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Bardeen’s transfer-Hamiltonian method is applied to magnetic tunnel junctions having a general degree of
atomic disorder. The results reveal a close relationship between magnetoconduction and voltage-driven
pseudotorque, and also provide a means of predicting the thickness dependence of tunnel-polarization factors.
Among the results(i) The torque generally varies with moment direction asésat constant applied voltage.

(iil) Whenever polarization factors are well defined, the voltage-driven torque on each moment is uniquely
proportional to the polarization factor of the other maguiét) At finite applied voltage, this relation implies
significant voltage-asymmetry in the torque. For one sign of voltage the torque remains substantial even if the
magnetoconductance is greatly diminishéd) A broadly defined junction model, calledeal middle allows

for atomic disorder within the magnets and F/I interface regions. In this model, théspitependence of a
basis-state weighting factor proportional to the sum over general state |'ndé>(ffdyd2\lfw)2 evaluated

within the (e.g., vacuum barrier generalizes the local state density in previous theories of the tunnel-
polarization factor(v) For small applied voltage, tunnel-polarization factors remain legitimate up to first order

in the inverse thickness of the ideal middle. An algebraic formula describes the first-order corrections to
polarization factors in terms of newly defined lateral autocorrellation scales.

DOI: 10.1103/PhysRevB.71.024411 PACS nunider85.75~-d

I. INTRODUCTION Fig. 1(@)] measured with S junctions having a supercon-
When first predicted, voltage-driven pseudotorque inducting counter electrod® account well for magnetoresis-
magnetic tunnel junctiondVTJs) appeared to be a marginal tance in FIF junctions. Let the formula
effect! (Section Il explains our use of the prefix “pseudo” in _ .
the term pseudotorqueThe lithographic scales and resis- IV, 0) == J(V)[1 + dV)cosd],  with Jo >0 for V>0
tances available in early experimental MTJs appeared too (1)

large to permit anything more than a very small torque term ) ] i

in the Landau-Lifshitz equation. Resistive heating of thefOr current density at constant applied voltagelefine the
MTJ would have limited its possible consequences to only &imensionless coefficientof magnetoconduction. Heris
small voltage-driven decrease of linewidth of narrowly fo- the angle between the momenifShe minus sign occurs in
cused Brillouin scattering.(This prediction was never EG. (1) because of the convention in Fig. 1 where particle-
tested) As a result, one could not yet predict anything asr?u.mber'current is p03|§|ve for>0.] In this paper, the coef-
remarkable as the now well-established magnetic reversdicient « is more convenient than the experimentally preferred
and high-frequency precession observed when the resistive
barrier is replaced by anetallic spacer. For recent experi-
mental work and earlier references dealing with switching
and current-driven oscillations involving metallic spacers,
see Refs. 2 and 3.

But in recent years, experimental activity in tunneling
magnetoresistance has expanded vastly. It is fueled in great
part by the experimental discovery of substantial tunneling
magnetoresistantat room temperature and the resulting in-
tensive exploration of nonvolatile magnetic memory re-
viewed recently. A part of this activity is the search for
junction compositions and deposition techniques, which
lower the resistance to values more suitable for integrated-
circuit application. Indeed, there now exist very recent ex-
perimental reports of current-driven switching in MPJs.
This development may make possible two-terminal memory
elements avoiding having to resort to three-terminal devices L
using both a metallic spacer for switching and a tunnel bar- T
rier for reading?

According to recent reviews of  tunneling FIG. 1. (a) Scheme of magnetic tunnel junction and key to no-
magnetoresistanéel? empirical ferromagnet polarization tations.(b) Equivalent circuit for spin-channel currents and further
coefficientsP; [i=L,R refer to left and right magnets; fh  key to notations.
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low-voltage tunneling-magnetoresistance ratio torization of channel-to-channel current, which leads to Egs.
_ _ (3) and (19) below, occurs in the limitv— o, just as in the
TMR = (Rap —~ Rp)/Rp = 20/(1 —4). @ case of complete absence of disorder. Further, our parametri-
The original equation due to Jullieté expressed in our zation of laterabutocorellation(see Sec. Vi of the Bardeen
notation by the formula basis-function sets predicts well-defined tunneling-
polarization factors for finite barriers to first order wi?,
1=PLPg, ©) which enhances their legitimacy for interpretation of experi-

enjoys considerable success in interpreting experinfanes. Ments involving any degree of disorder. Computations and
find below that whenever separates this way into two po- Mmeasurements of the corellation-scale parameggrsould
larization factors characteristic of the respective electrodeshed quantitative light on the genesis of polarization factors.
and-barrier compositions, pseudotorque expressions having By way of organization, Sec. | is this Introduction and
dimensionless coefficients, and 7z [See Eqs(13), (19), ec. Il shows how spin-channel tunnel currents generally
and (20) below], whose simplicity parallels that of Eq&l) ~ determine voltage-driven torque. Sec. Il uses the BTM to
and(3), hold also. The presence of the same average currefierive the resulting fully general expressions for the magne-
density Jy(V) in equations both for magnetocurrent andtqconduction, torques, an_d relevant dimensionless _coeffi-
torque represents a strong connection between these two pHd€nts ¢, 7, and 7z. Section IV shows how tunneling-
nomena. polarization factors, and the resulting simple expressions for
After the commonalities in Secs. Il and IlI, these mutual % 7., @nd g arise from a formal separability condition. Sec-
relations(Secs. IV and V¥ between magnetoconductance andtion V addresses the expressions for voltage-unsymmetric
pseudotorques constitute the first of two parts of the preser@rque arising from voltage dependences of polarization fac-
paper. The second pai®ecs. VI and VI) is stimulated by tOrS. Section VI demons_trat_es the separation condltl_on and
the fact that theory does ngenerallysupport the separabil- Qerlves_ the tunnel-polarization factors which arise in the
ity of spin-channel currents into the left- and right-dependentdeal-middle model aiv— <. Section VIl expands the mag-
factors needed to justify polarization factors in the first place N€tic tunneling properties for finite and derives a formula
Previous theories attack the question of polarization coeffifor the first-ordem™ dependence of tunnel-polarization fac-
cients within the context of real electron structure by consid{0rs. Section VIl summarizes and discusses the results.
ering the transmission of electrons initially occupying well-
defined crystalline-momentum stafés!’ They posit either
complete absence of disorder or special types of disorder !l FIRST CURRENTS, THEN PSEUDOTORQUES
only within the barrier to legitimize tunnel-polarization fac-
tors. The present approach, detailed below, complemenﬁe

:Egssam(:rks byexcluding disorder only from a subregion of exchange-generated pseudotorques acting on the magnetic

. . . ... .. moments are attributable to the flow of spin-polarized cur-
Electron scattering, which causes metallic resistivity, pin°p

e . ent. For a fuller discussion of the genesis of pseudotorque
abounds within e>§per|mental MTJ electrodes. A feature OTEor effective torqugfrom the principle of spin continuity, see
the present work is to forego altogether crystal-momentu

n%\ppendix B of Ref. 20. Essential is the interpretation of

guantization within the electrodes. This feature is particularly L Lo .
appropriate to contemporaneous experiments relying fofagnetization dynamiodi =dM/dt) governed by the addi-

electrodes on evaporated or sputtered magnetic elements afi¢e terms in the macroscopic Landau-Lifshitz equation. Or-
alloys having high defect concentratidé®%’ Both alloying  dinarily M represents thprecessiorin place of electron-spin
and structural defects may cause an electron to scatter manyomentum localized to a volume elemet¥ due to local
times within the electrodes before and after it tunnels acrossauses, such as magnetic field, spin-orbit coupling, etc. But
the barrier so that initial and final crystal momenta are undethe term describing externally driven spin transfer is trans-

Whenever two ferromagnets are separated by a nonmag-
tic spacer, whether a tunneling barrier or a metal,

fined. parently different. It reflects directly tHeow of spin momen-
Our elastic-tunneling theory rests on Bardeen’s transfertum directly into dV.
Hamiltonian methodBTM),'®1°which is applicable to tun- Indeed, the same may be said about the phenomenological

neling transitions between thermal baths of electron stategxchange stiffness described commonly by the effective field
without any spatially conserved observables. Bardeen definéAV?m, with M =Mgm. This truth is masked by the deriv-
two sets of basis states—one for the left and one for the righability of ordinary exchange torque from variation of the
electrode and barrier. Fermi’s “golden rule” for transition stored energy densit&Ei,j(ﬁmi/axj)z. Because spin transfer
rates gives the tunneling current. Thus, our theory of MTJgs driven by an externally supplied current or voltage, its
has broader application than many others, previousheffect cannot be derived from a stored energy. Therefore, its
reviewed?1112which rely on scattering of Bloch electrons. calculation requires direct recourse to spin currents as de-
Although more modern than Bardeen’s method, they mustailed below. Since this distinction between torque and diver-
assume defined initial and final momenta. gence of polarization makes no difference in the subsequent
Our model of the junction, calle@leal middle excludes application of the Landau-Lifshitz equation, the prefix
disorder only from a central geometric slab of uniform thick- “pseudo” will be omitted in the remainder of this paper.
nessw, which may consist of vacuum or periodic crystal Return now to our problem of spin-transfer torque created
lying somewhere within the barrier. We find that exact fac-by external voltage applied to the MTJ. Consider, particu-
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larly, the series electric circuit in Fig.(@ in which an ex- distance\; of spin relaxation due to spin-orbit coupling for
ternal voltageV causes electric-current densilyto flow in  the polarization component along the aksis about 50 nm
series through a left metallic ferromagnetic film, R thin  for Co and about 5.5 nm for Ni-FéRef. 27. Thus it follows
insulator | serving as a tunnel barrier, and finally a groundedhat, at least in the case of Co whexeg>d , the channel
right metallic ferromagnetic film g By assumption, Fis  currents], , andJg . should be evaluated at the planes A and
sufficiently thin for thedirection of spontaneous magnetiza- B lying at the distance, from the respective F/I interfaces.
tion M (x)=—-M_ (x)I within F_ not to depend on the plane- For within the space between these planes, one may neglect
perpendicular coordinatex; similarly M g(X)==Mg(X)r spin-orbit effects and embrace the well-known spin-
within Fg. But the spontaneous magnetizatiodds and Mg continuity relation that equates the sum of equivalent inter-
may vary withx. (Here the three-dimensional unit vectdrs facial pseudotorques with the net inflow of spin currét
and r include the angled=cos'r-l.) Thus we lay aside having polarization directionson the L side and on the R
those possibilities of forward spin-wave excitafibrand  side. In the notation of Fig. (&), the statistical average of
volume-intensive torqué arising from dependence of mag- this equality becomes
netization direction o, which become significant for larger 7
film th|ckness_ and current density. _ _ TL+Tr= (@G- =)+ Trs— ] (5)
One goal is to calculate the compondry of interfacial 2e
torque vectorTR_p(_ar unit. area, acting oMpg, which lies By our assumed neglect of changes i, we write
orthogonal tor within the instantaneous plarmmmon tol |.T_=0. Therefore, the scalar product of E) with | elimi-

andr as indicated in Fig. (). (The orientation of the mag- natesT, and gives Eq(4) for the magnitudeTg. A similar

netic space spanned Hbyor r is completely disconnected equation holds foff.

from that of position spacg,y,z.) A general expression for The above argument neglectsdacaying and spatially

Tr (Refs. 20 and 2Breads thus, oscillatingtransverse current, calculated in certain FNF cases
Tr=%[J .- I -+ (Jr_—Jg )cosbl/2esing. (4) to lie between 0 aneé=10% of the incident spin currerisee

o ’ ’ . ~ Fig. 7 of Ref. 24. It is likely due to specular interference

Here the left spin-channel electric current densitiescregted at the perfect interface assumed in the calculation.

Ji+=Ji 4l flow through plane Alsee belowin directionx  stydies of FMF exchange coupling in vogue 10 years ago

and the rightJg .=Jg .r flow through plane B. The factor gyggest that extremals in the Fermi surface determine the

—fi/2e converts any electric channel current to one of spinyayelength and cause the amplitude to decay with distance.

momentum. A similar expression holds for the pseudotorquerne amplitude will be decreased by irregularities at real im-
Ti on the left moment. The torqudg andT, must generally  perfect interfaces.

be included in the dynamic Landau-Lifshitz equations for the  gyen in theabsence of applied electric voltag®'=0)

two magnetic films. _ _ _ an additional perpendicular component of exchange
Although previously applied only to aII-meta_Illc ml_JItllay- pseudo-torqueT g, =KI X r=-T, , predicted for MTJ5 is

ers, Eq.(4) may also be used when the spacer is an insulatofyenerally related to phenomenological coupling energy
For its derivation, one posits the nonrelativistic n-electron_y ., =k cosg. It must also be included in the Landau-
Hamiltonian, including, besides kinetic energy, coulomby itshitz equation for the dynamics of magries. However,
terms due to ex_ternal yoltage and_ _electron-nuclear ang that toy rectangular-barrier MTJ moddl], the (uncalcu-
electron-electron interactions. In addition, one accepts th%\ted dependence oTr, andT,, on applied voltage oc-
microscopically based approximation, defensible in the casg, eq only in higher ordef=\?) than the torque given by
of Co, that the transverséto local M) components of g, (4) (V). Moreover, its dynamic effect is relatively
conductlon—electron spin polarization cre{;\tgd at the two Nyveaker in structures with coincident easy anisotropy axes
ternal I/F interfaces decay to zero well within a characterls-and low magnetic damping, such as the pillars using metallic
tic distanced, ~1 nm (Ref. 20, which was estimated ex- spacers experimentally favored for efficient current-driven

pI|C|tIy.for Co/Cu ?”d other mterfgmal compositions by switching? Indeed, steady oscillation excited by a steady
scattering computatiorté.Moreover, in one experiment the electric current, such as that obserdédis possible with

threshold current for switching of Co by polarized current-l-m:0 but not in the absence of in-plafig. In addition

flowing through ametallic spacer is simply proportional to the BTM used here does not readily provide this out-of-plane

film t_hick_nesg d_own to 1 nm, confirr_ning that th_e transvers_etorque_ For these reasons, we do not attempt to predict the
polarization inside the ferromagnetic film vanishes at th':perpendicular torque comp;onent in this work
scale?® Therefore, the currents in the left and right magnet '

must be polarized along instantaneous [(&ftand right(r)

moment axes at depths greater tltanfrom the F/I inter- IIl. MAGNETO-CONDUCTION AND TORQUES
faces. Thus our work excludes thicknesse$ nm, which
require special treatment sensitive to atomic layeffhg. Equation (4) effectively reduces the interacting-electron

In the extensive literature on tunneling magnetoresistancproblem of voltage-driven torque to the customarily
involving Fe, Co, Ni, and magnetically concentrated alloysindependent-electron problem of spin-channel currents. One
of these elements with others of lower atomic number, thereecently reviewed BTM-based theory of collinear MTJ
is little indication of spin relaxation at I/F interfaces. More- magnetoresistanéeextends naturally to tunneling between
over, experiments at cryogenic temperatures reveal that thepin channels for genera@l For adaptation of the BT#1°
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to the MTJ of Fig. 1a), a stationary basis stalg, o) within Notations in the equivalent circuit shown in Fig(bl
the electron reservoir |Fis assigned orbital index and make plain the relations

majority/minority spinc=+ quantized along axik It satis-
fies(H+eV-¢,,)|p,0)=0, and decays exponentially within

the barrier, considered semi-infinite in width when deﬁningneeded in Eq(4) The right-hand sides of these equations are
the basis states. Herd,=p?/2m+X,|o)U,(x,y,2)(o], where  evaluated from Eqs6)~(8).

the potentialU, depends on spin within the ferromagnets  Next we write the total electric current densifyJ, .,
according to intinerant-electron magnetism thedrgut not  +J, _. With the notation '
within the barrier. Within | a similar state satisfies '

(H—eqvg,)|q,a’):0 with quantization axis. Because the r , = 2776\/2, 2 , (10)
barrier is assumed to dominate all other resistances of this 77 ho bq PTOY

circuit, the spin channels are shown in Figb)las shorted in

each magnet and/or external-contact region by spin-latticépr interchannel partiqle—number tunneling c.onduction .with
relaxation due to spin-orbit coupling. One may disregarathe angular factor omitted, the above equations combine to

spin accumulatiorand the related distinction between elec- 9V& Ed-(1) with

tric and elegtrochemical potentials t.hat are important. when a Jo=e(ly ,+T__+T, _+T_ /2 (12)
nonmagnetic metallic spacer substitutes for the batier, ) ) .

includes all elastic terms arising from atomic disorder due t@nd the electric magnetoconduction coefficient
aIoning, _defects, interfacial atomic interdiffusion,_ etc. The v=e(T, ,+T_ T, _—T_,)/2J,. (12)
state indicesp, g simply enumerate the exact eigenstates _ ’ ’ ’ ’

|p,o), |g,0”) of H in the Bardeen basis. Each such stateEquation(4) becomes

‘]Lo':‘](r,++‘]o',—! ‘]Ro" :J+’a.r +J_’O.I, (O',O', = i) (9)

incorporates effects of all multiple elastic scatterings without T = — (h7ady/2€)sin 0 (13)
limit.

Employing the spinor transformation connecting quanti-or, in coordinate-free form,

fzc?rtrlr?n axes andr, the transfer matrix element takes the To= (hrrdy20)r X (I X 1), (14)
0 0 with the torque coefficient

Yo+ COS5 Ypag-SiNg =€, +T, _—T__-T_)/2J,. (15)

(p.olH ~elg,0") = 0 o The fact that the linear combination of the parameigys.

" Y-+ SING Y- COS5 appearing in Eq(12) differs from that in Eq.(15) and a

similar one forT precludes any fully general connection
(6) between torques and electrical current.

Direct extension of BTMP to our spin-dependent case gives IV. LEFT-RIGHT SEPARABILITY AND POLARIZATION

the expression FACTORS
() = — ? A2, .0 _ ) Particularly interesting relations arise if the summation in
Yooao’ om | @Y9AVpo%Paor T Pao xPpa)s Eq. (10) for the inter-channel particle current happens to

%) separate into left- and right-dependent factors in the form

where the integral is over unit area for coordinatédying Loar =10 Qg (16)

appropriately(see belowinside the barrier. The energies,  Here the coefficient, which we make no attempt to evalu-

and e, may differ only infinitesimally from the Fermi ate, is independent of, ¢’. (Sections VI and VIl address

value e=e. The HamiltonianH, the left (i, ,) and right  conditions for this separabilityThen Eq.(11) gives

(¢q,0+) Orbital wave functions, and these matrix eleme(is of

are real. Jo=75 QL+ + QL ) Qr++ Qg 1), (17)
Only the neglect of cross-barrier overlags o|q,0”) al- 2

lows use of the Fermi golden rule of perturbation theory,gng Eq.(12) gives Eq.(3) with the tunneling polarization

which is strictly valid for an orthonormal basis. Substitution parameters

of the perturbatior(6) into this rule is followed by summa-

tion over the initial states in an infinitessimal energy band of p. = L L (i=LR) (19)
width eV. Thus the partial electric current density flowing OO Y
bet hannef in F_ and ch b’ in Fr b ) ) : . .

etween channarin = and channebr In Fr becomes which are directly measurable using FIS junctidnis.these

-2V o , o terms, Eqs(1) and(3) give the magnetoconduction and Eg.
Joor = A > '(p,olH - eelg,0”) (8) (14 the torque with
P.q

at T=0K. The ' in X/, imposes the conditions R =P (19
er<(ep €qo) <epteV. Similarly, the torque on the left magnet is
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T|_ =- (hTLJolze)sin 0, = PR (20) 7 ”7\ (t:ﬂi‘lrne?}t

or, in coordinate-free form,

fiT
TL:2—eLJ0I X (r X 1. (21)

Equations(3), (19), and (21) show the very close relation A E +eV
between current-driven torques and magnetoconduction at i
the same voltage, summarized by7 7y, if the separability
condition (16) is satisfied. FIG. 2. Schematic junction potential for finite V. The shaded bar
The groundbreaking paper of Julliéfegave equations indicates the energy range of most of the tunneling electrons.
equivalent to(3) and (18) taking (2, , and Qg,- to be spin-
dependent basis-state densitiessater. It appeared to at- voltage-driven pseudotorque. One calculation of TMR uses
tribute the dimensionless magnetocurrent coefficienthe WKB approximation for the free-electron wave function
1=P_Pg to bulk properties of the two magnetic compositionswithin the constant-slope barrier potential sketched in Fig.
involved. But the analytically solved free-electron 232 The interfacial transmissions are approximated by those
rectangular-potential model shows that an interface- of the flat-potential polarization@4). The authors cite some
dependent factor must be included mi,(, as well. The experimental support for their results.
transfer-Hamiltonian treatment of this toy model follows im- |t is the decrease oP; in the particular electrode that
mediately from the spinless treatm#&hgiving collectsthe tunneled electrons that primarily accounts for the
decrease of in the calculated resuf? In Fig. 2, for V>0,

— 2 2
Qi =Kol (Ko + ko), (22 the collecting electrode lies on the right. Note that the elec-
where trons whose energy lie in a narrow batghaded in Fig.
2 _ ) 2 ) just below the Fermi level of the emitting electrode on the
ki, = 2mE ,/7° and k5 = 2mB/#:°. (23)  left of the barrier dominate the tunneling current because of

Here,E; , is the kinetic energy at the Fermi level aBds the ~ the strong energy dependence of the WKB factor
barrier potential measured from the Fermi level. EquatiorfXFL=2J «(x)dx] in the transmission coefficient. Since these
(18) now gives hot electrons lie an amount well above the Fermi level on the
right, this energy shifeV must be taken into account when
estimatingPg.

We simplify this model one step further and neglect the
. ) ) . width of the shaded current band in Fig. 2. It is then clear
in agreement with Ref. 1. In this formula, the first factor iyt Egs.(23) and (24) with i=L are still correct forPy,

depends purely on basis-state densities in the magnet, whilgglecting correction for the finite slope of the barrier poten-
the second mixes magnet and barrier properties. The resuli). However, the equations

of the toy modél satisfy the general magnetoconduction re-
lations (1) and (3), and torque relation&l4), (19), and(21) K2, = 2m(Eg, + eV)/4? and k5= 2m(B - eW/#2, (25)
with this substitution.
We note in passing that experimental variation of barrierobtained by addingV to each electron energy on the right,
heightB shows considerable support for the zerov@ft the  must replace Eq€23) for i=R.
barrier potential satisfyingyg—ki,+l<i,_:0 expected from Eq. Figure 3 plots the curves =Pg and 7x=P, evaluated
(24)%! (for small V). Therefore, in spite of its fundamental from the preceding three equations as well as TMR from
naivete, this toy model enjoys some degree of credibility. ItEgs.(2) and(3) versusV for the special example of a sym-
illustrates the general fact that, even when separability holdsnetric junction with the parameteks_=kz-=k_, k +=Kg+
each polarization factor is a property of the electron structure=10k_, and «,=6.4k_, whereby each electrode has the
of the magnet and barrierombinationas demonstrated by V=0 polarizationP, =Pg=0.5. In this illustration, TMRV)
many experiments and calculations. Section VII will discussis symmetric because it involves bd#h andPg, but P z(V)
how tunnel polarization may vary with barrier thickness.  and the torque coefficients_g(V) are not. Although the
theory in the preceding section assumed siathe present
discussion makes reasonable the application of the results to
In experiments, TMR defined by Eq.2)] typically de- finite V with the understanding that the polarization of the
creases significantly with increasing finité.® \oltage- collecting electrode generally depends more stronglyvon
dependence of interfacial transmission, special state densif9f course, this toy calculation cannot make quantitative pre-
distributions, extrinsic impurity effects, and inelastic tunnel-dictions of theV-dependence, which must rest on details of
ing contribute to this decrea842 This is important because electron structur&!2
large voltages will be required to read and write in a two- Note that while criticakcurrent densityfor magnetic exci-
terminal memory element. tation is appropriate to junctions with metallic spacers, the
The toy polarizations of Eq(24) will serve to illustrate  high resistance of a MTJ makes critical voltage more appro-
qualitatively the very unsymmetric effect of finit¢ on  priate. (Indeed, strictly speaking, the critical current of a

_ k=Ko kg kiki -

' ki,++ ki,— . KS"’ ki,+ki,—

(24)

V. FINITE BIAS AND TORQUE ASYMMETRY
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FIG. 4. Depiction of the ideal-middle model of a magnetic tun-
FIG. 3. Schematic effect of finite voltage on TMR, polarization, neling junction. Disorder without limit is permitted in both elec-

and torque coefficients illustrated by the toy free-electron model otrodes and barrier except within a central sibf the barrier lying
a physically symmetric magnetic tunnel junction. Note that TMR isbetween the portal planes=a,b.
symmetric, but the other coefficients are not. The parameters are
Ko=6.4K_, k,=10k_. interdiffusion, etc. The quantum numbepsand q do not

refer to any diagonal operator. Exceptionally, theal-
rent density flowing at threshold in the presence of constantacuum region defined bya<x<b where the planes
external voltage Another significant difference between me- X=a,b are dubbedortals of the ideal middle. In order to
tallic and insulating spacers lies in the angular symmetry ofl€fine the left and right basis-state sets of the Bardeen
the torque. The fixed sif-dependence at constavitin the ~ theory, the barrier potential extends into alternative semi-
tunneling case has no counterpart in the metallic case wheigfinite spacesa<x) and(x=b), where it is greater thas,
more general torque expressions typically contribute tdndependent of or periodically dependent ynz and inde-
asymmetry of excitation threshotd.Now we see that the Pendent ofc anda”’. The respective conditiong, ,— 0 for
nonohmic resistance of a tunneling barrier gives rise to th&— and ¢q ,»—0 for x— - complete the definitions of
torque asymmetry ofg(V) exhibited in Fig. 3, which natu- ¥p.- and ¢q ..
rally reflects in yet another origin for asymmetry of voltage ~ The effective-mass theoréfis valid whene is near the
threshold. bottomk =k, of the conduction band within regio. Then

the evanescent portion of a left-magnet basis function within

this region is approximated by

‘ﬁp,o— = ‘I’pyg(x,y, Z)Ucb,ko(xuyu Z) ) (26)
A recent publication compares existing theoretical argu- o

ments supporting the existence of tunnel-polarizationVhere ¥y, satisfies (Hpa—spo)Wp,=0 and ¥, ,—0 for
factorsl” Each of them assumes incident states with definite¢— > @ndUc is the Bloch function for the bottom of the
crystalline momentum. One common type of argument asconduction band. The effective barrier Hamiltonian is
sumes complete absence of disorder so that the tunneliffoa=—7°V?/2Me,+U(x), where my, is the effective
through a thick barrier is dominated by a single value ofmass andA(x) (>eg) is the spin-independent atomically
lateral momentum. A different model of Tsymbal and smoothed effective barrier potential. Similarly forg,F
Pettifor> recovers factorization and therefore the Julliere for-@q o' =®q o' Uchk, With @y, —0 for x—-». In case of
mula in a tight-binding single-band moddisordered only  vacuum, (¥ ,®) are indistinguishable from{, ). (Note,
within the barrier Similarly, the model of Mathon and Um- however, that this treatment fails if bothis finite andthe FI
erski attributes the factorization to phase decoherence due taterfaces are disordered, for thehdepends ory andz as
disorder within the barriet!® These treatments are aug- well asx.)
mented with arguments based on the Feynman path integral Assuming periodic boundary conditions in tise(y,2)
in a disordered barriéf. Our treatment below complements subspace, the evanescent portions of left and right basis
these arguments with the contrary tack of foregoing lateraktates within3 are conveniently Fourier expanded in space
momentum quantization completely within the electrodesyith the WKB approximation giving
and |/F interfaces while preserving ideal crystalline ordering

VI. IDEAL-MIDDLE MODEL FOR SEPARABILITY

or vacuum within the middle of the barrier. Voo = 2 MoK k(K @)/ k(k,x) ]2
Figure 4 indicates the structural scheme. The (&) K
and right (e, /) orbital basis functions for the transfer ma- x N
trix, introduced in Sec. lll, are governed in detail by the Xex -Ja k(k,x)dx' +ik - s (27

general potentiall,, ., ,» depending on crystal structure, al-
loy composition, defects, F/I interface roughness and atomiand
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Dy = D g o (K[ 1K, b) ik, X) ]H2 z space, which should depend smoothlyloandk’ and are
g A2 e ’ ' Taylor-expandable abolt=k’=0. (See Sec. V for the very
b different toy free-electron case of vanishing disorden,
Xexp[—f K(k,x X' +ik - s}, (28) which one may formally replacp—Kk”, g—k” so thatZ,
X and M, become proportional ta@ ,..) In addition, with
. ) . increasing thicknesw=b—a of region B, the exponential in
where th_e su_m§k are carried over a two-d|menS|onaI.re- Eq. (31) becomes ever more sharply peakedkat0. Sum-
duced Brillouin zone. These formulas employ the function ation overk andk’ of the terms in these Taylor series’ for

k(k,X) = [k3(X) + kY2, with #2 = 2mJU(x) — ecl/h2, finite w gives the corresponding terms
(29) Ty W) =T (W) + T (W) + ... (34)

wherei is the imaginary component of the wave vector in The initial constants in both Taylor expansions yield
regionB. Note that Eqs(27) and(28) reduce to expansions

of i, , andeq, .+ With coefficientsk,, (k) andug, .- (k) on the FE,?L.!(W) =fw) 0,0, (35
portal planex=a andx=b, respectively. ) © ©) )
The transfer-Hamiltonian matrix element of Ef) is  With &, =£,(0,0 andQ, =M, (0,0). Here factors in-

evaluated at any lying within the intervalasx<b. Conse- dependent ofo and ¢’ are absorbed intd. Therefore, to
quentlyw, ®, andm,, may replacay, ¢, andm respectively leading order in this expansion, the integrations in 83

in this formula. One convenient choice to evaluate @yis  tend to the left-right separation of the for(h6).

X=Xmax Satisfyingll(x) < U(xmay for all x because the result- Written in full, the parameters needed in the general po-
ing condition aKO/O'Ix(XmaX):O simplifies the mathematics. larization formula(18) are, to lowest order in the Taylor
(Inclusion in ¢/ of the image potential due to electron- e€xpansions of Eqg¢33), the basisstate weights

electron correlation will often insure the presence of a maxi- 2

mum, even if|V| is large) Substitution of Eqs(27) and (28) Q(L%: > (J J dydztlfp,(,(a,y,z)> , (36)
followed by integration ovey andz, with the assistance of p

the identity fds? exdi(k—K’) - s|= & reduces Eq(7) to

2
Yoo = 2kFW KN (K) g 00 (K) (30 Qg)(r, => (f f dydzcbqv(,,(b,y,z)) , (37)
where ‘
) b where [ [dydzis carried over unit junction area at the portal
- % e
F(w,k) = Kl/z(k,a)xl’z(k,b)exp _f dxk(k ) |. p(()l?mons a and b. [See Sec. VI fo.r devglopment of
b a I',",(w).] Note that the latter two equations differ generally

(31) from the local state (or charge) densibften cited in con-

nection with tunneling(LSD«: [ fdyd2¥; ) They reduce to
Here we use the barrier-middle thicknessb-a, and note  the LSD in the complete absence of disorder when each of
Npo(K)=Npo(=K) and g, (K) = pg 0 (-K) becausel, and  the two sums reduces to a single tefif_,, and ®_,
@, are real.[When w varies in our discussion below, independent of andz
Ap.o(K) and uq (k) remain unchanged because they pertain
to the semi-infinite barrier independentwf We merely ex-
pand or contract the ideal middle of the barrier in E2f).]
After rearranging the order of sums, E40) with substitu-
tion of (30) and(31) becomes

VII. CORRECTION OF POLARIZATION AT FINITE
THICKNESS

The nonorthogonality between left and right basis func-

r. ., = 2779\/2 Fw, k) F(w,k") L, (k,k" )M, (k,k") tions constitutes a basic weakness of the BTM. Even though
77 - S A o the validity of golden-rule transition rates in BTM is not
generally assured, it has an enormous acceptance in the lit-
(32 erature. The toy free-electron MTJ theory, though founded
where each of the two functions directly on a solution of the wave equation in the entire ideal
X . nondisordered FIF system having a flat barrier potential, was
Ly=ZN (KN (K", M =Zguq 0 (K) g 0 (K') evaluated only to leading order in tleponentiaparameter

(33) e (Ref. 1). The BTM calculation for the same model
agrees exactly with its results, as one knew it should from

depends only on parameters of the left and right magnet-angrevious non-spin-dependent tunneling thelry.
barrier combinations, respectively. THeon X’ signifies the Let us assume that BTM is correct to the same exponen-
conditions given previously for Ed8). tial degree for our ideal-middle model as for the toy model.

In the presence of atomic disorder, the sums in E88.  The previous section showed that the BTM supports tunnel-
are carried over many states of randomized character. Therpeolarization phenomenology in lowest order. Continuing
fore, they have the nature of statistical auto-correlations in with BTM, we derive here a correction to Eq4.8), (36),
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and (37) for polarization, which we find below variesige- T, wW=~T? w+r? (w) (42)

braically, not exponentially, withv%. Therefore, these cor- ’ 77 77

rections should be reliable in spite of this general weakness 5

of the BTM. ~fy(W)L (O)(l _K0—§¢T>
Further progress requires parametrization of the auto- 7 w+ Kal

corellation functions defined by E¢33). Note first the con- 2

sequence of assuming that the possibly disordered atomic X M ,(O)(l— Ko7y ) 42)

configuration in It produces no electrostatic potential ip F 7 + K51 '

and vice versa From Egs.(27), (28), and (33), in-plane

translation of theldisorderedl microscopic potential of only . . e

the left electrodeaccording tos— s+(B,C), where(B,C) is ~ aPsorbed intof. Thus to this approximationl’, ., once

a periodic-lattice translation of the barrier middle, has the292!" has the factored forit16). (It appears that in order

effects, from Eq.(33), £,— L.exdi(k’'—k)-(B,C)] and W I', ,» does not separate this way into left- and right-

M, —M,.. Averaging over all possible such phase depe_ndent factorsThe corrected left pqlarization factor, ac-

changes makeg, and M, diagonal and eliminates all C°rding to Eq.(18) reduces on expansion to

terms withk #k’ from the double sum in Eq32). This

where, once again, factors independent of hetind o’ are

i 50, 1 (02, Kol&2 = &) .
equation now becomes PL=P"+-(1-P)————+ ... with
2 W+ K
2meV.
Ly == 2 FAK) LK) M (K) (38) £.(0) = £(0)
e 0= 43)

L L (0)+£(0)]

and similarly forPg. Thus, from given Bardeen basis func-
tions, one can obtain polarization factors, correctly to order
w1, in a disordered electrode-barrier combination.

using the now diagonal forms &, and M.
Parenthetically, note thamn the special case of vanishing

disorder, the state indicep and g becomem,k and n,k,

respectively, withm,n the respective band indices akdhe

lateral crystalline momentum. Let the basis states be normal-

ized to unity. Then the diagonal elements of E8B) reduce VIIl. DISCUSSION

to
Although it is valid only in the limit of weak transmis-

L= 3o K)Poxmo(K), sion, predictions from Bardeen’s tunneling theé§rgre inter-
esting because it does not require electron momentum within
the electrodes to be conserved. Our application to elastic

Mo =20, b, 07 ()P, oK) (39) tunneling through ordered or disordered magnetic tunneling
junctions yields the following conclusions:
1. In Section Ill, we found that the torque at constant
externalvoltageis generally proportional to sié [Eq. (13)].
®his result is a direct consequence of the single-transition
nature of tunneling and the simple form of the spinor trans-
formation(6). It contrasts with the more general angular de-
pendence conditioned on electron structure and spin-channel
resistance parameters in the case of a metallic spacer.
2. In general, polarization factors do not exist in the ab-
r,., 21,3 2022 (KM (). ts;;(;:sggg special assumptions, in agreement with previous
k 3. In Section IV, we found that if the polarization factors
wheref, does not depend om or o' For largew, this sum arewell defin_ed, then at constant applied vpltage, the electric
weights smalk heavily, as mentioned above. Therefore pa-Current and in-plane torque obey the relatiéb (13), and
rametrize £, and M, for small k with the lateral spatial (20). These similar relations are |r_1terconnected by the pres-
correlation scales¢,,7,.) defined by the formulas ence of the common faf:td5(v), Whlch we do. not attempt tq
calculate. The dimensionless coefficients in these relations
L,(K) = L,(0)[1 - K2+ O], are expressed in terms of the polarizations By=P,,
7. =PR, t=P_ PR, implying :=7 7g. In particular, these gen-
eral relations are satisfied by the special results of a direct

with factors independent of and o’ omitted. Herev,
=dem o (K)/ kg andoy , .+ =dep o+ (K)/ Ky are velocity compo-
nents normal to the junction plane. Their presence in thes
formulas follows from the restriction oB’ in the basic for-
mula (8).

To evaluate Eq(38) for finite disorder specialize to small
V and constan¥/ inside 5. After evaluation of the integral in
Eq. (31), it reduces to the form

M yr(K) = M (O)[1 = 772, K2+ O(KH)] (40)  solution of the Schroedinger equation for the toy model of
parabolic bands and ideal rectangular potential batrier.
and approximate Eq29) with k= ky+ (k?/2x,) in the expo- 4. Experimentally, TMR is known to usually diminish

nent of Eq.(31). After approximating®, (over one BZ with  with increasing external voltagé.>1° In Sec. V we consid-
an infinite integral, one finds by elementary integration aered that it is the polarizing factor of tlellector electrode
result equivalent, to first order w™, to that decreases more strongly with resulting in the unsym-
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metric schematic pattern of voltage dependence of torquemay bear significantly on magnetoresistance experiments
indicated in Fig. 3. This lack of symmetry due to the rela-carried out with greater thickness, as suggested below.
tions 7x=P, and 7, =Pg implies that the threshold voltage 8. Our parametrized expressi@a3) for dependence of
for initiation of dynamic excitation will be increasingly tunnel polarization on ideal-middle thicknessis without
asymmetric at the higher valugs-100 mV) likely needed  precedent. A strong dependence is expected from certain
for writing in memory. Cases may well arise in which compositions, such as Co, Ni, and certain alloys, such as
voltage-driven switching works in only one direction. For F€CO, lying on the negative-slope region of the Slater-
selected experimental junctions, switching is observed at §auling curve’® for, their strong contrast between heavily

voltage sufficiently high for TMR to become negligifle. 4SP-weighted density of majority-spin and heavily 3d-
Figure 3 indicates how this may happen for switching in butwelghted density of minority-spin bands may be reflected in

one direction, from AP to P. However, our theory woulat strongly contrasting magnitudes of left lateral autocorellation
explain anys;/mmetricpersiétence of :switching at voltages scalesé, and &_. Theoretical estimation of the left polariza-
great enough to destroy TMR, if this is observed. tion factor will require prior first-principle computation of

o - the Bardeen basis functionsg, , for the disordered electrode-
5. Our approach to the validation of polarization faCtoerarrier system. From these, one must invert the séZiBsto

complements previous studies that accounted for atomic digsyayate’ the diagonal elements of the Fourier coefficients
order in the barrier assuming electrode states with Well7\p . Then Taylor expansion of the diagonal element in the
defined crystalline momentuft-*"We assume that the bar- first Eq. (33) for substitution into the first E40) provides

rier is thick and includes an ideal crystalline or vacuumthe coefficientsC.(0) andé.. These parameters must then be

middle region of thicknesw as in Fig. 4. Then a polarization sypstituted into Eqg43) to obtain the left polarization fac-
factor, given by Eq(43), is valid to first order inv* evenin  tor.

the presence of disorder in the electrodes and interfaces suf- 9. In fact, experimental junctions having composition
ficient to destroy the conservation of lateral crystalline mo-Fe/Al,O;/FeCo show dependence of TMR on barrier
mentum throughout the electrode and interface regions. Thihickness® at T=2 K, where our assumption of elastic tun-
key basis-state weight factof36) and(37) are more general neling should be valid. A monotonic dependence on thick-
than the conventional local state density. ness, expected from E¢42), is observed for two crystallo-

6. Our conclusion that the validity of polarization factors graphic orientations on single-crystal Fe, but not for the
increases with increasing tends to undermine our predic- third. Although the(say right electrode(FeCq lies on the
tions of voltage asymmetry of torque shown schematically imegative-siope side, the left electrod&e) lies on the
Fig. 3. For, experimental spin-transfer effects such as switchpositive-slope side of the Slater-Pauling curve where high 3d
ing will require very thin barriers, making the separability density exists for both signs of spin so that there may be little
condition assumed in Fig. 3 less valid. Previousdifference betweed, and£_. Junctions with both electrodes
proposal$®17 that validity of polarization factors is attribut- taken from the negative-slope side may yield a more pro-
able to certain defect states or amorphicity in the barrier ar@ounced thickness dependence of TMR on barrier thickness
more promising in this respect. according to the present theory.

7. Belashenko and coauthéfsfind that certain first-
principle TMR computations for realistic barrier thickness
may be poorly approximated by proportionalitydd™. This The author is grateful to G. Mathon for a related preprint
casts additional doubt on the applicability of the ideal middleand for helpful discussions with W. Butler, E. Tsymbal, K.
to the very thin junctions needed for spin-momentum transBelashchenko, M. Stiles, Y. Bazaliy, J. Sun, S. S. P. Parkin, P.
fer experiments. However, our conclusions from this modeNguyen, G. Fuchs, D. Worledge, and P. Visscher.
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