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We consider a simple model of a multidomain superconductor-ferromagnet-superconductor(SFS) Josephson
junction. Sign-alternating magnetizationM in domains leads to a spatial modulation of the phase difference
fsxd. Due to this modulation the Josephson critical currentIc may have a different sign depending on the ratio
of the magnetic flux in a domain, 4pMas2dFd, to the magnetic flux quantum. This phase modulation, but not
a nonmonotonic dependence of the local critical current densityjc, may be the reason for oscillations of the
currentIc as a function of theF layer thickness 2dF or temperature, observed in experiments.
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I. INTRODUCTION

New states have been and observed in Josephson junc-
tions in recent years. These states are characterized by a
negative Josephson energyEJ=sIc" /2eds1−cosfd, that is,
under certain conditions the Josephson critical currentIc
changes its sign becoming negative. This means that the
ground state corresponds to the phase differencef equal to
p (p state), but not to zero as it takes place in ordinary
Josephson junctions. Such states have been observed in Jo-
sephson junctions of different types: 1) in multiterminal SNS
Josephson junctions,1 (2) in junctions consisting of two
d-wave superconductors(see references in the review,2 (3) in
SFS junctions3–5 (see also the review7), whereS, N, andF
stand for a superconductor, a normal metal and a ferromag-
net, respectively. Thep-state in SNS junctions is created by
passing a dissipative current through theN layer. This cur-
rent leads to a nonequilibrium distribution function of quasi-
particles in theN wire with respect to the equilibrium distri-
bution function in the superconductors. In thed-wave
superconductors(high Tc superconductors) the sign of the
order parameterD depends on the direction in space with
respect to crystallographic axes. Therefore if twoS/N (or
S/ I, whereI is an isolator) interfaces have different, properly
chosen orientations, then the critical currentIc, which is pro-
portional to the productD1D2, may be negative. This occurs
provided that the order parameter in one superconductor(D1
or D2) is negative. In SFS junctions the critical currentIc
may be negative because the condensate(Gor’kov’s) Green’s
function, which determines the currentIc (or to be more ex-
act, the critical current densityjc), oscillates in space chang-
ing sign. The sign reversal ofjc in SFS junctions was pre-
dicted a long time ago by Bulaevskii, Kuzii, and Sobyanin,8

who considered electron tunneling between two supercon-
ductors via a magnetic impurity. Later this effect was studied
in SFS junctions by Buzdin, Bulaevskii, and Panyukov9 (ref-
erences to other theoretical papers on this subject are given
in the review7). It was shown that the current densityjc de-
cays with increasing the thickness of theF layer 2dF and
changes sign(damped oscillations ofjc). Such behavior of
the critical current has been observed experimentally in Refs.
3–6; the currentIc decays with increasing the thickness 2dF

or temperatureT in a nonmonotonic way changing sign. In
the recent paper6 a spontaneously circulating current in a
superconducting ring with a SFSp junction has been ob-
served.

In this paper we show that the dampedIc oscillations are
not necessarily related to such a dependence of the local
critical current densityjc as it was anticipated previously.
The total Josephson currentIJ, which is measured in experi-
ments, is an integral from the local current densityjJ
= jc sinf over the whole area of a SFS junction[we choose
a simple, sinusoidal form of the dependencejJsfd, but the
conclusions we make are valid qualitatively in a general
case]. It is important to have in mind that the phase differ-
encef varies in space in the presence of a magnetic field,
and in multidomain SFS junctions a spatial dependence off
arises even in the absence of an external magnetic fieldHext.
It was already mentioned in Refs. 3 and 4 that the maximum
value of Ic corresponds to zero external magnetic fieldHext.
One can assume that this may be related to a multidomain
structure of theF film. Otherwise the maximum value ofIc
would be shifted by a certain value ofHext for which the
inductionHext+4pM is zero, whereM is the magnetization
in a one-domainF film. We consider a simple model of a
multidomain structure of theF film and show that even if the
local current densityjc is always positive, the critical current
Ic changes sign when the in-plane magnetic flux in a domain
Fa=4pM0s2dFad is an integer of the flux quantumF0,
wherea is the domain width. The domain widtha depends
both on the thicknessdF and temperatureT if the screening
of stray magnetic fields by the Meissner currents is taken
into account.10–12 Therefore, the magnetic flux is changed
with increasingdF and temperature leading to damped oscil-
lations of the critical currentIc. It will be shown that the
dependenceIcsFa/F0d may be described by a Fraunhofer-
like pattern:

IcsFa/F0d = Ic0 sinspFa/F0d/spFa/F0d, s1d

where Ic0= jcLx is the critical current for a uniform(one-
domain) SFS junction per unit length in they direction (we
assume that all quantities depend only onx andz; see Fig. 1).
This dependence describes the critical current for the case of
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domains with an alternating magnetization which takes con-
stant values ±M0 in domains.

II. MODEL AND BASIC EQUATIONS

Consider a SFS Josephson junction in which theF layer
consists of stripe domains parallel to they axis (see Fig. 1).

To be specific, we consider the Bloch domains, that is, the
magnetization vectorM lies in they−z plane changing its
direction in domain walls of the widthw. In the case of a
narrow domain width the magnetization vectorM is parallel
to the y axis, constant in each domain and rotates in the
domain wall. The magnitudeuMu is assumed to be constant
everywhere in theF film. The orientation of the magnetiza-
tion M in the F film (in-plane or out-of-plane) depends on
many factors such as the Curie temperature, the constant of
magnetic anisotropy, the film thickness, etc.(see for
example,13,14 and references therein). In ultrathin F films (a
few atomic layers) a transition between the in-plane to out-
of-planeM orientation may occur.15 We consider much more
thicker F films, used in experiments,3–6 where the magneti-
zation orientation is determined by the direction of easy

magnetization. Therefore, it is assumed that the axis of easy
magnetization is parallel to the plane of theF film. Even in
the absence of the Josephson coupling between the supercon-
ductorsS, the Meissner currents along they direction are
induced by the stray magnetic fieldH =sHx,0 ,Hzd [dashed
lines with arrows in Fig. 1(a)]. The magnetic field compo-
nentsHx,z can be easily found from equations

]2Hx,zskn,zd/] z2 − kn
2Hx,zskn,zd = 0, s2d

whereHx,zskn,zd= e−a
a sdx/2adHx,zsx,zdexpsiknxd is the Fou-

rier component ofHx,zsx,zd, kn=pn/a, n=0, ±1,…; kn
2=kn

2

+kL
2, kL

−1=lL is the London penetration depth(in the ferro-
magnet the penetration depthlL,F may be taken infinite be-
cause the amplitude of the condensate in theF layer is small
and therefore the screening is weak). This equation is supple-
mented by the boundary conditions16

fHxg = 0, fHzg = 4pMzskn,zd, s3d

where the square brackets mean a difference:fHxg
=Hxskn,dF+0d−Hxskn,dF−0d. The componentMz is not
zero in the domain walls. This implies that the in-plane com-
ponent ofH is continuous across theS/F boundary and the
normal component ofH, which exists near the domain walls,
experiences a jump. One can easily solve Eq.(2) and find the
fields Hx,z, which are connected with the vector potential
A :Hx=−]Ay/]z, Hz=]Ay/]x. The expression forAy in the
superconductor is

Ayskn,zd = − 4pMzskndsfniknd−1 expf− knsz− dFdg; z. dF,

s4d

where fn=1+kn/ skn tanhund, un=kndF. The vector potential
Ay in the lower superconductorsz,dFd has the same sign.
This means that the stray fieldsHx,z lead to the screening
currents

j yskn,zd = − sc/4pdkL
2Ayskn,zd, s5d

which have the same direction in the upper and lower super-
conductors, but the opposite directions in neighboring do-
mains[see Fig. 1(a)]. Because the Meissner currents flow in
the same direction in both superconducting electrodes, they
do not lead to a phase difference between the superconduct-
ors and do not influence the Josephson current essentially.
These currents may locally reduce the amplitude of the order
parameter and therefore decrease the critical currentIc if the
magnetizationMz is strong enough. We will not discuss this
simple effect.

If the Josephson coupling between the superconductors is
negligible(this case was considered in Ref. 10), the magnetic
field has only the componentsHx,z which are determined by
the vector potentialAyskn,zd. The componentHy is zero.
However the componentsAx,zskn,zd of the vector potential
are not zero. For example in one-domain case

Axszd = 4pMyz in F, s6d

Axszd = ± 4pMydF in S. s7d

In the absence of the Josephson current the components
Ax,z in a multidomain SFS structure are found from the equa-

FIG. 1. Schematic image of the considered SFS junction with
magnetic domains(a); (b) shows the supercurrents(solid lines with
arrows) in the upper superconductor screening the normal compo-
nent of a magnetic field near domain walls. These currents in the
lower superconductor(not shown) have the same direction. The
domain boundaries are represented by the dashed lines. The dashed
lines with arrows illustrate the stray magnetic field related to rota-
tion of the magnetizationM in the domain walls. The cross and dot
in the circles show the directions of the magnetization vector in
neighboring domains;(c) the solid lines with arrows show the
screening supercurrents in the presence of the Josephson coupling.
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tions: H = ¹ 3A =0 and¹ ·A =0. However, in this case the
presence of componentsAx,z does not lead to the supercon-
ducting currents and therefore to the appearance of an addi-
tional magnetic fieldH. The term proportional toAx in the
expression for the supercurrent is compensated by the term
proportional to gradient of the phase[see Eq.(9)]. If the
Josephson currentjJ is not zero, additional screening currents
jx,z and therefore the componentHy arise in the system[see
Fig.1(b)]. The componentAx affects the phase difference and
therefore the critical currentIc in the junction under consid-
eration.

In order to calculate the critical currentIc, one needs to
derive an equation governing the phase differencef in a
multidomain SFS Josephson junction. For simplicity we as-
sume that the thickness of the F layer is small: 2dF!a, w,
where 2a is the period of the domain structure andw is the
width of the domain wall(one can analyze a more general
case, but the calculations become more combersome). We
need an equation for the componentHy which is related to
the local Josephson current density

s¹ 3 Hdz = u ] Hy/] xuz=0 = s4p/cd jc sinf. s8d

We assumed the simplest form of the relationship between
the Josephson current densityjJ and the phase differencef,
but this assumption is not essential. We also dropped a con-
tribution to the gauge-invariant “phase difference” which
stems from the vector potential and has the forme−dF

dF Azdz.
One can easily show that this part is smaller thanf by the
parametersa/dFd (we choose a gauge in which¹ ·A =0).
We’s write down thex component of one of the Maxwell
equations for the current density in the superconductor atz
= ±dF:

− ] Hy/] z= s4p/cd jx = kL
2f− Ax + sF0/2pd ] x/] xg, s9d

wherekL
2 is defined in Eq.(2) andx is the phase of the order

parameter. Subtract Eq.(9) taken atz= +dF andz=−dF from
one another(a similar method was used by one of the authors
in Ref. 18 in the study of collective modes in layered super-
conductors), we get

− f] Hy/] zg = kL
2h− fAxg + sF0/2pd ] f/] xj, s10d

where the square brackets means, as before, a jump across
the F layer andf=xsdFd−xs−dFd is the phase difference.
The jumpfAxg is found from the equation

4pMy = ] Ax/] z− ] Az/] x s11d

and is equal to:fAxskndg=4pMysknddF in accordance with
Eq. (6) (see Ref. 19). The contribution of the second term is
smaller by the parametersa/dFd. The component of the mag-
netic fieldHy can be found from an equation similar to Eq.
(2). With account for the boundary condition[Eq. (10)] this
equation acquires the form

]2Hyskn,zd/] z2 − kn
2Hyskn,zd = dszdkL

2hfAx,kg + sF0/2pdiknfkj.

s12d

Solving this equation forHy and substituting the solution
into Eq. (8), we obtain an equation for Fourier components
of the phase differencefk=fskn,zd:

kn
2fk + kJ

2skn/kLdfsinfsxdgk = ikn4pMysknds2dFds2p/F0d,

s13d

where kJ=Î16p2jc/ckLF0 is the inverse Josephson length.
In the coordinate representation Eq.(13) has the form

− ]2f/] x2 + kJ
2E dx1Ksx − x1dsinfsx1d

= − 4pdFs2p/F0d ] Mysxd/] x, s14d

where the kernelKsx−x1d is defined as follows

Ksx − x1d = s1/2ado
n

skn/kLdexpf− iknsx − x1dg, s15d

Eq. (14) describes the dc Josephson effect in a simple model
of multidomain SFS junctions with a thinF layer.

III. TWO TYPES OF DOMAIN STRUCTURES

If the London penetration depth is small compared to the
domain sizea and the width of the domain wallslL!a,wd,
then Eq.(14) is simplified. This condition means that the
characteristickn values are much smaller thankL. In this case
Ksx−x1d<dsx−x1d and Eq.(14) acquires the form

− ]2f/] x2 + kJ
2 sinfsxd = − 4ps2dFds2p/F0d ] Mysxd/] x.

s16d

This equation differs from the standard Josephson equation
only by the term on the right-hand side. One can study vari-
ous properties of the SFS junctions described by Eq.(16) or
by Eq. (14), but in this paper we analyze only the critical
current and its dependence on different parameters(external
magnetic field, the thichknessdF etc). First we consider the
case of a periodicMysxd dependence. If the period 2a of this
dependence is much less than the long Josephson lengthkJ

−1,
then a solution for Eq.(14) (the relation betweenlL anda, w
may be arbitrary) is

f = fM + f0, fM = s2p/F0d4ps2dFdEx

dx1Mysx1d

s17d

where fMsxd is a function fast varying in space,f0 is a
constant(or a function smoothly varying over the perioda).
The total Josephson current(per unit length iny direction) is

IJ = jcE
0

Lx

dx1 sinff0 + fMsx1dg s18d

wherefM is given by Eq.(17). Note that the weak Josephson
coupling does not affect the domain structure, and therefore
this structure can studied in the absence of the Josephson
effect. As we noted, the domain structure was analyzed theo-
retically in Ref. 10 for arbitrarydF and in Refs. 11 and 12 for
thick F layers sdF@ad. It was shown in Ref. 10 that the
period a depends ondF in a nonmonotonic way and the
width of the domain wallsw may be much less than or com-
parable with the domain widtha. One has a step-like struc-
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ture Mysxd in the first case and an oscillatory structure in the
second case. Consider two limiting cases.

(a) Step-like domain structure. The magnetization vector
equalsM =f0,Mysxd ,0g, where Mysxd= +M0 for 0,x,a,
andMysxd=−M0 for −a,x,0. Outside this interval the de-
pendenceMysxd is periodically repeated. For this structure
the Josephson currentIJ is described by the formula

IJ = Ic0 sinf0
sinspFa/F0d

pFa/F0
, s19d

where Ic0= jcLx, Fa=4pM0s2dFad is the in-plane magnetic
flux in one domain. Therefore the critical currentIc, which is
given by Eq.(1) oscillates and decays with increasingFa.
This implies that the amplitude of the critical current oscil-
lations decreases with increasingdF or temperatureT be-
cause the period of the domain structure 2a depends on
lLsTd (see the theoretical papers10–12 and the experimental
paper,17 where it was shown that the domain structure is
changed with changingT).

b) Oscillatory domain structure:Mysxd=M0 sinsk0xd, k0

=p /a.
In this case the critical current is equal to

Ic = Ic0J0ffMsadg, s20d

whereJ0 is the Bessel function of the zeroth order. In both
cases the behavior of the critical currentIc as a function of
Fa is qualitatively the same: the currentIc decreases with
increasingfMsad and changes sign.

In our model of a periodic domain structure the action of
an in-plane external magnetic fieldHext on Ic can be easily
analyzed. In the presence of the fieldHext the phase differ-
ence equalsfsxd=f0+fHsxd+fMsxd, wherefMsxd is given
by Eq. (17), f0 is a constant andfHsxd=2lLxHexts2p /F0d.
If the domain sizea is much less than the length of the
junctionLx, the averaging over the period of the structure can
be done as before at a fixed coordinatex, and we arrive at
Eq. (19) in which one has to replacef0⇒f0+fHsxd. The
final averaging overLx yields, for example, in the model of a
step-like domain structure forIc:

IcsHextd = Ic0
sinfHsLxd

fHsLxd
sinspFa/F0d

pFa/F0
. s21d

Thus the dependenceIcsHextd is given by the usual Fraun-
hofer curve with an effective critical current
Ic0 sinspFa/F0d / spFa/F0d the sign and value of which de-
pends ondF, a, etc.

Although in the theoretical papers10–12 only a regular do-
main structure is considered, in real samples the domain
structure is not strictly periodic. It may be almost regular
(see for example,21,22), or very irregular23,24 with in-plane or
out-of plane magnetizations. We study the effect of a pos-
sible irregularity of the domain structure on the basis of a
simple model. We assume simply that the domain sizea
fluctuates around a mean valuea and fluctuations ofa are
described by the Gaussian distribution. Then the dependence
of Icsdd on the dispersion of the fluctuations is given by the
integral (in the absence ofHext)

Icsdd = Ic0c1E
0

`

da
sinfpFasad/F0g

pFasad/F0
expf− sa − ad2/d2g

s22d

wherec1=he0
`daexpf−sa−ad2/d2gj−1 is a normalization con-

stant. In Fig. 2 we plot the dependenceIcspFasad /F0d for
different parameterg=a/d. One can see that for largeg this
dependence coincides with a Fraunhofer pattern, but with
decreasingg the amplitude of oscillations ofIc decreases and
finally the function IcsF0d does not change sign(no
p–states).

IV. CONCLUSION

In conclusion, using a simple model of a multidomain
SFS Josephson junction, we have calculated the critical cur-
rent Ic. It turns out that the currentIc changes signs when the
in-plane magnetic fluxFa=4pMas2dFd in each domain
equalsnF0. The magnetic fluxFa is caused by the magne-
tization in the ferromagnetic domains and therefore exists
even in the absence of an external magnetic field. The oscil-
lations of Ic observed experimentally by varying thickness
2dF or temperatureT may be related not to the sign reversal
of the local critical current densityjc, but to a simple
mechanism—the Fraunhofer-like oscillations ofIc caused by
the internal magnetizationM in domains. Almost nothing is
known about the domain structure in real SFS junctions. For
estimations we take 4pM0<1 kOe, a<1 mkm, 2dF
<100 A. For these values we obtainFa<10−7Oe cm2. This
means that the critical currentIc changes sign for the thick-
ness 2dF about 100 A. This value of thickness is close to that
used in experiments, although, strictly speaking, the values
of the magnetizationM and of the domain structure perioda
are not known. In order to make more convincing conclu-
sions about what is the mechanism of the sign reversal effect
(whether it is caused by the sign reversal of the critical cur-
rent densityjc or by the spatial phase modulation in a mul-
tidomain SFS structure), further theoretical and, especially,

FIG. 2. Normalized critical Josephson current as a function of
the normalized magnetic flux in a domainm=pFasad /F0 for dif-
ferent parametersg=a/d, wherea is the averaged domain size and
d /Î2 is the dispersion of the domain size fluctuations.
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experimental studies are needed. In particular, it would be
interesting to study the influence of the domain structure on
Shapiro steps in SFS junctions measured in a recent paper.20
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