means of the Bogoliubov-like transfor- ) ) ) )
mation the HamiltoniariA2) can be diagonalized Using the Poisson summation formula we arrive at the result

_ o 1-(3,/23,)?
H= 3 B2, ), 20 = 43,1 /%(Jx/zaz)n, (A8)
T

whereby, by are the fermionic operators of the eigenmode

IR : Swhich differs from(A5) only in the preexponential factor.
with eigenenergies

E(k) = 2J,JA%+ 1 + 2A cosk. APPENDIX B: THE CRITICAL POINT OF THREE CHAIN
The quasicontinuous spectrum of this Hamiltonian can be PROBLEM

found from the quantization rule for the quasimomentkm We consider a three-strings ladder with periodic boundary

sink conditions along each rung. The corresponding Hamiltonian
k(n+1) - arctar<—> =7m (A3) reads
A + cosk
ith int ForA>1 thi tion h thydistinct -~ D .
with integerm. For A > 1 this equation has exacttydistinc __ z 7z _ X x
nontrivial solutions, and the set of the corresponding eigen- H ‘]Zgl gl Oﬁ"ﬁh ngl 21 "xoﬁﬂ’ (B1)

functions is complete. It is not the case far< 1, however.

Here the number of the continuous spectrum eigenstates gherej=4 is identical toj=1. We introduce a basis of four
only n—1, so that there should be one additional mode—thatatesy,, (with m=0, 1, 2, 3 on a particular rund, corre-
bound state. To find the latter one should look for complexsponding to the sector with aft,=1

solutions of the dispersion EQ.(A3). Substituting

k=m+i7y, we arrive at T T ! !
1 | A-¢” =T =1 | ={1] i=||
y(n+1):§ln A7 (A4) 1 l l 1

and, introducing e Y=A+x with small x<1, we get Then(up to an irrelevant additive constarthe Hamiltonian
x=~[(1/A)-AJA? ™Y so that and the bound state energy are(B1) can be rewritten as
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n-1

n
H=-43,2 dnm,, ~ %2 T
i=1 i=1
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el = %{(esh + 36 + (&3 - —h)f}

for matrix I', we can rewritg B3) in the form

where the matrid’

=

1
1
0

B P RO
B RO R
O R Kk R

1

plays a role, similar to that of they-operator for the two
chain problem. This is the Hamiltonian of the one-
dimensionalg=4 Potts model in a “transverse field.”

Consider now an asymmetric classic two-dimensiona
=4 Potts model with the Hamiltonian

BHza= =Ko dmm .~ K Omymyye (B2)
ik ik

The transfer matrix for this syste(in the k direction) is

n-1
T=ex KZE §mimi+1
i

n

H (1er+fi),

i=1

(B3)

where 1is 4x 4 unity matrix. Using the identity

n-1
T=C exp KZE 5mimi+1 + hE I,
i

n

(B4)

where C is an irrelevant constant and is determined by

ekx=(e+3)/(e™-1).

The line of critical points for the asymmetric two-
dimensionalg=4 Potts model is governed by the relation
(see Ref. 14

(= 1)(eXz— 1) = 4;

in terms ofK,, h this relation takes the simple forif,=4h.

On the other hand, the matr{4) describes the time evolu-
tion of the quantum system with the Hamiltonig®l) and
with 4J,=K,/At, J,=h/At, whereAt— 0 is an infinitesimal
time interval. Thus, we conclude, that the quantum phase
transition in our initial three chain system takes place at the
symmetric pointl,=J,.

Unfortunately, the solution of the two-dimensiorngt4
Potts model away from the critical line is not known and, in
contrast to the exactly solvable two-chain model, we cannot
find the dependence of the gdpon the parameted,/J, in
the full range of this parameter.

*Also at: Landau Institute for Theoretical Physics, Kosygina 2,
Moscow, 117940 Russia.
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