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Thermodynamics of quantum and classical two-dimensionals2Dd Heisenberg models with long-range
dipole–dipole interaction has been investigated using various forms of self-consistent spin-wave theory
sSSWTd. It has been found that SSWT gives a much lower transition temperatureTc than the free-magnon
sspin-waved theory. For the classical spin, theTc from SSWT lies within 9% of the Monte Carlo value, making
SSWT the best approximation among those considered. It is proven that the random phase approximation
vertex corrections to SSWT are rather small. The results depend strongly on the value of the spin, emphasizing
the importance of using the quantum and not the classical 2D Heisenberg model even for large spins such as
S=7/2.
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INTRODUCTION

Ultrathin magnetic films and multilayers became a very
active field of research in the last two decades.1 These two-
dimensional s2Dd magnetic systems demonstrate unique
physical properties, such as oscillating interlayer exchange
coupling and giant magnetoresistance.2,3 They also have nu-
merous technological applications, for example, in
spintronics4,5 and magnetic data recording. Theoretically, 2D
magnetic systems are often approximated by a quantum or
classical Heisenberg model. Therefore, a good understanding
of this model is very important in order to predict the dy-
namics and thermodynamics of 2D magnetic systems, in par-
ticular to calculate the magnetization curveMsTd and the
Curie temperatureTc.

There is one important difference between magnetism in
three-dimensional and two-dimensional systems. The 3D
Heisenberg model always has long-range magnetic order at
sufficiently low temperatures, with a transition temperature
of the order ofJS2, whereJ is a typical value of the exchange
integral. On the other hand, the 2D Heisenberg model has no
long-range order atT.0, according to the Mermin–Wagner
theorem,6 provided that only an isotropic, short-range ex-
change interaction is included. Experiment shows, however,
that even 2D magnetic systems have finite transition tem-
peratures. The reason for this is the presence of additional
small interactionssmagnetocrystalline anisotropy, dipole-
dipole interaction, or interlayer exchange in quasi-2D sys-
temsd, and also the finite horizontal size of the sample. Each
of these factors breaks the conditions of the Mermin–Wagner
theorem sfor a review, see, e.g., Ref. 7 and references
thereind, resulting in a finiteTc!JS2. At the same time, the
short-range ordersSROd is retained up toT,JS2 sRef. 8d in
2D and quasi-2D systems.

There are various theoretical approaches to the quantum
2D Heisenberg modelsboth with and without long-range or-
der atT.0d. Free-magnonfspin-wavesSWdg theory is only
a very rough starting point that normally overestimatesTc by
a factor of 2-4. Quantum Monte Carlo results have been

reported.9–12 The pure quantum self-consistent harmonic
approximation13,14 gives a quantitative solution of thequan-
tum Heisenberg model with a computational effort that is
similar to that of aclassicalMonte Carlo calculation. Note
that the Weiss mean-field theory is pretty useless for low-
dimensional systems since it does not reproduce the
Mermin–Wagner theorem, but predicts aTc of the order of
JS2.

Self-consistent spin-wave theorysSSWTd was first formu-
lated for the Mermin–Wagner situation,15–18 but it was later
generalized to systems with long-range order.7,19 SSWT can
be formulated as the best possible one-magnon theory,7,17 the
zeroth-order term in the 1/N expansion of the SUsNd
theory,18,20 or as the mean-field magnon theory.7 Note that
here and in the following the words “mean field” are applied
to magnon occupation number operatorsand have nothing to
do with the Weiss mean field forspin operators. The SSWT
expression can be further improved by renormalizing the
magnon-magnon vertex7 fthis approximation is often called
the random phase approximationsRPAdg, often providing
quantitative agreement with the experiment everywhere ex-
cept the narrow critical region. The known weak point of
SSWT is the erroneous critical behavior: it gives either
a spin-wave transition withb=1 fb is the critical exponent
in the magnetization vs temperature dependence:MsTd
,sTc−Tdb when T→Tc−0g, or a first-order transition
sb=0d. However, SSWT describes perfectly the short-range
order aboveTc.

Unfortunately, all these approaches in their present forms
do not include the dipole–dipole interaction. This is a serious
drawback, since this interaction is very important for realistic
systems, especially ferromagnetic materialsssee Refs. 21 and
22 for a reviewd. This interaction is sometimes treated as an
effective easy-plane anisotropy; however, in contrast to the
latter, it does break the conditions of the Mermin–Wagner
theorem, resulting in a finiteTc.

23 While the easy-axis aniso-
tropy creates a gap in the magnon spectrum, the dipolar in-
teraction results in a more complicated dispersion law,
roughly ek,k1/2 for small k.23–25
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This interaction has a strong effect on spin waves in thin
films.22,26The competition between perpendicular anisotropy
and dipolar interaction often results in what is called a reori-
entation transition.27 Although the thermodynamics of the 2D
classical Heisenberg model with the dipolar interaction has
been studied rather extensively,21,28–36 the quantum results
are scarce. To the best of our knowledge, the only ap-
proaches applied in the quantum case are spin-wave
theory23–25 sfree magnonsd and the Tyablikov approxima-
tion.37,38

The classical Heisenberg model is very helpful for 3D
systems, since in this case any large spinsS@1d can be
treated as a classical one. However, this is not true for the 2D
systems. To understand why it is so, one needs to recall the
arguments given by Bloch,39 who first hinted that 2D mag-
netic systems should have no long-range order. Consider a
2D Heisenberg ferromagnetsFMd. Its spin-wave dispersion
relation isEk =JSk2 for small k. Free-magnon theory gives
the following expression for the magnetization:

kSzl = S−
1

VBZ
E

BZ

dk

expsEk/Td − 1
. s1d

From now on we measure temperature in energy unitsskB

;1d, and choose the lattice constanta as the unit of length.
For smallk

dk

expsEk/Td − 1
< 2pk dk

T

JSk2
. s2d

The integrals1d diverges at the lower limit and long-range
order cannot exist atT.0.

In terms of Eq.s1d any additional small interactionsan-
isotropy, interplanar exchange, dipolar forcesd introduces a
low-energy cutoffD!1 ssee, e.g., Ref. 7d and the magneti-
zation is given bysfor a 2D square latticed

S− kSzl <
T

4pJS
E

JSD

T dE

E
=

T

4pJS
lnS T

JSD
D , s3d

giving a spin-wave expression forTc:

Tc <
4pJS2

lnsTc/JSDd
! 4pJS2. s4d

ThusTc in the 2D case is much smaller than in the 3D case.
The classical description is appropriate when the Curie tem-
perature is much larger than any spin-wave frequency,
namely, whenTc@JS. For the 3D Heisenberg modelTc
,JS2, and this criterion takes the well-known formS@1.
However, for the 2D Heisenberg modelTc!JS2, and the
classical description is only valid ifS@ lns1/Dd@1 ssee Ref.
7d. The latter situation seems quite unrealistic; therefore the
quantum effects are never negligible for 2D magnetic sys-
tems.

The goal of this paper is to construct a SSWT formalism
for the 2D quantum Heisenberg model with dipolar interac-
tion sand no magnetocrystalline anisotropy for the momentd
and to investigate whether SSWT can be improved by RPA
vertex corrections. The paper is organized as follows. In Sec.
I we present the Heisenberg Hamiltonian, introduce mag-

nons, and also write down the free-magnon expressions for
the spin-wave spectrum and magnetization.23,24 In Sec. II we
develop the SSWT formalism. Section III describes our nu-
merical SSWT implementation followed by SSWT results in
Sec. IV. The RPA formalism is presented in Sec. V, and the
last section offers our conclusions.

I. HAMILTONIAN AND FREE MAGNONS

We start with the spin Hamiltonian

H = −
1

2o
iÞ j

sJijdab + Qij
abdSi

aSj
b, s5d

where

Qij
ab = Jds3Rij

aRij
b − dabRij

2dRij
−5, s6d

Ri are the sites of a simple square lattice in thexzplane, and
Ri j ;Ri −R j. The dipolar interaction constantJd is equal to
4mB

2 /a3, wheremB is the Bohr magneton anda is the lattice
constant. IfJd is sufficiently small, the ground state is ferro-
magnetic with anxz easy plane, and we take thez-axis di-
rection for the ground-state magnetization. With the usual
notation

Si
± = Si

x ± iSi
y, s7d

we formally introduce magnons by the Holstein–Primakoff
transformation

Si
+ = Î2Ss1 − ai

†ai/2Sd1/2ai , s8d

Si
− = Î2Sai

†s1 − ai
†ai/2Sd1/2, s9d

Si
z = S− ai

†ai , s10d

make a Fourier transform from site indexRi to the crystal
momentumk, and expand the Hamiltonians5d into a series
of S−1/2 ssee Refs. 23 and 24 for detailsd:

H = S2N0 + S1N2sak
†,akd + S1/2N3sak

†,akd + S0N4sak
†,akd

+ S−1/2N5sak
†,akd + ¯ , s11d

whereNnsak
† ,akd means a certainnth-order polynomial of the

Bose operatorsak
† ,ak in the normal formscreation operators

to the leftd.
The free-magnon Hamiltonian is

H0 ; S1N2sak
†,akd − mo

k
ak

†ak

= o
k
HAk

0ak
†ak +

1

2
Bk

0ak
†a−k

† +
1

2
Bk

0aka−kJ , s12d

where

Ak
0 = SsJ0 − Jkd −

1

2
JdSFS1skd −

3

2
S3G − m, s13d

Bk
0 = −

3

2
JdSFS2skd +

1

2
S3G , s14d

and three lattice sums have been introduced:

GRECHNEVet al. PHYSICAL REVIEW B 71, 024427s2005d

024427-2



S3 ; o
RiÞ0

Ri
−3 < 9.034, s15d

S1skd ; o
RiÞ0

seik·Ri − 1dRi
−3F1 − 3

Zi
2

Ri
2G , s16d

S2skd ; o
RiÞ0

seik·Ri − 1d
Xi

2

Ri
5 , s17d

whereJk is equal to 2J coskx+2J coskz for nearest neighbor
exchange. For smallk the lattice sumss16d,s17d have the
asymptotical form

S1skd < 2p
kz

2

k
, S2skd < −

2

3

p

k
s2kz

2 + kx
2d. s18d

The “chemical potential”m is a Lagrange multiplier used
in spin-wave theory and SSWT to enforce the condition

kSzl; S̄=0 in the paramagnetic phasesin the ferromagnetic
phase one hasm=0d. The next step is eliminate the “anoma-
lous” termsak

†a−k
† andaka−k by the Bogoliubov transforma-

tion

ak = coshsjkdbk − sinhsjkdb−k
† ,

s19d
ak

† = coshsjkdbk
† − sinhsjkdb−k

with

tanhs2jkd =
Bk

0

Ak
0 . s20d

The Hamiltonian in the new magnon operatorsbk
† ,bk be-

comes

H0 = const +o
k

ek
0bk

†bk, ek
0 = ÎsAk

0d2 − uBk
0u2, s21d

and the expectation values are

kbk
†bkl = Nk ; fexpsek

0/Td − 1g−1, s22d

kak
†akl =

Ak
0

ek
0 Skbk

†bkl +
1

2
D −

1

2
, s23d

kak
†a−k

† l = kaka−kl = −
Bk

0

ek
0 Skbk

†bkl +
1

2
D . s24d

Alternatively, the expectation values23d can be obtained
from the free-magnon Matsubara Green’s function23

Gk
0sivnd =

ivn + Ak
0

sivnd2 − sek
0d2, vn ; 2pnT, s25d

through the frequency summation

kak
†akl = lim

t→+0
To

ivn

eivntGk
0sivnd. s26d

The magnetization is

kSzl ; S̄= S−
1

N
o
k

kak
†akl = S−

1

N
o
k
FAk

0

ek
0 SNk +

1

2
D −

1

2
G .

s27d

Let us define

jd ; Jd/J. s28d

For the casejd!1 and in the quantum regimesJSjd
3/2!T

!JSd the free-magnonsSWd magnetization is approximately
equal to23

S̄= S−
T

4pJS
lnF 2T

pJSÎ4pf
jd
−3/2G , s29d

wheref ;s3/8pdS3<1.078, and our notation corresponds to
that of Ref. 23 as

D = JS, V0 = 2pSJd, a = 2f = s3/4pdS3. s30d

It gives the equation for the free-magnonTc as

4pJS2

Tc
= lnF 4S

Îpf
jd
−3/2G + lnF Tc

4pJS2G . s31d

For the classical case the Bose function is replaced by

Nk → T

ek
. s32d

The analytical expressions forS̄ and Tc are obtained by re-
placingT/JS→32 under the logarithm in Eqs.s29d ands31d,
yielding the classical spin-wave expressions

S̄= S−
T

4pJS
lnF 32

pÎpf
jd
−3/2G , s33d

4pJS2

Tc
= lnF 32

pÎpf
jd
−3/2G . s34d

On Fig. 1 the free-magnon transition temperature is pre-
sented as a function ofjd for three values of spin:S=1/2,
S=7/2, and theclassical spin. One can immediately see that
the quantum asymptotics31d works very well for smalljd

FIG. 1. sColor onlined The free-magnonsSWd transition tem-
peratureTc vs dipolar interactionJd. The symbols are numerical
results, while the curves are the asymptotical formulass31d and
s34d.
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and smallS sbut not for S=7/2d. The classical asymptotic
s34d is also very good at smalljd. It can also be observed that
even for such a large spin asS=7/2, thetransition tempera-
ture still differs by about 10% from its classical value.

II. SELF-CONSISTENT SPIN-WAVE THEORY

Self-consistent spin-wave theory can be most easily for-
mulated using the Feynman–Peierls–Bogoliubov variational
principle.40 For any HamiltonianH and any trial Hamiltonian
Ht, the free energyF=−ln Trse−bHd satisfies the inequality

F , F8 ; Ft + kH − Htlt, s35d

whereFt and the expectation value are calculated usingHt.
SSWT is defined as the best possible one-magnon theory
saccording to this variational principled; namely, we takeHt
to have the generalized free-magnon form

Ht = o
k
HAkak

†ak +
1

2
Bkak

†a−k
† +

1

2
Bk

* aka−kJ , s36d

whereAk and Bk are variational functions. They are found
from the conditions

dF8

dAk
= 0,

dF8

dBk
* = 0. s37d

This variational procedure can be shown to be equivalent to
the mean-fieldsMFd procedure,Ht;HMF.

In the following, we include only the three- and four-
operator terms in the magnon–magnon interaction:H;H
+V, whereV;S1/2N3sak

† ,akd+S0N4sak
† ,akd sand theN3 term

does not give any contributiond. Such truncation of the
Hamiltonian can be justified by comparison with the case of
SSWT with no dipolar interaction, where the truncated
Holstein–Primakoff Hamiltonian is equivalent to the Dyson–
Maleev Hamiltonian. For the dipolar case, the Dyson–
Maleev representation is not suitable due to the essentially
non-Hermitian form of the Hamiltonian derived, and we use
the truncated Holstein–Primakoff Hamiltonian instead.

The mean-field Hamiltonian takes the forms36d with Ak
=Ak

MF, Bk =sBkd* =Bk
MF, and Ak

MF ,Bk
MF being certain func-

tionals of kak
†akl and kaka−kl. This Hamiltonian is meaning-

ful provided thatuBk
MFuø uAk

MFu in the whole Brillouin zone.
It can be diagonalized by the Bogoliubov transformation
s19d–s24d, with Ak

MF ,Bk
MF instead of the free-magnon ones.

The system of equationss22d–s24d should then be solved in a
self-consistent cycle. Unfortunately, our numerical imple-
mentationssee below for detailsd shows that this system of
MF equations has no physically reasonable solutionssexcept
for rather highTd. This is not surprising, since the MF ap-
proach does not work for anisotropic FMs either,7 although it
works fine for quasi-2D FMs.

There are two possible ways to overcome this difficulty.
In the first oneswe call it thegd modeld we apply the con-
strained variational approach. Instead of using arbitrary func-
tionsAk

t ,Bk
t in Eq. s36d, we take the free-magnon expressions

s13d,s14d with exchange and dipolar interactions renormal-
ized by parametersg andd, respectively:

J → gJ, Jd → dJd. s38d

This yields

Ht = o
k
HAk

t ak
†ak +

1

2
Bk

t ak
†a−k

† +
1

2
Bk

t aka−kJ , s39d

Ak
t = gSsJ0 − Jkd −

1

2
dJdSFS1skd −

3

2
S3G − m, s40d

Bk
t = −

3

2
dJdSFS2skd +

1

2
S3G . s41d

Sinceg renormalizes the short-range exchange interaction, it
has the physical meaning of a short-range order parameter. In
the absence of the dipolar interaction, the nearest-neighbor
spin correlation function is equal to7

kSi ·Si+dl = g2. s42d

For 0, jd!1 the equalitys42d is no longer exact, but it still
holds to a high degree of accuracy. The parameterd renor-
malizes the long-range dipolar interaction and has the mean-

ing of some long-range order parameter, different fromS̄/S.
The Bogoliubov transformations19d–s24d should now

employ Ak
t ,Bk

t from Eqs. s40d,s41d. The variational proce-
dure now consists of minimizing the trial free energyF8
defined bys35d with respect to two parametersg andd. The
variational equations are

0 =
] F8

] g
= o

k
HAk

MF] kak
†akl

] g
+ Bk

MF] kaka−kl
] g

− ek
t ] Nk

t

] g
J ,

s43d

0 =
] F8

] d
= o

k
HAk

MF] kak
†akl

] d
+ Bk

MF] kaka−kl
] d

− ek
t ] Nk

t

] d
J .

s44d

The equationss43d,s44d, should be solved self-consistently
together with Eqs.s22d–s24d.

However, for reasons stated below, we are going to con-
centrate on the second approach to SSWT, which we call the
gs̄2 model. In this approach we give up attempts to obtaind
from the SSWT equations. Instead, we renormalize the dipo-
lar interaction with a phenomenological multipliers̄2

;sS̄/Sd2:

Jd → Jds̄
2 s45d

in the original Hamiltonianand ignore the dipolar contribu-
tion to the magnon–magnon interactionN3sak

† ,akd
+S0N4sak

† ,akd.
Let us examine the physical reasons for this approxima-

tion. The effective dipolar interaction can, generally speak-
ing, have different temperature dependence for different dis-
tances Ri j . Since the systematic attempt to build an
Ri j-dependent renormalizationsmagnon mean-field theoryd
does not seem to work, a more simple approximation is re-
quired. In particular, forjd!1 one can neglect the specific
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character of the short-range dipolar interactions, since they
are negligible compared to the short-range exchange interac-
tion, and construct a renormalization which is valid in the
Rij →` limit. In the latter limit, the macroscopic theory can
be applied, and therefore the effective dipolar interaction is
proportional to the square of magnetization, i.e., Eq.s45d.
According to this approximation the effective dipolar inter-
action vanishes in the paramagnetic phase. In reality it does
not vanish, but it becomes a short-range onesdue to the finite
correlation lengthd, and can be neglected compared to the
exchange interaction ifjd!1. The approximations45d is
very similar to the way the anisotropy is treated in Ref. 7.

The initial Hamiltonian of thegs̄2 model is therefore

H = o
k
HÃk

0ak
†ak +

1

2
B̃k

0ak
†a−k

† +
1

2
B̃k

0aka−kJ + Ṽ, s46d

Ãk
0 = SsJ0 − Jkd −

1

2
s̄2JdSFS1skd −

3

2
S3G − m, s47d

B̃k
0 = −

3

2
s̄2JdSFS2skd +

1

2
S3G , s48d

Ṽ = o
q,k1,k2

Jq

2N
H1

2
aq

†ak1

† ak2
aq+k1−k2

+
1

2
ak1

† ak2

† aq+k1+k2
a−q

− ak1

† ak2

† ak1+qak2−qJ . s49d

The renormalized exchange interactionJ→gJ is now given
by the constrained variational approach with just one param-
eterg and

Ãk
t = gSsJ0 − Jkd −

1

2
s̄2JdSFS1skd −

3

2
S3G − m, s50d

B̃k
t = B̃k

0 = −
3

2
s̄2JdSFS2skd +

1

2
S3G . s51d

The variational equation is

0 =
] F8

] g
= o

k
HÃk

MF] kak
†akl

] g
+ B̃k

MF] kaka−kl
] g

− ẽk
t ] Nk

t

] g
J ,

s52d

Ãk
MF = SsJ0 − Jkd −

1

2
s̄2JdSFS1skd −

3

2
S3G − m

+ o
q

kaq
†aqlfJq + Jk − J0 − Jq−kg, s53d

B̃k
MF = −

3

2
s̄2JdSFS2skd −

1

2
S3G

+ o
q

kaqa−qlFJk

2
+

Jq

2
− Jq−kG . s54d

Equations52d should be solved self-consistently in order to

obtain g and s̄. In the next sections, we will present our
numerical SSWT implementation followed by SSWT results.

III. NUMERICAL IMPLEMENTATION

In order to solve the SSWTsand SWd equations numeri-
cally, we have developed anad hoccode. The most essential
technical details are briefly listed below.

The lattice sumsS1skd , S2skd, and S3 have been calcu-
lated using the Ewald method, in a way similar to the one in
Ref. 21, although different in technical details. First note the
identity

R−n =
2

Gsn/2dE0

`

dr e−r2R2
rn−1

=
2

Gsn/2dHE0

h

dr es−r2R2drn−1 +E
h

`

dr e−r2R2
rn−1J ,

s55d

whereh is an arbitrary parameter of the order of unity. It can
be applied to the sumsn.2d

o
RiÞ0

eik·Ri

Ri
n =

2

Gsn/2dHE0

h

dr rn−1 o
RiÞ0

eik·Ri−r2Ri
2

+E
h

`

dr rn−1 o
RiÞ0

eik·Ri−r2Ri
2J . s56d

The second term in this expression includes a rapidly con-
vergent sum, but the first term should be made rapidly con-
vergent using the Fourier transform with respect to the vari-
ableRi. The final expression for the sums56d is

o
RiÞ0

eik·Ri

Ri
n =

2

Gsn/2dHpE
0

h dr

r3−no
G

expF−
sk − Gd2

4r2 G −
hn

n

+E
h

`

dr rn−1 o
RiÞ0

expsik · Ri − r2Ri
2dJ , s57d

whereG are the reciprocal lattice vectors. In Eq.s57d both
sums converge rapidly and are suitable for direct numerical
evaluation with subsequent integration. The sumsS1, S2, and
S3 are directly related to the sums57d, for example,

S̃2skd ; o
RiÞ0

eik·Ri
Xi

2

Ri
5 = −

]2

] kx
2 o

RiÞ0
expsik · RidRi

−5 s58d

and

S2skd = S̃2skd − S̃2s0d. s59d

This technique gives the value ofS3=9.033 621 78scf. Ref.
34d. For the sake of numerical efficiency, the lattice sums
S1skd andS2skd have been parametrized over the whole Bril-
louin zonesBZd. Our expressions have the correct asymptoti-
cal form for k →0 sup to thek2 termsd and a 1% accuracy
over the whole BZ.

The variational parameters of the MF theory arekak
†akl

and kaka−kl, or, actually, their Fourier transforms for a few
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nearest-neighbor shells.gs̄2 andgd models have just one and
two parameters, respectively. Our own elaborate minimiza-
tion schemes were used to find the values of the variational
parameters which give a minimum ofF8. In all cases, the
chemical potentialm has been calculated on each iteration to

ensureS̄=0 in the paramagnetic region.
The numerical integration over the 2D BZ has been per-

formed by the adaptive sevent-point Newton–Cotes method
recursively, first for thex axis, then for thez axis. It is very
important that the BZ integration is done by an adaptive
method, since the main contributions to most integrals come
from the region of very smallk. The lower limit of integra-
tion klow is a parameter which must be chosen small enough
to achieve good convergence of the results.klow=10−12 has
been found to be sufficient for all our calculations.

Special care has to be taken for very smallk to achieve
the stability of the code in spite of inevitable numerical er-
rors. For example, 1−coskx,z must be replaced bykx,z

2 /2.
Also the Bose function must be replaced byT/ek for ek
!T and by exps−ek /Td for ek @T. The results appear to be
rather insensitive to the particular cutoff values used. We
used ak cutoff equal to 10−3 for 1−coskx,z. The lower cutoff
for ek /T in the Bose function was equal to 10−3, and the
upper cutoff was taken to be 20.

The doublek ,q integrals over the Brillouin zone were
calculated in real space, with Fourier coefficients calculated
by the Newton–Cotes method as described above. For the
MF andgd models the inclusion ofnx,nz=−5,… , +5 neigh-
bors has been found to be sufficient, while for the RPA cor-
rection to magnetizationsSec. V belowd, we have taken
nx,nz=−6,… , +6 neighbors. For thegs̄2 model only the ex-
change interaction and not the dipolar one enters the double
BZ integral; thus only the nearest-neighbor terms are present
in the real-space sum.

IV. SSWT RESULTS

In Fig. 2 we present the relative magnetizations̄; S̄/S
and the SRO parameterg as a function ofT from gs̄2-SSWT
for S=1/2 andjd=10−3. The SW magnetization curve is also
shown for comparison. The two magnetization curves are

rather different. SW theory gives an almost linearS̄sTd de-
pendence and a spin-wave phase transitionssecond-order
phase transition withb=1d. On the contrary, SSWT gives a
first-order phase transitionsformally b=0d. This means that
the magnetization reaches a finite minimal values̄min
<0.199 atTc/J<0.1976. After that point the ferromagnetic
solution to the SSWT equations ceases to exist abruptly and
the system goes to the paramagnetic state.

Both kinds of critical behavior are completely nonphysi-
cal. However, outside the narrow critical region, SSWT is
definitely superior to SW theory, and the SSWTTc is much
smaller than the obviously overestimated SWTc. In particu-
lar, all realisticsexperimental and Monte Carlod magnetiza-
tion curves have a sharp fall atT→Tc and resemble much
more the SSWT curve with a step than the linear SW curve.
The SRO parameterg is close to unity in a wide range of
temperatures, until it finally falls to zero atTSRO/J<0.75.
Thus SSWT describes correctly the experimentally
confirmed8 wide region with considerable short-range order
aboveTc. Two gsTd curves forjd=10−3 and jd=0 sMermin–
Wagner situationd practically coincide; hence SRO is rather
insensitive to the strength of the dipolar interaction and to
the presence or absence of long-range order.

For S=1/2,jd=10−3 we havegsTcd<0.989; therefore we
can say that practicallyg=1 up toTc. However, for classical
and large spinsgsTcd takes values of the order of 0.7−0.9,
depending onjd. In the latter cases, SSWT renormalization
of the exchange interactionsi.e. gd and not only of the dipo-
lar interactionss̄2d is important. The same trend has been
observed earlier for quasi-2D magnets; see Fig. 3 of Ref. 7,
which shows strongergsTd dependence for larger values of
S.

For jd!1 and smallS the gs̄2 model takes a particularly
simple form. In that case we can putg=1 and the SSWT
magnetization is given by Maleev’s formulas29d with Jd
→Jds̄

2:

S̄= S−
T

4pJS
lnF 2T

pJSÎ4pf
jd
−3/2s̄−3G . s60d

Equations60d does not allow for arbitrarys̄, but only for s̄
larger thans̄min which minimizes the function

s̄−
3T

4pJS2lnss̄d, namely,s̄min =
3Tc

4pJS2 , s61d

with the equation for the SSWTTc:

4pJS2

Tc
= lnF 4S

Îpf
jd
−3/2G − 2 lnF Tc

4pJS2G + 3s1 − ln 3d.

s62d

There is no solutions of Eq.s60d for T.Tc; therefore the
first-order character of the SSWT phase transition is fully
contained in a simple equations60d.

For the classical case, one uses Eq.s33d with Jd→Jds̄
2

and obtains the equation for classical SSWTTc:

FIG. 2. sColor onlined SSWT relative magnetizations̄ and short-
range order parameterg vs temperature forS=1/2 and jd=10−3.
For comparison, SW magnetization forjd=10−3, andg from SSWT
for jd=0 sMermin–Wagner situationd are also shown.
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4pJS2

Tc
= lnF 32

pÎpf
jd
−3/2G − 3 lnF Tc

4pJS2G + 3s1 − ln 3d.

s63d

Note that the coefficient before the lnsTc/4pJS2d term has
changed its value from +1 to −2 as compared to the free-
magnon theory in the quantum case, and from 0 to −3 in the
classical casescf. Ref. 7d. Similar equations in the case of
layered magnets with small interlayer coupling and/or easy-
axis anisotropy were obtained by the renormalization group
method,41 the magnetic ordering temperature being obtained
as a crossover temperature.

The transition temperature as a function ofjd is shown in
Fig. 3 for S=1/2. Several different approximations are pre-
sented. Thegs̄2-SSWT and SW curves are qualitatively simi-
lar, with the SSWTTc being 1.5−2.5 times lower than the
SW one. The asymptotical formulass31d,s62d work very well
for S=1/2. Theresult of thegd-SSWT, however, is quite
different. The latter theory predicts rather different behavior
for small and largejd.

For jd&10−4, the gd-SSWT essentially reproduces SW
behavior. Bothg andd are close to unity in a wide range of
temperatures, and they both go to zero atTSRO<0.75 sfor
S=1/2d. This essentially implies that there is long-range or-
der sdÞ0d in the paramagnetic phase, which is inconsistent
with observations. The magnetization curves andTc in this
region are very close to the free-magnon ones.

For jd*10−3 gd-SSWT gives a first-order phase transi-
tion like that in thegs̄2-SSWT, andd goes to zero forT
→Tc−0, the value forTc being also close to thegs̄2-SSWT
value. To summarize, thegd-SSWT Tcs jdd curve has two
regions: free-magnon-like andgs̄2-SSWT-like with a cross-
over between them and a nonmonotonicTcs jdd behavior. We
find these results also completely nonphysical and conclude
that gd-SSWT is a bad approximation. Therefore we aban-
don it in favor of thegs̄2-SSWT.

The Tyablikov approximationsJ→ s̄J,Jd→ s̄Jdd result is
also presented in Fig. 3. This approximation gives goodTc
for 3D systems and also for anisotropic 2D systems.12 The
situation seems to be different for the system under consid-

erations2D ferromagnet with dipolar interaction and no an-
isotropyd. Tc from the Tyablikov approximation is much
smaller than the SSWT one, especially for small values ofjd.
This approximation predicts a first-order phase transition
with an enormous step ofs̄min<1/2 at Tc fwhich immedi-
ately follows from Eq.s29d upon the substitutionJ→ s̄J,Jd
→ s̄Jdg. Also, by definition, it does not account for the short-
range order aboveTc.

In Fig. 4 theTc values from various approximations are
compared again, this time for classical spins. A classical
Monte CarlosMCd result30 for jd=0.1sTc/JS2<0.85d is also
presented in Fig. 4 for comparison. One can see that the
SSWT value forTc lies within 9% of the MC result, which is
a good agreement for such a relatively simple and parameter-
free approximation as SSWT. In contrast, the free-magnon
and Tyablikov approximations are much less accurate. Be-
cause of this, and the factors mentioned above, the useful-
ness of the Tyablikov approximation for the 2D systems with
dipolar interaction can be questioned. Note that the present
discussion refers to the original Tyablikov decoupling, while
more elaborate Green’s function approaches38,42,43 can give
much better results, especially in the low-temperature region.

Figure 5 summarizes the spin dependence of the SSWT
Curie temperature. As for the SW theorysFig. 1d, the quan-
tum effects cannot be ignored, even for such a large spin as
S=7/2. Theformulas s62d,s63d, which work fine for small
spins, fail for the large and classical ones, mainly due to the
g=1 approximation. In the latter case, the completesnumeri-
cald form of gs̄2-SSWT must be used.

V. RPA VERTEX CORRECTIONS

For the anisotropic or quasi-2D FM withD!1, SSWT
results can be systematically improved by including a RPA-
like correction to the magnon–magnon vertex.7 Here we ap-
ply the same approximation to the FM with the dipolar in-
teraction to investigate whether the RPA corrections are
important also in this case. The approach outlined below is
not exactly the standard RPA theory; however, for brevity, it
will be called the “RPA approximation.” The best justifica-

FIG. 3. sColor onlined The transition temperatureTc vs dipolar
interactionJd from different approaches forS=1/2. The symbols
are numerical results and the curves are the asymptotical formulae
s31d,s62d.

FIG. 4. sColor onlined The transition temperatureTc vs dipolar
interactionJd from different approaches for classical spin. The sym-
bols are numerical results and the curve is the free-magnon asymp-
totical formulas34d. The Monte Carlo result forJd/J=0.1 is taken
from Ref. 30.
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tion for such a procedure is a comparison with experiment,
which has been done in Refs. 7, 20, and 41 for the cases of
anisotropic and quasi-2D FMs.

The idea of the approximation is to renormalize the
magnon–magnon vertexs49d in the RPA way, as shown in
Fig. 6sad. The magnon Green’s function of thegŝ2-SSWT

Gk
t sivnd =

ivn + Ãk
t

sivnd2 − sẽk
t d2, vn ; 2pnT, s64d

plays the role of the free-magnon Green’s functionssingle
lines in Fig. 6d; namely, the exchange interaction is renor-

malized asJ̃=gJ swhich is only important for large and clas-
sical spinsd, and the dipolar interaction is renormalized as

J̃d= s̄2Jd; and we definej̃ d; J̃d/ J̃= s̄2jd/g.
The bare vertexs49d is first renormalized by the SSWT

parameterg:

Ṽ =
1

4N
o

k1,…,k4

fsk1,k2;k3,k4dak1

† ak2

† ak3
ak4

3dsk1 + k2 − k3 − k4d, s65d

where

fsk1,k2;k3,k4d = J̃k3
+ J̃k4

− J̃k1−k3
− J̃k1−k4

. s66d

Provided thatk1,… ,k4!1,f becomes

fsk1,k2;k3,k4d < − 2J̃k1k2. s67d

This lowest-order expression would not suffice for SSWT,
but we expect it to be good enough for calculating RPA
vertex corrections.

The diagram in Fig. 6sad corresponds to the integral equa-
tion for the renormalized vertexFsk1,k2;k3,k4; ivnd:

Fsk,p − q;k − q,p; ivnd

= fsk,p − q;k − q,pd − To
ivn8

o
s

fsk,s− q;k − q,sd

3Gs
tsivn8dGs−q

t sivn8 − ivndFss,p − q;s− q,p; ivnd.

s68d

Since the SSWT vertexf does not depend on any Matsubara
frequencies, the renormalized vertexF depends on one fre-
quencyivn only. Below, when we are going to calculate the
vertex correction to magnetization, theivn=0 term domi-
nates, since it leads to logarithmic divergences. Therefore,
we can neglect the frequency dependence ofF and putivn
to zero in Eq.s68d. Although the frequency sum

To
ivn8

Gs
tsivn8dGs−q

t sivn8d s69d

could be performed exactly, forjd!1 it can be replaced with
its classical valueTGs

ts0dGs−q
t s0d if the upper integration cut-

off q0
2 sequal toT/ J̃S and 32 for the quantum and classical

cases, respectivelyd is simultaneously introduced. Equation
s68d then becomes

Fsk,p − q;k − q,pd

= fsk,p − q;k − q,pd − T o
s,q0

fsk,s− q;k − q,sd

3Gs
ts0dGs−q

t s0dFss,p − q;s− q,pd. s70d

We use the expressions67d for fsk ,p−q ;k −q ,pd and seek
the solution of Eq.s70d for given p andq in the form

Fskd ; Fsk,p − q;k − q,pd = J̃ksAq − Bpd, s71d

where A and B are yet unknown constants. Equations70d
becomes

Fskd = − 2J̃k · sp − qd +
2T

S2 o
a,b=x,z

kasAqb
− Bpb

dLab,

s72d

where

Lab = sJ̃Sd2 o
s,q0

ssa − qadsbGs
ts0dGs−q

t s0d. s73d

Lab can be evaluated approximately with only logarithmi-
cally large terms being included. Forq2@ j̃ d

5/4 it is easy to
show that

sJ̃Sd2 o
s,q0

sbGs
ts0dGs−q

t s0d =
qb

4p
lnS q2

j̃ d
3/2D , s74d

FIG. 5. sColor onlined The gs̄2-SSWT transition temperatureTc

as a function of dipolar interactionJd for different values of spin.
The symbols are numerical results, while the curves are the asymp-
totical formulass62d,s63d.

FIG. 6. The diagrams corresponding to the RPA renormalization
of sad magnon–magnon vertex andsbd magnon Green’s function.
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sJ̃Sd2 o
s,q0

sasbGs
ts0dGs−q

t s0d =
qaqb

4p
lnS q2

j̃ d
3/2D +

dab

8p
lnSq0

2

q2D
s75d

and

Lab =
dab

8p
lnSq0

2

q2D, q2 @ j̃ d
5/4. s76d

In the opposite limit we can putq=0 and

Lab = sJ̃Sd2 o
s,q0

sasbfGs
ts0dg2 = Ldab, s77d

where

L =
1

s2pd2E
0

q0

k3dk
sk2 + 2pf j̃dd2

sk2 + 4pf j̃dd2

3 E
0

2p

dw
cos2w

sk2 + 2p j̃ dk sin2wd2
, s78d

where f <1.078. As for the case of the integral in Eq.s27d,
the w integral must be performed exactly before thek inte-
gral can be calculated. The resultsagain to logarithmic accu-
racyd is

Lab =
dab

8p
lnS q0

2

j̃ d
5/4D, q2 ! j̃ d

5/4. s79d

Equationss76d and s79d can be combined as

Lab = Ldab, L =
1

8p
lnF q0

2

maxsq2, j̃ d
5/4d
G . s80d

This immediately gives the solution of Eq.s72d:

A = B =
2

1 − s2T/J̃S2dL
s81d

and

Fsk,p − q;k − q,pd = −
2J̃k · sp − qd

1 − t lnfq0
2/maxsq2, j̃ d

5/4dg
, s82d

where

t ;
T

4pJ̃S2
. s83d

The renormalized vertexs82d is equal to the SSWT vertex
s67d renormalized by aq-dependent denominator. For the
anisotropic FMsRef. 7d this denominator is essentially equal
to the SSWT magnetization, but for the dipolar interaction
this is no longer true.

The vertex-renormalized Green’s function is given by the
diagram in Fig. 6sbd:

Gksivnd = Gk
t sivnd − TGk

t sivnd2

3o
ivn8

o
q

Fsk,k − q;k − q,kdGk−q
t sivn8d, s84d

and the magnetization is

S̄= S+ To
k

o
ivn

Gksivnd

= S+ To
k

o
ivn

Gk
t sivnd − T2o

k,q
o

ivn,ivn8

Gk
t sivnd2Gk−q

t sivn8d

3Fsk,k − q;k − q,kd. s85d

The frequency sums are equal to

To
ivn

Gk
t sivnd = −F Ãk

t

ẽk
t SNsẽk

t d +
1

2
D −

1

2
G ; − Pk , s86d

whereNsed;fexpse /Td−1g−1 fcf. Eq. s23dg; and

To
ivn

Gk
t sivnd2 =

N8sẽk
t d

2sẽk
t d2

f2sÃk
t d2 − sB̃k

t d2g +
2Nsẽk

t d + 1

4sẽk
t d2 sB̃k

t d2

; Kk , s87d

respectively. The classical limits of these two expressions are

Pk → TÃk
t

sẽk
t d2, Kk → TsÃk

t d2

sẽk
t d4 . s88d

The final expression for the magnetization is

S̄= S− o
k

Pk − o
k p

2J̃sk · pdKkPp

1 − t lnfq0
2/maxsuk − pu2, j̃ d

5/4dg
. s89d

This equation should be solved self-consistently with Eq.

s52d for g andS̄. As usual, we perform the doublek ,p inte-
gration in real space. The RPA values forTc are presented in
Figs. 3 and 4 forS=1/2 andclassical spins, respectively. For
spin 1/2 the RPA corrections to SSWT are negligible. For
classical spins the RPA value forTc is 1–5 % lower than the
SSWT one, which is still a surprisingly small difference
compared to the anisotropic FM.7 Since the SSWTTc is al-
ready lower than the Monte CarloTc for jd=0.1, the RPA
apparently does not improve the SSWT result.

CONCLUSION

In this paper we have investigated the thermodynamics of
2D quantum and classical Heisenberg ferromagnets with
dipole-dipole interaction, mostly focusing on the Curie tem-
perature. We have applied noninteracting spin-wave theory
and various interacting spin-wave theoriessSSWT, RPA, Ty-
ablikov approximationd. We have developed several forms of
self-consistent spin-wave theory: mean-field SSWT, varia-
tional gd-SSWT, and finallygs̄2-SSWT. All these theories
can be derived from the Feynman–Peierls–Bogoliubov varia-
tional principle with different constraints.

The idea ofgs̄2-SSWT is to renormalize the exchange
interaction with a variational parameterg and dipolar inter-

THERMODYNAMICS OF A TWO-DIMENSIONAL … PHYSICAL REVIEW B 71, 024427s2005d

024427-9



action with a phenomenological parameters̄2. We have found
that only this form of SSWT is able to provide physically
meaningful results everywhere except in the narrow critical
region. This situation is very similar to the case of an aniso-
tropic magnet,7 where a similar phenomenological coeffi-
cient is also necessary in order to build the SSWT formalism.

We have shown that the SSWT Curie temperature de-
pends strongly on the spinS. Even for spinS=7/2 wefound
thatTc still differs from the classical one, namely, it is about
10% lower. This is an expected result, since the criterion for
the classical regimesTc/JS@1d no longer impliesS@1, as
for 3D systems, but ratherS@ lnsJ/Jdd. The parameterg also
shows strong spin dependence: forS=1/2 thevalue ofg at
T=Tc is almost exactly unitysno renormalization of ex-
changed, while in the opposite limit of classical spins,gsTcd
is of the order of 0.7-0.9, depending onjd.

For the classical spin andJd/J=0.1 we have compared
our results to a Monte Carlo calculation.30 It turns out that
the SSWT value forTc is quite goodsnamely, it is 9% lower
than the MC resultd, while the free-magnon and Tyablikov
approximations give very bad estimates ofTc. The RPA cor-
rections are negligible forS=1/2,while for the classical spin
they reduceTc by a few percent, worsening the agreement
with the MC data. The dipolar case is thus considerably dif-
ferent from the anisotropic and quasi-2D FM cases,7 where
the SSWTTc is always overestimated, while the RPA correc-
tions reduce it significantly, improving the agreement with
the experiment.

It is difficult to make a direct comparison of the present
model with experiment, since realistic thin films usually have
strong anisotropy and consist of more than one monolayer.
However, the near-linear dependence of 1/Tc on lns jdd has
been demonstrated in a Monte Carlo calculation.29 This is a
typical dependence for nearly-Mermin–Wagner systems, and
a similar one has been previously established for anisotropic
2D ferromagnets.44 The experiments45,46 on thin films with
in-plane magnetization show thatTc of the film is much
lower than the bulkTc, with thinner films having lowerTc.
Application of SSWT to systems that possess both dipolar
interaction and anisotropy and consist of more than one
atomic layer is the topic of further investigation. In particu-
lar, phenomena such as reorientation transition and striped
phases, which have been previously studied within the clas-
sical Heisenberg model,21,31,34–36should be considered.

Our conclusion is that SSWT is a relatively simple, com-
putationally cheap, and reliable theory for studying two-
dimensional spin systems with dipole-dipole interaction,
with the ability to treat quantum spins being its strongest
point.
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