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We study the formation of local magnetic moments in quantum point contacts. Using a Hubbard-like model
to describe point contacts formed in a two-dimensional system, we calculate the magnetic moment using the
unrestricted Hartree approximation. We analyze different type of potentials to define the point contact, for a
simple square potential we calculate a phase diagram in the parameter spacesCoulomb-repulsion-gate voltaged.
We also present an analytical calculation of the susceptibility to give explicit conditions for the occurrence of
a local moment, we present a simple scaling argument to analyze how the stability of the magnetic moment
depends on the point contact dimensions.
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I. INTRODUCTION

The problem of electric charge transport through quantum
point contactssQPCsd has been intensively studied both from
the theoretical and the experimental points of view.1 The
observation of conductance quantization in a diversity of
point contacts is now well established and, in general terms,
understood. The discovery of extra structure, that looks simi-
lar to conductance plateaus at 0.7s2e2/hd in GaAs devices,
however, still remains as an open question.2–9 The recent
accumulation of experimental evidence as well as the theo-
retical analysis of this structure suggest that it is due to mag-
netic fluctuations.10–12

The experimental data around the anomalous 0.7 plateau
observed in some of these QPCs have been interpreted as due
to a Kondo effect.11 This interpretation is based on the ob-
servation of a zero bias anomaly in the conductance, its tem-
perature and magnetic field dependence as well as a single
energy scalekBTK associated with it. The Kondo effect is due
to the magnetic screening of a localized spin, a phenomenon
that occurs for magnetic impurities diluted in metals13 and
also for quantum dots in mesoscopic circuits.14 While all the
0.7 anomaly features observed in QPCs are consistent with
the occurrence of Kondo effect, it is not clear how a mag-
netic moment could develop in these systems. Point contacts
in GaAs-AlGaAs heterostructures are built as narrow con-
strictions in a two-dimensional electron gas formed at the
interface between GaAs and AlGaAs. The constriction is
built using patterned surface depletion gates so the shape and
size of the QPC can be controlled.

It has been shown that a two-dimensional electron gas
with a constriction under some special conditions, that can
be achieved by tuning a gate voltage, can develop a magnetic
moment. This has been done by using spin dependent density
functional theory,15 on the one hand, and unrestricted
Hartree-Fock solutions of effective Hubbard models, on the
other.10 As already pointed out, one should be careful in the
physical interpretation of the frozen spin solution obtained
with these methods. As in the old impurity problem of mag-

netic moment formation,16 the mean-field solution cannot be
correct since it breaks the local symmetry. In the exact solu-
tion of the problem spin fluctuations should recover local
rotational invariance. It is very difficult to incorporate spin
fluctuations on top of the mean-field solution to fully recover
the rotational invariance. However, the mean-field solution
gives a good indication of the region in parameter space
where we should expect magnetic fluctuations to play a cen-
tral role in the low-energy physics.13 What is still missing in
the problem of the magnetic nature of QPCs is a detailed
analysis of the condition for the occurrence of a magnetic
moment including its geometry and size dependence. In this
work we use the Hartree criteria to determine the region of
the parameter space where the contact develops a magnetic
moment. In next section we present the model and its mean-
field version. In Sec. II A, the numerical solution is used to
determine the region of stability of a localized magnetic mo-
ment in the point contact. In Sec. II B the analytical expres-
sions for the mean field magnetic instability are presented,
and in Sec. II C the limit of narrow resonances is used to
predict size scaling. The last section includes summary and
discussion.

II. THE MAGNETIC INSTABILITY AT THE POINT
CONTACT

A natural description of the two dimensionals2Dd elec-
tron gas in GaAs-AlGaAs heterostructures is an effective
mass theory in which the kinetic energy is given by the one
of a 2D Fermi gas of particles with an effective massm* and
a characteristic particle densityn,1011/cm2. For this system
the Fermi wave vectorkF is of the order of 106/cm. The
potential created by the applying gate voltages is described
by a functionVsr d, wherer is the 2D coordinate. Finally, to
describe the magnetic properties of the system, the electron-
electron interaction has to be included explicitly. In order to
solve the Schrödinger equation in the Hartree approximation,
we discretize the space to end up with an effective tight
binding model with hopping matrix elementt="2/2m*a2
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wherea is the discretization parameter, the lattice parameter
of the tight binding model. The potential energyVsr d is in-
cluded as an on site energy and the Coulomb repulsion as an
extended Hubbard term. The discretization parametera
should be taken such that the Fermi wave vectorkF is much
smaller than any reciprocal lattice vector, typicallykF
!2p /a.

Our starting point is a two-dimensional extended Hubbard
Hamiltonian17 with a constriction and a gate potentialH
=H0+Hint with

H0 = o
i,s

«icis
+ cis − to

ki j l,s
cis

+ cjs s1d

and

Hint = UFo
i

ci↑
+ ci↑ci↓

+ ci↓ +
1

2 o
iÞ j ,s,s8

hi j cis
+ ciscjs

+ cjs8G . s2d

Herecis
+ creates an electron at sitei with spins, the diagonal

energy «i is a function of the coordinater i of site i and
defines the point contact with the gate potential. The last
term in H0 the site independent nearest-neighbor hopping.
The parameterU is the local Coulomb repulsion and the
dimensionless parameterhi j ,1 gives the spatial dependence
of a screened interaction.

In the Hartree approximation the potential energy is renor-
malized by the Coulomb repulsion

HMF = o
i,s

«̃iscis
+ cis − to

ki j l,s
cis

+ cjs − K, s3d

where«̃is=«i +Ufkni,−sl+o j ,ss1−di jdhi jknj ,slg, ni,s=cis
+ cis is

the number operator, andk¯l indicates the expectation value
andK is a constant. In what follows we use the notation

ni = kni,↑l + kni,↓l,

mi = skni,↑l − kni,↓ld/2 s4d

so that«̃is= «̃i −sUmi with «̃i =«i +Ufni /2+o js1−di jdhi jnjg.
The shape of the QPC as well as the gate voltage is de-

fined through the potential energy«i. We study systems with
the geometry of Fig. 1 consisting of a two-dimensional strip
infinitely long and with a width ofN sites. The QPC is de-
fined as a constriction at the center of the strip. In the rest of
the work, we assume a square lattice and weak Coulomb

repulsionU, much smaller than the Stoner critical value. We
also take the average charge per siten0,1 to avoid any
Fermi surface nesting effect. Then far from the QPC the
charge is uniform and the magnetization is zero so that the
potential energy is«̃is=Un0f1/2+o js1−di jdhi jg. To do the
calculation, we artificially divide the sample in two regions:
a central regionsbetween vertical dashed lines in Fig. 1d that
includes the QPC and the uniform regions that include the
source and drain far away from the point contact. In the
numerical calculation we evaluate the self-consistent solu-
tion within the unrestricted Hartree scheme for the central
region coupled with the lateral regions with uniform charge
and zero magnetization. This procedure is acceptable if the
charge and magnetization profiles are continuous and smooth
at the boundary between regions. The same scheme is used
to analyze the spin susceptibility.

A. Numerical solution of the unrestricted Hartree equations

In this section we present the numerical solution of the
unrestricted Hartree approximation. The chargeni and mag-
netizationmi at each site of the central region containing the
QPCs are evaluated with the solution of the self-consistent
equations

kni,sl = −
1

p
E«F

dv ImfGi,s
R svdg, s5d

where the retarded Green functionGi,s
R svd is the diagonal

element of

GR = fv + i0+ − HMF
0 − SRsv + i0+dg−1, s6d

whereHMF
0 is the Hartree Hamiltonian of the central part and

SRsv+ i0+d is the self-energy due to the lateral regions with
mi =0.

We studied different QPC shapes. In the present approxi-
mation, the long-range part of the electron-electron interac-
tion renormalizes the on site energy and redefines the shape
of the QPCs. From hereon we takehi j =0. We first present
results for a model square potential shown in Fig. 1 and
defined as«i =0, Vg and` for i in the source and drain, in the
neck of the QPC and at the sides of it, respectively. We
considered a variety of QPC withN0=3 sites in the lateral
direction andN1=9 sites in the longitudinal direction. We
define the total charge and the magnetization of the contact
asQ=oi8ni andM =oi8mi where the sum is over all the sites
of the QPC. The self-consistent results are shown in Fig. 2
for a QPC of widthN0 and lengthN1. For large gate voltages
the total chargeQ in the point contact is exponentially small.
As Vg decreasesQ increases and for some values of the gate
potential there is an abrupt increase in the total charge. The
steps obtained around this point correspond to approximately
one electron been transferred from the source and drain to
the point contact. This behavior inQ is characteristic of Cou-
lomb blockade. Between the two first steps inQ there is a
spin 1/2 localized at the point contact as indicated by the
magnetization curve versusVg shown in Fig. 2sad. The local
density of states at the QPC shown in Fig. 2sbd presents a
series of resonances. The resonances are associated with lon-

FIG. 1. sColor onlined sad Schematic picture of the model for the
QPCsdark regiond between the source and drain leads, the potential
at the constriction isVg. sbd Profile of the potential along the QPC.
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gitudinal modes in the QPC. The occurrence of a local mag-
netization at the QPC coincides with a narrow resonance
crossing the Fermi energy. The first resonance has no nodes
in the QPC as shown in the magnetization profile of Fig.
3sad. As Vg decreases other resonances cross the Fermi en-
ergy and new magnetic solutions are obtained. When the first
resonance of the second channel crosses the Fermi energy,
again a spin 1/2 is localized in the QPC. The wave functions
of the second channel have a node at the center of the QPC
in the transverse direction and generate the magnetization
profile shown in Fig. 3sbd. For the value ofU considered in
Fig. 2 magnetic moments are obtained only for the first reso-

nance of each transverse channel. However, the other wider
resonances may also produce local magnetic moments for
larger values ofU. In Fig. 4 stop paneld we present the phase
diagram in the parameter spacefU−Vgg for the 339 QPC
presented up to now. The dark regions correspond to a stable
magnetic moment at the QPC. Figure 4sbottom paneld illus-
trates the behavior of the chargeQ; to analyze the behavior
of Q it is convenient to plot its derivative −]Q/]Vg. For
small values ofU we obtain nonmagnetic solutions for all
values ofVg. However, asVg increases and the QPC reso-
nances cross the Fermi level,Q increases and there is a
maximum in −]Q/]Vg. For the parameters of the figure,
magnetic solutions are obtained forU / t*1 and for values of
the gate potentialVg that make the resonances to coincide
with the Fermi level. The occurrence of a magnetic solution
is accompanied by a splitting of thes−]Q/]Vgd maximum, a
characteristic of the Coulomb blockade regime. Figure 5
shows the phase diagram and the behavior ofQ for a shorter
and wider point contact. In this case larger values of U are
required to produce magnetic moments. In next section we
interpret these results in terms of the susceptibility evaluated
in a simple approximation and make a scaling analysis to
describe how the magnetic instability depends on the QPC
size. The square potential optimizes resonances at the QPC
and consequently favors the formation of local moments. We
end this section showing some results obtained with a

FIG. 2. sColor onlined sad Magnetic momentsthin lined and total
chargesthick lined at the constriction of a three-site-wide and nine-
site-long QPC. The local interaction isU=2.0 and the Fermi energy
is «F=−1, with all parameters in units oft=1. The source and drain
slabs have a width of 20 sites.sbd Local density of states at the
Fermi level, averaged over the sites of the constriction, calculated in
the restricted Hartree approximation.

FIG. 3. sColor onlined Spatial distribution of thesad magnetiza-
tion, scd charge forVg=0.66, and other parameters as in Fig. 2.sbd
and sdd Same assad and scd, respectively, withVg=2.27.

FIG. 4. Phase diagramU-Vg for a rectangular 339 QPC, dark
regions indicate higher values. Top: magnetization at the QPC. Bot-
tom: negative derivative of the charge with respect toVg.
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smoother and more realistic potential defined as

Vsr id ; «i = Vgfsyi − a1/2df1 − fsyi + a1/2dg 3

3h1 + 10ffsxi + a0/2d + fs− xi + a0/2dgj, s7d

wherer i =sxi ,yid is the coordinate of sitei, fsxd=s1+ex/ld−1

with l a characteristic screening length,a0 and a1 are the
QPC width and length, respectively. To describe a wedgelike
point contact we take a width that varies linearly with
yi : a0syid=a0+da03 syi +a1/2d /a1. The potential profiles for
these contacts are shown in Fig. 6. In the same figure the
average density of states at the point contact is also shown.
For a wirelike point contact resonant states are obtained, the
energies of these resonances are at the bottom of each chan-
nel. The density of states has much less structure in the case
of wedgelike contacts. This shows that wirelike contacts are
good candidates to develop magnetic fluctuations while
wedgelike structures are not.

B. Spin susceptibility

In the presence of an external magnetic field, the local
magnetization is given by

mi = o
j

xi,jhj , s8d

wherehj is the magnetic field at sitej andxi,j is the nonlocal
susceptibility. In our system with no translational symmetry
the nonlocal susceptibility depends on the two coordinatesr i
and r j. In the Hartree approximation, the energy shift of the
one particle levels is used to define an effective magnetic
field given by hj =hext+Umj, where we assume a uniform
external fieldhext. The magnetization is then given by

mi = Uo
j

xi,jmj + x̄ihext s9d

with x̄i =o j xi,j. As we show below,x̄i is just the local den-
sity of states at the Fermi energy and forU=0 the Pauli
susceptibility depends on the coordinate as the local density
of states. Forhext=0 a nontrivial solution of Eq.s9d gives the
onset of a spontaneous magnetization. We define the suscep-
tibility matrix x, with matrix elementsxi,j, and a magnetiza-
tion vectorM as a column vector with componentsmi. Then
Eq. s9d for hext=0 has the form of an eigenvalue problem

xM =
1

U
M s10d

asU→0 there is no nontrivial solution of this equation. The
onset of a spontaneous magnetization is given by the largest
eigenvalue ofx being equal to 1/U, the corresponding ei-
genvector gives the magnetic profile of the instability.

Since in the paramagnetic state the system has spin rota-
tional invariance, we calculate the transverse susceptibility.
The linear response of the system to a magnetic field along
the x direction is

FIG. 5. Phase diagramU-Vg for a rectangular 536 QPC, dark
regions indicate higher values. Top: magnetization at the QPC. Bot-
tom: negative derivative of the charge with respect toVg.

FIG. 6. sad Average local density of states in the QPC, at the
Fermi level for the rectangular smooth potential ofscd; U=0, Vg

=0.5, «F=−1, a0=3, a1=15. sbd Same assad for the wedge shaped
potential ofsdd andVg=1.25,da0=4.5.
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xi,j = − kkci↑
+ ci↓,cj↓

+ cj↑llv=0, s11d

where kkA,Bll indicates the retarded Green function. In
terms of the self-consistent one-particle eigenstates of the
HamiltonianHHF with wave functionswnsid and energies«n,
the susceptibility is given by

xi,j = − o
nm

wn
*sidwmsidwm

* s jdwns jd
fs«nd − fs«md

«n − «m

, s12d

where fs«d is the Fermi function.
Due to the orthogonality of the one-particle wave func-

tions, at zero temperature, we have

x̄i = o
j

xi,j = − o
n

uwnsidu2
] fs«nd

]«n

= o
n

uwnsidu2ds«n − «Fd

= ris«Fd, s13d

where we have taken the ratio between the Fermi function
difference and the energy difference as the Fermi function
derivative when«n→«m, ris«d is the local density of states
and «F the Fermi energy. Then, inserting the above expres-
sion in Eq.s9d, for U=0 we obtainmi =ris«Fdhext.

For UÞ0 in a system with no translational invariance we
have to calculate the nonlocal susceptibility, a matrix of di-
mension equal to the number of sites of the sample. To sim-
plify the problem we assume thatU is much smaller than the
Stoner value that generates a global instability, consequently
a nontrivial solution of Eq.s10d should have the magnetiza-
tion concentrated in the region of the point contact. We as-
sume that far from the contactmi =0 and look for solutions
with mi Þ0 only if i belongs to a small regionR that includes
the contact. Then we have to calculate a reduced matrix sus-
ceptibility xi,j with i , j in R.

Since even in the paramagnetic state, and due to the
charge redistribution close to the point contact, the one-
particle states ofHHF depend onU in a nontrivial way, the
largest eigenvaluek of the susceptibility depends onU and
the instability condition is a self-consistent equation

ksUd = 1/U

and its solutions have to be obtained numerically.

C. The resonant state approximation

Here we present some analytical results based on the fact
that, for high gate voltages, the local density of states at the
point contact presents well defined resonances. By varying
the gate voltage the position of the resonances can be tuned
to coincide with the Fermi level. When this occurs, for small
quantum point contacts where the quantization effects are
important, the transport and magnetic properties of the con-
tact are dominated by a single resonant state and in what
follows we consider this situation. This is a valid approxima-
tion as long as the width of the resonance remains much
smaller that the separation between resonances. The nonlocal
susceptibility is now given by

xi,j = − o
nm

˜
wn

*sidwmsidwm
* s jdwns jd

fs«nd − fs«md
«n − «m

, s14d

where the decorated sum indicates summation over all states
belonging to a single resonance. Fori in the point contact,
the corresponding wave functions can be written as

uwnsidu2 = uamsidu2
g/prn

s«n − Dd2 + g2 , s15d

whereamsid is the wave function of the QPC,g andD are the
width and the energy of the resonant statem, andrn is the
density of states. Since we can work with real wave func-
tions, they can be taken as the square root of the above
expression and the susceptibility can be put as

xi,j = uamsidu2uams jdu2xres s16d

with the susceptibility of a resonant state given by

xres= −E d«nd«m

sg/pd2

fs«n − Dd2 + g2gfs«m − Dd2 + g2g

3
fs«nd − fs«md

s«n − «md
. s17d

The susceptibility matrix has the formx=xresA, where the
matrix A can be put as

A = 3
uams1du2

uams2du2

A
uamsNdu2

4fuams1du2,uams2du2 ¯ uamsNdu2g s18d

and the instability condition becomes

aUxres= 1, s19d

wherea is the largest eigenvalue of the matrixA. From the
form of A it is clear that the vector

M = 3
uams1du2

uams2du2

A
uamsNdu2

4 s20d

is an eigenvector with eigenvaluea=oiuamsidu4 and that all
other eigenvalues are zero. The condition for the formation
of a magnetic moment at the point contact is

Ueff xres= 1, s21d

whereUeff=oiuamsidu4U is the effective Coulomb repulsion
for two electrons at the QPC statem with spatial wave func-
tion amsid. If the resonance is centered at the Fermi level,
this condition is simply

Ueff = pg/2. s22d

For small U and an arbitrary potential form of the point
contact defined by the potentialVsr id, the Hartree solution
can be used to estimateamsid andg.

Now we compare this criterion with the full unrestricted
Hartree calculation for the lowest energy resonance. For the
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square potential of Fig. 1 theU=0 eigenfunctionsa0sid are

a0sid =Î 2

sN0 + 1d
sinS p

asN0 + 1d
xiD

3Î 2

sN1 + 1d
sinS p

asN1 + 1d
yiD , s23d

wherea is the lattice parameter,aN0 and aN1 are the QPC
width and length, respectively. As this wave function is hy-
bridized with the right and left reservoirs it acquires a width
g=2prVeff

2 , wherer is the density of states of the reservoir
and the effective hybridization is

Veff . t o
iPedge

ua0sidu s24d

the sum is over all the sites of the QPC that are at one edge
sright or leftd, hybridized with the reservoir. With this esti-
mation and the condition of Eq.s22d we obtain the critical
value Uc

* of the Coulomb repulsion for the occurrence of a
magnetic solution shown in Table I. The comparison with the
values obtained using the fully unrestricted Hartree approxi-
mation is very good in particular for long and narrow point
contacts.

For the second longitudinal resonance of the first channel
in the case of the 339 geometry, we find the sameUeff as for
the first resonance while the width of the resonance becomes
g8,3.6g fas observed in Fig. 2sbdg, therefore givingUc8 / t
,3.1 in good agreement with the corresponding phase dia-
gram shown in Fig. 4.

Finally we can make a approximate scaling analysis for
large systems: the effective repulsion in a single resonance
Ueff=oiuamsidu4U,U / sN03N1d and the effective width of
the resonance is proportional to the square of the hybridiza-
tion of Eq.s24d, g,rt2/N1

3. These estimations lead to a criti-
cal value ofU that at resonance scales with the size of the
point contact asUc,rt2N0/N1

2. Numerical estimations of the
mean-field critical value for large systems are in agreement
with this scaling.

III. CONCLUSIONS

We have presented results for the formation of local mag-
netic moments in point contacts. We used a Hubbard-like
model to describe point contacts formed in a two-
dimensional system. The contact is defined in terms of a
potentialVsr d that can be varied with a single parameterVg

representing a gate voltage. We calculate the magnetic mo-
ment using the unrestricted Hartree approximation. For a
square potential, the system shows a marked tendency to
form a localized moment at the point contact each time a
new channel is tuned to the Fermi energy. In this condition
the critical value of the local repulsionU is almost an order
of magnitude smaller than the Stoner critical value for an
homogeneous system. For the parameters of Fig. 4 the criti-
cal value for the first resonances isU, t. Using the effective
mass and electron density characteristic of GaAs-AlGaAs
heterostructures, we can take a lattice parametera=10 nm.
With these numbers, the results of the figure correspond to a
point contact of 30 nm390 nm and the critical value ofU
gives an effective interactionUeff,0.5 meV.

In long contacts defined with a square potential, the sec-
ond longitudinal resonance may also generate a local mo-
ment for moderate values ofU. This is a consequence of the
square potential that optimizes resonances each time the
Fermi wavelength is commensurate with the contact length.
For more realistic potentials only the first longitudinal reso-
nance of each channel may generate a local moment. More-
over, for wedgelike contacts we found no evidence of mo-
ment formation in the Hubbard type models. The numerical
results are interpreted in terms of a simple one-resonance
approximation. We also present a simple a scaling argument
to interpret the general dependence of the magnetic instabil-
ity with the point contact dimensions.

We end by stressing that the Hartree calculation, that
breaks the spin symmetry, only gives a criterion that allows
to identify the region of parameter space were the low-
temperature physics may be dominated by magnetic fluctua-
tions. In this particular region a Kondo-like model may be
used to describe the spin fluctuations.10,12
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TABLE I. Critical values ofU for the appearance of magnetic
solutions.

N03N1 Uc/ t Uc
* / t

3311 0.55 0.57

339 0.85 0.84

437 1.50 1.76

536 2.25 2.49

535 3.18 3.96
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