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Using analytical and path integral Monte Carlo methods, we study the susceptibilityxdcsTd of a spin-S
impurity with XY rotational symmetry embedded in a metal. Close to a ferromagnetic quantum critical point,
the impurity polarizes conduction electrons in its vicinity and forms a large magnetic droplet with moment
M @S. At not too low temperatures, the strongly damping paramagnon modes of the conduction electrons
suppress large quantum fluctuationssor spin flipsd of this droplet. We show that the susceptibility follows
the law xdcsTd=sM2/Tdf1−spgd−1 lnsgE0/Tdg, where the parameterg@1 describes the strong damping by
conduction electrons, andE0 is the bandwidth of paramagnon modes. At exponentially low temperatures
T!T* ,E0 exps−pg/2d we show that spin flips cannot be ignored. In this regime we find that
xdcsTd<xdcs0df1−s2/3dsT/T*d2g, wherexdcs0d,M2/T* is finite and exponentially large ing. We also discuss
these effects in the context of the multichannel Kondo impurity model.
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I. INTRODUCTION

Magnetic impurities in a nearly ferromagnetic Landau
Fermi liquid can induce large magnetic droplets by polariz-
ing conduction electrons in their vicinity.1 The large mag-
netic polarizability of the conduction electrons can be de-
scribed in terms of low-energy collective excitations,
paramagnons.2 An impurity spin dressed by these soft para-
magnon excitations forms a magnetic droplet, and the size of
such droplets, determined by the spatial dispersion of the
paramagnons, can greatly exceed typical interatomic dis-
tances in the proximity of the quantum critical point. The
dynamics of such a droplet are essentially determined by the
paramagnon modes which damp the orientational motion of
the droplet. At not too low temperatures, the fluctuations of
the droplet’s moment are small if the damping of the angular
motion is strong. As the temperature is lowered, due to these
small fluctuations the effective damping decreases slowly,
usually as a power law or logarithmicallyssee belowd. This
decrease of the effective damping is reflected in the tempera-
ture dependence of the impurity’s magnetic susceptibility
which increases at a rate slower than the Curie-Weiss law
xdcsTd,T−1 as the temperature is decreased.

The relevance of large quantum fluctuationssor spin flipsd
of these overdamped magnetic droplets, the main interest of
this paper, has been a topic of active investigation recently.
Consensus in this matter has proved elusive. The various
existing points of view seem to agree that the susceptibility
of large overdamped droplets at not very low temperatures
should obeyxdcsTd,T−1+a, where a,1 is nonuniversal.
Millis, Morr, and Schmalian3 found that in the case of a
magnetic defect with Ising symmetry, quantum tunneling is
suppressed altogether, and that the power-law temperature
dependence ofxdcsTd extends down toT=0 K. Furthermore,
they indicated that their conclusion was relevant even for
defects with a continuous symmetry.4 Castro-Neto and
Jones,5 in an earlier work, analyzed the same problem with
both ferromagnetic and antiferromagnetic clusters. In a

broader context, our analysis forms a part of the general
problem of disorder in nearly quantum critical metals. Three
decades ago, Griffiths6 and McCoy7 predicted a nonanalytic
temperature dependence of magnetization in nearly ordered
ferromagnetic Ising models with bond disorder. Throughout
the years after that, the research on quantum Griffiths Kondo
disorder and local criticality8,9 problems has remained of
wide interest.

We study the magnetic susceptibilityxdcsTd of a spin-S
impurity with XY rotational symmetry coupled to the con-
duction electrons through an exchange interaction

Hex = JS ·c†s0dscs0d s1d

in a metal close to a ferromagnetic quantum critical point.
We employ both analytical and path integral Monte Carlo
sPIMCd techniques. The two main results of our analysis are
as follows. First, we show that at not very low temperatures,
due to small quantum fluctuations of theXY droplet the sus-
ceptibility evolves as

xdcsTd =
M2

T
F1 −

1

pg
lnSgE0

T
DG .

We shall show that the result is valid over an exponentially
large range of temperaturegE0@T@E0 exps−pg/2d. Here
the parameterg<fJnseFdg2/ s1+Fad@1 represents the damp-
ing of the droplet’s fluctuations, anduMu<uJunseFdS/
s1+Fad@S is the magnetic moment of the droplet.Fa→−1
is the Landau Fermi-liquid parameter denoting distance from
the quantum critical point. To leading order ing−1, the loga-
rithmic form and the power lawxdcsTd=sT/T0d−1+1/spgd are
the same. However, at lower temperatures, the two expres-
sions can differ significantly. Second, and more significantly,
we show that at exponentially low temperaturesT!T*
=E0 exps−pg/2d, full 2p spin rotations cannot be ignored.
The susceptibility atT=0 saturates in this model, and at fi-
nite temperaturesT!T* ,
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xdcsTd < xdcs0df1 − s2/3dsT/T*d2g,

wherexdcs0d,M2/T* is of the order of the susceptibility at
T,T* . The zero-temperature susceptibilityxdcs0d is expo-
nentially large ing. The conclusion is that for theXY mag-
netic defect, spin flips are important at low temperatures, and
their effect is to remove the divergence of susceptibility at
T=0 K. The low-temperature behavior we obtain for the im-
purity susceptibility is similar to that seen in the usual Kondo
problem10,11 for J.0. The regime of proliferation of spin
flips belowT,T* is analogous to the strong-coupling regime
of the Kondo problem below the Kondo temperature. In con-
trast to the usual Kondo effect where the sign of the ex-
change coupling between the impurity spin and conduction
electrons,J, is important, our results are independent of the
sign ofJ. We consider here only the effects dependent on the
dampingg and therefore on even powers ofJ. In the closing
section we discuss further the experimental realizations and
differences of magnetic droplet phenomena from the stan-
dard Kondo effect.11,12

We assume that the coupling between a spin and electrons
in a single channel is small,JnseFd!1. Therefore the terms
beyond the Born approximation can be neglected.1 Impor-
tantly, the overall coupling constantg<fJnseFdg2/ s1+Fad
is large in the proximity of the quantum critical point
Fa→−1. The magnetic moment of the droplet,
M =f1−JnseFd / s1+FadgS, is large, because the droplet is
dressed bysor coupled tod a large number of electron chan-
nels, Nch=1/s1+Fad. Close to the critical point, the contri-
bution of such magnetic droplets to the susceptibility and
resistivity can overshadow other impurity effects.1

The weak-dampingsg!1d limit of the same problem was
first studied by Larkin and Melnikov.1 Both resistivity and
the gyromagnetic ratio were found todecreaselogarithmi-
cally with decreasing temperature irrespective of the sign of
the exchange couplingJ, as opposed to the usual Kondo
effect where resistivity increases logarithmically with de-
creasing temperature ifJ.0.

The rest of this paper is organized as follows. In Sec. II
we derive our model for dissipative dynamics of the mag-
netic droplet beginning with the exchange Hamiltonian Eq.
s1d. The correlation function and susceptibility of the droplet
are studied analytically in Sec. III. We study both not-too-
low temperatures where tunneling effects are negligible, and
very low temperatures where tunneling makes important
contributions. Section IV provides details of the numerical
path integral Monte Carlo method we employ. In Sec. V we
present the results of our analytic and numerical study. Sec-
tion VI contains a discussion.

II. MODEL AND FORMALISM

The magnetic properties of the metal are determined by
the spin susceptibility of the conduction electrons,

Dsk,vnddi j =E dr eik·rE
0

b

dt eivntksis0,0ds jsr ,tdl,

wheresisr ,td is the conduction electron spin density,

sisr ,td = cm
†sr ,tdsmn

i cnsr ,td,

and vn=2pTn. The static part of the susceptibility is
Ds0,0d=2nseFd / s1+Fad in terms of the standard Landau
Fermi-liquid parameterFa. Close to a ferromagnetic instabil-
ity, Fa<−1, due to the large static magnetic susceptibility
the impurity induces a large magnetic droplet with effective
momentM =Sf1−JnseFd / s1+Fadg. In the case of an antifer-
romagnetic exchange couplingsJ.0d, the droplet’s mag-
netic moment is polarized in the opposite direction to the
impurity spin, while in the case of ferromagnetic coupling
sJ,0d the droplet’s magnetic moment and the impurity spin
are locked parallel to each other. The low-lying magnetic
excitations of the conduction electronsswhich also constitute
the major part of the dropletd are strongly damped, as can be
seen in the expression for spin susceptibility at smallk and
vn,

Dsk,vnd <
2nseFd

1 + Fa + sj0kd2 + sp/2duvnu/k ·vF
; s2d

j0 is a length scale of the order of interatomic distances. The
dynamics of the impurity are determined by the local suscep-
tibility Dsvnd,1,12

Dsvnd − Ds0d =E sd3kdfDsk,vnd − Dsk,0dg

< −
pnseFd2uvnu

2sj0kFd2s1 + Fad
. s3d

Equations3d is valid at low enough frequencies,

uvnu ! E0 ; eFs1 + Fad3/2.

At higher frequencies,E0! uvnu!eF, Eq. s3d should be re-
placed with

Dsvnd − Ds0d < −
27/3p4/3eFnseFd2

33/2sj0kFd8/3 S uvnu
eF

D1/3

. s4d

Integrating out the conduction electronssin the perturba-
tion series offJnseFdg2!1d in Eq. s1d results in a dissipative
action for the impurity,1

SimpfSg =
J2

2
E

0

b

dt dt8Sstd ·Sst8dDst − t8d.

We are interested in the impurity dynamics at low tempera-
ture, so using Eq.s3d for the interaction,

Simpfng =
pgT2

2
E

0

b

dt dt8
1 − nstd ·nst8d
sin2fpTst − t8dg

. s5d

In Eq. s5d, Sstd=Snstd ,nstd2=1, and we assume that the
dampingg given by

g =
p

2s1 + Fad
fJSnseFdg2 s6d

is largesg.1d. This is always possible sufficiently close to
the transition. The form of the interaction we chose in Eq.s5d
is valid only up to an energyE0. We may impose this cutoff
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through an additional regularizing term in the action,

Sregfng =
1

4E0
E

0

b

dts]tnd2. s7d

This method of imposing the cutoff is not unique. For in-
stance, an equally valid option would have been to introduce
a short-time cutofftc in the interaction,gT2/sin2spTtd
→gT2/sin2spTÎt2+tc

2d. The cutoff appears in the correlation
functions only as a function ofE0t or t /tc, and as long
as gE0t@1, the results are independent of the manner
in which the cutoff is imposed. Parametrizingnstd
=(coswstd ,sinwstd), our dissipative model for theXY im-
purity takes the final form

Sfwg =
1

4E0
E

0

b

dts]twd2 + ME
0

b

dt h'std ·nstd

+
pgT2

2
E

0

b

dt dt8
1 − cosfwstd − wst8dg

sin2fpTst − t8dg
, s8d

whereM =Sf1−JnseFd / s1+Fadg is the bare droplet moment,
and h' is an in-plane magnetic field. The Matsubara fields
wstd satisfy periodic boundary conditions up to multiples of
2p: wst+bd=wstd+2pk, where k is an integer called the
winding number. The full phasewstd can always be written
in the form wstd=2pTkt+fstd, where the residual phase
obeys periodic boundary conditionsfst+bd=fstd.

We are mostly concerned here with the rotationalsor ori-
entationald motion of the droplet’s moment. We assume
throughout the main textsbut see the concluding sectiond that
the exchange coupling is sufficiently strong to suppress the
fluctuations of the amplitude of the bare magnetic moment
M, namely, in the quantum limit or at low temperatures,
JS@kT as well asE0@kT. It also suits us to regularize the
tunneling action through the introduction of a kinetic term
because the model in Eq.s8d appears in numerous contexts.
We have already mentioned the recent work by Millis and
co-workers3 in which the authors studied the dynamics of
magnetic defects in nearly quantum-critical metals, where
the defects are regions of ordered phase formed due to a
local enhancement of the transition temperature. For defects
with XY symmetry, they arrived at essentially the same
strongly damped model as Eq.s8d, although in their model
the kinetic term did not appear simply as a means for impos-
ing a cutoff but had a definite physical meaning as the con-
tribution to the droplet action from the magnon part of the
dispersion curve. Our analysis should be valid for such sys-
tems as well. The action in Eq.s8d also arises from an
Ambegaokar-Eckern-Schön13 treatment of tunneling through
a quantum dot. There, the physical meaning ofE0 is the
charging energy for the quantum dot.

In this paper we study the impurity spin correlatorCstd,

Cstd = kcosfwstd − ws0dgl, s9d

and the zero-frequency impurity susceptibilityxdcsTd,

xdcsTd = M2E
0

b

dtknstd ·ns0dl

= M2E
0

b

dtkcosfwstd − ws0dgl. s10d

Calculation of the imaginary part of the susceptibility as well
as transport properties like resistivity involves subtleties as-
sociated with analytic continuation to real frequencies. These
will be studied in a later work. In this paper we calculate
only the real part of the susceptibility as shown in Eq.s10d.

III. ANALYSIS OF IMPURITY SPIN CORRELATION
FUNCTION AND SUSCEPTIBILITY, gš1

A large value ofg tends to suppress large fluctuations
stunnelingd of the droplet moment. Physically, the droplet
couples to a large number of channelssg~Nchd of the con-
duction electron continuum, which makes spin flips difficult.
We show below that this is not the case at very low tempera-
tures, where spin flipsswe use the terminology of spin flips
and tunneling interchangeably in order to discussXY and
Ising symmetry simultaneouslyd can occur even for largeg.
In the first part of this section, we consider not-too-low tem-
peratures where tunneling may be disregarded. In the latter
half of this section, we discuss the limits beyond which tun-
neling may not be ignored, and analyze the effect of tunnel-
ing on the correlation function and susceptibility.

A. Ignoring winding numbers

Let us begin by studying the action Eq.s8d swith h'=0d
by ignoring winding numbers sk=0d and expanding
cosfwstd−wst8dg to quartic order in the phase difference. We
then gather the Gaussian terms in the resulting action as the
bare term and treat the quartic term as an “interaction”
sS=SGauss+Sintd:

SGaussffg =
1

4E0
E

0

b

dts]tfd2

+
pgT2

4
E

0

b

dt dt8
ffstd − fst8dg2

sin2fpTst − t8dg
, s11d

Sintffg = −
pgT2

48
E

0

b

dt dt8
ffstd − fst8dg4

sin2fpTst − t8dg
. s12d

The bare term may be diagonalized by going over to the
frequency representation,

fstd = o
n=1

`

san cosvnt + bn sinvntd,

thus,

SGaussffg =
1

2o
n=1

`

san
2 + bn

2dFTp2

E0
n2 + pgnG .

In the following discussion, we will need the bare Green
function, which is given exactly by the following sum:
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Fbarestd = kffstd − fs0dg2lbare= 2o
n=1

`
1 − cosvnt

sTp2/E0dn2 + pgn
.

s13d

Essentially,Fbarestd is logarithmic int, with a lower cutoff
1 /gE0 and an upper cutoff 1 /2T:

Fbarestd < 5
2E0utu, t !

1

gE0
,

2

pg
lns2eggE0td,

1

gE0
! t !

1

2T
,

2

pg
ln

2eggE0 sinpTt

pT
, t @

1

gE0
.

6
s14d

Consider now the renormalization ofSGauss by Sint. By
contracting two of the four fields appearing inSGaussusing
the bare Green function, we obtain a one-loop renormaliza-
tion of the bare action by the interaction

dS1 loop
Gaussffg = −

pgT2

8
E

0

b

dt dt8
ffstd − fst8dg2

sin2fpTst − t8dg

3kffstd − fst8dg2lbare

= −
pgT2

4 o
n=1

` E
0

b

dt dt8
1 − cosfvnst − t8dg
sTp2/E0dn2 + pgn

3
ffstd − fst8dg2

sin2fpTst − t8dg

< −
1

2o
p=1

`

sap
2 + bp

2dp ln
gE0

Tp
.

The effective Gaussian action Seff
Gaussffg=SGaussffg

+dSGaussffg, with fluctuations considered up to one loop is
therefore

Seff
Gaussffg =

1

2o
n=1

`

san
2 + bn

2dFp2T

E0
n2 + pngrenG , s15d

where the effective coupling to one loop,

grensnd = gS1 −
1

pg
ln

gE0

nT
D , s16d

is smaller than the bare couplingg, and the reduction is
strongest at lown. Sinceg~M, this means that low-energy
paramagnon fluctuations of the conduction electrons that
constitute a large fraction of the droplet cause a logarithmic
reduction of its moment.

The phase correlation function with the dressed coupling
grensnd,

Cstd = kcosffstd − fs0dgl = exph− kffstd − fs0dg2l/2j

< expF− o
n=1

`
1 − cossvntd

spT/Edn2 + pgnf1 − s1/pgd lnsgE0/nTdgG
= 1 −

1

pg
ln

2eggE0 sinpTt

pT
+ O„g−3 ln3sgE0utud…, s17d

differs atOsg−2d from the bare correlator

Cbarestd = expf− Fbarestd/2g , sgE0utud−1/pg. s18d

fIn Eq. s17d we have reinstated the correct cutoff and peri-
odicity.g At large utu, the difference between the bare cor-
relator and dressed correlator can be substantial. Equation
s17d is a one-loop calculation forCstd. Notice that if the
effectivegren has only a logarithmic correction as in Eq.s16d,
the correlatorCstd has the same logarithmic correction as in
Eq. s17d. To obtain the nextOsg−1d contribution to the cou-
pling gren in the Gaussian approximation, we need to calcu-
late the two-loop diagrams. These include only the second-
order diagrams from the quartic interaction in Eq.s12d, but
also one diagram from the sixth-order fluctuation expansion
of the tunneling term in Eq.s8d. One may check that the
most singular contribution in both classes of diagrams is
O(g−1 ln2sgE/Td). What is also clear that all other diagrams
are of the orderO(g2−m−l lnmsgE/Td), wherem, l are natural
numbers. Therefore if lnsgE/Td!g, Eqs. s16d and s17d are
good approximations. Since the logarithm is a slow function
of t or T, there is a large range oft or T whereCstd can be
approximated by Eq.s17d. Such a perturbative analysis does
not preclude a qualitatively different behavior ofCstd at long
t’s, which indeed occurs as we discuss in the next section.
Equations17d leads to a magnetic susceptibility

xdcsTd <
M2

T
F1 −

1

pg
ln

gE0

T
G . s19d

In deriving Eq. s19d, we assumed thatCstd is effectively
constant over the whole of the intervalf0,bg, and that the
errors in this assumption simply modify the cutoff of the
logarithm.

At a low temperatureTGauss=s2eggE0/pde−pg, Eq. s17d
for Cstd falls to zero, indicating the breakdown of our per-
turbative analysis; near this temperature the susceptibility
Eq. s19d is exponentially large:

xdcsTGaussd <
M2

2TGauss
,

M2

gE0
epg.

At lower temperaturesT,TGaussone must consider winding
numbers, higher-order residual fluctuations, and nonpertur-
bative sin 1/gd contributions toxdc. Our numerical calcula-
tions show that forg*1, Cstd visibly falls below Eq.s17d
aroundCstd<1/2, so Eq.s17d becomes inaccurate even be-
fore utu<1/TGaussis reached.

We emphasize that the logarithmic temperature depen-
dence in Eq.s19d is not an approximate expansion of
sM2/TdsT/gE0d1/spgd to order 1/g, but is in fact more accu-
rate than this, in the rangegE0@T@TGauss.
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B. Taking winding numbers into account

We now turn our attention to pathswstd=vkt+fstd with
a finite winding numberk. We have chosen to expand the full
phasew in terms of residual-phase fluctuationsf about the
“classical” pathswclstd=vkt. There are reasons for doing so.
First, these classical paths are solutions of the Euler-
Lagrange equations, so they arestationary pointsof the ac-
tion Skffg. Second, expanding the action Eq.s8d tosecond
order in the fluctuations shows that all the “spring constants”
sthe coefficients ofan

2 and bn
2d are positive, so the classical

paths arelocal minimaof the action:

Sk
Gaussffg =

p2T

E0
k2 + pguku +

1

4E0
E

0

b

dts]tfd2

+
pg

4
E

0

b

dt dt8
cosf2pkTst − t8dg
sin2fpTst − t8dg

3ffstd − fst8dg2

=
p2T

E0
k2 + pguku + o

n=1

`
1

2
Fp2T

E0
n2 +

pg

2
sun + ku + un

− ku − 2ukudGsan
2 + bn

2d. s20d

Third, we believesalthough we have not provedd that for
each value ofk, the classical pathwk

clstd is theunique global
minimumof Skffg.

The Fourier modes form a complete basis, so our param-
etrization automatically encompasses the Korshunov instan-
ton trajectories used by other authors.14 Indeed, it has been

found that instanton techniques, while useful in Josephson-
junction problems, have limited applicability in the current
situation because of the failure of the “noninteracting instan-
ton gas approximation.”15

At first sight the presence ofpguku in Eq. s20d seems to
suggest that a large value ofg rules out significant finite-
winding-number effects. Observe, however, that the fluctua-
tion term also depends onk, so we should integrate out the
residual-phase fluctuations and find whether the resulting
k-dependent contribution to the action encourages or further
discourages finite winding numbers. In Eq.s20d, the contri-
bution to residual fluctuations arising from the tunneling
term vanishes for Matsubara frequenciesnø uku. As a result,
cubic and higher-order residual phase fluctuations begin
playing a role. However, despite our considering residual
fluctuations only to Gaussian order, we find that at not-too-
low temperatures, exact numerical calculationssdiscussed in
Sec. IVd are in good agreement with our result in Eqs.s23d
and s24d below. For very low temperatures, the Gaussian
expansion is not accurate.

Let us now integrate out the residual phasesan and bn
from Eq. s20d, to obtain the “effective winding-number ac-
tion” Sk

Gauss in the Gaussian approximation. The functional
integration produces a determinant

Dk = p
n=1

` FTp2

E0
n2 +

pg

2
sun + ku + un − ku − 2ukudG−1

.

To eliminate the divergences that are inherent in the defini-
tion of the path integral, we normalize this against the deter-
minantD0 corresponding to zero winding number. The fluc-
tuation contribution to the effective winding-number action
is thus

DSk
Gauss= Sk

Gauss− S0
Gauss= ln Dk/D0 s21d

=
p2T

E0
k2 + pguku + o

n=1

`
1

2
ln

sp2T/E0dn2 + spg/2dsun + ku + un − ku − 2ukud
sp2T/E0dn2 + pgunu

s22d

=
p2T

E0
k2 + pguku − ln

G„1 + uku + sx − ÎxÎx + 4ukud/2…G„1 + uku + sx + ÎxÎx + 4ukud/2…
Gs1 + ukud2Gs1 + xd

s23d

where x=g/2pmT. If g is large, Stirling’s approximation
leads to

DSk
Gauss<

p2T

E0
k2 + pgk

Gaussuku

where gGauss is a temperature- and winding-number-
dependent effective coupling parameter given by

gk
Gauss= gS1 −

2

pg
ln

gE0

TukuD + const, s24d

where the “constant” is inOsg0d, but may depend onk. Ob-
serve thatgGausshas a form very similar to the fluctuation-
dressed coupling constantgrensnd,

MAGNETIC DROPLETS IN A METAL CLOSE TO A… PHYSICAL REVIEW B 71, 024429s2005d

024429-5



grensnd = gS1 −
1

pg
ln

gE0

nT
D ,

obtained by disregarding winding numbers, and also that to
leading order,gGauss,gren. We note in Eq.s23d that when
pg=1, the phase correlation function evaluated ignoring
winding numbers,Cstd<gren/g=1/2−1/2pg, is approxi-
mately 1/2. Therefore onceutu is large enough such that
Cstd&1/2, Eq.s17d is no longer accurate, and the effect of
winding numbersmustbe considered even ifg@1. The cri-
terion pg=1 sets a crossover temperatureT* ,gE0e

−pg/2

marking the onset of tunneling effects. This is consistent
with numerical calculations that indicate

T* = E0/Î2sepg − 1d. s25d

For calculating correlation functions at low temperature,
winding numbers as well as higher-order residual fluctua-
tions need to be considered. In the regimepgGauss.1, the
contributions from winding-number trajectories to the corre-
lation function are exponentially small, and the correlation
function behaves according to Eq.s17d. In the regime
pgGauss,1 or below and close toT* , both even and odd
residual fluctuations are important in the action when the
winding number is nonzero. Due to these nonlinearities, we
have not been able to calculate the correlation function di-
rectly beyond quadratic order. However, we have numerical
resultsssee belowd for contributions from residual fluctua-
tions around the winding-number trajectories.

Finally, we note here that we have studied the model in
Eq. s8d from another direction, namely, by doing perturbation
theory in powers ofg, as opposed to powers of 1/g as in this
paper. The effective action and correlation functions thus ob-
tained will be plotted in Sec. V of this paper for comparison,
but the details will be described in another paper, since they
pertain mainly to the small-g limit which is not the focus of
this paper.

IV. NUMERICS

We now describe our numerical methods. Since the phase
wstd is a real scalar field and the actionSfwg is a real func-
tional, the system can be studied using path integral Monte
Carlo simulationssee, for instance, Refs. 16 and 17d.

We first discuss the discretization, which is an inevitable
part of Monte Carlo simulation. The path is sampled atN
values of imaginary time,t j = j«, where j =0,1,2, . . . ,N−1.
The kinetic term is discretized using the “primitive
approximation,”20 that is, by assuming that the path interpo-
lates linearly between adjacent sample points. This is not as
crude as it sounds: for the free quantum rotor, the primitive
action coincides with the exact renormalized action obtained
by integrating out all intermediate phaseswt for tÞ j«. The
dissipative term is likewise approximated by a quadrature
formula based on bilinear interpolation. The double pole in
the dissipation kernel,astd=T2/sin2 pTt, causes the inte-
grand at “diagonal” grid pointsi = j to be indeterminate. To
deal with this, we transfer the quadrature weight symmetri-
cally off the pointi = j onto the pointsi = j ±1. This is equiva-
lent to the scheme of Ref. 16:

Sshwjd =
1

4E0«
o

i

swi − wi+1d2 + pg«2o
iÞ j

ai−j sin2 wi − w j

2
,

s26d

where

a j = 53

2
as j«d, j = 1 or N − 1,

as j«d j = 2, . . . ,N − 2.

h s27d

Actually the criterion for a good discretization of the action
is not how well it approximates the action, but how well it
reproduces the correlation functions. It is possible to derive a
discrete action that, when used in PIMC calculations, will
produce a correlation functionCj which is exactlyequal to
Cst jd in the Gaussian approximation. However, away from
the Gaussian limit, this approach did not give a significant
improvement over the others.

The time step«=b /N is restricted by the smallest time
scale in the problem, which is the lower cutoff of the loga-
rithm in Fbarestd, that is, 1 /gE0. Ideally« should be chosen to
be a constant multiple of 1/gE0, but the thermodynamic in-
tegration method described later requires the same« to be
used for all values ofg. Hence, we have used a time step
«ø1/8E0. The discretization error inCsb /2d can be esti-
mated by comparing runs with different values of«, and can
be 1% or more at the largest values ofg. This error, however,
is simply a tendency to globally overestimate or underesti-
mateCstd, corresponding to a small renormalization of the
parametersE0 andg, and does not affect the conclusions of
this work regarding the asymptotic behavior ofCstd.

To generate the Markov chain, we use the Hamiltonian
Monte Carlo sHMCd method.18,19 This is a version of the
Metropolis algorithm in which new configurations are pro-
posed by evolving old configurations in phase space accord-
ing to Hamiltonian dynamics, with the aid of fictitious mo-
menta. The bias introduced during inexact Verlet time
evolution is compensated exactly by the Metropolis rejection
step; the scheme can be shown to satisfy detailed balance.
During each Verlet trajectory, the configuration evolves bal-
listically rather than diffusively as in the standard Metropolis
method, which allows a much faster exploration of configu-
ration space.20 The HMC method is particularly suitable for
smooth actions such as Eq.s26d, where there are no con-
straints or collisions to complicate the time evolution. Al-
though the long-ranged term in the action contains a double
sum, this can be treated using fast Fourier transformsFFTd
methods, so that the computational cost of each HMC step is
OsN log Nd rather thanOsN2d.

The HMC method in its basic form still suffers from the
problem that the Verlet time step must not exceed the period
of oscillation of the short-wavelength Fourier components of
the path, and thus the long-wavelength components take
many time steps to go through one oscillation. The solution
to this is preconditioning. One can exploit the freedom in the
definition of the fictitious momenta: instead of giving all
beads the same fictitious mass, the Fourier modes are given
wavelength-dependent masses so that all wavelengths oscil-
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late at the same rate. If the action had been quadratic inf,
then the Fourier components would represent independent
normal modes, and one could achieve complete randomiza-
tion in a single trajectory.

The multilevel Metropolis algorithm20 is a strong con-
tender, and has the advantage that winding-number changes
can be included naturally in the proposal distribution. How-
ever, at the time of writing we do not know an accurate
“level action,” so to achieve acceptable acceptance ratios, the
multilevel method would have to be applied to short sections
of path, sacrificing the efficiency of the FFT method.

The algorithm automatically makes jumps between differ-
ent subspaces. However, in order to do so it must pass over
an energy barrier between thek=0 and 1 subspaces propor-
tional to 1/«, corresponding to a phase difference ofp be-
tween adjacent time slices. This isN times higher than the
typical energy difference between ak=1 path and ak=0
path. Hence, winding-number changes can be thermody-
namically possible but kinetically hindered, which is an ob-
stacle to achieving ergodicity. One approach we tried is the
“clipped-barrier” scheme, which operates as follows. During
the calculation of the molecular dynamics trajectory, use a
modified fictitious force, corresponding to an action in which
the barriers have been clipped. This makes it easier for the
time evolution to climb over the barriers. Then, use the true
action in the Metropolis accept/reject step, which restores
detailed balance. We found that this method produced shorter
autocorrelation times.

Nevertheless, a more attractive approach, which elimi-
nates the above problem entirely, is to perform simulations at
fixed winding number, in separatek subspaces. We compute
the correlation functions at fixed winding number,Ckstd, for
eachk:

Ckstd =
1

Zk
E fdfge−Skffgcosswt − wt8d,

where the partition function within each subspace is

Zk = e−Sk =E fdfge−Skffg.

The full correlator is given by a weighted average

Cstd =

o
k

e−SkCkstd

o
k

e−Sk
=

o
k

e−DSkCkstd

o
k

e−DSk
s28d

whereDSk=Sk−S0 is the relative effective winding-number
action or “free-energy difference.” This can be computed by
simple importance sampling,17,18 or by thermodynamic
integration.18 We use the latter method, asit is more reliable
when DSk is large. Define the thermodynamic function
Ck=−]Sk/]g, which can be obtained fromCkstd:

Ck =
pb

2
E

0

b

dt astdf1 − Ckstdg.

Ck actually diverges as lnN, whereN is the Trotter number
snumber of time slicesd, but DCk=Ck−C0 is finite for large

N. The error caused by subtracting two large numbers is not
too serious in practice. We can now obtainDSk by integra-
tion:

DSksgd = DSks0d −E
0

g

dg8DCksg8d.

The effort of computingCkstd for many intermediate values
of g is well rewarded, because one can then computeCk,
DSk, and Cstd for each of theseg’s with no extra work.
Besides,DSksgd is thetrue effective winding-number action,
which can be compared directly with the analytic estimate
DSk

Gausssgd, thus providing a valuable check of the numerics,
and an indication of the range of validity of the analytics.

All the data presented in the next section were computed
using the fixed-winding-number method. The computation
took the equivalent of 38 Pentium4 2.0 GHz CPU days. 1200
runs were performed for 12 values ofb from 2 to 768, 10
values ofg from 0.125 to 8, and 10 values ofk from 0 to 9.
During each run, the system was equilibrated for 100 HMC
steps and the correlation functions were subsequently aver-
aged over 250 000 to 1 000 000 steps. The Verlet time step
was taken to be 0.1–0.2 of the maximum allowable time step,
and the average length of each HMC trajectory was 10–15
time steps. The Metropolis acceptance ratios were typically
65%–95%. The autocorrelation time was estimated by calcu-
lating the autocorrelation of the deviation ofCsb /2d from its
mean value, and was of the order of 2–10 HMC steps.

The Monte Carlo error can be accounted for as follows.
Whenb is larges768, sayd andg is not too larges0.5, sayd,
the phasesws0d and wsb /2d are practically uncorrelated, so
cosfws0d−wsb /2dg is almost symmetrically distributed on
f−1,1g, with a variance of the order of 1. Assume thatCstd
falls to a negligible value att,4, so that the intervalf0,768g
consists of about 200 independent blocks. Then, translational
averaging reduces the variance of theCsb /2d estimator for a
single configuration to about 1/Î200<0.07. A run of
1 000 000 HMC steps with an autocorrelation time of eight
steps is equivalent to 125 000 independent samples. Averag-
ing over these reduces the variance to 0.07/Î125 000
<0.0002. Indeed, the data in Figs. 2 and 3 below exhibit MC
noise of amplitudee−8.5<0.0002.

V. RESULTS

Figure 1 shows the relative effective winding-number ac-
tion DSksgd. The numerical results are plotted together with
the Gaussian approximation Eq.s23d and the result from
small-g perturbation theory. There is evidently a crossover
from one regime to the other. It is seen that the error in Eq.
s23d is indeed of the formOsg0d3 sfunction of kd.

Figure 2 shows the correlatorCstd vs t. It is possible to
identify at least three distinct regimes in the behavior of
Cstd.

(a) Exponential regime.For smallg and smallt, the “ki-
netic” term Eq.s7d dominates, and the system behaves like a
free quantum rotor. The correlation function decays exponen-
tially sdashed straight lines in Fig. 2d:
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Cexpstd < exps− E0td. s29d

For slightly largert, theory and numerics suggest exponen-
tial decay with a reduced effectiveE0 sdotted straignt linesd:

Crenexpstd < expS−
E0t

1 + 2g/p
D . s30d

The exponential regime is not very relevant in the context of
this paper, which is concerned with largeg.

(b) Logarithmic regime.As explained in Eq.s17d, Cstd is
logarithmic in the exponentially wide range 1/gE0!t
! s1/gE0depg/2:

Clogstd = 1 −
1

pg
ln

2eggE0 sinpTt

pT
. s31d

(c) Algebraic regime.For t*epg/2eggE0, Eq. s31d be-

comes negative, indicating complete failure of the approxi-
mation. In fact, the numerically obtainedCstd beginsfalling
below Clogstd onceCstd&1/2, as nonzero-winding-number
trajectories start becoming important. However, this down-
ward trend does not continue indefinitely, but is arrested by
an algebraic decay. It turns out that for larget, the PIMC
calculations agree very well with the following prediction of
small-g perturbation theory:

Calgstd = rsgd
sT/2E0d2

sin2 pTt
, s32d

where the functionrsgd is equal to

rsgd = 8sepg − 1d = 8pg + 4p2g2 + Osg3d. s33d

In fact, in this regime, the individualCkstd themselves are
also given by Eq.s32d. Thus, although nonzero-winding-
number trajectories occur in thermodynamic averages with a
significant probability, a calculation that ignores them will
fortuitously give the right answer.

The g=2 and 3 graphs in Fig. 2 clearly show the cross-
over from the logarithmic regime to the algebraic regime.

Our result in Eq.s32d supports previous findings21 that the
long-time dynamicsfCstd=sT/T*d2/sin2spTtdg of the Cou-
lomb gas model, such as Eq.s8d, is determined by the critical
nature of the Ohmic dissipation. This is also confirmed in
conformal field theory calculations of the spin correlation
function in the Kondo problem.22 Further insight comes from
Griffiths9 theorem23 that at larget, the correlation function
Cstd cannot decay faster than the interaction.

Considering a logarithmic law

Cstd = 1 − s1/pgdlnsgE0td

for tT* ,1, and a power-law behavior

Cstd = sT/T*d2/sin2spTtd

for tT* .1, we obtain the impurity susceptibility,

xdcsTd < xdcs0d − s2M2/3T*dsT/T*d2, T ! T* . s34d

Here xdcs0d is exponentially large ing, of the order of
xdcsT*d evaluated using Eq.s19d.

We also present a few more figures. Figure 3 is a log-log
plot of Csb /2d vs b for variousg, clearly showing the cross-
over from the logarithmic regime to the algebraic regime.

Figure 4 is a log-log plot ofxsTd vs b for various g,
confirming that at exponentially low temperatures the sus-
ceptibility saturates at exponentially large values according
to Eq. s34d. Note that for the larger values ofg, simulations
have not been performed at low enoughT to observe satura-
tion. The errors inxsTd are smaller than the errors inCsb /2d
becausex, being an integral, is dominated by the behavior of
Cstd at smallt, which is less susceptible to MC error.

Figure 5 is a phase diagram based on the behavior of
Csb /2d as a function ofg andT. The dashed and dotted lines
represent smooth crossovers rather than phase transitions.
Only the g.1 part of the phase diagram is relevant to the
current paper. The crossover between logarithmic and alge-
braic behavior occurs atT* =E0/Î2sepg−1d.

FIG. 1. sColor onlined DSk vs g for k=1,2, . . . ,9sbottom to top
curvesd, for b=16,64,768stop to bottom graphsd. Solid curves:DS
obtained by integration ofCk calculated from PIMC simulation.
Dashed curves:DS evaluated considering only Gaussian fluctua-
tions about winding-number trajectories. Dotted curves:DS from
perturbation theory about small-g limit, up to Osg2d. At high tem-
peraturesstopd, PIMC results agree with the Gaussian approxima-
tion in Eq. s23d. As temperature is loweredsmiddled, non-Gaussian
fluctuations become important, and significant deviations from the
Gaussian approximation are observed. At very low temperatures
sbottomd, Eq. s23d fails completely.
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VI. DISCUSSION

We have studied the paramagnon contribution to the spin
correlation functionCstd and the static impurity susceptibil-
ity xdcsTd of a strongly dampedsg.1d magnetic defect with
XY rotational symmetry in a metal close to a ferromagnetic
quantum critical point. Our analysis shows that quantum tun-
neling sdroplet’s spin flipd effects are negligible above an
exponentially small temperatureT* =E0/Î2sepg−1d. In this

regime,Cstd andTxdcsTd both decrease logarithmically asT
decreases. At very low temperaturesT!T* , Cstd is very well
described by a power lawCstd=sT/T*d2/sin2spTtd, some-
what analogous to earlier works21,22 on the Coulomb gas
model and equivalent Kondo formulations. The impurity sus-
ceptibility xdcsTd saturates to an exponentially large but finite
value atT=0 and does not show any anomalous divergence.
Near T=0, xdcsTd=xdcs0df1−s2/3dsT/T*d2g, demonstrating

FIG. 2. sColor onlined lnfCstdg vs t for b
=768 for various values ofg. The curves are
symmetrical aboutb /2. Solid curves: PIMC data.
Dashed straight lines:Cexp. Dotted straight lines:
Crenexp. Dotted curves:Clog. Dashed curves:Calg.
Below e−8 the data are swamped by Monte Carlo
error. Forgù1, Csb /2d evolves logarithmically
sdotted curvesd while tT* ,1, T*

=E0/Î2sepg−1d. For tT* @1, Cstd obeys a
power law sdashed curvesd, Cstd
=sT/T*d2/sin2spTtd, for any finite value ofg.

FIG. 3. sColor onlined Csb /2d vs b for g=0.5,1,1.5,2,3sbot-
tom to topd. Solid lines are PIMC results. Dotted lines are
Clogsb /2d. Dashed lines areCalgsb /2d. A clear crossover from a
logarithmic law to a power law can be seen as the temperature is
decreased.

FIG. 4. sColor onlined xdc vs T for g
=0.125,0.25,0.3,0.5,1,1.5,2,3,4,8sbottom to topd. The satura-
tion of impurity susceptibility belowT* and aT2 deviation from
saturation can be seen in all but the top three curves, for whichT*

is extremely small.

MAGNETIC DROPLETS IN A METAL CLOSE TO A… PHYSICAL REVIEW B 71, 024429s2005d

024429-9



the critical nature of the Ohmic dissipation. While our results
were obtained for anXY defect, we believe they should be
relevant to defects with full spherical symmetryspossibly
with additional modifications due to the Berry phased. We
stress that there is a qualitative difference between the cases
of Ising24 andXY symmetry due to the critical nature of the
long-ranged 1/t2 interaction for one-dimensionalsmeaning
one time dimensiond ferromagnetic chains.25

We considered in this paper the action of Eq.s8d and
associated nonperturbative effects associated with spin flips.
These effects are dominant if, due to the large ferromagnetic
polarizability of the host metal, the corrections proportional
to g scorresponding to the even powers of exchange coupling
Jd are larger than other Kondo corrections proportional to
odd powers ofJnseFd. As analyzed by Larkin and Melnikov,1

the condition to neglect odd-power Kondo corrections is
g.JnseFd. Since we considerg.1, it is sufficient to
require justJnseFd. s1+Fad1/2, while the above condition
g.JnseFd is satisfied trivially forJnseFd!1.

The weak-coupling casesg!1d is analogous to the over-
compensated Kondo problem studied by Nozieres and
Blandin,26 and Abrikosov and Migdal27 where the number of
conduction electron channelsNch coupling to the defect is
much larger than 2S. Each conduction electron channel cor-
responds to a different orbital quantum number. The coupling
constantsJnFd obeys the scaling equation

dsJnFd
d ln D

= − sJnFd2 + NchsJnFd3 + csJnFd4 + ¯ , s35d

whereD is the bandwidth, andc depends onS but not on
Nch. The first term in Eq.s35d depends on the sign of the
exchange interactionJ, and forJ.0 gives rise to the con-
ventional antiferromagnetic Kondo effect with a Kondo tem-
peratureTK=D exps−1/JnFd. The second term describes the
scattering of a conduction electron from the impurity dressed

by a numberNch of closed electron loops. If the second term
is much larger than the first, the coupling constant renormal-
izes toward zero as follows:

JsDd =
J0

Î1 + fNchsJ0nFd2/2glnsD0/Dd
. s36d

The above scaling is the same as the renormalization of
g=sp /2dsSJnFd2/ s1+Fad obtained by Larkin and Melnikov1

for g!1 by summing over parquet diagrams:

gsTd =
g

1 + s2g/pS2dlnsE0/Td
. s37d

A comparison of Eqs.s35d ands37d shows that the number of
channels isNch=2/s1+Fad. As the running coupling constant
decreases, the usual first Kondo term in Eq.s35d may no
longer be disregarded. IfJ.0 santiferromagneticd, JsDd
flows toward a stable multichannel Kondo fixed point given
by

J*nF = 1/Nch = s1 + Fad/2, s38d

which corresponds to a Kondo temperature

TK = E0e
−1/J*nF = E0e

−2/s1+Fad. s39d

If J,0 sferromagneticd, the coupling constant scales to zero.
In that case, as in the ferromagnetic Kondo problem, the
impurity’s susceptibility is expected to obey a Curie-Weiss
law asT→0.

In this paper we have consideredg.1, and perturbation
theory in 1/g also shows thatg flows toward zero,28 as is
evident from Eq.s16d. Thus, in both the weak-coupling
sg,1d and the strong-couplingsg.1d cases,g is renormal-
ized toward zero until very low temperatures belowTK
=E0 expf−2/s1+Fadg, when odd-power terms of the cou-
pling J become relevant.

The overall picture emerging from our analysis is that the
compensation of the droplet’s moment takes place in two
basic stages. In the first stage, on which we focus in the main
text, the paramagnon fluctuations, which originally enhance
a spin S to the large magnetic momentM, are gradually
stripped off. This quenching of the droplet moment takes
place below the temperatureT* , which in our case is given
by T* <E0 expf−pg/2g=E0 expf−spSJnF /2d2/ s1+Fadg. At
the second stage, and an even lower temperatureTK, for
J.0 the usual Kondo effect compensates the remaining mo-
ment leading to a multichannel Kondo fixed point, while for
J,0, the impurity spin becomes free. The multichannel
Kondo fixed point could be an artifact of our assuming equal
coupling of the droplet to all theNch angular momentum
channels of the conduction electrons. In reality, the coupling
for each channel may be different, and it is possible that the
impurity spin will get compensated successively in different
channels. Maebashi, Miyake, and Varma29 recently analyzed
the problem in the Kondo regime and concluded from the
scaling equations that the coupling constants approach a
multichannel Kondo fixed point. They also suggested that at
unattainably low temperatures a crossover happens when a
single channel wins out. Very recently we became aware of
another work30 which arrived at some conclusions similar to

FIG. 5. sColor onlined Phase diagram for behavior ofCsb /2d,
b=1/T. The algebraic regionCsb /2d=sT/T*d2 occurs at a
low enough temperature for any nonzero value ofg. This phase
is dominated by spin-flip processes. Droplet fluctuations are
frozen in the logarithmic phase;Csb /2d decreases slowly as
1−s1/pgdlnsgE0/Td. As one approaches criticalitysi.e., g in-
creasesd, spin-flip processes occur below exponentially low tem-
peraturesT,T* =E0/Î2sepg−1d.
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ours in the case ofOsNd spin symmetry in the large-N limit.
In this paper we considered a dilute system of impurities,

so that mutual interaction among impurities can be ne-
glected. The size of a magnetic droplet,L, is determined by
the dispersion relation of the paramagnon modes and the
proximity to the critical point, asL,j0/Î1+Fa. As the
quantum critical point is approached, the size of the droplets
grows, and the system can be considered dilute only if the
density of impurities isnimp!j 0

−3s1+Fad3/2. We also ignore
various anomalous effects which possibly arise in very close
proximity to the critical point,31 and explore only the nearly
ferromagnetic Fermi-liquid regime.

There are several experimental systems, involving impu-
rities with giant magnetic moments in a nearly ferromagnetic
host metal, in which it may be possible to study magnetic
droplet phenomena systematically.32 Among these are iron
sFed dissolved in various transition metal alloys,33 nickel
sNid impurities in palladium34,35 sPdd, and cobaltsCod impu-
rities in a platinumsPtd host.36

There are some close connections between the dynamics
of a magnetic moment withXY symmetry and the dynamics

of the electromagnetic phase in quantum dots and granular
metals. The power-law behavior ofCstd at longt sor small
temperaturesd can be associated with inelastic cotunneling in
the literature of mesoscopic physics.37,38 Inelastic cotunnel-
ing was long understood to be important at low temperature
fT,E0 expsg−1dg for weak intergrain couplingsg,1d. Our
present work shows that this is so even when intergrain cou-
pling is large, the difference being that wheng.1, inelastic
cotunneling becomes important only at exponentially low
temperaturesT,T* . The competition of inelastic cotunnel-
ing and the Coulomb blockade can lead to interesting conse-
quences for the transport properties of a granular metal.39
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