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Magnetic droplets in a metal close to a ferromagnetic quantum critical point
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Using analytical and path integral Monte Carlo methods, we study the susceptigilify) of a spinS
impurity with XY rotational symmetry embedded in a metal. Close to a ferromagnetic quantum critical point,
the impurity polarizes conduction electrons in its vicinity and forms a large magnetic droplet with moment
M>S. At not too low temperatures, the strongly damping paramagnon modes of the conduction electrons
suppress large quantum fluctuatiofs spin flip9 of this droplet. We show that the susceptibility follows
the law ygd(T)=(M2/T)[1-(7g) *In(gEy/T)], where the parametag>1 describes the strong damping by
conduction electrons, anH is the bandwidth of paramagnon modes. At exponentially low temperatures
T<T.~Egexp—mg/2) we show that spin flips cannot be ignored. In this regime we find that
X T) = xadO)[1-(2/3)(T/T+)?], whereyy(0) ~ M?/T. is finite and exponentially large ig. We also discuss
these effects in the context of the multichannel Kondo impurity model.
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[. INTRODUCTION broader context, our analysis forms a part of the general
problem of disorder in nearly quantum critical metals. Three
Magnetic impurities in a nearly ferromagnetic Landaudecades ago, Griffithsand McCoy predicted a nonanalytic
Fermi liquid can induce large magnetic droplets by polariz-temperature dependence of magnetization in nearly ordered
ing conduction electrons in their vicinityThe large mag- ferromagnetic Ising models with bond disorder. Throughout
netic polarizability of the conduction electrons can be de-the years after that, the research on quantum Griffiths Kondo
scribed in terms of low-energy collective excitations, disorder and local criticaliff® problems has remained of
paramagnon$An impurity spin dressed by these soft para-wide interest.
magnon excitations forms a magnetic droplet, and the size of We study the magnetic susceptibilify(T) of a spinS
such droplets, determined by the spatial dispersion of th@npurity with XY rotational symmetry coupled to the con-
paramagnons, can greatly exceed typical interatomic disduction electrons through an exchange interaction
tances in the proximity of the quantum critical point. The
dynamics of such a droplet are essentially determined by the Heyx=JS - c'(0)oc(0) (1)
paramagnon modes which damp the orientational motion of
the droplet. At not too low temperatures, the fluctuations ofin @ metal close to a ferromagnetic quantum critical point.
the droplet's moment are small if the damping of the angulaWe employ both analytical and path integral Monte Carlo
motion is strong. As the temperature is lowered, due to thesé’IMC) techniques. The two main results of our analysis are
small fluctuations the effective damping decreases slowlyas follows. First, we show that at not very low temperatures,
usually as a power law or logarithmical(gee below. This due to small quantum fluctuations of tXe&' droplet the sus-
decrease of the effective damping is reflected in the temper&eptibility evolves as
ture dependence of the impurity’s magnetic susceptibility
. . . . 2
which increases at a rate slower than the Curie-Weiss law (T):M— 1_i In<@)
XadT)~T1 as the temperature is decreased. Xde T g T/l
The relevance of large quantum fluctuatig¢asspin flipg ) ) )
of these overdamped magnetic droplets, the main interest o¥e shall show that the result is valid over an exponentially
this paper, has been a topic of active investigation recentlyarge range of temperaturgE,>T> E, exp(-7g/2). Here
Consensus in this matter has proved elusive. The variou§ie parameteg=[Jn(eg)]?/(1+F,) > 1 represents the damp-
existing points of view seem to agree that the susceptibilityng of the droplet's fluctuations, andM|=|J|n(eF)S/
of large overdamped droplets at not very low temperature§l +F,)> S is the magnetic moment of the droplé,— -1
should obey yy(T) ~T 1", where <1 is nonuniversal. is the Landau Fermi-liquid parameter denoting distance from
Millis, Morr, and Schmalia? found that in the case of a the quantum critical point. To leading ordergn', the loga-
magnetic defect with Ising symmetry, quantum tunneling isrithmic form and the power lavyg(T) =(T/ To) 1179 are
suppressed altogether, and that the power-law temperatutke same. However, at lower temperatures, the two expres-
dependence of4(T) extends down td =0 K. Furthermore, sions can differ significantly. Second, and more significantly,
they indicated that their conclusion was relevant even fowe show that at exponentially low temperaturés<T.
defects with a continuous symmefryCastro-Neto and =Egexp(—mg/2), full 27 spin rotations cannot be ignored.
Jones in an earlier work, analyzed the same problem withThe susceptibility af =0 saturates in this model, and at fi-
both ferromagnetic and antiferromagnetic clusters. In aite temperature¥ <T.,
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XadT) = xad O — (2/3)(TIT)2], o (r, 1) = CL(r, DL, C.l1, 1),

where x4J0) ~ M2/T. is of the order of the susceptibility at and »,=27Tn. The static part of the susceptibility is
T~T.. The zero-temperature susceptibility.(0) is expo- D(0,0=2n(e:)/(1+F,) in terms of the standard Landau
nentially large ing. The conclusion is that for th€Y mag-  Fermi-liquid parametefF,. Close to a ferromagnetic instabil-
netic defect, spin flips are important at low temperatures, andy, F,~-1, due to the large static magnetic susceptibility
their effect is to remove the divergence of susceptibility atthe impurity induces a large magnetic droplet with effective
T=0 K. The low-temperature behavior we obtain for the im-momentM=51-Jn(ez)/(1+F,)]. In the case of an antifer-
purity susceptibility is similar to that seen in the usual Kondoromagnetic exchange coupling>0), the droplet’s mag-
problent®!! for J>0. The regime of proliferation of spin netic moment is polarized in the opposite direction to the
flips belowT <T. is analogous to the strong-coupling regime impurity spin, while in the case of ferromagnetic coupling
of the Kondo problem below the Kondo temperature. In con{J<0) the droplet’s magnetic moment and the impurity spin
trast to the usual Kondo effect where the sign of the exare locked parallel to each other. The low-lying magnetic
change coupling between the impurity spin and conductiorexcitations of the conduction electrofvghich also constitute
electrons,J, is important, our results are independent of thethe major part of the dropleare strongly damped, as can be

sign of J. We consider here only the effects dependent on theeen in the expression for spin susceptibility at srkadind
dampingg and therefore on even powersbfin the closing ¢,

section we discuss further the experimental realizations and
differences of magnetic droplet phenomena from the stan- D(K, o) ~ 2n(ep) . )
dard Kondo effect!*2 TV L+ F+ (E0K) 2+ (m/2)| wgllK - Vg

We assume that the coupling between a spin and electrons . . -
in a single channel is smalin(ec) < 1. Therefore the terms & is a length scale of the order of interatomic distances. The

beyond the Born approximation can be negleétéahpor- q;b/rll_am::():s of trlezimpurity are determined by the local suscep-
tantly, the overall coupling constarg~[Jn(e)]2/(1+F,)  tPility D(wy),

is large in the proximity of the quantum critical point
F,—-1. The magnetic moment of the droplet, D(wy) - D(0) =J (d*k)[D(k, wy) = D(k,0)]
M=[1-Jn(er)/(1+F,)]S, is large, because the droplet is
dressed byor coupled t® a large number of electron chan- m(ep)? wy|
nels, Ngp=1/(1+F,). Close to the critical point, the contri- = M' 3)
bution of such magnetic droplets to the susceptibility and . ) ) .
resistivity can overshadow other impurity effeéts. Equation(3) is valid at low enough frequencies,
The weak-dampingg<< 1) limit of the same problem was |wp| < Eg= (1 +F,)%2,

first studied by Larkin and Melnikov.Both resistivity and _ _
the gyromagnetic ratio were found ttecreaselogarithmi- At higher frequenciesEy < |w,| < e, Eq. (3) should be re-
cally with decreasing temperature irrespective of the sign oplaced with

the exchange coupling, as opposed to the usual Kondo 2737403 n(e0)?( || |2
effect where resistivity increases logarithmically with de- D(w,) - D(0) z_ﬁ<_"> N
creasing temperature J>0. 37 &oke) €F

The rest of this paper is organized as follows. In Sec. Il | yieqrating out the conduction electrofis the perturba-
we derive our model for dissipative dynamics of the mag-jon series of Jn(eq)]2<1) in Eq. (1) results in a dissipative
netic droplet beginning with the exchange Hamiltonian Ed.action for the impurity,

(1). The correlation function and susceptibility of the droplet
are studied analytically in Sec. Ill. We study both not-too- 3 (P
low temperatures where tunneling effects are negligible, and SmplS]= Ef
very low temperatures where tunneling makes important
contributions. Section IV provides details of the numericalWe are interested in the impurity dynamics at low tempera-
path integral Monte Carlo method we employ. In Sec. V weture, so using Eq(3) for the interaction,
present the results of our analytic and numerical study. Sec- > B ,
tion VI contains a discussion. S, [n]= mgT J deT,M_ 5)

mp 2 J, sif[#T(r- )]

drd7S(7) - S(7)D(7- 7).
0

Il. MODEL AND FORMALISM In Eq. (5), S(n=S(7),n(n)?=1, and we assume that the

] . ) dampingg given by
The magnetic properties of the metal are determined by

the spin susceptibility of the conduction electrons, _ ™ 2
=—[JS 6
5 g 2(1+Fa)[ ree)] (6)
i — ik jon/ j ) . . -
D(k,wn)d" = f dr e rfo dre“(c'(0,00’(r, 7)), is large(g>1). This is always possible sufficiently close to
_ the transition. The form of the interaction we chose in ).
whered'(r, 7) is the conduction electron spin density, is valid only up to an energif,. We may impose this cutoff
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through an additional regularizing term in the action, 5 B
XddT) =M f d=(n(7) - n(0))
0

1

B
- 2
Sednl= 25, dr(d.n). (7) o B .
M= dr(cod ¢(7) — ¢(0)]). (10
0

This method of imposing the cutoff is not unique. For in- Calculation of the imaginary part of the susceptibility as well
stance, an equally valid option would have been to introduce ginary p P Y

a short-time cutoffz, in the interaction,gT2/sir(=T7) as transport properties like resistivity involves subtleties as-

. > | . sociated with analytic continuation to real frequencies. These
HgT_ZIS'nZ(WT\"z”g)' The_ cutoff appears in the correlation will be studied in a later work. In this paper we calculate
functions only as a function oEyr or 7/7,, and as long

X only the real part of the susceptibility as shown in EL).
as ggym>1, the results are independent of the manner

in which the cutoff is imposed. Parametrizing(7) Ill. ANALYSIS OF IMPURITY SPIN CORRELATION

=(cosg(7),sing(7)), our dissipative model for th&Y im- FUNCTION AND SUSCEPTIBILITY, g>1

purity takes the final form )
A large value ofg tends to suppress large fluctuations

1 (8 B (tunneling of the droplet moment. Physically, the droplet
Sol=—| dnd,e)*+ Mf drh, (9 -n(? couples to a large number of channég<N,) of the con-
4EoJo 0 duction electron continuum, which makes spin flips difficult.
2 B _ o We show below that this is not the case at very low tempera-
+ ﬂf drdr ! Foi"D(T) (’D,(T )], (8) tures, where spin flipéwe use the terminology of spin flips
0 sif{ 7 T(7-7')] and tunneling interchangeably in order to discxé and

Ising symmetry simultaneouslgan occur even for largg.
whereM=g1-Jn(e)/ (1+F,)] is the bare droplet moment, In the first part of this section, we consider not-too-low tem-
andh, is an in-plane magnetic field. The Matsubara fieldsperatures where tunneling may be disregarded. In the latter
¢(7) satisfy periodic boundary conditions up to multiples of half of this section, we discuss the limits beyond which tun-
2. o(m+B)=¢(7)+27k, wherek is an integer called the neling may not be ignored, and analyze the effect of tunnel-
winding number. The full phase(7) can always be written ing on the correlation function and susceptibility.
in the form ¢(7)=27Tkr+ ¢(7), where the residual phase
obeys periodic boundary conditio® 7+ 3) = ¢(7).

We are mostly concerned here with the rotatiofwal ori- Let us begin by studying the action E®) (with h, =0)
entational motion of the droplet's moment. We assume by ignoring winding numbers(k=0) and expanding
throughout the main texbut see the concluding sectjothat  cog ¢(7)—@(7')] to quartic order in the phase difference. We
the exchange coupling is sufficiently strong to suppress théhen gather the Gaussian terms in the resulting action as the
fluctuations of the amplitude of the bare magnetic momenbare term and treat the quartic term as an “interaction”
M, namely, in the quantum limit or at low temperatures, (S=SGauss. gnty:

JS>KT as well askEy>kT. It also suits us to regularize the

tunneling action through the introduction of a kinetic term Soausp 4] = i ﬁdf(a )2
because the model in E(B) appears in numerous contexts. 4E, T
We have already mentioned the recent work by Millis and

A. Ignoring winding numbers

co-worker$ in which the authors studied the dynamics of +ﬂfﬁd 47 [¢(7) = (7)) (11)
magnetic defects in nearly quantum-critical metals, where 0 Ter si[#T(r=7)]’

the defects are regions of ordered phase formed due to a

local enhancement of the transition temperature. For defects a2 (P [(7) - d()]*

with XY symmetry, they arrived at essentially the same s’nt[(ﬁ]:-ij drdr —————. (12
strongly damped model as E€®), although in their model 48 Jo sinf{a (7= 7')]

the kinetic term did not appear simply as a means for impos- . . .
ing a cutoff but had a definite physical meaning as the con]-;rhe bare term ma): ?_e diagonalized by going over to the
tribution to the droplet action from the magnon part of the requency representation,

dispersion curve. Our analysis should be valid for such sys- 0
tems as well. The action in Ed8) also arises from an (1) =, (a, coSw, 7+ by, Sinw,7),
Ambegaokar-Eckern-Sch&htreatment of tunneling through n=1

a quantum dot. There, the physical meaningEgfis the
charging energy for the quantum dot.
In this paper we study the impurity spin correlat@r),

thus,

1< Tr?
g =23 @+ bﬁ)[?nz+ wgn].
C() = (coge(7) = ¢(0)]), 9) i °
In the following discussion, we will need the bare Green
and the zero-frequency impurity susceptibiljgy(T), function, which is given exactly by the following sum:
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1 - cosw,7
(T7IEg)n? + mgn’
(13

Fpard 7) ={{¢(7) - ¢(0)]2>bare: 22

n=1

Essentially,Fy,d 7) is logarithmic in 7, with a lower cutoff
1/gE, and an upper cutoff 1/2

7

1
2E0|T|, T ,
E
Foard ) = { — In(26GEx?) <re—
bare. 7, 79 g ) 9E, 2T’
) .
iln 2e gEosmqur, s 1 .
\Wg T o] =
(14)

Consider now the renormalization &3UsSpy S™. By
contracting two of the four fields appearing $¥2'Susing

PHYSICAL REVIEW B 71, 024429(2005

C(7) =(cog (1) = ¢(0)]) = exp{— ([ (7) = B(0)*)/2}

1 -cogwy7)

e 21 (aT/E)n? + mgr(1 - (1/7g) In(gEy/nT)]
—1- Ly 9EsinTTr O(g~®In¥(gEgl)), (17)
e T

differs atO(g™2) from the bare correlator

Chard 7) = eXFi‘ Fbare(T)/Z] -~ (gEO|T|)_l/7Tg-

[In Eqg. (17) we have reinstated the correct cutoff and peri-
odicity.] At large |7, the difference between the bare cor-
relator and dressed correlator can be substantial. Equation
(17) is a one-loop calculation fo€(7). Notice that if the
effectiveg,., has only a logarithmic correction as in EG6),

the correlatoiC(7) has the same logarithmic correction as in
Eq. (17). To obtain the nexD(g™) contribution to the cou-
pling gen in the Gaussian approximation, we need to calcu-
late the two-loop diagrams. These include only the second-

(18

the bare Green function, we obtain a one-loop renormalizagrder diagrams from the quartic interaction in E#j2), but

tion of the bare action by the interaction

aus __ﬂfﬁ ' [¢(T)_¢(T,)]2
oo #1= 8 Jo drdr Sirf{ 7 T(7—7)]
X<[¢(T) - ¢(7'/)]2>bare
__&Tzw A ,1-cogwn(7-7)]
T4 n21 , 9 T 2IE ) + g
[ - o)
sirf[#T(r—7)]
1S 22y 960
~ 2p22‘,1(ap+ b2)pIn =
The effective Gaussian action S5"5f ]=SP2Sf ]

+685%23Usf ], with fluctuations considered up to one loop is
therefore

)

St gl= 53 (6 +b)

n=1

=T
[—n2+ T™MGen|, (15
Eo
where the effective coupling to one loop,
1 9k
Orer(N) = g<1 - ’7T_g In F) )

(16)

is smaller than the bare couplingy and the reduction is
strongest at lown. Sincego M, this means that low-energy

also one diagram from the sixth-order fluctuation expansion
of the tunneling term in Eq(8). One may check that the
most singular contribution in both classes of diagrams is
O(g7tIn?(gE/T)). What is also clear that all other diagrams
are of the orde©(g>™™" In™(gE/T)), wherem, | are natural
numbers. Therefore if lYE/T)<g, Egs.(16) and (17) are
good approximations. Since the logarithm is a slow function
of 7 or T, there is a large range afor T whereC(7) can be
approximated by Eq17). Such a perturbative analysis does
not preclude a qualitatively different behavior@©fr) at long
7's, which indeed occurs as we discuss in the next section.
Equation(17) leads to a magnetic susceptibility

2

SRt

XadT) = —

In deriving Eq.(19), we assumed tha€(7) is effectively
constant over the whole of the intenjd, 3], and that the
errors in this assumption simply modify the cutoff of the
logarithm.

At a low temperaturel g, (2e"gEy/ m)e™™, Eq. (17)
for C(7) falls to zero, indicating the breakdown of our per-
turbative analysis; near this temperature the susceptibility
Eq. (19) is exponentially large:

1
1——In@

T (19

MZ

~ —@™

95

At lower temperature3 < Tg,,ss0Ne must consider winding
numbers, higher-order residual fluctuations, and nonpertur-
bative (in 1/g) contributions toyy.. Our numerical calcula-
tions show that fog=1, C(7) visibly falls below Eq.(17)
aroundC(7)=1/2, so Eq(17) becomes inaccurate even be-

M 2
2TGauss

Xdd Taausd =

paramagnon fluctuations of the conduction electrons thaiore |7~ 1/TgaussiS reached.
constitute a large fraction of the droplet cause a logarithmic We emphasize that the logarithmic temperature depen-

reduction of its moment.

dence in Eq.(19) is not an approximate expansion of

The phase correlation function with the dressed couplindM?/T)(T/gEy)(™ to order 14, but is in fact more accu-

gren(n)i

rate than this, in the ranggEy>T> Tgauss
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B. Taking winding numbers into account found that instanton techniques, while useful in Josephson-
junction problems, have limited applicability in the current

i =, T+ i L . . s
We now turn our attention to patie(7) = w7+ $(r) with situation because of the failure of the “noninteracting instan-

a finite winding numbek. We have chosen to expand the full ton gas approximations

phasefp in terms olf residual-phase fluctuatiod:sabout' the At first sight the presence afglk| in Eq. (20) seems to
“classical” pathsy®(7) = w,r. There are reasons for doing SO. g gqest that a large value gfrules out significant finite-
First, these classical paths are solutions of the Eulerginding-number effects. Observe, however, that the fluctua-
Lagrange equations, so they aationary pointsof the ac-  tjon term also depends dq so we should integrate out the
tion S{¢]. Second, expanding the action H§) tosecond residual-phase fluctuations and find whether the resulting
order in the fluctuations shows that all the “spring constantsk-dependent contribution to the action encourages or further
(the coefficients ofaﬁ and bﬁ) are positive, so the classical discourages finite winding numbers. In Eg0), the contri-
paths ardocal minimaof the action: bution to residual fluctuations arising from the tunneling
term vanishes for Matsubara frequenares |k|. As a result,

T 1 (* cubic and higher-order residual phase fluctuations begin
Setel= E_k2+ mglK +Ef d(d,¢)* playing a role?. However, despite F())ur considering residl?al
0 070 fluctuations only to Gaussian order, we find that at not-too-
mg (P ,co827kT(7— 7')] low temperatures, exact numerical calculatiétiscussed in
+ 4 drdr Sir[7T(7- 7)] Sec. IV) are in good agreement with our result in E(&3)
0 and (24) below. For very low temperatures, the Gaussian
X[ (1) — H(7)]? expansion is not accurate.

Let us now integrate out the residual phasgsand b,

ﬂ from Eq. (20), to obtain the “effective winding-number ac-

T o1
:E—k2+q-rg|k|+2—[ n2+%g(|n+k|+|n
0

=120 Eo tion” S°2**%in the Gaussian approximation. The functional
integration produces a determinant
-k -2 kl)} (a3 +b}). (20 - 4
T
De=11| —=n?+ 7T—g(|n+ K +|n—k| - 2/k|)
n=1 EO 2

Third, we believe(although we have not providhat for
each value ok, the classical pati{() is theunique global  To eliminate the divergences that are inherent in the defini-
minimumof S ¢]. tion of the path integral, we normalize this against the deter-

The Fourier modes form a complete basis, so our paramminantD, corresponding to zero winding number. The fluc-
etrization automatically encompasses the Korshunov instanuation contribution to the effective winding-number action
ton trajectories used by other authétdndeed, it has been is thus

A§auss: §auss_ §auss: In Dk/DO (21)
72T 1 (mPTIEYN? + (mg/2)(In+ K| +[n =K - 2|K|)
=—K+mglkl+ 2 - | 22
g, K+l HEl 2" (2TIEQn® + g)n| (22
T, T(1 + K|+ (x = Vxx+ 4kD/2)T(L + K| + (x + Vxvx + 4k])/2)
=—k*+mglk| = In > (23
Eo T(1+[k)T(L+x)
[
where x=g/27mT. If g is large, Stirling’s approximation 2
leads to yes=gl 1 - s In _?Ti(f + const, (24)

A§aussz ﬁKZ + 77_,y(ksau5ﬂ(|

Eo where the “constant” is i©(g°), but may depend ok. Ob-
where %2Uss js a temperature- and winding-number- serve thaty®®sShas a form very similar to the fluctuation-
dependent effective coupling parameter given by dressed coupling constagi,(n),
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)

1
gren(n) = g<1 - w_g In nT

Se) = == (01 grun)?+ 7ge7S, oy sir? B4
4Epe ™ i 2

obtained by disregarding winding numbers, and also that to (26)

leading order,y®25< g, We note in Eq.(23) that when

my=1, the phase correlation function evaluated ignoringihere

winding numbers,C(7) = g,e/9=1/2-1/27g, is approxi-

mately 1/2. Therefore oncgrq is large enough such that §a(js), j=lorN-1,
C(n=<1/2, Eq.(17) is no longer accurate, and the effect of =12 (27)
winding numbersmustbe considered even §> 1. The cri- alje) i=2,...N-2.

terion my=1 sets a crossover temperatufe~ gE,e ™9
marking the onset of tunneling effects. This is consistentActually the criterion for a good discretization of the action

with numerical calculations that indicate is not how well it approximates the action, but how well it
R reproduces the correlation functions. It is possible to derive a
T =Ey/\2(e™ - 1). (25 discrete action that, when used in PIMC calculations, will

produce a correlation functio@; which is exactlyequal to

For calculating correlation functions at low temperature,C in the G . imationd f
winding numbers as well as higher-order residual fluctua- (7;) in the Gaussian approximatiotHowever, away from

tions need to be considered. In the regimg®2Uss>1, the the Gaussian limit, this approach did not give a significant
contributions from winding-number trajectories to the corre-IMProvement over the others.

lation function are exponentially small, and the correlation 1N€ time stepe=p/N is restricted by the smallest time
function behaves according to E@l7). In the regime scale in the problem, which is the lower cutoff of the loga-

7952051 or below and close td-, both even and odd rithm in Fp,d 7), thaF is, L9E,. Ideally e should be chos.en. to
residual fluctuations are important in the action when theP® & constant multiple of Bk, but the thermodynamic in-
winding number is nonzero. Due to these nonlinearities, wdegration method described later requires the sante be
have not been able to calculate the correlation function ditSed for all values of. Hence, we have used a time step
rectly beyond quadratic order. However, we have numericaf <1/8Eo. The discretization error i©(8/2) can be esti-
results (see below for contributions from residual fluctua- Mated by comparing runs with different valueseofand can
tions around the winding-number trajectories. be 1% or more at the largest valuesgofThis error, however,
Finally, we note here that we have studied the model inS Simply a tendency to globally overestimate or underesti-
Eq. (8) from another direction, namely, by doing perturbation mate C(7), corresponding to a small renormalization of the
theory in powers of, as opposed to powers ofd s in this ~ parameters, andg, and does not affect the conclusions of
paper. The effective action and correlation functions thus obthis work regarding the asymptotic behavior@fr).
tained will be plotted in Sec. V of this paper for comparison, ~To generate the Markov chain, we use the Hamiltonian
but the details will be described in another paper, since thejlonte Carlo(HMC) method'®19 This is a version of the

pertain mainly to the smatj-limit which is not the focus of ~Metropolis algorithm in which new configurations are pro-
this paper. posed by evolving old configurations in phase space accord-

ing to Hamiltonian dynamics, with the aid of fictitious mo-
IV. NUMERICS menta. The bias introduced during inexact Verlet time
evolution is compensated exactly by the Metropolis rejection
We now describe our numerical methods. Since the phasstep; the scheme can be shown to satisfy detailed balance.
¢(7) is a real scalar field and the actihe] is a real func-  During each Verlet trajectory, the configuration evolves bal-
tional, the system can be studied using path integral Montéstically rather than diffusively as in the standard Metropolis
Carlo simulation(see, for instance, Refs. 16 and)17 method, which allows a much faster exploration of configu-
We first discuss the discretization, which is an inevitableration spac&® The HMC method is particularly suitable for
part of Monte Carlo simulation. The path is sampled\at smooth actions such as E(R6), where there are no con-
values of imaginary timer;=je, wherej=0,1,2,...N-1.  straints or collisions to complicate the time evolution. Al-
The kinetic term is discretized using the “primitive though the long-ranged term in the action contains a double
approximation,? that is, by assuming that the path interpo- sum, this can be treated using fast Fourier transf¢FfiT)
lates linearly between adjacent sample points. This is not amethods, so that the computational cost of each HMC step is
crude as it sounds: for the free quantum rotor, the primitiveO(N log N) rather thanO(N?).
action coincides with the exact renormalized action obtained The HMC method in its basic form still suffers from the
by integrating out all intermediate phasgsfor 7+# je. The  problem that the Verlet time step must not exceed the period
dissipative term is likewise approximated by a quadraturef oscillation of the short-wavelength Fourier components of
formula based on bilinear interpolation. The double pole inthe path, and thus the long-wavelength components take
the dissipation kernela(7)=T?/sir? nTr, causes the inte- many time steps to go through one oscillation. The solution
grand at “diagonal” grid points=j to be indeterminate. To to this is preconditioning. One can exploit the freedom in the
deal with this, we transfer the quadrature weight symmetridefinition of the fictitious momenta: instead of giving all
cally off the pointi=j onto the points=j+1. This is equiva- beads the same fictitious mass, the Fourier modes are given
lent to the scheme of Ref. 16: wavelength-dependent masses so that all wavelengths oscil-
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late at the same rate. If the action had been quadrati, in N. The error caused by subtracting two large numbers is not
then the Fourier components would represent independembo serious in practice. We can now obtai, by integra-
normal modes, and one could achieve complete randomizaion:
tion in a single trajectory.

The multilevel Metropolis algorithA? is a strong con- g ,
tender, and has the advantage that winding-number changes AS(9) = AS(0) ‘f dg'AW¥(g').
can be included naturally in the proposal distribution. How- 0
ever, at Fhe time of writing we do not know an accuraterpe effort of computingCy(7) for many intermediate values
“level action,” so to achieve acceptable acceptance ratios, th

5t g is well rewarded, because one can then compie
multilevel method would have to be applied to short sections f o anrt
of path, sacrificing the efficiency of the FFT method. AS, and C(7) for eachof thesegs with no extra work.

The algorithm automatically makes jumps between differ-Be.SideSAS((g) s thetrue effective V\{inding-numbgr actipn,
ent subspaces. However, in order to do so it must pass ov h";ﬁ]fa” be compgr_ed directly with the analytic estimate
an energy barrier between the0 and 1 subspaces propor- $ ?Q)' Fhus_ providing a valuable _check of the numerics,
tional to 1/, corresponding to a phase differencembe- and an indication of the range of validity pf the analytics.
tween adjacent time slices. This Mstimes higher than the _A” the dgta pre_seljted in the next section were compqted
typical energy difference between kel path and ak=0  USing the f|>§ed-W|nd|ng-numt?er method. The computation
path. Hence, winding-number changes can be thermod)}—oc’kthe equivalent of 38 Pentium4 2.0 GHz CPU days. 1200

namically possible but kinetically hindered, which is an ob-"UnS were performed for 12 values gffrom 2 to 768, 10

o . i lues ofg from 0.125 to 8, and 10 values &ffrom 0O to 9.
stacle to achieving ergodicity. One approach we tried is th alu ' .
“clipped-barrier” scheme, which operates as follows. During2{"n9 each run, the system was equilibrated for 100 HMC

the calculation of the molecular dynamics trajectory, use &tcPS and the correlation functions were subsequently aver-
modified fictitious force, corresponding to an action in which9€d okver 25;) Ogg tg 21 ofoc; 000 steps. Tr|1|e VeerIIet time step
the barriers have been clipped. This makes it easier for th\@’aj t‘:]‘ ento be onaih Oft € rEaX|mum allowable time step,
time evolution to climb over the barriers. Then, use the true®” the aver?]ge engt ? each HMC trajectory was 1.0_ﬁ5
action in the Metropolis accept/reject step, which restoredMe Steps. The Metropolis acceptance ratios were typically

detailed balance. We found that this method produced short ,%_95%' The autocprrelation time_ was estimated by. calcu-
autocorrelation times ating the autocorrelation of the deviation 6f3/2) from its

Nevertheless, a more attractive approach, which elimimean value, and was of the order of 2-10 HMC steps.

nates the above problem entirely, is to perform simulations at "€ Monte Carlo error can be accounted for as follows.
fixed winding number, in separakesubspaces. We compute When g is large(768, say andg is not too large(0.5, say,

the correlation functions at fixed winding numbeg(q), for ~ the phases(0) and ¢(8/2) are practically uncorrelated, so
eachk: cog ¢(0)-¢(B/2)] is almost symmetrically distributed on

[-1,1], with a variance of the order of 1. Assume tiGtr)
1 _ falls to a negligible value at~ 4, so that the intervd, 768
Cul7) = Z f [dgle St cos(e.~ @), consists of about 200 independent blocks. Then, translational
N ) o ] averaging reduces the variance of Bg8/2) estimator for a
where the partition function within each subspace is single configuration to about 3200~0.07. A run of
1 000 000 HMC steps with an autocorrelation time of eight
Z=e &= J [dgple 2], steps is equivalent to 125 000 independent samples. Averag-
ing over these reduces the variance to 0,25 000
The full correlator is given by a Weighted average ~(0.0002. Indeed, the data in FlgS 2 and 3 below exhibit MC

noise of amplitudes 85~ 0.0002.
2 e5C(n) ety
C(n = “ = (29) V. RESULTS

> e > e
k k

Figure 1 shows the relative effective winding-number ac-

e o . . . tion AS(g). The numerical results are plotted together with
whereAS=S-$, is the relative effective winding-number the Gaussian approximation ER3) and the result from

action or “free-energy difference.” This can be computed by ; : .
) : TP .~ ’smallg perturbation theory. There is evidently a crossover
simple importance sampling;!® or by thermodynamic

integration'® We use the latter method, asit is more reliablefrom one regime fo the other. It is seen that the error in Eq.

. . O .
when AS, is large. Define the thermodynamic function @3 s indeed of the formD(g") X (function Of.k)' .
W,=-3S/ dg, which can be obtained fro@,(7): Figure 2 shows the correlat@(7) vs 7. It is possible to

identify at least three distinct regimes in the behavior of
B (? C(7).
W= 7L dra(n)[1-Cy(7]. (a) Exponential regimeFor smallg and smallz, the “ki-
netic” term Eq.(7) dominates, and the system behaves like a
T, actually diverges as IN, whereN is the Trotter number free quantum rotor. The correlation function decays exponen-
(number of time slices but AW, =¥, -V, is finite for large tially (dashed straight lines in Fig):2
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50

comes negative, indicating complete failure of the approxi-
mation. In fact, the numerically obtainéi{7) beginsfalling

4 below C°(7) onceC(7)<1/2, as nonzero-winding-number
30 trajectories start becoming important. However, this down-

ward trend does not continue indefinitely, but is arrested by
20 an algebraic decay. It turns out that for large, the PIMC

calculations agree very well with the following prediction of
small-g perturbation theory:

(TI2Eq)?

C¥(7) = p(g) PR

(32

where the functiorp(g) is equal to
p(g) =8(e™-1)=8mg+4n’g’+0(g>). (33

In fact, in this regime, the individuaC,(7) themselves are
also given by Eq.(32). Thus, although nonzero-winding-
number trajectories occur in thermodynamic averages with a
significant probability, a calculation that ignores them will
fortuitously give the right answer.
The g=2 and 3 graphs in Fig. 2 clearly show the cross-
over from the logarithmic regime to the algebraic regime.
Our result in Eq(32) supports previous findingsthat the
long-time dynamicg C(7)=(T/Tx)?/sir?(#T7)] of the Cou-
lomb gas model, such as E®), is determined by the critical
nature of the Ohmic dissipation. This is also confirmed in
conformal field theory calculations of the spin correlation
function in the Kondo problerf? Further insight comes from
Griffiths” theorem® that at larger, the correlation function
6 3 C(7) cannot decay faster than the interaction.
Considering a logarithmic law

FIG. 1. (Color onling AS vsg for k=1,2,...,9(bottom to top
curves, for =16,64,768top to bottom graphs Solid curvesAS C(7) =1-(1/mg)In(gEy7)
obtained by integration off’, calculated from PIMC simulation. )
Dashed curvesAS evaluated considering only Gaussian fluctua- for 7T-<1, and a power-law behavior
tions about winding-number trajectories. Dotted curv&S: from _ 2
perturbation theory about smajltimit, up to O(g?). At high tem- C(7 = (TIT)?Isir’(7T7)

peraturegtop), PIMC results agree with the Gaussian approxima-for 7T, > 1, we obtain the impurity susceptibility,
tion in Eq.(23). As temperature is lowereaniddle), non-Gaussian

fluctuations become important, and significant deviations from the XaddT) = x4d0) = 2MZ3T)(T/T.)?, T<T.. (34
Gaussian approximation are observed. At very low temperatures . . .
(bottom, Eq. (23) fails completely. Here x4/0) is exponentially large ing, of the order of

Xdd(T+) evaluated using Eq19).

_ We also present a few more figures. Figure 3 is a log-log
C¥(7) ~ exp(- Eo7). (29) plot of C(B/2) vs g for variousg, clearly showing the cross-

For slightly largerr, theory and numerics suggest exponen-over from the logarithmic regime to the algebraic regime.

tial decay with a reduced effectivig, (dotted straignt lings Figure 4 is a log-log plot ofy(T) vs B for various g,
confirming that at exponentially low temperatures the sus-
Crenexy 1) ~ exp(— i)_ (30) ceptibility saturates at exponentially large values according

1+29/m to Eq. (34). Note that for the larger values gf simulations

ave not been performed at low enougto observe satura-
on. The errors iny(T) are smaller than the errors @(3/2)
because, being an integral, is dominated by the behavior of
C(7) at small7, which is less susceptible to MC error.
Figure 5 is a phase diagram based on the behavior of
C(B/2) as a function ofy andT. The dashed and dotted lines
2e"gE, sin 7Tt represent smooth crossovers rather than phase transitions.
n— ——— (31)  Only theg>1 part of the phase diagram is relevant to the
current paper. The crossover between logarithmic and alge-
(c) Algebraic regimeFor 7=e™/2egE,, Eq. (31) be-  braic behavior occurs & =Ey/+2(e™-1).

The exponential regime is not very relevant in the context o{;
this paper, which is concerned with large

(b) Logarithmic regimeAs explained in Eq(17), C(7) is
logarithmic in the exponentially wide range dH,<r
<(1/gEy)e™2

1
CYn)=1-—1I
79
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FIG. 2. (Color onling In[C(7)] vs 7 for B
- =768 for various values of). The curves are
h symmetrical abouB/2. Solid curves: PIMC data.
Dashed straight line<C®*P. Dotted straight lines:
crenexp Dotted curvesC'®9. Dashed curvescas,
Below e7® the data are swamped by Monte Carlo
error. Forg=1, C(B/2) evolves logarithmically
(dotted curves  while T <1, T
=Eq/\2(e€™-1). For 7T.>1, C(7) obeys a
‘ 3 power law  (dashed curves  C(7)
| | =(T/T+)?/sir?(#T7), for any finite value ofg.
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VI. DISCUSSION regime,C(7) and Tx4(T) both decrease logarithmically ds
We have studied the paramagnon contribution to the spif€Creéases. Atvery low temperaturég'l;*, Cl7) is very well

correlation functionC(7) and the static impurity susceptibil- described by a power |§\@(T):(T/2T*) [sirk(T7), some-
ity xq(T) of a strongly dampe¢g> 1) magnetic defect with what analogou.s to earlier works on the Coglomb' gas
XY rotational symmetry in a metal close to a ferromagnetid"del and equivalent Kondo formulations. The impurity sus-
quantum critical point. Our analysis shows that quantum tunSePtibility xo(T) saturates to an exponentially large but finite
neling (droplet's spin flip effects are negligible above an value atT=0 and does not show any anzomalous divergence.
exponentially small temperatufB =Eq/2(e™-1). In this Near T=0, xudT)=xa(0)[1-(2/3)(T/T.)?], demonstrating

B 64 16 g
G 2 4 8 16 32 64 128 256 7681 6
5
- 100
4 50
Q-4
3 ;3‘*\;
g -6 s ~
8 : i W
1 2 3 4 5 6 0,05 0.1 0.15 0.2 025
Ing T
FIG. 3. (Color online C(B/2) vs B for g=0.5,1,1.5,2,3bot- FIG. 4. (Color online x4 Vvs T for g

tom to top. Solid lines are PIMC results. Dotted lines are =0.125,0.25,0.3,0.3.,1.5,2,3,4,8bottom to top. The satura-
C'°9(B/2). Dashed lines ar€39B/2). A clear crossover from a tion of impurity susceptibility belowT” and aT? deviation from
logarithmic law to a power law can be seen as the temperature isaturation can be seen in all but the top three curves, for which
decreased. is extremely small.
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o IR 0 by a numbeiN,, of closed electron loops. If the second term
r ' 1 is much larger than the first, the coupling constant renormal-
Exponential ',.-""'T"gﬂ’ izes toward zero as follows:
:"‘ J
01l ; H10 J(D)=— 0 . (36)
g ;o ol o V1 + [Ner(Jone)/2]In(Dy/D)
= ,’ Perturbation « . . . .
27N theory in 1/g The above scaling is the same as the renormalization of
OO tufbation {100 g=(m/2)(SIn)?/ (L +F,) obtained by Larkin and Melnikdv
Lh“"jfymg ~T~T(g) for g<1 by summing over parquet diagrams:
i Algebraic \\
! JEN g
0.001}- ~ {1000 T)= . 37
oo' ! L “? o0 o(m) 1+ (2g/wS)IN(Ey/T) (37

A comparison of Eq935) and(37) shows that the number of

FIG. 5. (Color onling Phase diagram for behavior &f(3/2), channels iN.,=2/(1+F,). As the running coupling constant
B=1/T. The algebraic regionC(8/2)=(T/T.)*> occurs at a decreases, the usual first Kondo term in E8F) may no
low enough temperature for any nonzero valuegofThis phase longer be disregarded. 18>0 (antiferromagneti; J(D)

is dominated by spin-flip processes. Droplet fluctuations argows toward a stable multichannel Kondo fixed point given
frozen in the logarithmic phaseC(B/2) decreases slowly as by

1-(1/7g)In(gEy/T). As one approaches criticalityi.e., g in-
creasep spin-flip processes occur below exponentially low tem- Jing = 1N = (1 +Fy)/2, (38)

CESSES O
<T«= 2(e™-1). .
peraturesT <. =Eo/ 2(e™-1) which corresponds to a Kondo temperature

" . . . . — ~1/3«np — —2/(1+F
the critical nature of the Ohmic dissipation. While our results Ty = Ege 7" = Egg 21, (39

were obtained for aiXY defect, we believe they should be |t j— o (ferromagnetit; the coupling constant scales to zero.
relevant to defects with full spherical symmetfgossibly | that case, as in the ferromagnetic Kondo problem, the
with additional modifications due to the Berry phast/e i rity's susceptibility is expected to obey a Curie-Weiss
stress that there is a qualitative difference between the casgs, asT— 0.
of Ising?* and XY symmetry due to the critical nature of the | this paper we have considergd1, and perturbation
long-ranged 17 interaction for one-dimensiondmeaning theory in 14 also shows thag flows toward zerd® as is
one time dimensionferromagnetic chain®: evident from Eq.(16). Thus, in both the weak-coupling
We considered in this paper the action of B8 and (1) and the strong-couplingg> 1) casesg is renormal-
associated nonperturbative effects associated with spin flip$, o4 toward zero until very low temperatures beldiy
These effects are dominant if, due to the large ferromagnetic E, exd—2/(1+F,)], when odd-power terms of the cou-
polarizability of the host metal, the corrections proportional ling J become rele,vant
to g (corresponding to the even powers of exchange coupling The overall picture erﬁerging from our analysis is that the
J) are larger than other Kondo correctiqns proportilonal tocompensation of the droplet’s moment takes place in two
odd powers ofin(er). As analyzed by Larkin and Melnikdv, basic stages. In the first stage, on which we focus in the main

the condmon_ to neglect odd-power !(0.”0'0 cqrr.ect|ons Stext, the paramagnon fluctuations, which originally enhance
9>Jn(ee). Since we considem>1, it is sufficient to 5 spin S to the large magnetic momed, are gradually
require JU?’U”(?F)?(lJfF,a)M' while the above condition  gyinned off. This quenching of the droplet moment takes
g>Jn(eg) is satisfied trivially forJn(eg) <1. place below the temperatufie, which in our case is given
The weak-coupling cas@<1) is analogous to the over- by T.~Eyexd-ng/2]=Eyexd—(wSIn/2)%/(1+F,)]. At
compensated Kondo problem studied by Nozieres anghe second stage, and an even lower temperafrefor
Blandin?® and Abrikosov and Migdal where the number of 3> 0 the usual Kondo effect compensates the remaining mo-
conduction electron channebd;, coupling to the defect is ment leading to a multichannel Kondo fixed point, while for
much larger than & Each conduction electron channel cor- 3«0, the impurity spin becomes free. The multichannel
responds to a different orbital quantum number. The coupling ondo fixed point could be an artifact of our assuming equal

constant(Jng) obeys the scaling equation coupling of the droplet to all thé\,, angular momentum
4 channels of the conduction electrons. In reality, the coupling
Ne) _ 2 3 4 for each channel may be different, and it is possible that the
== (JINg)“+ Ngr(Ing)® +c(Ing)*+ -+, (35 . . o ' ! o
dinD (") ehl 1) (Ine) (35 impurity spin will get compensated successively in different

channels. Maebashi, Miyake, and Vafheecently analyzed
whereD is the bandwidth, and depends orf but not on  the problem in the Kondo regime and concluded from the
Ne The first term in Eq.(35) depends on the sign of the scaling equations that the coupling constants approach a
exchange interactiod, and forJ>0 gives rise to the con- multichannel Kondo fixed point. They also suggested that at
ventional antiferromagnetic Kondo effect with a Kondo tem-unattainably low temperatures a crossover happens when a
peratureT, =D exp(-1/Jng). The second term describes the single channel wins out. Very recently we became aware of
scattering of a conduction electron from the impurity dressednother worR® which arrived at some conclusions similar to
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ours in the case dD(N) spin symmetry in the largklimit. of the electromagnetic phase in quantum dots and granular
In this paper we considered a dilute system of impuritiesmetals. The power-law behavior €f7) at long 7 (or small
so that mutual interaction among impurities can be netemperaturéscan be associated with inelastic cotunneling in
glected. The size of a magnetic droplet,is determined by the literature of mesoscopic physis*® Inelastic cotunnel-
the dispersion relation of the paramagnon modes and thg was long understood to be important at low temperature
proximity to the critical point, asl~&/V1+F,. As the [T<E,exp(g™?)] for weak intergrain couplingg<1). Our
quantum critical point is approached, the size of the droplets asent work shows that this is so even when intergrain cou-
grows, anq the system can b—% conS|d3(/32red dilute iny if th‘f:)ling is large, the difference being that whek- 1, inelastic
density of impurities i91y,, <& o"(1+F,)** We also ignore ¢4 nneling becomes important only at exponentially low
various anomalous effects which possibly arise in very Clos‘femperature§'<T*. The competition of inelastic cotunnel-
proximity to the critical poiné* and explore only the nearly ing and the Coulomb blockade can lead to interesting conse-

ferromagnetic Fermi-liquid regime. . L guences for the transport properties of a granular ni&tal.
There are several experimental systems, involving impu-

rities with giant magnetic moments in a nearly ferromagnetic

host metal, in which it may b.e possible to study ma_gnetic ACKNOWLEDGMENTS
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