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Thermodynamics of a two-dimensional Heisenberg ferromagnet with dipolar interaction
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Thermodynamics of quantum and classical two-dimensidg8)) Heisenberg models with long-range
dipole—dipole interaction has been investigated using various forms of self-consistent spin-wave theory
(SSWT). It has been found that SSWT gives a much lower transition tempera@tuttean the free-magnon
(spin-wave theory. For the classical spin, tAg from SSWT lies within 9% of the Monte Carlo value, making
SSWT the best approximation among those considered. It is proven that the random phase approximation
vertex corrections to SSWT are rather small. The results depend strongly on the value of the spin, emphasizing
the importance of using the quantum and not the classical 2D Heisenberg model even for large spins such as
S=7/2.
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INTRODUCTION reported®!2 The pure quantum self-consistent harmonic
approximatiof®14 gives a quantitative solution of thguan-
Ultrathin magnetic films and multilayers became a verytum Heisenberg model with a computational effort that is
active field of research in the last two decadl@hese two- similar to that of aclassicalMonte Carlo calculation. Note
dimensional (2D) magnetic systems demonstrate uniquethat the Weiss mean-field theory is pretty useless for low-
physical properties, such as oscillating interlayer exchangdimensional systems since it does not reproduce the
coupling and giant magnetoresistaéelhey also have nu- Mermin—Wagner theorem, but predictsTa of the order of
merous technological applications, for example, inJS.
spintronicé® and magnetic data recording. Theoretically, 2D  Self-consistent spin-wave theofSWT) was first formu-
magnetic systems are often approximated by a quantum dated for the Mermin—Wagner situatiéfr,*®but it was later
classical Heisenberg model. Therefore, a good understandirggneralized to systems with long-range ortErSSWT can
of this model is very important in order to predict the dy- be formulated as the best possible one-magnon thedithe
namics and thermodynamics of 2D magnetic systems, in pagzeroth-order term in the N expansion of the SWN)
ticular to calculate the magnetization curld(T) and the theory!820 or as the mean-field magnon thedrilote that
Curie temperaturd.. here and in the following the words “mean field” are applied
There is one important difference between magnetism ifio magnon occupation number operat@sd have nothing to
three-dimensional and two-dimensional systems. The 3D@lo with the Weiss mean field f@pin operatorsThe SSWT
Heisenberg model always has long-range magnetic order &xpression can be further improved by renormalizing the
sufficiently low temperatures, with a transition temperaturemagnon-magnon vertéxthis approximation is often called
of the order of), wherelJ is a typical value of the exchange the random phase approximatidRPA)], often providing
integral. On the other hand, the 2D Heisenberg model has nguantitative agreement with the experiment everywhere ex-
long-range order at >0, according to the Mermin—Wagner cept the narrow critical region. The known weak point of
theoren® provided that only an isotropic, short-range ex- SSWT is the erroneous critical behavior: it gives either
change interaction is included. Experiment shows, howeve®R spin-wave transition witiB=1 [S is the critical exponent
that even 2D magnetic systems have finite transition temin the magnetization vs temperature dependerd¢T)
peratures. The reason for this is the presence of additionat (T.-T)? when T—T,-0], or a first-order transition
small interactions(magnetocrystalline anisotropy, dipole- (8=0). However, SSWT describes perfectly the short-range
dipole interaction, or interlayer exchange in quasi-2D sys-order aboveT,.
tems, and also the finite horizontal size of the sample. Each Unfortunately, all these approaches in their present forms
of these factors breaks the conditions of the Mermin—Wagnetio not include the dipole—dipole interaction. This is a serious
theorem (for a review, see, e.g., Ref. 7 and referencesdrawback, since this interaction is very important for realistic
therein, resulting in a finiteT,<JS. At the same time, the systems, especially ferromagnetic materiatse Refs. 21 and
short-range ordefSRO is retained up tdf ~JS (Ref. § in 22 for a review. This interaction is sometimes treated as an
2D and quasi-2D systems. effective easy-plane anisotropy; however, in contrast to the
There are various theoretical approaches to the quantuiatter, it does break the conditions of the Mermin—-Wagner
2D Heisenberg modeboth with and without long-range or- theorem, resulting in a finit&..>> While the easy-axis aniso-
der atT>0). Free-magnofispin-wave(SW)] theory is only  tropy creates a gap in the magnon spectrum, the dipolar in-
a very rough starting point that normally overestimalgby  teraction results in a more complicated dispersion law,
a factor of 2-4. Quantum Monte Carlo results have beemoughly ¢~ k¥'2 for small k.23-25
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This interaction has a strong effect on spin waves in thimons, and also write down the free-magnon expressions for
films 2226 The competition between perpendicular anisotropythe spin-wave spectrum and magnetizaédffin Sec. Il we
and dipolar interaction often results in what is called a reori-develop the SSWT formalism. Section Ill describes our nu-
entation transitio? Although the thermodynamics of the 2D merical SSWT implementation followed by SSWT results in
classical Heisenberg model with the dipolar interaction hasec. IV. The RPA formalism is presented in Sec. V, and the
been studied rather extensivéh?8-36the quantum results last section offers our conclusions.
are scarce. To the best of our knowledge, the only ap-

proaches applied in the quantum case are spin-wave | HAMILTONIAN AND FREE MAGNONS

theory?®>-2® (free magnons and the Tyablikov approxima- We start with the spin Hamiltonian
tion 3738

The classical Heisenberg model is very helpful for 3D H=- 1 3.5 +0°B 5
systems, since in this case any large s(*1) can be 2%( Qi )S'aqg’ ©

treated as a classical one. However, this is not true for the 2D

systems. To understand why it is so, one needs to recall théhere

arguments given by Bloct, who first hinted that 2D mag- B = 3 (3RRE - &, ,RZ)R® (6)
netic systems should have no long-range order. Consider a . Qi d RiRy ~ 2agR I_%J _

2D Heisenberg ferromagnéEM). Its spin-wave dispersion R; are the sites of a simple square lattice in Xaglane, and
relation isE,=JSK for small k. Free-magnon theory gives Rij=R;—R;. The dipolar interaction constadj is equal to

the following expression for the magnetization: 4pglad, whereug is the Bohr magneton aralis the lattice
constant. IfJy is sufficiently small, the ground state is ferro-
(S)=5- 1 dk 1) magnetic with arxz easy plane, and we take tkeaxis di-
VgzJgz eXpEJ/T) -1 rection for the ground-state magnetization. With the usual
notation
From now on we measure temperature in energy utkhis . )
=1), and choose the lattice constanas the unit of length. S=5¢is, ()
For smallk we formally introduce magnons by the Holstein—Primakoff
dk T transformation
————— =~ 27k dk—5. (2) — + "
exp(E/T) -1 JSK S =291 -a'a/29" %, (8)
The integral(1) diverges at the lower limit and long-range —
order cannot exist af > 0. § =254 (1 -a/a/29'?, 9
In terms of Eq.(1) any additional small interactiotan- ;
isotropy, interplanar exchange, dipolar forcéstroduces a S=S-a'a, (10

low-energy cutoffA<1 (see, e.g., Ref.)7and the magneti-

zation is given by(for a 2D square lattide make a Fourier transform from site ind& to the crystal

momentumk, and expand the Hamiltonia®) into a series

S—(5) ~ T T d—E:LIn<L>, @ of S12 (see Refs. 23 and 24 for details
4mIS)iu B 4mIS \JSA H = S"Np+ S'Ny(af, &) + S¥2Na(af,a) + PNy(af, a)
giving a spin-wave expression fat: +SVNg(al,a) + o, (11)
T~ 4m)S <amI2. @ whereNn(al,ak) J:T]eaps a certainth-order polypomial of the
In(T/ISA) Eotsheec:gfebfatorak,ak in the normal form(creation operators

ThusT, in the 2D case is much smaller than in the 3D case. The free-magnon Hamiltonian is

The classical description is appropriate when the Curie tem-

perature is much larger than any spin-wave frequency, Ho = S'Ny(al,a,) - u>, ajay

namely, whenT.>JS For the 3D Heisenberg moddl, k

~J<, and this criterion takes the well-known for8s 1. 1 1

However, for the 2D Heisenberg mod&,<JS, and the =2 | Alala, + -Blalal, + “Blaa, [, (12
classical description is only valid $>1In(1/A)> 1 (see Ref. k 2 2

7). The latter situation seems quite unrealistic; therefore thgnere

quantum effects are never negligible for 2D magnetic sys-

tems. 0_

The goal of this paper is to construct a SSWT formalism A= S0~ ) = E‘st[ Sik) - 583} Bt
for the 2D quantum Heisenberg model with dipolar interac-

tion (and no magnetocrystalline anisotropy for the morment 0 3 1

and to investigate whether SSWT can be improved by RPA By =- E‘st Sy(k) + 533 , (14)
vertex corrections. The paper is organized as follows. In Sec.

| we present the Heisenberg Hamiltonian, introduce magand three lattice sums have been introduced:

(13
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S = 2 Ri_3 ~ 9.034, (15 o O $=1/2, numeric
Ri#0 N S=1/2, asymptotic
Lo @ S=7/2, numeric i
20> -- S=7/2, asymptotic
) Z.2 p A Classic, numeric
Si(k) = 2 (e'k'Ri -1 R,-_3 1-3—], (16) &t O‘ — Classic, asymptotic
R;#0 R,2 o% S
< 10+ .
. X2
Sk) = 2 (€Ri-1)—, (17
R;#0 R’
whereJ, is equal to 2 cosk,+2J cosk, for nearest neighbor T e Y™ B I
exchange. For smak the lattice sumg16),(17) have the A

asymptotical form
ymp FIG. 1. (Color onling The free-magnor{SW) transition tem-

2 20 peratureT, vs dipolar interaction)y. The symbols are numerical
Sik) = Zﬂf, S(k) = - 5?(2@*’ ki)- (18) results, while the curves are the asymptotical formyb and
(34).
The “chemical potential’n is a Lagrange multiplier used
in spin-wave theory and SSWT to enforce the condition _ 1 1 AC 1\ 1
i —o- Toy = k
(S)=S=0 in the paramagnetic phage the ferromagnetic (S =S=S- NE (ayay) =S- NE |:?(Nk + 5) - 5] :
phase one hag=0). The next step is eliminate the “anoma- “ “ k
lous” termsa/a’, andaa_, by the Bogoliubov transforma- (27)

tion Let us define

a = cosltgoby — sini(g)b!,, jg=J4d. (28)

19 Eor the casgy<1 and in the quantum regim@SE?<T

t_ P
8 = COSH&)by — SiNM&)b-i <J9 the free-magnoiSW) magnetization is approximately

with equal t@®
B _ T [ 2T ._3,2}
tanh(2&,) A 20 47JS 77JS\€'47Tde

The Hamiltonian in the new magnon operatdrsb, be-  Wheref=(3/87)S;~1.078, and our notation corresponds to
comes that of Ref. 23 as

D=JS Q,=27S}, a=2f=(3/4mS,. (30

Ho= const+) egbeby, e = V(AD? - [BY?,  (21)
k It gives the equation for the free-magndpas

and the expectation values are A7) 4S T
=In| —j*?| +In| —%5 |. (31)
(bibe) = Ny = [exp(eT) - 1172, (22) T Varf 4mIS
0 For the classical case the Bose function is replaced by
A 1\ 1
Toy— K[yt
=— b+ |-, 23 T
(@lay) £(<ko 2) > (23) o 32
€k
BY 1 The analytical expressions f& and T, are obtained by re-
taT\ — __ "k + - c
(@) = (@ay) = 68 <<bkbk> * 2)' (24) placingT/JS— 32 under the logarithm in Eq§29) and(31),
yielding the classical spin-wave expressions
Alternatively, the expectation valu€3) can be obtained
from the free-magnon Matsubara Green’s function S=s- " 32_1-—3/2 (33)
0 47JS T\ 7rf d '
i) = — Ot A 2anT (25)
wn) =" 5 5 wy=2mnl,
K (iwp)?- (68)2 " 4mIS _ In[ 32 -—3/2} (34)
- ¢Jd "
through the frequency summation Te m\f
: i . On Fig. 1 the free-magnon transition temperature is pre-
T — 0,70 : ] .
(Ba) = T'L”:OT%: e Gylion). (26)  sented as a function df, for three values of spinS=1/2,
" S=7/2, and theclassical spin. One can immediately see that
The magnetization is the quantum asymptotit31) works very well for smallj4
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and smallS (but not for S=7/2). The classical asymptotic J—9d, Jg— 834 (38)
(34) is also very good at smajl}. It can also be observed that _ =
even for such a large spin & 7/2, thetransition tempera- 1S yields

ture still differs by about 10% from its classical value. : 1, ., 1
He= 2 Ada+ SBiaal + SB[, (39)
k

II. SELF-CONSISTENT SPIN-WAVE THEORY

Self-consistent spin-wave theory can be most easily for- AL =yS(Jo-J) - Eé)‘\]ds[s.l(k) - §83] -u, (40
mulated using the Feynman—Peierls—Bogoliubov variational 2 2

principle° For any HamiltoniarH and any trial Hamiltonian
H,, the free energf=-In Tr(e#") satisfies the inequality

B = - gwdS[sxk) : %53} . (41)
F<F =F;+(H-Hp, (35

Sincey renormalizes the short-range exchange interaction, it
rhas the physical meaning of a short-range order parameter. In
e absence of the dipolar interaction, the nearest-neighbor
spin correlation function is equalto

(S Sup =7 (42

1 1
- T g =S G =N
He= % {Akakak * 5Bt szakaLk}' (36)  For 0<j <1 the equality(42) is no longer exact, but it stil
holds to a high degree of accuracy. The paraméteznor-
where A, and B, are variational functions. They are found malizes the long-range dipolar interaction and has the mean-

whereF,; and the expectation value are calculated usihg
SSWT is defined as the best possible one-magnon theo
(according to this variational principlenamely, we takeH,

to have the generalized free-magnon form

from the conditions ing of some long-range order parameter, different fis.
SE SE' The Bogoliubov transformatior{19)—(24) should now
—=0, —=0. (37)  employ A,B} from Egs. (40),(41). The variational proce-
A By dure now consists of minimizing the trial free energy

This variational procedure can be shown to be equivalent tg€fined by(35) with respect to two parametessand é. The

the mean-fieldMF) procedureH;=Hye. variational equations are

In the following, we include only the three- and four- 9F' o¢al 9laa. INL

operator terms in the magnon-magnon interactidrs H 0=—2=>1AIF @d +BMF (@i —d—=x0,

+V, whereV=S'N,(al,a,) +SN,(a] ,a) (and theN, term Iv Tk dy ay dy

does not give any contribution Such truncation of the (43

Hamiltonian can be justified by comparison with the case of

SSWT with no dipolar interaction, where the truncated JF' ZE{AMFa<a|Iak> Mpf9<ak6Lk>_ tf9_N}<
k

K96 K46 E"aé}'

Holstein—Primakoff Hamiltonian is equivalent to the Dyson- 0=—— +B

Maleev Hamiltonian. For the dipolar case, the Dyson-— g

Maleev representation is not suitable due to the essentially (44)

non-Hermitian form of the Hamiltonian derived, and we use . )

the truncated Holstein—Primakoff Hamiltonian instead. The equationg43),(44), should be solved self-consistently
The mean-field Hamiltonian takes the fori®6) with A,  together with Eqs(22)-(24). _

=A||:/|F, Bkz(Bk)*:Blll/IF’ and AaAF’BaAF being certain func- However, for reasons stated below, we are going to con-

centrate on the second approach to SSWT, which we call the
ys?> model. In this approach we give up attempts to ob@in
from the SSWT equations. Instead, we renormalize the dipo-
lar interaction with a phenomenological multiplies?

tionals of(ala,) and(a,a ). This Hamiltonian is meaning-

ful provided that|B)'"|<|A¥F| in the whole Brillouin zone.

It can be diagonalized by the Bogoliubov transformation

(19—(24), with AY'F,BYF instead of the free-magnon ones. © — !

The system of equatiori22)—(24) should then be solvedina = (8/9%

self—con5|stent cycle. Unfortu_nately, our numerlcal imple- Jy— I (45)

mentation(see below for detai)sshows that this system of

MF equations has no physically reasonable solutiersept in the original Hamiltonianand ignore the dipolar contribu-

for rather highT). This is not surprising, since the MF ap- tion to the magnon—-magnon interaction\ls(al,ak)

proach does not work for anisotropic FMs eithaithough it +50N4(al,ak).

works fine for quasi-2D FMs. Let us examine the physical reasons for this approxima-
There are two possible ways to overcome this difficulty.tion. The effective dipolar interaction can, generally speak-

In the first one(we call it the y§ mode) we apply the con- ing, have different temperature dependence for different dis-

strained variational approach. Instead of using arbitrary functances Rjj. Since the systematic attempt to build an

tions A, , By in Eq. (36), we take the free-magnon expressionsR;;-dependent renormalizatiofimagnon mean-field theory

(13),(14) with exchange and dipolar interactions renormal-does not seem to work, a more simple approximation is re-

ized by parametery and &, respectively: quired. In particular, foljy<<1 one can neglect the specific
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character of the short-range dipolar interactions, since thegbtain y ands. In the next sections, we will present our
are negligible compared to the short-range exchange interacumerical SSWT implementation followed by SSWT results.
tion, and construct a renormalization which is valid in the
Rjj—c° limit. In the latter limit, the macroscopic theory can

be applied, and therefore the effective dipolar interaction is IIl. NUMERICAL IMPLEMENTATION

proportional to the square of magnetization, i.e., Etp).

In order to solve the SSWiland SW equations numeri-

According to this approximation the effective dipolar inter- ¢41y e have developed @t hoccode. The most essential
action vanishes in the paramagnetic phase. In reality it do€$:nnical details are briefly listed below.

not vanish, but it becomes a short-range @hee to the finite

The lattice sumsS;(k), S;(k), and S; have been calcu-

correlation length and can be neglected compared 10 thejzie ysing the Ewald method, in a way similar to the one in

exchange interaction ify<<1. The approximation(45) is

very similar to the way the anisotropy is treated in Ref. 7.

The initial Hamiltonian of theys> model is therefore

~ 1~ 1~ ~
H= % {Aﬁalak +oBajal EBEakeLk} +V, (46)
~ 3
AY=SJp-J) - %?st{ Si(k) - 553] -u, (47

- 1
Be=- E?JdS[ Sy(k) + 583} , (48)

~ J, ) 1 1
— M) = tat —at At
v qgkz ZN{ 2aqak1ak2aq+k1‘k2 + ZaklakzaQ+k1+k2a—q
_at At (49)
aklakzakl"qakz‘q )

The renormalized exchange interactidn> vJ is now given

Ref. 21, although different in technical details. First note the
identity

R"=

2 f dp e—szzpn—l
0

I'(n/2)
2 K 202 - 2
- -p?R%) n-1 -p?R2 n-1
F(n/2){f0 dpe P +L dpe?p }
(59)

where7 is an arbitrary parameter of the order of unity. It can
be applied to the surtn>2)

gkRi 2 J” - 22
- dp pn—l 2 gk Ri-p°R
r70 R F(n/Z){ 0 R;#0

+ f dop"t 2 eik'Ri'Pzpf}. (56)
n

R;#0

The second term in this expression includes a rapidly con-
vergent sum, but the first term should be made rapidly con-

by the constrained variational approach with just one paramyergent using the Fourier transform with respect to the vari-

eter y and

AL =yS(3-J) - %—52st|:51(|() - 253,] -u, (50

~ o~ 1
Bl =BY=- g?ﬂds[ Sy(k) + 5%] . (51)
The variational equation is

0=F =¥ {z\kMF‘“jla” ALY ﬂ}
k

k €k

ay dy dy
(52
- 3

A= S0 30 199 00 - 35| -

+ S (@lagd + I - Jo - Jgud], (53)
q
BlF= - g‘s’JdS[sz(m - %Ss}
3 I
+ > (agag) S+ o] (54)
q

ableR;. The final expression for the su(B6) is

7 _ 2 n
wf dp 5 ] _ (K G)]_ﬂ
G

0 p3—n 4p2 n

e

E ik-R; 2
fzo R T(2)

n Ri#O

+ J ’ dpp™t Y explik- R - sz,-Z)}, (57)

whereG are the reciprocal lattice vectors. In E&.7) both
sums converge rapidly and are suitable for direct numerical
evaluation with subsequent integration. The si8nsS,, and

S; are directly related to the sufb7), for example,

Sk =2 e”"RiX—=-i explik - R)R™® (58)

2
i
2
R;#0 R dkro

and

Sy(k) = S,(k) - S,(0). (59)

This technique gives the value 8§=9.033 621 78cf. Ref.
34). For the sake of numerical efficiency, the lattice sums
Si(k) andS,(k) have been parametrized over the whole Bril-
louin zone(BZ). Our expressions have the correct asymptoti-
cal form fork —0 (up to thek? termg and a 1% accuracy
over the whole BZ.

The variational parameters of the MF theory ééa;&

Equation(52) should be solved self-consistently in order to and (a,a_), or, actually, their Fourier transforms for a few
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rather different. SW theory gives an almost lin€xf) de-
pendence and a spin-wave phase transitiecond-order
phase transition witt8B=1). On the contrary, SSWT gives a
first-order phase transitioffiormally S=0). This means that
the magnetization reaches a finite minimal valsg,
~0.199 atT./J~=0.1976. After that point the ferromagnetic
solution to the SSWT equations ceases to exist abruptly and
the system goes to the paramagnetic state.

Both kinds of critical behavior are completely nonphysi-
cal. However, outside the narrow critical region, SSWT is
definitely superior to SW theory, and the SSW{Jis much
™ smaller than the obviously overestimated W In particu-
lar, all realistic(experimental and Monte Cajlanagnetiza-
tion curves have a sharp fall at— T, and resemble much
more the SSWT curve with a step than the linear SW curve.
The SRO parametey is close to unity in a wide range of
temperatures, until it finally falls to zero aigryJ=~0.75.
Thus SSWT describes correctly the experimentally

WO parameters. respectively. Our own elaborate minir_niza_confirme(? wide region with considerable short-range order
wo p ’ P Y- o boveT,. Two ¥(T) curves forjg=10" andj4=0 (Mermin—
tion schemes were used to find the values of the vanaﬂon{}'v N . LT .

. . - agner situationpractically coincide; hence SRO is rather
parameters which give a minimum &f. In all cases, the

chemical potentia has been calculated on each iteration tomsensmve to the strength of the dipolar interaction and to
— the presence or absence of long-range order.

ensureS=0 in the paramagnetic region. For S=1/2,j4=10"3 we havey(T,) =0.989; therefore we
The numerical integration over the 2D BZ has been percap say that practically=1 up toT,. However, for classical
formed by the adaptive sevent-point Newton—Cotes method,q large spins/(T,) takes values of the order of 0.7-0.9,

_recursively, first for the(_axis, th_en fpr the axis. It is very . depending orjg. In the latter cases, SSWT renormalization
important that the BZ integration is done b)_/ an adaptiveys the exchange interactidiie. ) and not only of the dipo-
. o . far interaction(s?) is important. The same trend has been

from the region of very smak. The lower limit of integra-  4pserved earlier for quasi-2D magnets; see Fig. 3 of Ref. 7,

tion ko, is @ parameter which must be chosen small enougk}vhich shows stron T) dependence for larger values of
to achieve good convergence of the resulis, =102 has s gey(T) dep ¢

been found to be sufficient for all our calculations.

FIG. 2. (Color onling SSWT relative magnetizatioamand short-
range order parametey vs temperature foS=1/2 andjq=1073.
For comparison, SW magnetization figr= 1073, andy from SSWT
for j4=0 (Mermin—Wagner situationare also shown.

nearest-neighbor shellgs? andyé models have just one and

For jq<1 and smallS the ys*> model takes a particularly

th Spte%_zla_lt carf‘ethhas tg b_e tak_?n f(;r_ ver_); sbrlﬂatb ach!evle simple form. In that case we can pyt1l and the SSWT
€ stability of the code In spite of Inevitable numeznca er'magnetization is given by Maleev's formul@9) with Jy
rors. For example, 1-cds, must be replaced by ,/2. =

Also the Bose function must be replaced Bye, for e,

<T and by exg—¢,/T) for ¢ >T. The results appear to be . T oT

rather insensitive to the particular cutoff values used. We S=S- In{ ,—153/25__3]- (60)
used & cutoff equal to 10° for 1-cosk, . The lower cutoff 4mIS | mIS\4mt

for €/T in the Bose function was equal to £Q and the . .
upper cutoff was taken to be 20. Equation(60) does not allow for arbitrang, but only fors

The doublek,q integrals over the Brillouin zone were larger thansy;, which minimizes the function
calculated in real space, with Fourier coefficients calculated
by the Newton—Cotes method as described above. For the ] — _ 3T
MF and yé models the inclusion afi,,n,=-5,..., +5 neigh- ST 477352|n(s)’ namely,Smin= 471’
bors has been found to be sufficient, while for the RPA cor-
rection to magnetizatioriSec. V below, we have taken jth the equation for the SSWT,:
n,,n,=—6,..., +6 neighbors. For thgs®> model only the ex-

change interaction and not the dipolar one enters the double 4. j { 4S 3/2}
= i

(61)

BZ integral; thus only the nearest-neighbor terms are present -2 In[ T } +3(1-InJ.
in the real-space sum. c ™
(62
IV. SSWT RESULTS
o There is no solutions of Eq60) for T>T,; therefore the

In Fig. 2 we present the relative magnetization S/S  first-order character of the SSWT phase transition is fully
and the SRO parameteras a function off from ys>-SSWT  contained in a simple equatid60).
for S=1/2 andjy=10"3. The SW magnetization curve is also  For the classical case, one uses Bf) with Jy— J;&
shown for comparison. The two magnetization curves ar@nd obtains the equation for classical SSWT
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FIG. 3. (Color onling The transition temperaturg, vs dipolar FIG. 4. (Color onling The transition temperaturg; vs dipolar

interactionJy from different approaches fd8=1/2. The syrhols interactionJy from different approaches for classical spin. The sym-
are numerical results and the curves are the asymptotical formulagols are numerical results and the curve is the free-magnon asymp-

(31),(62). totical formula(34). The Monte Carlo result fody/J=0.1 is taken
from Ref. 30.
4mIS 32 o T,
=In| —=jg" | -3In +3(1-In3). eration(2D ferromagnet with dipolar interaction and no an-
Te v\t 4m)S

isotropy. T, from the Tyablikov approximation is much
(63)  smaller than the SSWT one, especially for small valugjg.of
This approximation predicts a first-order phase transition
Note that the coefficient before the(Th/4mJS) term has  with an enormous step of,,~1/2 at T, [which immedi-
changed its value from +1 to -2 as compared to the freeately follows from Eq.(29) upon the substitutiod — sJ,Jq
magnon theory in the quantum case, and from 0 to -3 in the~sJy]. Also, by definition, it does not account for the short-
classical casécf. Ref. 7). Similar equations in the case of range order abové,.
layered magnets with small interlayer coupling and/or easy- In Fig. 4 theT, values from various approximations are
axis anisotropy were obtained by the renormalization grougompared again, this time for classical spins. A classical
method*! the magnetic ordering temperature being obtainedVonte Carlo(MC) resul® for j4=0.1T./JS~0.85 is also
as a crossover temperature. presented in Fig. 4 for comparison. One can see that the
The transition temperature as a functionjgfs shown in ~ SSWT value fofT, lies within 9% of the MC result, which is
Fig. 3 for S=1/2. Several different approximations are pre- a good agreement for such a relatively simple and parameter-
sented. Thes?>-SSWT and SW curves are qualitatively simi- free approximation as SSWT. In contrast, the free-magnon
lar, with the SSWTT, being 1.5-2.5 times lower than the and Tyablikov approximations are much less accurate. Be-
SW one. The asymptotical formulé31),(62) work very well ~ cause of this, and the factors mentioned above, the useful-
for S=1/2. Theresult of the y5-SSWT, however, is quite ness of the Tyablikov approximation for the 2D systems with
different. The latter theory predicts rather different behaviordipolar interaction can be questioned. Note that the present
for small and larggy. discussion refers to the original Tyablikov decoupling, while
For jq=10% the y5-SSWT essentially reproduces SW more elaborate Green’s function approaéhés*3can give
behavior. Bothy and § are close to unity in a wide range of much better results, especially in the low-temperature region.
temperatures, and they both go to zeroTaks~=0.75 (for Figure 5 summarizes the spin dependence of the SSWT
S=1/2). This essentially implies that there is long-range or-Curie temperature. As for the SW thed(fyig. 1), the quan-
der (6+#0) in the paramagnetic phase, which is inconsistentum effects cannot be ignored, even for such a large spin as
with observations. The magnetization curves dpdn this ~ S=7/2. Theformulas (62),(63), which work fine for small
region are very close to the free-magnon ones. spins, fail for the large and classical ones, mainly due to the
For jq=10"° y6-SSWT gives a first-order phase transi- y=1 approximation. In the latter case, the completemeri-
tion like that in the ys>-SSWT, ands goes to zero forT  cal) form of ys>SSWT must be used.
—T.—0, the value forT, being also close to thes>-SSWT
value. To summarize, thes-SSWT T(j4) curve has two
regions: free-magnon-like angs?>-SSWT-like with a cross-
over between them and a nonmonotofi¢jy) behavior. We For the anisotropic or quasi-2D FM with <1, SSWT
find these results also completely nonphysical and concludgesults can be systematically improved by including a RPA-
that y5-SSWT is a bad approximation. Therefore we abandike correction to the magnon—-magnon vertedere we ap-
don it in favor of theys>-SSWT. - - ply the same approximation to the FM with the dipolar in-
The Tyablikov approximatiortJ—sJ,Jg—sSJy) result is  teraction to investigate whether the RPA corrections are
also presented in Fig. 3. This approximation gives gdpd important also in this case. The approach outlined below is
for 3D systems and also for anisotropic 2D systéfmEhe  not exactly the standard RPA theory; however, for brevity, it
situation seems to be different for the system under considwill be called the “RPA approximation.” The best justifica-

V. RPA VERTEX CORRECTIONS
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O $=1/2, numeric B(k1,Kaika Ka) = = 2Tk1Ko. (67)
© $=7/2, numeric
. A gi“‘lslszl°a;‘;};1“];g;c B This lowest-order expression would not suffice for SSWT,
-- $=7/2, asymptotic but we expect it to be good enough for calculating RPA
[ — Classic, asymptotic| | vertex corrections.
2 | The diagram in Fig. @) corresponds to the integral equa-
20 m tion for the renormalized verte®(k,k,; ks, Ka;im,):
oo ®(k,p-qg;k—q,p;iwy,)
ol et el e el =¢(k,p-q;k=q,p) -T2 X $(k,s-q;k-q,9)
0° 10" 10t y 10°  10° 10! o 9

XGY(iwp)GL (o)~ iw)®(s,p = q;S—0,p;iw,).

FIG. 5. (Color onling The ys>--SSWT transition temperatufg, (69)
as a function of dipolar interactiody for different values of spin.
The symbols are numerical results, while the curves are the asym@ince the SSWT verte® does not depend on any Matsubara
totical formulas(62),(63). frequencies, the renormalized vertéxdepends on one fre-

quencyiw, only. Below, when we are going to calculate the

tion for such a procedure is a comparison with experimentyertex correction to magnetization, the,=0 term domi-
which has been done in Refs. 7, 20, and 41 for the cases ofates, since it leads to logarithmic divergences. Therefore,
anisotropic and quasi-2D FMs. we can neglect the frequency dependenc@and putiw,

The idea of the approximation is to renormalize theto zero in Eq.(68). Although the frequency sum
magnon—magnon verteid9) in the RPA way, as shown in
Fig. 6(@). The magnon Green'’s function of th&-SSWT T2 GG 4(iw) (69)

Iwn

t o oy +Z~L _ could be performed exactly, fgj<<1 it can be replaced with
Cyliwp) = (i) — ()2 wn = 2mNT, 64 s classical vaIué’Gt(O)G‘_q(O) if the upper integration cut-
off q0 (equal toT/JS and 32 for the quantum and classical
plays the role of the free-magnon Green’s functisingle  cases, respectivelyis simultaneously introduced. Equation
lines in Fig. 6; namely, the exchange interaction is renor-(68) then becomes
malized as)=+J (which is only important for large and clas- d(k,p-q:k-q,p)
sical sping, and the dipolar interaction is renormalized as PTa:X=a.p

J4==4 and we defingy=Jy/I=4/ y. =¢k,p-q;k-q,p) - T X ¢(k,s-q;k-q,9)
The bare vertex49) is first renormalized by the SSWT s<dg
parametery. XGY0)GL 4(0)®(s,p - q;S-,p). (70)
- - We use the expressidig7) for ¢(k,p—q;k—q,p) and seek
V= mklz Bk, Ko ks Ka)ay ay ay a, the solution of Eq(70) for givenp andq in the form
X 8(ky + Ko — ks — Kg), (65) ®(k) = @(k,p-q;k —q,p) = k(Aq-Bp),  (71)
where A and B are yet unknown constants. Equati6r0)
where becomes
Bk koiKaKg) =T, + I, = Ik, = ek, (66) ®(k)=- 23K -(p-q) + g S kA, ~Bp)Aus,
a,B=X,Z2
Provided thak,...,k,<<1,¢ becomes (72
Xp >< where
J9)? - GL(0)GL 4(0
L Roq Aa p_q ik_q?_q 1{ Anp=(9 SZ‘;O (Sy = 0.)SsGH0)GL 4(0).  (73)
y A,z can be evaluated approximately with only logarithmi-
# = S k k cally large terms being included. FqF>J5’4 it is easy to
Q show that
(b) k—q
. . o o\ 2 t _g q2
FIG. 6. The diagrams corresponding to the RPA renormalization (392 2 ssGL0)G (0= In : (74)
of (@) magnon—-magnon vertex aifd) magnon Green’s function. s<dp Jd
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2 S 2
(3923 5,5,G40)GL 4(0) = Mém( g )+§ag|n<q_g>
iq &

s<dg q
(75)
and
Sup [ G -
Anp= §§In< g) o= (76)
q
In the opposite limit we can puig=0 and
Aop= (3922 8, SAGHOP = Ad,, (77)
s<qg
where
A= 1 J (k2+ 2’7Tfjd)2
(2m)® (K2 + 4mf]y)?
2w S’)_
x J dp——— ot (79
0 (K2 + 277] K SirPe)?

wheref=1.078. As for the case of the integral in EGY),
the ¢ integral must be performed exactly before thnte-

gral can be calculated. The res(dgain to logarithmic accu-

racy) is
S o3 ~
= ZaBn 0 2 7514
Aup= 8ﬂ_|n<~_5/4), g <j3" (79)
Jd
Equations(76) and(79) can be combined as

_ 1 %
A—gl {—05/4)} (80)

Ayp=A8,
B B max(q

This immediately gives the solution of E{2):

A:B:;~ (81)
1-(2THSHA
and
2k -(p-q)
®k,p-qg:k—-q,p)=- , (82
(k,p—q;k-a,p) U max T3] (82)
where
-
=—. (83
47IS

PHYSICAL REVIEW B 71, 024427(2005

Gy(iwy) =G w(iwy) TGtk(icon)2
x 2 2 bk .k =q;k = ,k)Giq(iwp), (84)

i ’
@n

and the magnetization is

S=S+T> D Gyliwy,)

k oy
=S+TX X Gylio) ~ T X Gyliw)’Gi_g(iw))
k iwn k,q iwn,iwr’]
XP(k,k—q;k—q,k). (85)

The frequency sums are equal to
TE Gy (lwn) ==

Al 1\ 1
l%@@*z)‘é} P (89

whereN(e) =[exp(e/T)-1]7* [cf. Eq. (23)]; and

&) 2N(E) +1 ~
T Giliwy)*= 2(A)? - B2+ —, =5 (B2
- 2Gk)2[ ‘ I+ 4@
= K, (87)
respectively. The classical limits of these two expressions are
TA T(AL)?
P — t—A'; Ky — . (88)
€) €)
The final expression for the magnetization is
— 23(k - p)KP,
S=S->P-> L

K ke L-tinfaymax(k - pl* 5]
This equation should be solved self-consistently with Eg.

(52) for y andS. As usual, we perform the double p inte-
gration in real space. The RPA values Tgrare presented in
Figs. 3 and 4 folS=1/2 andclassical spins, respectively. For
spin 1/2 the RPA corrections to SSWT are negligible. For
classical spins the RPA value fog is 1-5 % lower than the
SSWT one, which is still a surprisingly small difference
compared to the anisotropic FMSince the SSWTT, is al-
ready lower than the Monte Carld. for j4=0.1, the RPA
apparently does not improve the SSWT result.

CONCLUSION

In this paper we have investigated the thermodynamics of
2D quantum and classical Heisenberg ferromagnets with
dipole-dipole interaction, mostly focusing on the Curie tem-
perature. We have applied noninteracting spin-wave theory
and various interacting spin-wave theori&SWT, RPA, Ty-

The renormalized vertef82) is equal to the SSWT vertex ablikov approximation We have developed several forms of
(67) renormalized by ag-dependent denominator. For the self-consistent spin-wave theory: mean-field SSWT, varia-
anisotropic FM(Ref. 7) this denominator is essentially equal tional y8-SSWT, and finallyys>-SSWT. All these theories
to the SSWT magnetization, but for the dipolar interactioncan be derived from the Feynman—Peierls—Bogoliubov varia-

this is no longer true.

tional principle with different constraints.

The vertex-renormalized Green’s function is given by the The idea ofys>>SSWT is to renormalize the exchange

diagram in Fig. ):

interaction with a variational parametgrand dipolar inter-
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action with a phenomenological paramedgiWe have found It is difficult to make a direct comparison of the present
that only this form of SSWT is able to provide physically model with experiment, since realistic thin films usually have
meaningful results everywhere except in the narrow criticaktrong anisotropy and consist of more than one monolayer.
region. This situation is very similar to the case of an anisoHowever, the near-linear dependence oflén In(j4) has
tropic magnet, where a similar phenomenological coeffi- been demonstrated in a Monte Carlo calculafdmhis is a
cient is also necessary in order to build the SSWT formalismtypical dependence for nearly-Mermin—Wagner systems, and

We have shown that the SSWT Curie temperature dea similar one has been previously established for anisotropic
pends strongly on the sp® Even for spinS=7/2 wefound 2D ferromagneté? The experiment$:*6 on thin films with
that T, still differs from the classical one, namely, it is about in-plane magnetization show thdt, of the film is much
10% lower. This is an expected result, since the criterion fotower than the bulkT,, with thinner films having lowefT...
the classical regiméT./JS>1) no longer impliesS>1, as  Application of SSWT to systems that possess both dipolar
for 3D systems, but rath&>1n(J/Jy). The parametey also interaction and anisotropy and consist of more than one
shows strong spin dependence: &r1/2 thevalue ofy at  atomic layer is the topic of further investigation. In particu-
T=T, is almost exactly unity(no renormalization of ex- lar, phenomena such as reorientation transition and striped
change, while in the opposite limit of classical sping(T,) phases, which have been previously studied within the clas-
is of the order of 0.7-0.9, depending §p sical Heisenberg modé};31-34-36should be considered.

For the classical spin and,/J=0.1 we have compared Our conclusion is that SSWT is a relatively simple, com-
our results to a Monte Carlo calculatidhlt turns out that ~ putationally cheap, and reliable theory for studying two-
the SSWT value foll, is quite goodnamely, it is 9% lower dimensional spin systems with dipole-dipole interaction,
than the MC resulf while the free-magnon and Tyablikov with the ability to treat quantum spins being its strongest
approximations give very bad estimatesTof The RPA cor-  point.
rections are negligible fd8=1/2,while for the classical spin

they reduceT, by a few percent, worsening the agreement ACKNOWLEDGMENTS
with the MC data. The dipolar case is thus considerably dif-
ferent from the anisotropic and quasi-2D FM caSeghere We acknowledge support from the Swedish Research

the SSWTT, is always overestimated, while the RPA correc- Council (VR), the Géoran Gustafsson Foundation, the Center
tions reduce it significantly, improving the agreement withfor Dynamical SystemgUppsala, and the Foundation for
the experiment. Strategic Researct8SH.
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