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Magnetic moment formation in quantum point contacts
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We study the formation of local magnetic moments in quantum point contacts. Using a Hubbard-like model
to describe point contacts formed in a two-dimensional system, we calculate the magnetic moment using the
unrestricted Hartree approximation. We analyze different type of potentials to define the point contact, for a
simple square potential we calculate a phase diagram in the parametetGpalmnb-repulsion-gate voltage
We also present an analytical calculation of the susceptibility to give explicit conditions for the occurrence of
a local moment, we present a simple scaling argument to analyze how the stability of the magnetic moment
depends on the point contact dimensions.
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I. INTRODUCTION netic moment formatiof the mean-field solution cannot be
correct since it breaks the local symmetry. In the exact solu-

The problem of electric charge transport through quantuntion of the problem spin fluctuations should recover local
point contact§QPCS has been intensively studied both from rotational invariance. It is very difficult to incorporate spin
the theoretical and the experimental points of vielhe fluctuations on top of the mean-field solution to fully recover
observation of conductance quantization in a diversity othe rotational invariance. However, the mean-field solution
point contacts is now well established and, in general termgjives a good indication of the region in parameter space
understood. The discovery of extra structure, that looks simiwhere we should expect magnetic fluctuations to play a cen-
lar to conductance plateaus at (2&/h) in GaAs devices, tral role in the low-energy physié$.What is still missing in
however, still remains as an open quesfichThe recent the problem of the magnetic nature of QPCs is a detailed
accumulation of experimental evidence as well as the thecanalysis of the condition for the occurrence of a magnetic
retical analysis of this structure suggest that it is due to magmoment including its geometry and size dependence. In this
netic fluctuationg®-*? work we use the Hartree criteria to determine the region of

The experimental data around the anomalous 0.7 platedhe parameter space where the contact develops a magnetic
observed in some of these QPCs have been interpreted as dwement. In next section we present the model and its mean-
to a Kondo effect! This interpretation is based on the ob- field version. In Sec. Il A, the numerical solution is used to
servation of a zero bias anomaly in the conductance, its tentdetermine the region of stability of a localized magnetic mo-
perature and magnetic field dependence as well as a singhent in the point contact. In Sec. Il B the analytical expres-
energy scalégTy associated with it. The Kondo effect is due sions for the mean field magnetic instability are presented,
to the magnetic screening of a localized spin, a phenomencand in Sec. Il C the limit of narrow resonances is used to
that occurs for magnetic impurities diluted in metéland  predict size scaling. The last section includes summary and
also for quantum dots in mesoscopic circdit®Vhile all the  discussion.
0.7 anomaly features observed in QPCs are consistent with
the_ occurrence of Kondo effgct, it is not clear ho_vv amagd- || THE MAGNETIC INSTABILITY AT THE POINT
netic moment could develop in these systems. Point contacts CONTACT
in GaAs-AlGaAs heterostructures are built as narrow con-
strictions in a two-dimensional electron gas formed at the A natural description of the two dimension@D) elec-
interface between GaAs and AlGaAs. The constriction istron gas in GaAs-AlGaAs heterostructures is an effective
built using patterned surface depletion gates so the shape anthss theory in which the kinetic energy is given by the one
size of the QPC can be controlled. of a 2D Fermi gas of particles with an effective massand

It has been shown that a two-dimensional electron gag characteristic particle density~ 10/ cn?. For this system
with a constriction under some special conditions, that cathe Fermi wave vectok; is of the order of 1&/cm. The
be achieved by tuning a gate voltage, can develop a magnetjotential created by the applying gate voltages is described
moment. This has been done by using spin dependent densiy a functionV(r), wherer is the 2D coordinate. Finally, to
functional theory® on the one hand, and unrestricted describe the magnetic properties of the system, the electron-
Hartree-Fock solutions of effective Hubbard models, on theslectron interaction has to be included explicitly. In order to
other!® As already pointed out, one should be careful in thesolve the Schrodinger equation in the Hartree approximation,
physical interpretation of the frozen spin solution obtainedwe discretize the space to end up with an effective tight
with these methods. As in the old impurity problem of mag-binding model with hopping matrix element#2/2m’a?
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! H repulsionU, much smaller than the Stoner critical value. We
also take the average charge per sige<1 to avoid any
Fermi surface nesting effect. Then far from the QPC the
charge is uniform and the magnetization is zero so that the
potential energy is;,=Ung[1/2+X;(1-6;)7;]. To do the
calculation, we artificially divide the sample in two regions:
a central regiorfbetween vertical dashed lines in Fig.that
' ' includes the QPC and the uniform regions that include the
V source and drain far away from the point contact. In the
b) g numerical calculation we evaluate the self-consistent solu-
tion within the unrestricted Hartree scheme for the central
FIG. 1. (Color onling (a) Schematic picture of the model for the region coupled with the lateral regions with uniform charge
QPC(dark region between the source and drain leads, the potentiabnd zero magnetization. This procedure is acceptable if the
at the constriction i%/;. (b) Profile of the potential along the QPC. charge and magnetization profiles are continuous and smooth
at the boundary between regions. The same scheme is used
wherea is the discretization parameter, the lattice parametefo analyze the spin susceptibility.
of the tight binding model. The potential energyr) is in-
cluded as an on site energy and the Coulomb repulsion as an ) ) ] )
extended Hubbard term. The discretization parameter A. Numerical solution of the unrestricted Hartree equations

should be taken such that the Fermi wave vekfois much In this section we present the numerical solution of the
smaller than any reciprocal lattice vector, typicalkg  unrestricted Hartree approximation. The changand mag-
<27/ a. netizationm; at each site of the central region containing the

Our starting point is a two-dimensional extended HubbardQPCs are evaluated with the solution of the self-consistent
Hamiltoniart” with a constriction and a gate potentil  equations

:HO+ Hint with E
1 €
Ho= S, eicton 1S cho, @ == [ domieE (o), )
i,o (ij),o
and where the retarded Green functi@ffa(w) is the diagonal
element of
1
Hin=U Ei‘tchCiTCrlcil-FE#Z Moo |- (2) GR=[w +i0" = HYe - 3R(w +i07)] L, (6)
1#],0,0

. o ) ) whereHJ. is the Hartree Hamiltonian of the central part and
Herec;, creates an electron at sitaith spino, the diagonal  SR(,+i0") is the self-energy due to the lateral regions with
energye; is a function of the coordinate; of site i and m=0.

defines the point contact with the gate potential. The last " \ye studied different QPC shapes. In the present approxi-
term in Ho the site independent nearest-neighbor hoppingmation, the long-range part of the electron-electron interac-
The parametet is the local Coulomb repulsion and the o renormalizes the on site energy and redefines the shape
dimensionless parametey; <1 gives the spatial dependence qf the QPCs. From hereon we takg =0. We first present

of a screened interaction. _ _ results for a model square potential shown in Fig. 1 and
Ir_1 the Hartree approximation _the potential energy is renoryefined as;=0,V, and= for i in the source and drain, in the

malized by the Coulomb repulsion neck of the QPC and at the sides of it, respectively. We
HMF=ZEigCLCia‘tE CTUCJ-U— K, 3) considered a variety of QPC witN,=3 sites in the lateral

direction andN;=9 sites in the longitudinal direction. We

_ . define the total charge and the magnetization of the contact

wherez;, =z +U[(N; ) +Z; o(1= ) 7N )], N s=Ci,Civ IS asQ=3'n; andM =3/m; where the sum is over all the sites

the number operator, arfd -) indicates the expectation value of the QPC. The self-consistent results are shown in Fig. 2

andK is a constant. In what follows we use the notation  for a QPC of widthN, and lengthN,. For large gate voltages
=)+ n ) the total charg® in the point contact is exponentially small.

oA L1/ As V, decrease® increases and for some values of the gate
my = ((ny ) =y )2 (4)

potential there is an abrupt increase in the total charge. The
steps obtained around this point correspond to approximately
so thats;,=;—aUm; with g;=g;+U[n;/2+Z;(1- &) mn;]. one electron been transferred from the source and drain to
The shape of the QPC as well as the gate voltage is dghe point contact. This behavior @ is characteristic of Cou-
fined through the potential energy. We study systems with lomb blockade. Between the two first stepsQnthere is a
the geometry of Fig. 1 consisting of a two-dimensional stripspin 1/2 localized at the point contact as indicated by the
infinitely long and with a width ofN sites. The QPC is de- magnetization curve versig shown in Fig. 2a). The local
fined as a constriction at the center of the strip. In the rest oflensity of states at the QPC shown in Figb)2presents a
the work, we assume a square lattice and weak Coulomberies of resonances. The resonances are associated with lon-

i,o (ij),o
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FIG. 2. (Color onling (a) Magnetic momentthin line) and total
charge(thick line) at the constriction of a three-site-wide and nine-
site-long QPC. The local interactionis=2.0 and the Fermi energy
is eg=-1, with all parameters in units £ 1. The source and drain
slabs have a width of 20 sitefh) Local density of states at the
Fermi level, averaged over the sites of the constriction, calculated in
the restricted Hartree approximation.

gitudinal modes in the QPC. The occurrence of a local mag-
netization at the QPC coincides with a narrow resonance
crossing the Fermi energy. The first resonance has no nodes
in the QPC as shown in the magnetization profile of Fig.
3(a). As Vy decreases other resonances cross the Fermi en-
ergy and new magnetic solutions are obtained. When the first
resonance of the second channel crosses the Fermi energy,
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again a spin 1/2 is localized in the QPC. The wave functions F!C- 4. Phase diagrard-V, for a rectangular 9 QPC, dark
of the second channel have a node at the center of the Qpregmns |nd_|cate h!ghgr values. Top: magpetlzatlon at the QPC. Bot-
in the transverse direction and generate the magnetizatid@™: negative derivative of the charge with respecvgo

profile shown in Fig. &). For the value olU considered in

nance of each transverse channel. However, the other wider

Flg 2 magnetic moments are obtained Only for the first reSOresonances may also produce local magnetic moments for

FIG. 3. (Color online Spatial distribution of théa) magnetiza-
tion, (c) charge forVy=0.66, and other parameters as in Fig(l3.
and(d) Same ada) and(c), respectively, withvy=2.27.

larger values ofJ. In Fig. 4 (top panel we present the phase
diagram in the parameter spaldé-V,] for the 3x9 QPC
presented up to now. The dark regions correspond to a stable
magnetic moment at the QPC. Figurébbttom panelillus-
trates the behavior of the char@e to analyze the behavior

of Q it is convenient to plot its derivative 3Q/V,. For
small values ofU we obtain honmagnetic solutions for all
values ofV,. However, asvy increases and the QPC reso-
nances cross the Fermi leve]) increases and there is a
maximum in 9Q/dVy. For the parameters of the figure,
magnetic solutions are obtained 1d/t=1 and for values of
the gate potential/y that make the resonances to coincide
with the Fermi level. The occurrence of a magnetic solution
is accompanied by a splitting of tiedQ/dVy) maximum, a
characteristic of the Coulomb blockade regime. Figure 5
shows the phase diagram and the behavid® édr a shorter
and wider point contact. In this case larger values of U are
required to produce magnetic moments. In next section we
interpret these results in terms of the susceptibility evaluated
in a simple approximation and make a scaling analysis to
describe how the magnetic instability depends on the QPC
size. The square potential optimizes resonances at the QPC
and consequently favors the formation of local moments. We
end this section showing some results obtained with a
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FIG. 5. Phase diagratd-V, for a rectangular %6 QPC, dark
regions indicate higher values. Top: magnetization at the QPC. Bo

tom: negative derivative of the charge with respecV{o

smoother and more realistic potential defined as

V(ri) = & = Vgf(y; —a/2)[1 - f(y; + a,/2)] X
{1+ 10f(x +ay/2) + f(=x +ay/2)]},  (7)

wherer;=(x;,y;) is the coordinate of site f(x)=(1+e’)!
with N a characteristic screening lengtly, and a; are the

t-
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FIG. 6. (a) Average local density of states in the QPC, at the
Fermi level for the rectangular smooth potential (of; U=0, Vg
=0.5,ep=-1,a3=3, a,=15. (b) Same aga) for the wedge shaped
potential of(d) andVy=1.25, ay=4.5.

m :EXi,jhjv (8)
i

whereh; is the magnetic field at siteand ; ; is the nonlocal
susceptibility. In our system with no translational symmetry
the nonlocal susceptibility depends on the two coordingtes
andr;. In the Hartree approximation, the energy shift of the
one particle levels is used to define an effective magnetic
field given by hj=hg,+Um;, where we assume a uniform
external fieldhe,. The magnetization is then given by

m = UE_ XijM; + XiDext 9
j

with xi=Z; xij- As we show belowy; is just the local den-
sity of states at the Fermi energy and fd=0 the Pauli
susceptibility depends on the coordinate as the local density
of states. Foh,,=0 a nontrivial solution of Eq(9) gives the

QPC width and length, respectively. To describe a wedgelik
point contact we take a width that varies linearly with

Vit @olYi)=ag+ 839X (yi +a1/2)/ay. The potential profiles for tion vectorM as a column vector with componemts. Then

these contacts are shown in Fig. 6 In the same figure thgq_ (9) for h.=0 has the form of an eigenvalue problem
average density of states at the point contact is also shown.

For a wirelike point contact resonant states are obtained, the 1
energies of these resonances are at the bottom of each chan- xM=—M
nel. The density of states has much less structure in the case U
of wedgelike contacts. This shows that wirelike contacts are
good candidates to develop magnetic fluctuations whil
wedgelike structures are not.

Bnset of a spontaneous magnetization. We define the suscep-
tibility matrix x, with matrix elementsy; ;, and a magnetiza-

(10

sU — 0 there is no nontrivial solution of this equation. The
onset of a spontaneous magnetization is given by the largest
eigenvalue ofy being equal to 1U, the corresponding ei-
genvector gives the magnetic profile of the instability.

Since in the paramagnetic state the system has spin rota-
tional invariance, we calculate the transverse susceptibility.

In the presence of an external magnetic field, the localThe linear response of the system to a magnetic field along
magnetization is given by the x direction is

B. Spin susceptibility
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Xij = = {(C1Git, €1 C)) w0 (11 CNo (N (Do (1 1ED e
b e Xij=~ 2 QDV(|)(PM(|)QDM(J)‘PV(J) _ (14
where ((A,B)) indicates the retarded Green function. In v evT

terms of the self-consistent one-particle eigenstates of th@here the decorated sum indicates summation over all states
HamiltonianHye with wave functionsy,(i) and energies,,  pelonging to a single resonance. Fan the point contact,

the susceptibility is given by the corresponding wave functions can be written as
oo e f(e,) —f(e),) Sz ave Ty
Xij=—> @V(l)cpﬂ(l)cpM(J)%(J)—_e"—. (12 @, (D) = (i) PN (15
Vi v ©n
_ . _ wherea,(i) is the wave function of the QPG,andA are the
wheref(s) is the Fermi function. _ width and the energy of the resonant stateand p, is the
~ Due to the orthogonality of the one-particle wave func-density of states. Since we can work with real wave func-
tions, at zero temperature, we have tions, they can be taken as the square root of the above
‘o) expression and the susceptibility can be put as
— . o0f(e, . . .
Xi= 2 == 2 e == X g, 0)Pole, - 2e) Xij = lam®P (i) PXres (16)
j v v v

with the susceptibility of a resonant state given by
= pilee), (13 )
(ylm)

where we have taken the ratio between the Fermi function — Xres™ _f dSVdSM[(SV—A)2+ (e, - )2+ 9]
difference and the energy difference as the Fermi function

derivative whene,— ¢, pi(¢) is the local density of states w f(e,) - f(sg)_ (17)
and e the Fermi energy. Then, inserting the above expres- (,—€,)

sion in Eq.(9), for U=0 we obtainm,=p;(gg)heys.

For U +# 0 in a system with no translational invariance we
have to calculate the nonlocal susceptibility, a matrix of di-
mension equal to the number of sites of the sample. To sim- (DI
plify the problem we assume thitis much smaller than the | am(2)[2
Stoner value that generates a global instability, consequently A= .

a nontrivial solution of Eq(10) should have the magnetiza- :
tion concentrated in the region of the point contact. We as- |lam(N)]2
sume that far from the contaot,=0 and look for solutions
with m, # 0 only if i belongs to a small regioR that includes
the contact. Then we have to calculate a reduced matrix sus- aUxes=1, (19
ceptibility x;; with i,j in R.

Since even in the paramagnetic state, and due to t
charge redistribution close to the point contact, the one-

The susceptibility matrix has the forge x,.4A, where the
matrix A can be put as

[am( D% am(@)? - lan(N)[Z] - (18)

and the instability condition becomes

wherea is the largest eigenvalue of the matéx From the
rm of A it is clear that the vector

particle states of,r depend orlJ in a nontrivial way, the lam(1)]2

largest eigenvalug of the susceptibility depends dn and (22

the instability condition is a self-consistent equation M= ) (20)
x(U) = 11U | an(N)|2

is an eigenvector with eigenvalue==;|a,(i)|* and that all
other eigenvalues are zero. The condition for the formation
of a magnetic moment at the point contact is

. Uef‘f Xres™ 1, (21)
Here we present some analytical results based on the fact

that, for high gate voltages, the local density of states at thhere Ues=2an(i)|*U is the effective Coulomb repulsion
point contact presents well defined resonances. By varyinpr two electrons at the QPC statewith spatial wave func-
the gate voltage the position of the resonances can be tund@n an(i). If the resonance is centered at the Fermi level,
to coincide with the Fermi level. When this occurs, for smallthis condition is simply
guantum point contacts where the quantization effects are Ue = 912 (22)
important, the transport and magnetic properties of the con- ef '
tact are dominated by a single resonant state and in wh&or smallU and an arbitrary potential form of the point
follows we consider this situation. This is a valid approxima-contact defined by the potenti®(r;), the Hartree solution
tion as long as the width of the resonance remains muchan be used to estimatg,(i) and vy.
smaller that the separation between resonances. The nonlocalNow we compare this criterion with the full unrestricted
susceptibility is now given by Hartree calculation for the lowest energy resonance. For the

and its solutions have to be obtained numerically.

C. The resonant state approximation
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TABLE |I. Critical values ofU for the appearance of magnetic IIl. CONCLUSIONS
solutions.
We have presented results for the formation of local mag-
No X Ny U/t U/t netic moments in point contacts. We used a Hubbard-like
model to describe point contacts formed in a two-
3x11 0.55 0.57 dimensional system. The contact is defined in terms of a
3X9 0.85 0.84 potential V(r) that can be varied with a single paramegr
4X7 1.50 1.76 representing a gate voltage. We calculate the magnetic mo-
5X6 2.25 2.49 ment using the unrestricted Hartree approximation. For a
5%5 3.18 3.96 square potential, the system shows a marked tendency to

form a localized moment at the point contact each time a
new channel is tuned to the Fermi energy. In this condition

square potential of Fig. 1 the=0 eigenfunctionsy(i) are  the critical value of the local repulsiad is almost an order
of magnitude smaller than the Stoner critical value for an

L2 . u homogeneous system. For the parameters of Fig. 4 the criti-
i) = (Ng + 1)sm< a(Ng + 1) Xi) cal value for the first resonancesUs~t. Using the effective
mass and electron density characteristic of GaAs-AlGaAs
< A/ 2 sin( ™ y-) 23 heterostructures, we can take a lattice paramatek0 nm.
(N;+1) aN,+1)”")’ With these numbers, the results of the figure correspond to a

point contact of 30 nix 90 nm and the critical value df
gives an effective interactiod 4~ 0.5 meV.

In long contacts defined with a square potential, the sec-
ond longitudinal resonance may also generate a local mo-
ment for moderate values &f. This is a consequence of the
square potential that optimizes resonances each time the

_ : Fermi wavelength is commensurate with the contact length.
Verr =t > ol 24 For more realistic potentials only the first longitudinal reso-
nance of each channel may generate a local moment. More-
the sum is over all the sites of the QPC that are at one edggyer, for wedgelike contacts we found no evidence of mo-
(right or left), hybridized with the reservoir. With this esti- ment formation in the Hubbard type models. The numerical
mation and the condition of Eq22) we obtain the critical results are interpreted in terms of a simple one-resonance
value U, of the Coulomb repulsion for the occurrence of a approximation. We also present a simple a scaling argument
magnetic solution shown in Table I. The comparison with theyg interpret the general dependence of the magnetic instabil-
values obtained using the fully unrestricted Hartree approxifty with the point contact dimensions.
mation is very good in particular for long and narrow point e end by stressing that the Hartree calculation, that
contacts. breaks the spin symmetry, only gives a criterion that allows

For the second longitudinal resonance of the first channel identify the region of parameter space were the low-
in the case of the 39 geometry, we find the sani&s as for  temperature physics may be dominated by magnetic fluctua-
the first resonance while the width of the resonance becomagns. In this particular region a Kondo-like model may be
y' ~3.6y [as observed in Fig.(B)], therefore givingU./t  ysed to describe the spin fluctuatidfd?
~3.1 in good agreement with the corresponding phase dia-
gram shown in Fig. 4.

wherea is the lattice parametegN, and aN,; are the QPC
width and length, respectively. As this wave function is hy-
bridized with the right and left reservoirs it acquires a width
y:2wpvgﬁ, wherep is the density of states of the reservoir
and the effective hybridization is

ieedge
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