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Theory of field-induced spin reorientation transition in thin Heisenberg films

S. Schwieger, J. Kienert, and W. Nolting
Lehrstuhl Festkdrpertheorie, Institut fiir Physik, Humboldt-Universitat zu Berlin, Newtonstrasse 15, 12489 Berlin
(Received 20 July 2004; revised manuscript received 5 October 2004; published 28 January 2005

We consider the spin reorientation transition in a ferromagnetic Heisenberg monolayer with a second-order
single-ion anisotropy as a function of temperature and external field. Up to now analytical methods give
satisfying results only for the special case that the external field is aligned parallel to the easy axis of the
crystal. We propose a theory based on a generalization of the Callen decoupling, which can be used for an
arbritrary direction of the external field. Excellent agreement between our results and quantum Monte Carlo
data is found for the field-induced reorientation at finite temperatures. Additionally, we discuss the temperature
dependence of the transition in detail.
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I. INTRODUCTION H2= - K2 S.S,, 2
I

Since the discovery of the giant magnetoresistance
(GMR) effect 1989 there has been enormous interest andwhich is of second order for systems with tetragonal symme-
research activity in the field of thin magnetic films. The mag-try. For film systems the axis is perpendicular to the film
netic anisotropy, merely a small perturbation in a bulk ferro-plane. IfK, is positive, the easy axis of the magnetization is
magnet, gets strikingly important in thin film systems. Herethe z axis; for negativeK,, this is a hard direction. The RPA
the anisotropy is not only a necessary precondition of sponfails badly if applied to a local term as described in E2).
taneous ferromagnetistnput it determines many system Thus the RPA cannot be used to solve the whole model
properties such as, e.g., the dependence of the magnetization
vector or of the spin-wave excitation spectrum on an applied H=H,;+H,. 3
magnetic field. Additionally, the anisotropy energy is of the |, et g an approximation for this model is proposed, which
same order of magnitude as the interlayer exchangg pased on a combination of the RPA for the nonlocal terms
coupling (IEC), Whlch_ is m'qma_ttely connected with the (1) and an Anderson-CallefAC) decoupling® for the local
GMR effect. Thus an investigation of these effects has tQynisotropy contribution(2). This theory gives good resufts
take the magnetic anisotropy carefully into account. _for the magnetization if the anisotropy const&6tis much

There is an important phenomenon in thin ferromagnetiGmaiier than the exchange couplidgK,< 0.01)) and if the
films which is closely connected to the magnetic anisotropy‘extemm field is applied parallel to theaxis whileK, has to

the magnetic reorientation transition. This term denotes @ ,gjtive. The first condition is not a serious restriction,

rotation of the magnetization from the film normal into the since in reality the anisotropy constants are indeed much

plane or vice versa as a_fuqctlon of temperature, film thICk'smaller than the Heisenberg exchange interaction. Further-
ness, or external magnetic field. The transition can be unde

) , Fhore, this restriction can be relieved by an alternative
stood as a result of competing forces that favor d'ﬁeremtheory.ll The important restriction is given by the second

directions of the magnetization such as, e.g., spin-orbit couzqition. The limit described is a very special one, where
pling, dipolar interaction, and an external magnetic ffel.

. . . g both the anisotropy and the external field favor an alignment
can be described using a Heisenberg model in film geometryy o magnetization parallel to theaxis. Thus there are no

V.V'th the usual Helsenberg exchange interaction, an extern‘iié:ompeting forces” and no magnetic reorientation transition
field, and one or more anisotropy terms. occurs in this limit, which we want to refer to as a “parallel
For the simplest of these models, limit” in the following. However, if the external field is not
applied parallel to the axis and the magnetization is conse-
Hi=-> %S S- 2By S, (1)  quently rotated out of, the approximation described in Ref.
ij i 8 loses its accuracy and becomes unacceptable for a quanti-
tative description of the reorientation transition. This was
consisting only of the exchange term and an external fieldshown in Ref. 6 by comparison with QMC calculations. Ac-
there are very accurate approximation schemes available. ftially, to our knowledge there is no reliable model theory
was shown, e.g., in Ref. 5, by comparison with quantumavailable, which can treat mod€3) for arbritrary directions
Monte Carlo(QMC) calculations, that the random phase ap-of the external field or a negative anisotropy constént
proximation (RPA) decoupling yields even quantitative re- However, such a model theory is highly desirable. It can
sults for the magnetization as a function of temperature. be used to investigate quantitatively the magnetic reorienta-
Turning to anisotropy contributions, the spin-orbit- tion transition in all systems dominated by second-order lat-
coupling-induced anisotropy is usually modeled by a singletice anisotropies. Numerical methods, such as QMC calcula-
ion anisotropy tions, are only applicable for the monolayer, but a finite

1098-0121/2005/12)/0244287)/$23.00 024428-1 ©2005 The American Physical Society



SCHWIEGER, KIENERT, AND NOLTING PHYSICAL REVIEW Br1, 024428(2005

number of layers is crucial to study the interplay betweemot a conserved quantity in our model. Therefore the decou-
surface and bulk anisotropi¢see, e.g., Ref.)4 pling has to be generalized.

A priori, it is not clear that such a model theory exists.  (y) There is a special rotation anglin our model: If the
T e e e, vl goordinte system is rfated by e ange- and te
<pin 'sacbnser od quantity: i.e.. the tot;l magnetiz s ecoupling procedure is applied, the total magnetization

pint ved guantty, 1.€., gnetiz >;S; commutes with the Hamiltonia¢8). It is easy to show

commutes with the Hamiltonian. This property simplifies the N . Jo
calculations considerably but it is not present in the generdiat ¢ is therefore the direction of the magnetization. Now

model (3). the condition[Z;S;,H]-=0 gives an explicit expression for
In this paper we want to show that nevertheless a wellihe magnetization angle. .
funded model theory can be formulated and that it is as ac- (Vi) Using the decouplings as well as the commutation
curate in the general case as in the parallel limit. ComparingroPerty in the primed system we can solve the equation of
our results with the QMC data of Ref. 6 we will find excel- Motion and finally obtain the single-magnon Green function
lent quantitative agreement for the magnetization and it&s Well as the norm of the magnetizati@®).). Therewith the
components, which allows for a high-quality description of problem will be solved.
the magnetic reorientation transition. The theory proposed in (vii) One can further show that the effect of the anisotropy
Ref. 8 is recovered for the special case of the parallel limitcan be interpreted instructively as an effective “anisotropy
In this paper we want to introduce the new theory andfield.” We will calculate the components of this field.
evaluate it by comparison with available QMC results. Since Lets now follow this program in more detail. The rotation
the latter are results for the monolayer, we will exclusivelyOf the coordinate system is described By=MX,, whereM
treat the case of a monolayer during this paper. A generaliS a rotation matrix. Due to the symmetry, we may confine

zation to a multilayer system is straightforward. the rotation to thezx plane without loss of generality. This
means thay’=y and that the polar anglé fully character-
Il. THEORY izes the rotation:
We will assume tetragonal symmetry in the following. cosf® 0 -sind
Thexy plane is the film plane and thus tRendy directions M=l 0 1 0 _ (4)

are equivalent. That is why we can confine the external field
and the magnetization to ttex plane without loss of gener-
ality. We W.'" assume nearest-neighbor couplifly=J f(_)r_ Thez' axis of the new systed’ is set to be parallel to the
nearest.nelghbors anl_j=0 e!sewher)aanq for thg explicit _magnetization direction. This gives
calculations a quadratic lattice. Let us first outline the main
points of our theory. The aim is to calculate the angle and the (Se)=(S,)=0. (5)
norm of the total magnetization of the modg).

(i) In general, the magnetization is not aligned parallel toThe magnetizations in the fixed systeincan now be read
the z axis. We therefore apply a coordinate transformationsff from Eq. (4):
that rotates our system to align isaxis parallel to the mag-
netization. The calculations are much easier and also more (Sy=sin«S,),
convenient in the new system referred tods

(i) After this we write down the equation of motion of the
single-magnon Green function. (S) =cosiS,). (6)

(iii) To solve this equation it is necessary to decouple, . . L .
higher operator combinations. This appears to be straightfoi™2 IS the magnetization component normal to the film plane
ward for the exchange terfil) as long as one works in the while (S) denotes the component parallel to the film plane.
rotated system3’. We will perform the usual RPA (Sy), consequently, is the total magnetization. Of course, the
decoupling here. angle# is a priori unknown.

(iv) The situation is more complex for the anisotropy term  Next we want to write down the equation of motion of the
(2). Here we will develop a new decoupling scheme follow- single-magnon Green functid&’j(E):«S”;q’» defined in
ing the ideas of the Callen decouplifdgdowever, the origi- the new system. Applying the transformatigd) to the
nal Callen decoupling is not applicable, since the total spin igdamiltonian(3) one readily finds

sing 0 cosé

EG{(E) =([S".§ 1) +([S" HIS ")
(1)
= %S,)8 ~ 202 [T (B) - Iy (B)] + K2<C°52 - % sirf 0>Fﬁ’(E) + (B, Sin 6+ B c0s6)G] (E) ~ (B, COSO
|

=B Sin O 1S")) + 2K, cosfsin (S ;S)) + 2K, cosOsin (S ;S")) - 2K, cosdsin 6(S” S 1S,
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with _ (Sxy2)

X(xy,2) =
Fino= (SHS 1), 28
Now we want to decouple operator combinations &S,

, . o +SS, SS,+S,S, or SS,+S,S which appear in the equation
Fie} =(8"s"+9'S 'S n- () of mot%n (7) i?the hi?he?Green functioﬁﬁ’. Thereto we
replace the single operators by the right-hand side of Hij.

nd perform a symmetric decoupling procedure at the result-
ng expressions. Since the prefactaig, , are small quan-
tities, we neglect terms of the order. For example, the
result for the operator combinatidg)S,+S,S, is thus given

11

The sum overl runs over the nearest neighbors of sit&he
combination of trigonometric functions is a consequence o
the rotation(4).

To proceed the operator productslify,, andT" have to
be decoupled. For the nonlocal products in the former wi
choose a symmetric RPA decoupliddd— (A)B+A(B). Us-

ing Eq. (5) which is valid in the primed system we find 55+ SZSyA—C>2<5y>Sz+ 2AS)S, - Z%«Sﬁﬁ 5SS,
RPA
S =SS (8)
= G0S, +(§5,+S8)S + 2AS)S) - Z%«Sﬁy
This is the same result as found in the original RPA
approach for the parallel limit. Let us emphasize that this is +§S)S+ AN +(SS,+SS)S). (12

only the case folr the primed systein. Thus the third point For the other operator combinations, analog expressions are
of our program is done. found

The crucial fourth step introduces a new approximation By virtue of relation(5) the result can be simplified if the

scheme for the single-ion anisotrogg). It will be used to decoupling is performed in the rotated coordinate systém

decouple the h'ghef Green funct!d“rﬁ} as well as to treat \We show in Appendix B that the following relations are ful-
operator combinations appearing in the commutatol o 4 in s -

[2;S;,H]-. The latter is important for the fifth step of our

calculation. (SvSy +SS) =0, (13
In 1963 Callen introduced the Callen decoupfinghich ) )

was intended as an improvement to the RPA decouglingwhere a’ and b’ are two different subscripts out of

The decoupling was performed at the Heisenberg exchand&’.Y'.Z'). This, together with Eq(5), finally gives the de-

term (1). Later Anderson and Call&hused this proposal to coupling within the parallel system':

treat the local anisotropy terii@2) in the parallel limit. Both AC

approaches are based on the fact that the total magnetization S¢S, +S,S,—0,

commutes with the Hamiltonian, a condition that is not valid

in our case. Therefore the procedure has to be rederived and AC <§ )

generalized. We will not quite adopt the procedure as pre- e

sented in Ref. 9 but rather use the main ideas. SrSy +SZ'S‘/'_>2<SZ'><1 I3 )SV"
The approximation makes use of the operator identity

AC (S)
SS+1-§-§-5=0. (9 S.S, +sz,sx,ﬂz<sz,><1 —%)g (14)
) Now the operator combination that appears in the Green
is added Qunction Ff’}’ in the equation of motioif7) can be decoupled.
Using Eq.(14) as well as the identity9) one finds

= — — _ AC
Sy = Shva * @2l S8+ 1 - S-§ -8 (10 S8 +S,50 - 2S,)CiS, (15

The spin operators work on the same s$jtthe site index is
dropped here for convenience. Now the “zero”
the components of the spin operatg, S, S;:

It is important to note that these relations are identities fogyjth
any (a(yy,») only for exact calculations. On the contrary the
result of some standard approximation procederg., of a r—1 1 +1) - 1
symmetric mean-field decouplinghanges if one uses the € 282[5(S ) <S§'>]' (16
right-hand side of Eq(10) instead of the left-hand side. The = . ) )

Using the decoupling procedures discussed up to now the

results do depend now on the prefactaus, , ,). It was the - ; o :
" higher Green functions,,, andI’j" in the equation of mo-

idea of Callen to use this degree of freedom to improve ap:.
proximations. We will follow the proposal of Callen here and tion (7) can be treated. To treat the other four terms we have

adjust the parameters in a way that interpolates betweel? address the fifth point of our program. Hence we will

zero-temperature and Curie-temperature requirements. TH&OW in the following that for a certain anglé the total
explicit calculation is given in Appendix A. It gives magnetization;§ commutes with the Hamiltoniarg3).
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Furthermore, an explicit expression for the magnetization 2

angle will be obtained. ®g e :
Applying the rotation(4) to the Hamiltonian(3) and using 0, = 90°

the abbreviationy; =sin  and y,=cos#é we find 15 0 .
[E Szr’H] :E(Yleo‘)’szo)iﬁy’ N |

[ - i ¢ |
. ! ! ! ! /\r 7

+Kony(§ S +55). o — RPA +AC.
. . v om QMC 1
Now the last operator product is decoupled according to Eq. |- Ref. 8
(14). This gives ;[ RPA + MF -
[2 S ,H] =2 {71520 = 72Byo+ 2Ko17ASy) |
I -

| L . | .
0.03 0.04 0.05 0.06

) : -
x(l—%)]is{. (17)

FIG. 1. Thex andz components of the magnetizatidaig,) and

Th in the f K of . . h | (S), as a function of the external field calculated with our RPA
l_JS’ |_nt _e ramework ot our ?‘pprox'ma“_o”’ t e FOta mag-, ac approach(solid line), the approximation proposed in Ref. 8
netization indeed commutes with the Hamiltonian if the termyashed ling and with a mean-field decoupling of the anisotropy

in brackets on the right-hand side is zero. This has importangym (gotted ling in comparison with the QMC results from Ref. 6
consequences: All expectation values and Green functions iRymbols. Parametersk,= +0.02) andkgT=2J~0.3%gT,, S=2.
the rotated coordinate systémthat do not conserve spin are
zero in the framework of our theory. This can be seen using,
e.g., the Lehmann representation of the Green function. In
particular this applies fo(S,,) and(S.,). Therefore Eq(5)  wherea is the lattice constant. The trigonometric functions
holds in this coordinate system which is thus found to ben Eg. (19) are obviously a consequence of the rotation.
equivalent to the systerd’: $=3'. Hence from Eq(18) anwing the Grgen functiorﬁé(E) one can calculatg the
follows a simple condition for the magnetization angle desired expectation values in the primed system—i.e., the
. total magnetizatioqS,/) and <§,>—by a standard textbook
Oﬁsin 6B, - COSOB,o + 2K, Sin § cos&S,)C,.  (18) procedur'e“h2 finally endi_ng up 'With a self-consistent system
of equations. Before discussing the results of our theory in
The expectation vaIuéﬁ) is already evaluated here using more detail we want to offer an instructive interpretation of
the property of spin conservation in the primed systemthe work of the anisotropy in the framework of our approxi-
Equation(18) is our first important result. mation. This will be the last point of our theory section.
Having calculated the magnetization angle now the norm The abbreviatiorB in Eq. (19) has the same effect on the
of the magnetizatiofS,/) has to be derived. This turns outto Green function as an external field aligned parallel to the
be a straightforward task. Due to the property of spin coninagnetization. Combining the expression fBrwith the
servation in the primed system, the last four Green functiong'agnetization angle, we may write down the components of
in equation of motior(7) are identical to zero. The remaining the effective field:
higher Green function§’ andI'%’ can be decoupled by CRemA—R . _ - r_
Egs. (8) and (14). Thus tT]ng equatlfon of motiof¥) can be B, =B sin 0= Byo ~ Ky(Ssir 6C; = Boo + Bray
solved after Fourier transformation. We finally obtain the
single-magnon Green functic@[](E),

¥q = 2(cosagy + cosaqy),

B,=B c0osf= B+ 2Kx(S)(1 - % sir? 6)C; =B, + B,
(20)

2(Sy)
Gé(E) = E-E Obviously, the effective field may be written as a sum of the
4 external field and an “anisotropy field®,=(B,,,0,B,,). The
with anisotropy acts exactly like this field as far as the magneti-
, zation and magnon energi€g are concerned.
Eq=2S)(p- vy +B, In the next section weE%vill present the results of our
theory and compare them with QMC data and other approxi-
B =By Sin 6+ B, cosf + K,(cog 6 5 sir? §)2(S,)Cy. mations.

(19

The termp denotes the coordination number, whijg is a

structural factor due to the Fourier transformation of the We start our discussion with a comparison of our results
Heisenberg exchange term. For the quadratic lattice chosén QMC data of Ref. 6, which are free of systematic errors.
here it is given by Figure 1 shows the results for the field-induced reorientation

Ill. RESULTS AND DISCUSSION
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transition at finite temperatures. A positive anisotropy con-
stant(K,>0) and an external field parallel to the film plane
(65,=90°) are considered. The external field is applied per-
pendicular to the easy direction of the magnetization, a situ-
ation representing a severe test for our theory. The compo
nents of the magnetizationS,) and (S,), are shown as
functions of the external field. For zero field the magnetiza-
tion is aligned parallel to the easy axis. It is fully rotated into

<S >

>

N

1.5

1

PHYSICAL REVIEW B 71, 024428(2005

<S >

the film plane at the reorientation fiel},. We display the
results of our calculation$RPA+AC solid line$ and the
QMC results of Ref. Gsymbols. Additionally the results of
two other theories are shown for comparison: For the dotted
line the anisotropy tern?) is treated by a simple mean-field
decoupling:

B,/J

FIG. 2. Thez componen{S,) (solid lines and thex component
(S (dashed ling as a function of the external fielB,, applied
The dashed line shows the proposal of Ref. 8. Here the opwithin the film plane. Further parameter€;=0.01], S=2, kgT,
erator combinatior§ S+SS' is decoupled as in the parallel equals 5.75 (Ref. 13.
limit treated in the original paper of Anderson and Caftén:

MF
SS—2S)S. (21)

The observed behavior follows directly from E(L8).
Since the external field is applied parallel to the film plane,
one finds, for thex component of the magnetizatids,),

SS+§5 — 2<Sl><1 - %[S(S+ 1) - <SE>]). (22)

Bxo

The exchange term in all model calculations is treated by an —
2K,Cy(T)

RPA decoupling.

The results of our theorysolid lineg are in excellent . , . .
agreement with the QMC data. We achieved even quantita>"c€C1 [Ed. (19)] increases with temperature, the slope of

tive agreement for all magnetization anglesThe quality of ~ (3¢ iS steeper for higher temperatures. Additionally, E2§)
the approximation indeed turns out to be the same for alfietermines the reorientation fiek),. We find

anglesd, which was the aim of this paper. Our approach is ,

clearly superior to the approximation proposed in Ref. 8, to Bor(T) = 2KAS, M(T)Cy(T). (24)

the mean-field decoupling, and to all other approximations ) ] ] ]
shown in Fig. 11 of Ref. 6. Figure 1 visualizes our main The fast decay of the reorientation field with temperature as

result: namely, that we succeeded in developing a theory fopompared to the magnetization is also due to the temperature
the extended Heisenberg mod8) that is as accurate as the dependence o€;. o _
RPA for the model(1). In the following we will discuss some  This can also be seen in Fig. 3, where we considered the
additional features of the reorientation transition. temperature dependence of the system in detail. We plotted
In Fig. 2 the temperature dependence of the transition i§1€ norm of the components of the anisotropy fie?@) as
analyzed. Again, the components of the magnetization ary_yell_ th_e reorientation fieldcircles and the magnetization
displayed as a function of the external field, which is applied(solid line) as a function of temperature. All quantities are
in the film plane, perpendicular to the easy direction. Thescaled to their zero-temperature value. The anisotropy fields
calculations were performed for three different temperaturesge plotted at their maxima—i.e., @=0° for B,, (dashed
Since the system is not saturated at finite temperatures, ti§e) and at6=90° for By, (dotted ling. The temperature
total magnetization increases with the external field. This iglependence of the anisotropy fielt20) as well as of the
seen best after the reorientatioB,> By,), where only one eorientation field(24) is determined by the facto(S,)
component of the magnetizati@(s,)) is present. For higher *<(T)Cy(T). Thus these quantities have nearly the same tem-
temperatures the transition as a function of the external fielferature dependence and their slopes are steeper than that of
becomes sharper. The reorientation fiBlgl decreases faster the magnetizatiodS,)(T) alone.
with temperature than the zero-field magnetization, reflecting Very similar results are found for the easy plane case
the fact that the anisotropy becomes less important at highdK><0,Bll2). In Fig. 4 we compare both cases of a reori-
temperatures. Another interesting feature is thatxteem-  entation transition. Solid lines show the transition for an easy
ponent increases linearly with the external field until the re-axis system; dashed lines denote the easy plane case. In the
orientation field is reached. This holds for all temperaturegnset, the respective magnetization curddr) =(S,)(T) are
and is qualitatively different from the approximation pro- plotted for zero external field. The Curie temperature and the
posed in Ref. 8. Qualitatively, this feature is also found inmagnetization at finite temperatures are somewhat smaller
mean-field theory as can be seen in Fig. 1 of Ref. 14. for the easy plane system. A reduced magnetization leads to

(Sp =sins,) = (23
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N — -
R M M(©) B, =0 — K,>0,0,=90" T/T.=0.7
0.8 RS ® Bu/Bo©® S> |--K,<0,6,=0 Vi
\\\ - Baz/Buz(O) (B()x = 0) B < Z> 2 * BT — _"{— =
.....\.\\ Bux/Bux(O) (B()x = B()r) _"‘~\:\ /_—-J__—\’_‘
= N A, RN e <8
1 AN v <S> W g
m“ N \ 1k X \ Ad 2 T T T
g LN /\rN A ) RN
@ 0.4 BN 0 ¢ N
e ‘( st N\ A
'.. \ | \
N 1 \
\ : \
.-, | ! % T 23 4 5 6
{ T/
0 | I [ \ l 0 il l .
0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 _ T T 0.02 0.04
B /J B+/J
T/T C 0
C B/J

FIG. 3. The magnetization, the reorientation fiBgl (dotg, and
the anisotropy field, for #=0° (dashed ling and #=90° (dotted . ) Y o
line) as a function of temperature. All quantities are scaled to theitl'o':JI of the _exterfal field. Eesaltz fI(_)r posmVQh—O.Oll_(sogTd |lni3
zero temperature value. The other parameters are as in Fig. 2. F8p negativeK,=—0.01) (dashed lingsare shown,T=0.7Tc. The

comparison a scaled magnetization curve are adsei line). sma}l! arrows tnghllght th(_e posr[!on of the reor_lentatlon fieljs for
positive andB,, for negative anisotropy. The inset shows the mag-

netization curves foBy=0. The other parameters are as in Fig. 2.

FIG. 4. Thez andx components of the magnetization as a func-

a reduced reorientation fie[dee Eq(24)]. This explains the

differences between both cases concerning the reorientation . . .
transition as seen in the main panel. Interpretation of a FMR experiment is the dependence of the

g=0 spin-wave modeE,-, on the external fieldB,. The
function E,-¢(By) can be easily calculated in our theory for
any direction of the external field. This opens the possibility

In this paper we addressed the magnetic reorientatiof extract the microscopic anisotropy constéft directly

transition in a Heisenberg monolayer as a function of th rom FMR experiments.
external field and temperature. The basis of our approach is a
transformation of the Hamiltonian into a coordinate system
3’ (with the z’ axis parallel to the magnetizatipas well as

a generalized Anderson-Callen decoupling procedure. Com- _ )
pared to the bare Heisenberg Hamilton{ah the problem is This work is supported by the Deutsche Forschungsge-
more complicated, since the total spin is not conservedMeinschaft within the Sonderforschungsbereich 290.
However, this complication turns out to be less serious, as it
can be shown that the total spin is a conserved quantity in the
framework of our approximation, if an appropriate quantiza-
tion axis is chosen. This fact can be used to calculate the
magnetization angle as well as to solve the equation of mo- In this appendix we derive the prefactors of E40). We

tion for the single-magnon Green function. It was furtherfollow the philosophy of Callen's papelnd calculate the
shown that the effect of the anisotropy can be described bprefactors as an interpolation between low and high tempera-
an effective “anisotropy field.” tures. Let us start with the former limit=0:

Our results show a strikingly quantitative agreement with  The starting point is Eq10). We will consider expecta-
the QMC data of Ref. 6, yielding a significant improvementtion values instead of operators and transform the resulting
over all other decoupling schemes discussed s¢stsg, e.g., €Xpression as
Ref. 6. The main practical virtue of the new approach is that
calculations can be performed as accurate as with QMC cal-
culations but much faster.

The theory can be generalized to a multilayer system and
can thus be used for cases where QMC calculations are not
feasible anymorée.g., thicker films. It should therefore be
used to analyze the magnetic reorientation transition as a
function of the film thickness as found in many transition-
metal films(see, e.g., Ref.)4 The primed terms are quantities of the rotated system which

Due to its accuracy and convenience, the theory shall furis aligned parallel to the magnetization. Now the expectation
ther be used for a quantitative analysis of ferromagnetic resoralues of the right-hand side are approximated by their zero-
nance(FMR) experiment$>16 The decisive feature for the temperature values:

IV. CONCLUSIONS AND OUTLOOK

ACKNOWLEDGMENTS

APPENDIX A

(S)=(S)+a SS+1)-S-5-S)

=(S)+afSS+D) -, -, - )

=(S)+a(SS+1)-S,-S,S, -S). (A1)
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-0 value (S¢S, +S,Sy). Using the decouplind12) together
(S)—'S, with Eq. (5) one finds

-0 (SeSyr +§:S¢) — (Su) A +(§)B=0. (B1)
Sy — <. (A2) ¥ ¥

The termsA and B are given by the decoupling procedure
This gives (12). This is one of three equations that have to be derived to
— _ prove relation(13). Next we want to treatS,S, +S,S,).

(S) = Scosf+af~8,S). (A3) Using the decoupling rulél2) as well as the resu(B1) one
If «,Iis setto zero, the left-hand side and the right-hand sidéinds
of Eq. (Al) are approximated on the same level; i.e., the S .
expectation values at low temperatures are replaced by their _ ' ( L
zero-temperature value. However, one can even improve the SeSy + S Se = A58 -2 232 A8+ 2<S<'SZ'
approximation for the left-hand side by choosinag ad-

equately. The choice ¥ SZS<>SZ)
! cos#
a(T=0)= 25 (Ad) Thus it follows, for the expectation value,
recovers the free spin-wave result (Sy)

<&&+&&%ﬂ@ﬂ&»ﬂ§¥@@x&>

1
(S = c080<8— 2—S<S,S+,>> : (A5) 1
+;&sws&x&ﬂ
On the other hand, for high temperatuiies T, the left-hand

side of Eq.(Al) has to vanish. This can be assured by the (S
choice == E«S(’Sz’ +S,Su)(Sy)).
(T > T)~coskS,). (A6)  Therefore
.. . . 2
(Cli;r:bmmg the settingéA4) and(A6) one ends up with Eq. 0=(s.S, + SZ/S(,>(1 .\ <§zsz )
'cosS,) (S)
o % (A7) 0=(S¢S, +S,S). (B2)

Analog calculations lead to the prefactargand a. The equation

APPENDIX B (§S,+S,5,)=0 (B3)

Here we want to derive the relatiofl3). The starting is derived in an analogous way. Equatidd)—B3), prove
point is Eq.(5). First we want to calculate the expectation relation (13).
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