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We consider the spin reorientation transition in a ferromagnetic Heisenberg monolayer with a second-order
single-ion anisotropy as a function of temperature and external field. Up to now analytical methods give
satisfying results only for the special case that the external field is aligned parallel to the easy axis of the
crystal. We propose a theory based on a generalization of the Callen decoupling, which can be used for an
arbritrary direction of the external field. Excellent agreement between our results and quantum Monte Carlo
data is found for the field-induced reorientation at finite temperatures. Additionally, we discuss the temperature
dependence of the transition in detail.
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I. INTRODUCTION

Since the discovery of the giant magnetoresistance
sGMRd effect 1989,1 there has been enormous interest and
research activity in the field of thin magnetic films. The mag-
netic anisotropy, merely a small perturbation in a bulk ferro-
magnet, gets strikingly important in thin film systems. Here
the anisotropy is not only a necessary precondition of spon-
taneous ferromagnetism,2 but it determines many system
properties such as, e.g., the dependence of the magnetization
vector or of the spin-wave excitation spectrum on an applied
magnetic field. Additionally, the anisotropy energy is of the
same order of magnitude as the interlayer exchange
coupling3 sIECd, which is intimately connected with the
GMR effect. Thus an investigation of these effects has to
take the magnetic anisotropy carefully into account.

There is an important phenomenon in thin ferromagnetic
films which is closely connected to the magnetic anisotropy:
the magnetic reorientation transition. This term denotes a
rotation of the magnetization from the film normal into the
plane or vice versa as a function of temperature, film thick-
ness, or external magnetic field. The transition can be under-
stood as a result of competing forces that favor different
directions of the magnetization such as, e.g., spin-orbit cou-
pling, dipolar interaction, and an external magnetic field.4 It
can be described using a Heisenberg model in film geometry,
with the usual Heisenberg exchange interaction, an external
field, and one or more anisotropy terms.

For the simplest of these models,

H1 = − o
i j

JijSi ·Sj − o
i

B0 ·Si , s1d

consisting only of the exchange term and an external field,
there are very accurate approximation schemes available. It
was shown, e.g., in Ref. 5, by comparison with quantum
Monte CarlosQMCd calculations, that the random phase ap-
proximation sRPAd decoupling7 yields even quantitative re-
sults for the magnetization as a function of temperature.

Turning to anisotropy contributions, the spin-orbit-
coupling-induced anisotropy is usually modeled by a single-
ion anisotropy

H2 = − K2o
i

SizSiz, s2d

which is of second order for systems with tetragonal symme-
try. For film systems thez axis is perpendicular to the film
plane. IfK2 is positive, the easy axis of the magnetization is
the z axis; for negativeK2, this is a hard direction. The RPA
fails badly if applied to a local term as described in Eq.s2d.
Thus the RPA cannot be used to solve the whole model

H = H1 + H2. s3d

In Ref. 8 an approximation for this model is proposed, which
is based on a combination of the RPA for the nonlocal terms
s1d and an Anderson-CallensACd decoupling10 for the local
anisotropy contributions2d. This theory gives good results6

for the magnetization if the anisotropy constantK2 is much
smaller than the exchange couplingJ sK2ø0.01Jd and if the
external field is applied parallel to thez axis whileK2 has to
be positive. The first condition is not a serious restriction,
since in reality the anisotropy constants are indeed much
smaller than the Heisenberg exchange interaction. Further-
more, this restriction can be relieved by an alternative
theory.11 The important restriction is given by the second
condition. The limit described is a very special one, where
both the anisotropy and the external field favor an alignment
of the magnetization parallel to thez axis. Thus there are no
“competing forces” and no magnetic reorientation transition
occurs in this limit, which we want to refer to as a “parallel
limit” in the following. However, if the external field is not
applied parallel to thez axis and the magnetization is conse-
quently rotated out ofz, the approximation described in Ref.
8 loses its accuracy and becomes unacceptable for a quanti-
tative description of the reorientation transition. This was
shown in Ref. 6 by comparison with QMC calculations. Ac-
tually, to our knowledge there is no reliable model theory
available, which can treat models3d for arbritrary directions
of the external field or a negative anisotropy constantK2.

However, such a model theory is highly desirable. It can
be used to investigate quantitatively the magnetic reorienta-
tion transition in all systems dominated by second-order lat-
tice anisotropies. Numerical methods, such as QMC calcula-
tions, are only applicable for the monolayer, but a finite
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number of layers is crucial to study the interplay between
surface and bulk anisotropiesssee, e.g., Ref. 4d.

A priori, it is not clear that such a model theory exists.
The full models3d is much more complex than the parallel
limit case. The reason is that in that special case the total
spin is a conserved quantity; i.e., the total magnetizationoiSi

z

commutes with the Hamiltonian. This property simplifies the
calculations considerably but it is not present in the general
model s3d.

In this paper we want to show that nevertheless a well-
funded model theory can be formulated and that it is as ac-
curate in the general case as in the parallel limit. Comparing
our results with the QMC data of Ref. 6 we will find excel-
lent quantitative agreement for the magnetization and its
components, which allows for a high-quality description of
the magnetic reorientation transition. The theory proposed in
Ref. 8 is recovered for the special case of the parallel limit.

In this paper we want to introduce the new theory and
evaluate it by comparison with available QMC results. Since
the latter are results for the monolayer, we will exclusively
treat the case of a monolayer during this paper. A generali-
zation to a multilayer system is straightforward.

II. THEORY

We will assume tetragonal symmetry in the following.
Thexy plane is the film plane and thus thex andy directions
are equivalent. That is why we can confine the external field
and the magnetization to thezx plane without loss of gener-
ality. We will assume nearest-neighbor couplingsJij =J for
nearest neighbors andJ=0 elsewhered and for the explicit
calculations a quadratic lattice. Let us first outline the main
points of our theory. The aim is to calculate the angle and the
norm of the total magnetization of the models3d.

sid In general, the magnetization is not aligned parallel to
the z axis. We therefore apply a coordinate transformation
that rotates our system to align itsz axis parallel to the mag-
netization. The calculations are much easier and also more
convenient in the new system referred to asS8.

sii d After this we write down the equation of motion of the
single-magnon Green function.

siii d To solve this equation it is necessary to decouple
higher operator combinations. This appears to be straightfor-
ward for the exchange terms1d as long as one works in the
rotated systemS8. We will perform the usual RPA
decoupling7 here.

sivd The situation is more complex for the anisotropy term
s2d. Here we will develop a new decoupling scheme follow-
ing the ideas of the Callen decoupling.9 However, the origi-
nal Callen decoupling is not applicable, since the total spin is

not a conserved quantity in our model. Therefore the decou-
pling has to be generalized.

svd There is a special rotation angleû in our model: If the

coordinate system is rotated by this angleS→ Ŝ and the
decoupling procedure is applied, the total magnetization
oiSiẑ commutes with the Hamiltonians3d. It is easy to show

that û is therefore the direction of the magnetization. Now
the conditionfoiSiẑ,Hg−=0 gives an explicit expression for
the magnetization angle.

svid Using the decouplings as well as the commutation
property in the primed system we can solve the equation of
motion and finally obtain the single-magnon Green function
as well as the norm of the magnetizationkSz8l. Therewith the
problem will be solved.

svii d One can further show that the effect of the anisotropy
can be interpreted instructively as an effective “anisotropy
field.” We will calculate the components of this field.

Lets now follow this program in more detail. The rotation
of the coordinate system is described byS8=MS, whereM
is a rotation matrix. Due to the symmetry, we may confine
the rotation to thezx plane without loss of generality. This
means thaty8=y and that the polar angleu fully character-
izes the rotation:

M = 1cosu 0 − sinu

0 1 0

sinu 0 cosu
2 . s4d

The z8 axis of the new systemS8 is set to be parallel to the
magnetization direction. This gives

kSx8l = kSy8l = 0. s5d

The magnetizations in the fixed systemS can now be read
off from Eq. s4d:

kSxl = sinukSz8l,

kSzl = cosukSz8l. s6d

kSzl is the magnetization component normal to the film plane
while kSxl denotes the component parallel to the film plane.
kSz8l, consequently, is the total magnetization. Of course, the
angleu is a priori unknown.

Next we want to write down the equation of motion of the
single-magnon Green functionGij8 sEd=kkSi

+8 ;Sj
−8ll defined in

the new system. Applying the transformations4d to the
Hamiltonians3d one readily finds

EGij8 sEd = kfSi
+8,Sj

−8g−l + kkfSi
+8,Hg;Sj

−8ll

= 2kSz8ldi j − 2Jo
l

kli l

fGil j8 sEd − Gli j8 sEdg + K2Scos2 u −
1

2
sin2 uDGi j

a8sEd + sBx0 sinu + Bz0 cosudGij8 sEd − sBx0 cosu

− Bz0 sinudkkSi
z8;Si

−8ll + 2K2 cosu sinukkSi
z8;Si

−8ll + 2K2 cosu sinukkSi
z82

;Si
−8ll − 2K2 cosu sinukkSi

+8Si
x8;Si

−8ll,
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with

Gmno8 = kkSm
z8Sn

+8;So
−8ll,

Gi j
a8 = kkSi

+8Si
z8 + Si

z8Si
+8;Sj

−8ll. s7d

The sum overl runs over the nearest neighbors of sitei. The
combination of trigonometric functions is a consequence of
the rotations4d.

To proceed the operator products inGmno8 andGi j
a8 have to

be decoupled. For the nonlocal products in the former we
choose a symmetric RPA decouplingAB→ kAlB+AkBl. Us-
ing Eq. s5d which is valid in the primed system we find

Sm
z8Sn

+8→
RPA

kSz8
lSn

+8. s8d

This is the same result as found in the original RPA
approach7 for the parallel limit. Let us emphasize that this is
only the case for the primed systemS8. Thus the third point
of our program is done.

The crucial fourth step introduces a new approximation
scheme for the single-ion anisotropys2d. It will be used to
decouple the higher Green functionGi j

a8 as well as to treat
operator combinations appearing in the commutator
foiSiẑ,Hg−. The latter is important for the fifth step of our
calculation.

In 1963 Callen introduced the Callen decoupling9 which
was intended as an improvement to the RPA decoupling.7

The decoupling was performed at the Heisenberg exchange
term s1d. Later Anderson and Callen10 used this proposal to
treat the local anisotropy terms2d in the parallel limit. Both
approaches are based on the fact that the total magnetization
commutes with the Hamiltonian, a condition that is not valid
in our case. Therefore the procedure has to be rederived and
generalized. We will not quite adopt the procedure as pre-
sented in Ref. 9 but rather use the main ideas.

The approximation makes use of the operator identity

SsS+ 1d − Sx
2 − Sy

2 − Sz
2 = 0. s9d

The spin operators work on the same sitei; the site index is
dropped here for convenience. Now the “zero” is added to
the components of the spin operator,Sx,Sy,Sz:

Ssx,y,zd = Ssx,y,zd + asx,y,zdfSsS+ 1d − Sx
2 − Sy

2 − Sz
2g. s10d

It is important to note that these relations are identities for
any sasx,y,zdd only for exact calculations. On the contrary the
result of some standard approximation procedurese.g., of a
symmetric mean-field decouplingd changes if one uses the
right-hand side of Eq.s10d instead of the left-hand side. The
results do depend now on the prefactorssasx,y,zdd. It was the
idea of Callen to use this degree of freedom to improve ap-
proximations. We will follow the proposal of Callen here and
adjust the parameters in a way that interpolates between
zero-temperature and Curie-temperature requirements. The
explicit calculation is given in Appendix A. It gives

asx,y,zd =
kSsx,y,zdl

2S2 . s11d

Now we want to decouple operator combinations likeSxSz
+SzSx, SySz+SzSy, or SxSy+SySx which appear in the equation
of motion s7d in the higher Green functionGi j

a8. Thereto we
replace the single operators by the right-hand side of Eq.s10d
and perform a symmetric decoupling procedure at the result-
ing expressions. Since the prefactorsasx,y,zd are small quan-
tities, we neglect terms of the ordera2. For example, the
result for the operator combinationSySz+SzSy is thus given
by

SySz + SzSy→
AC

2kSylSz + 2kSzlSy − 2
kSyl
2S2 skSxSz + SzSxlSx

+ kSySz + SzSylSy + 2kSz
2lSzd − 2

kSzl
2S2 skSxSy

+ SySxlSx + 2kSy
2lSy + kSzSy + SySzlSzd. s12d

For the other operator combinations, analog expressions are
found.

By virtue of relations5d the result can be simplified if the
decoupling is performed in the rotated coordinate systemS8.
We show in Appendix B that the following relations are ful-
filled in S8:

kSa8Sb8 + Sb8Sa8l = 0, s13d

where a8 and b8 are two different subscripts out of
sx8 ,y8 ,z8d. This, together with Eq.s5d, finally gives the de-
coupling within the parallel systemS8:

Sx8Sz8 + Sz8Sx8→
AC

0,

Sy8Sz8 + Sz8Sy8→
AC

2kSz8lS1 −
kSy8

2 l

S2 DSy8,

Sx8Sz8 + Sz8Sx8→
AC

2kSz8lS1 −
kSx8

2 l

S2 DSx8. s14d

Now the operator combination that appears in the Green
functionGi j

a8 in the equation of motions7d can be decoupled.
Using Eq.s14d as well as the identitys9d one finds

S+8Sz8 + Sz8S+8→
AC

2kSz8lC18S+8, s15d

with

C18 = 1 −
1

2S2fSsS+ 1d − kSz8
2 lg. s16d

Using the decoupling procedures discussed up to now the
higher Green functionsGmno8 andGi j

a8 in the equation of mo-
tion s7d can be treated. To treat the other four terms we have
to address the fifth point of our program. Hence we will

show in the following that for a certain angleû the total

magnetizationoiSi
z8 commutes with the Hamiltonians3d.

THEORY OF FIELD-INDUCED SPIN REORIENTATION… PHYSICAL REVIEW B 71, 024428s2005d

024428-3



Furthermore, an explicit expression for the magnetization
angle will be obtained.

Applying the rotations4d to the Hamiltonians3d and using
the abbreviationg1=sinu andg2=cosu we find

Fo
i

Si
z8,HG

−

= o
i

sg1Bz0 − g2Bx0diSi
y8

+ K2g1g2isSi
y8Si

z8 + Si
z8Si

y8d.

Now the last operator product is decoupled according to Eq.
s14d. This gives

Fo
i

Si
z8,HG

−

= o
i

Fg1Bz0 − g2Bx0 + 2K2g1g2kSz8l

3S1 −
kSy8

2 l

S2 DGiSi
y8. s17d

Thus, in the framework of our approximation, the total mag-
netization indeed commutes with the Hamiltonian if the term
in brackets on the right-hand side is zero. This has important
consequences: All expectation values and Green functions in

the rotated coordinate systemŜ that do not conserve spin are
zero in the framework of our theory. This can be seen using,
e.g., the Lehmann representation of the Green function. In
particular this applies forkS+8

l and kS−8
l. Therefore Eq.s5d

holds in this coordinate system which is thus found to be

equivalent to the systemS8: Ŝ=S8. Hence from Eq.s18d
follows a simple condition for the magnetization angleu:

0=
!

sinuBz0 − cosuBx0 + 2K2 sinu cosukSz8lC18. s18d

The expectation valuekSy
2l is already evaluated here using

the property of spin conservation in the primed system.
Equations18d is our first important result.

Having calculated the magnetization angle now the norm
of the magnetizationkSz8l has to be derived. This turns out to
be a straightforward task. Due to the property of spin con-
servation in the primed system, the last four Green functions
in equation of motions7d are identical to zero. The remaining
higher Green functionsGmno8 and Gi j

a8 can be decoupled by
Eqs. s8d and s14d. Thus the equation of motions7d can be
solved after Fourier transformation. We finally obtain the
single-magnon Green functionGq8sEd,

Gq8sEd =
2kSz8l

E − Eq8
,

with

Eq8 = 2kSz8lJsp − gqd + B,

B = Bx0 sinu + Bz0 cosu + K2scos2 u − 1
2 sin2 ud2kSz8lC18.

s19d

The termp denotes the coordination number, whilegq is a
structural factor due to the Fourier transformation of the
Heisenberg exchange term. For the quadratic lattice chosen
here it is given by

gq = 2scosaqx + cosaqyd,

wherea is the lattice constant. The trigonometric functions
in Eq. s19d are obviously a consequence of the rotation.
Knowing the Green functionGq8sEd one can calculate the
desired expectation values in the primed system—i.e., the
total magnetizationkSz8l and kSz8

2 l—by a standard textbook
procedure,12 finally ending up with a self-consistent system
of equations. Before discussing the results of our theory in
more detail we want to offer an instructive interpretation of
the work of the anisotropy in the framework of our approxi-
mation. This will be the last point of our theory section.

The abbreviationB in Eq. s19d has the same effect on the
Green function as an external field aligned parallel to the
magnetization. Combining the expression forB with the
magnetization angle, we may write down the components of
the effective field:

Bx = B sinu = Bx0 − K2kSxlsin2 uC18 = Bx0 + Bxa,

Bz = B cosu = Bz0 + 2K2kSzls1 − 1
2 sin2 udC18 = Bz0 + Bza.

s20d

Obviously, the effective field may be written as a sum of the
external field and an “anisotropy field”Ba=sBxa,0 ,Bzad. The
anisotropy acts exactly like this field as far as the magneti-
zation and magnon energiesEq are concerned.

In the next section we will present the results of our
theory and compare them with QMC data and other approxi-
mations.

III. RESULTS AND DISCUSSION

We start our discussion with a comparison of our results
to QMC data of Ref. 6, which are free of systematic errors.
Figure 1 shows the results for the field-induced reorientation

FIG. 1. Thex andz components of the magnetization,kSxl and
kSzl, as a function of the external field calculated with our RPA
+AC approachssolid lined, the approximation proposed in Ref. 8
sdashed lined, and with a mean-field decoupling of the anisotropy
term sdotted lined in comparison with the QMC results from Ref. 6
ssymbolsd. Parameters:K2= +0.02J andkBT=2J<0.32kBTc, S=2.
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transition at finite temperatures. A positive anisotropy con-
stantsK2.0d and an external field parallel to the film plane
suB0

=90°d are considered. The external field is applied per-
pendicular to the easy direction of the magnetization, a situ-
ation representing a severe test for our theory. The compo-
nents of the magnetization,kSxl and kSzl, are shown as
functions of the external field. For zero field the magnetiza-
tion is aligned parallel to the easy axis. It is fully rotated into
the film plane at the reorientation fieldBr0. We display the
results of our calculationssRPA+AC solid linesd and the
QMC results of Ref. 6ssymbolsd. Additionally the results of
two other theories are shown for comparison: For the dotted
line the anisotropy terms2d is treated by a simple mean-field
decoupling:

Si
zSi

z→
MF

2kSzlSi
z. s21d

The dashed line shows the proposal of Ref. 8. Here the op-
erator combinationSi

+Si
z+Si

zSi
+ is decoupled as in the parallel

limit treated in the original paper of Anderson and Callen:10

Si
+Si

z + Si
zSi

+ → 2kSzlS1 −
1

2S2fSsS+ 1d − kSz
2lgD . s22d

The exchange term in all model calculations is treated by an
RPA decoupling.

The results of our theoryssolid linesd are in excellent
agreement with the QMC data. We achieved even quantita-
tive agreement for all magnetization anglesu. The quality of
the approximation indeed turns out to be the same for all
anglesu, which was the aim of this paper. Our approach is
clearly superior to the approximation proposed in Ref. 8, to
the mean-field decoupling, and to all other approximations
shown in Fig. 11 of Ref. 6. Figure 1 visualizes our main
result: namely, that we succeeded in developing a theory for
the extended Heisenberg models3d that is as accurate as the
RPA for the models1d. In the following we will discuss some
additional features of the reorientation transition.

In Fig. 2 the temperature dependence of the transition is
analyzed. Again, the components of the magnetization are
displayed as a function of the external field, which is applied
in the film plane, perpendicular to the easy direction. The
calculations were performed for three different temperatures.
Since the system is not saturated at finite temperatures, the
total magnetization increases with the external field. This is
seen best after the reorientationsB0.B0rd, where only one
component of the magnetizationskSxld is present. For higher
temperatures the transition as a function of the external field
becomes sharper. The reorientation fieldB0r decreases faster
with temperature than the zero-field magnetization, reflecting
the fact that the anisotropy becomes less important at higher
temperatures. Another interesting feature is that thex com-
ponent increases linearly with the external field until the re-
orientation field is reached. This holds for all temperatures
and is qualitatively different from the approximation pro-
posed in Ref. 8. Qualitatively, this feature is also found in
mean-field theory as can be seen in Fig. 1 of Ref. 14.

The observed behavior follows directly from Eq.s18d.
Since the external field is applied parallel to the film plane,
one finds, for thex component of the magnetizationkSxl,

kSxl = sinukSz8l =
Bx0

2K2C18sTd
. s23d

SinceC18 fEq. s19dg increases with temperature, the slope of
kSxl is steeper for higher temperatures. Additionally, Eq.s23d
determines the reorientation fieldB0r. We find

B0rsTd = 2K2kSz8lsTdC18sTd. s24d

The fast decay of the reorientation field with temperature as
compared to the magnetization is also due to the temperature
dependence ofC18.

This can also be seen in Fig. 3, where we considered the
temperature dependence of the system in detail. We plotted
the norm of the components of the anisotropy fields20d as
well the reorientation fieldscirclesd and the magnetization
ssolid lined as a function of temperature. All quantities are
scaled to their zero-temperature value. The anisotropy fields
are plotted at their maxima—i.e., atu=0° for Baz sdashed
lined and atu=90° for Bax sdotted lined. The temperature
dependence of the anisotropy fieldss20d as well as of the
reorientation fields24d is determined by the factorkSz8l
3sTdC18sTd. Thus these quantities have nearly the same tem-
perature dependence and their slopes are steeper than that of
the magnetizationkSz8lsTd alone.

Very similar results are found for the easy plane case
sK2,0,B0izd. In Fig. 4 we compare both cases of a reori-
entation transition. Solid lines show the transition for an easy
axis system; dashed lines denote the easy plane case. In the
inset, the respective magnetization curvesMsTd=kSz8lsTd are
plotted for zero external field. The Curie temperature and the
magnetization at finite temperatures are somewhat smaller
for the easy plane system. A reduced magnetization leads to

FIG. 2. Thez componentkSzl ssolid linesd and thex component
kSxl sdashed lined as a function of the external fieldBx0 applied
within the film plane. Further parameters:K2=0.01J, S=2, kBTc

equals 5.75J sRef. 13d.
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a reduced reorientation fieldfsee Eq.s24dg. This explains the
differences between both cases concerning the reorientation
transition as seen in the main panel.

IV. CONCLUSIONS AND OUTLOOK

In this paper we addressed the magnetic reorientation
transition in a Heisenberg monolayer as a function of the
external field and temperature. The basis of our approach is a
transformation of the Hamiltonian into a coordinate system
S8 swith the z8 axis parallel to the magnetizationd as well as
a generalized Anderson-Callen decoupling procedure. Com-
pared to the bare Heisenberg Hamiltonians1d, the problem is
more complicated, since the total spin is not conserved.
However, this complication turns out to be less serious, as it
can be shown that the total spin is a conserved quantity in the
framework of our approximation, if an appropriate quantiza-
tion axis is chosen. This fact can be used to calculate the
magnetization angle as well as to solve the equation of mo-
tion for the single-magnon Green function. It was further
shown that the effect of the anisotropy can be described by
an effective “anisotropy field.”

Our results show a strikingly quantitative agreement with
the QMC data of Ref. 6, yielding a significant improvement
over all other decoupling schemes discussed so farssee, e.g.,
Ref. 6d. The main practical virtue of the new approach is that
calculations can be performed as accurate as with QMC cal-
culations but much faster.

The theory can be generalized to a multilayer system and
can thus be used for cases where QMC calculations are not
feasible anymorese.g., thicker filmsd. It should therefore be
used to analyze the magnetic reorientation transition as a
function of the film thickness as found in many transition-
metal filmsssee, e.g., Ref. 4d.

Due to its accuracy and convenience, the theory shall fur-
ther be used for a quantitative analysis of ferromagnetic reso-
nancesFMRd experiments.15,16 The decisive feature for the

interpretation of a FMR experiment is the dependence of the
q=0 spin-wave modeEq=0 on the external fieldB0. The
function Eq=0sB0d can be easily calculated in our theory for
any direction of the external field. This opens the possibility
to extract the microscopic anisotropy constantK2 directly
from FMR experiments.
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APPENDIX A

In this appendix we derive the prefactors of Eq.s10d. We
follow the philosophy of Callen’s paper9 and calculate the
prefactors as an interpolation between low and high tempera-
tures. Let us start with the former limitT<0:

The starting point is Eq.s10d. We will consider expecta-
tion values instead of operators and transform the resulting
expression as

kSzl = kSzl + azkSsS+ 1d − Sx
2 − Sy

2 − Sz
2l

= kSzl + azkSsS+ 1d − Sx8
2 − Sy8

2 − Sz8
2 l

= kSzl + azkSsS+ 1d − Sz8 − S−8
S+8

− Sz8
2 l. sA1d

The primed terms are quantities of the rotated system which
is aligned parallel to the magnetization. Now the expectation
values of the right-hand side are approximated by their zero-
temperature values:

FIG. 3. The magnetization, the reorientation fieldB0r sdotsd, and
the anisotropy fieldBa for u=0° sdashed lined and u=90° sdotted
lined as a function of temperature. All quantities are scaled to their
zero temperature value. The other parameters are as in Fig. 2. For
comparison a scaled magnetization curve are addedssolid lined.

FIG. 4. Thez andx components of the magnetization as a func-
tion of the external field. Results for positiveK2=0.01J ssolid linesd
and negativeK2=−0.01J sdashed linesd are shown,T=0.7Tc. The
small arrows highlight the position of the reorientation fieldsB0r

+ for
positive andB0r

− for negative anisotropy. The inset shows the mag-
netization curves forB0=0. The other parameters are as in Fig. 2.
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kSz8l →
T→0

S,

kSz8
2 l →

T→0

S2. sA2d

This gives

kSzl < Scosu + azk− S−8
S+8

l. sA3d

If az is set to zero, the left-hand side and the right-hand side
of Eq. sA1d are approximated on the same level; i.e., the
expectation values at low temperatures are replaced by their
zero-temperature value. However, one can even improve the
approximation for the left-hand side by choosingaz ad-
equately. The choice

azsT < 0d=
! cosu

2S
sA4d

recovers the free spin-wave result

kSzl < cosuSS−
1

2S
kS−8

S+8
lD . sA5d

On the other hand, for high temperaturesT.Tc the left-hand
side of Eq.sA1d has to vanish. This can be assured by the
choice

azsT . Tcd,
!

cosukSz8l. sA6d

Combining the settingssA4d andsA6d one ends up with Eq.
s11d:

az=
! cosukSz8l

2S2 =
kSzl
2S2 . sA7d

Analog calculations lead to the prefactorsax anday.

APPENDIX B

Here we want to derive the relations13d. The starting
point is Eq.s5d. First we want to calculate the expectation

value kSx8Sy8+Sy8Sx8l. Using the decouplings12d together
with Eq. s5d one finds

kSx8Sy8 + Sy8Sx8l → kSx8lA + kSy8lB = 0. sB1d

The termsA and B are given by the decoupling procedure
s12d. This is one of three equations that have to be derived to
prove relations13d. Next we want to treatkSx8Sz8+Sz8Sx8l.
Using the decoupling rules12d as well as the resultsB1d one
finds

Sx8Sz8 + Sz8Sx8 → 2kSz8lSx8 − 2
kSz8l

2S2 S2kSx8
2 lSx8 +

1

2
kSx8Sz8

+ Sz8Sx8lSz8D .

Thus it follows, for the expectation value,

kSx8Sz8 + Sz8Sx8l → 2kSz8lkSx8l − 2
kSz8l

2S2 S2kSx8
2 lkSx8l

+
1

2
kSx8Sz8 + Sz8Sx8lkSz8lD

= −
kSz8l

2S2 skSx8Sz8 + Sz8Sx8lkSz8ld.

Therefore

0 = kSx8Sz8 + Sz8Sx8lS1 +
kSz8l

2

2S2 D ,

0 = kSx8Sz8 + Sz8Sx8l. sB2d

The equation

kSy8Sz8 + Sz8Sy8l = 0 sB3d

is derived in an analogous way. EquationssB1d–sB3d, prove
relation s13d.
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