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Bardeen’s transfer-Hamiltonian method is applied to magnetic tunnel junctions having a general degree of
atomic disorder. The results reveal a close relationship between magnetoconduction and voltage-driven
pseudotorque, and also provide a means of predicting the thickness dependence of tunnel-polarization factors.
Among the results:sid The torque generally varies with moment direction as sinu at constant applied voltage.
sii d Whenever polarization factors are well defined, the voltage-driven torque on each moment is uniquely
proportional to the polarization factor of the other magnet.siii d At finite applied voltage, this relation implies
significant voltage-asymmetry in the torque. For one sign of voltage the torque remains substantial even if the
magnetoconductance is greatly diminished.sivd A broadly defined junction model, calledideal middle, allows
for atomic disorder within the magnets and F/ I interface regions. In this model, the spin-ssd dependence of a
basis-state weighting factor proportional to the sum over general state indexp of seedydzCp,sd2 evaluated
within the se.g., vacuumd barrier generalizes the local state density in previous theories of the tunnel-
polarization factor.svd For small applied voltage, tunnel-polarization factors remain legitimate up to first order
in the inverse thickness of the ideal middle. An algebraic formula describes the first-order corrections to
polarization factors in terms of newly defined lateral autocorrellation scales.
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I. INTRODUCTION

When first predicted, voltage-driven pseudotorque in
magnetic tunnel junctionssMTJsd appeared to be a marginal
effect.1 sSection II explains our use of the prefix “pseudo” in
the term pseudotorque.d The lithographic scales and resis-
tances available in early experimental MTJs appeared too
large to permit anything more than a very small torque term
in the Landau-Lifshitz equation. Resistive heating of the
MTJ would have limited its possible consequences to only a
small voltage-driven decrease of linewidth of narrowly fo-
cused Brillouin scattering.sThis prediction was never
tested.d As a result, one could not yet predict anything as
remarkable as the now well-established magnetic reversal
and high-frequency precession observed when the resistive
barrier is replaced by ametallic spacer. For recent experi-
mental work and earlier references dealing with switching
and current-driven oscillations involving metallic spacers,
see Refs. 2 and 3.

But in recent years, experimental activity in tunneling
magnetoresistance has expanded vastly. It is fueled in great
part by the experimental discovery of substantial tunneling
magnetoresistance4 at room temperature and the resulting in-
tensive exploration of nonvolatile magnetic memory re-
viewed recently.5 A part of this activity is the search for
junction compositions and deposition techniques, which
lower the resistance to values more suitable for integrated-
circuit application. Indeed, there now exist very recent ex-
perimental reports of current-driven switching in MTJs.6,7

This development may make possible two-terminal memory
elements avoiding having to resort to three-terminal devices
using both a metallic spacer for switching and a tunnel bar-
rier for reading.8

According to recent reviews of tunneling
magnetoresistance,9–12 empirical ferromagnet polarization
coefficientsPi fi =L,R refer to left and right magnets Fi in

Fig. 1sadg measured with FiIS junctions having a supercon-
ducting counter electrode13 account well for magnetoresis-
tance in FIF junctions. Let the formula

JsV,ud = − J0sVdf1 + isVdcosug, with J0 . 0 for V . 0

s1d

for current density at constant applied voltageV define the
dimensionless coefficienti of magnetoconduction. Hereu is
the angle between the moments.fThe minus sign occurs in
Eq. s1d because of the convention in Fig. 1 where particle-
number current is positive forV.0.g In this paper, the coef-
ficient i is more convenient than the experimentally preferred

FIG. 1. sad Scheme of magnetic tunnel junction and key to no-
tations.sbd Equivalent circuit for spin-channel currents and further
key to notations.

PHYSICAL REVIEW B 71, 024411s2005d

1098-0121/2005/71s2d/024411s10d/$23.00 ©2005 The American Physical Society024411-1



low-voltage tunneling-magnetoresistance ratio

TMR = sRAP − RPd/RP = 2i/s1 − id. s2d

The original equation due to Julliere,14 expressed in our
notation by the formula

i = PLPR, s3d

enjoys considerable success in interpreting experiments.9 We
find below that wheneveri separates this way into two po-
larization factors characteristic of the respective electrode-
and-barrier compositions, pseudotorque expressions having
dimensionless coefficientstL and tR fSee Eqs.s13d, s19d,
and s20d belowg, whose simplicity parallels that of Eqs.s1d
ands3d, hold also. The presence of the same average current
density J0sVd in equations both for magnetocurrent and
torque represents a strong connection between these two phe-
nomena.

After the commonalities in Secs. II and III, these mutual
relationssSecs. IV and Vd between magnetoconductance and
pseudotorques constitute the first of two parts of the present
paper. The second partsSecs. VI and VIId is stimulated by
the fact that theory does notgenerallysupport the separabil-
ity of spin-channel currents into the left- and right-dependent
factors needed to justify polarization factors in the first place.
Previous theories attack the question of polarization coeffi-
cients within the context of real electron structure by consid-
ering the transmission of electrons initially occupying well-
defined crystalline-momentum states.15–17 They posit either
complete absence of disorder or special types of disorder
only within the barrier to legitimize tunnel-polarization fac-
tors. The present approach, detailed below, complements
those works byexcluding disorder only from a subregion of
the barrier.

Electron scattering, which causes metallic resistivity,
abounds within experimental MTJ electrodes. A feature of
the present work is to forego altogether crystal-momentum
quantization within the electrodes. This feature is particularly
appropriate to contemporaneous experiments relying for
electrodes on evaporated or sputtered magnetic elements and
alloys having high defect concentration.2,3,6,7 Both alloying
and structural defects may cause an electron to scatter many
times within the electrodes before and after it tunnels across
the barrier so that initial and final crystal momenta are unde-
fined.

Our elastic-tunneling theory rests on Bardeen’s transfer-
Hamiltonian methodsBTMd,18,19 which is applicable to tun-
neling transitions between thermal baths of electron states
without any spatially conserved observables. Bardeen defines
two sets of basis states—one for the left and one for the right
electrode and barrier. Fermi’s “golden rule” for transition
rates gives the tunneling current. Thus, our theory of MTJs
has broader application than many others, previously
reviewed,9,11,12 which rely on scattering of Bloch electrons.
Although more modern than Bardeen’s method, they must
assume defined initial and final momenta.

Our model of the junction, calledideal middle, excludes
disorder only from a central geometric slab of uniform thick-
nessw, which may consist of vacuum or periodic crystal
lying somewhere within the barrier. We find that exact fac-

torization of channel-to-channel current, which leads to Eqs.
s3d and s19d below, occurs in the limitw→`, just as in the
case of complete absence of disorder. Further, our parametri-
zation of lateralautocorellationssee Sec. VIId of the Bardeen
basis-function sets predicts well-defined tunneling-
polarization factors for finite barriers to first order inw−1,
which enhances their legitimacy for interpretation of experi-
ments involving any degree of disorder. Computations and
measurements of the corellation-scale parametersjs could
shed quantitative light on the genesis of polarization factors.

By way of organization, Sec. I is this Introduction and
Sec. II shows how spin-channel tunnel currents generally
determine voltage-driven torque. Sec. III uses the BTM to
derive the resulting fully general expressions for the magne-
toconduction, torques, and relevant dimensionless coeffi-
cients i, tL, and tR. Section IV shows how tunneling-
polarization factors, and the resulting simple expressions for
i, tL, andtR arise from a formal separability condition. Sec-
tion V addresses the expressions for voltage-unsymmetric
torque arising from voltage dependences of polarization fac-
tors. Section VI demonstrates the separation condition and
derives the tunnel-polarization factors which arise in the
ideal-middle model atw→`. Section VII expands the mag-
netic tunneling properties for finitew and derives a formula
for the first-orderw−1 dependence of tunnel-polarization fac-
tors. Section VIII summarizes and discusses the results.

II. FIRST CURRENTS, THEN PSEUDOTORQUES

Whenever two ferromagnets are separated by a nonmag-
netic spacer, whether a tunneling barrier or a metal,
exchange-generated pseudotorques acting on the magnetic
moments are attributable to the flow of spin-polarized cur-
rent. For a fuller discussion of the genesis of pseudotorque
sor effective torqued from the principle of spin continuity, see
Appendix B of Ref. 20. Essential is the interpretation of

magnetization dynamicssṀ ;dM /dtd governed by the addi-
tive terms in the macroscopic Landau-Lifshitz equation. Or-

dinarily Ṁ represents theprecessionin place of electron-spin
momentum localized to a volume elementdV due to local
causes, such as magnetic field, spin-orbit coupling, etc. But
the term describing externally driven spin transfer is trans-
parently different. It reflects directly theflow of spin momen-
tum directly into dV.

Indeed, the same may be said about the phenomenological
exchange stiffness described commonly by the effective field
2A¹2m, with M ;Msm. This truth is masked by the deriv-
ability of ordinary exchange torque from variation of the
stored energy densityASi,js]mi /]xjd2. Because spin transfer
is driven by an externally supplied current or voltage, its
effect cannot be derived from a stored energy. Therefore, its
calculation requires direct recourse to spin currents as de-
tailed below. Since this distinction between torque and diver-
gence of polarization makes no difference in the subsequent
application of the Landau-Lifshitz equation, the prefix
“pseudo” will be omitted in the remainder of this paper.

Return now to our problem of spin-transfer torque created
by external voltage applied to the MTJ. Consider, particu-
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larly, the series electric circuit in Fig. 1sad in which an ex-
ternal voltageV causes electric-current densityJ to flow in
series through a left metallic ferromagnetic film FL, a thin
insulator I serving as a tunnel barrier, and finally a grounded
right metallic ferromagnetic film FR. By assumption, FL is
sufficiently thin for thedirection of spontaneous magnetiza-
tion M Lsxd=−MLsxdl within FL not to depend on the plane-
perpendicular coordinatex; similarly M Rsxd=−MRsxdr
within FR. But the spontaneous magnetizationsML and MR
may vary withx. sHere the three-dimensional unit vectorsl
and r include the angleu=cos−1 r ·l.d Thus we lay aside
those possibilities of forward spin-wave excitation21 and
volume-intensive torque,22 arising from dependence of mag-
netization direction onx, which become significant for larger
film thickness and current density.

One goal is to calculate the componentTR of interfacial
torque vectorTR per unit area, acting onM R, which lies
orthogonal tor within the instantaneous planecommon tol
and r as indicated in Fig. 1sad. sThe orientation of the mag-
netic space spanned byl or r is completely disconnected
from that of position spacex,y,z.d A general expression for
TR sRefs. 20 and 23d reads thus,

TR = "fJL,+ − JL,− + sJR,− − JR,+dcosug/2esinu. s4d

Here the left spin-channel electric current densities
JL,± =JL,±l flow through plane Assee belowd in direction x
and the rightJR,±=JR,±r flow through plane B. The factor
−" /2e converts any electric channel current to one of spin
momentum. A similar expression holds for the pseudotorque
TL on the left moment. The torquesTR andTL must generally
be included in the dynamic Landau-Lifshitz equations for the
two magnetic films.

Although previously applied only to all-metallic multilay-
ers, Eq.s4d may also be used when the spacer is an insulator.
For its derivation, one posits the nonrelativistic n-electron
Hamiltonian, including, besides kinetic energy, coulomb
terms due to external voltage and electron-nuclear and
electron-electron interactions. In addition, one accepts the
microscopically based approximation, defensible in the case
of Co, that the transversesto local M d components of
conduction-electron spin polarization created at the two in-
ternal I /F interfaces decay to zero well within a characteris-
tic distanced'<1 nm sRef. 20d, which was estimated ex-
plicitly for Co/Cu and other interfacial compositions by
scattering computations.24 Moreover, in one experiment the
threshold current for switching of Co by polarized current
flowing through ametallic spacer is simply proportional to
film thickness down to 1 nm, confirming that the transverse
polarization inside the ferromagnetic film vanishes at this
scale.25 Therefore, the currents in the left and right magnets
must be polarized along instantaneous leftsld and right sr d
moment axes at depths greater thand' from the F/ I inter-
faces. Thus our work excludes thicknesses,1 nm, which
require special treatment sensitive to atomic layering.26

In the extensive literature on tunneling magnetoresistance
involving Fe, Co, Ni, and magnetically concentrated alloys
of these elements with others of lower atomic number, there
is little indication of spin relaxation at I /F interfaces. More-
over, experiments at cryogenic temperatures reveal that the

distanceli of spin relaxation due to spin-orbit coupling for
the polarization component along the axisM is about 50 nm
for Co and about 5.5 nm for Ni-FesRef. 27d. Thus it follows
that, at least in the case of Co whereli @d', the channel
currentsJL,± andJR,± should be evaluated at the planes A and
B lying at the distanced' from the respective F/ I interfaces.
For within the space between these planes, one may neglect
spin-orbit effects and embrace the well-known spin-
continuity relation that equates the sum of equivalent inter-
facial pseudotorques with the net inflow of spin current,20,23

having polarization directionsl on the L side andr on the R
side. In the notation of Fig. 1sad, the statistical average of
this equality becomes

TL + TR =
"

2e
fsJL,− − JL,+dl + sJR,+ − JR,−dr g. s5d

By our assumed neglect of changes inML, we write
l ·TL =0. Therefore, the scalar product of Eq.s5d with l elimi-
natesTL and gives Eq.s4d for the magnitudeTR. A similar
equation holds forTL.

The above argument neglects adecaying and spatially
oscillatingtransverse current, calculated in certain FNF cases
to lie between 0 and.10% of the incident spin currentssee
Fig. 7 of Ref. 24d. It is likely due to specular interference
created at the perfect interface assumed in the calculation.
Studies of FMF exchange coupling in vogue 10 years ago
suggest that extremals in the Fermi surface determine the
wavelength and cause the amplitude to decay with distance.
The amplitude will be decreased by irregularities at real im-
perfect interfaces.

Even in theabsence of applied electric voltagesV=0d
an additional perpendicular component of exchange
pseudo-torqueTR'=Kl 3 r =−TL' predicted for MTJs1 is
generally related to phenomenological coupling energy
−Kl • r =−K cosu. It must also be included in the Landau-
Lifshitz equation for the dynamics of magnetFR. However,
in that toy rectangular-barrier MTJ modelf1g, the suncalcu-
latedd dependence ofTR' and TL' on applied voltage oc-
curred only in higher orders~V2d than the torque given by
Eq. s4d s~Vd. Moreover, its dynamic effect is relatively
weaker in structures with coincident easy anisotropy axes
and low magnetic damping, such as the pillars using metallic
spacers experimentally favored for efficient current-driven
switching.2 Indeed, steady oscillation excited by a steady
electric current, such as that observed,2,3 is possible with
TR'=0, but not in the absence of in-planeTR. In addition,
the BTM used here does not readily provide this out-of-plane
torque. For these reasons, we do not attempt to predict the
perpendicular torque component in this work.

III. MAGNETO-CONDUCTION AND TORQUES

Equation s4d effectively reduces the interacting-electron
problem of voltage-driven torque to the customarily
independent-electron problem of spin-channel currents. One
recently reviewed BTM-based theory of collinear MTJ
magnetoresistance11 extends naturally to tunneling between
spin channels for generalu. For adaptation of the BTM18,19
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to the MTJ of Fig. 1sad, a stationary basis stateup,sl within
the electron reservoir FL is assigned orbital indexp and
majority/minority spins=± quantized along axisl. It satis-
fies sH+eV−ep,sdup,sl=0, and decays exponentially within
the barrier, considered semi-infinite in width when defining
the basis states. Here,H=p2/2m+SsuslUssx,y,zdksu, where
the potentialUs depends on spin within the ferromagnets
according to intinerant-electron magnetism theory,28 but not
within the barrier. Within FR a similar state satisfies
sH−eq,s8duq,s8l=0 with quantization axisr . Because the
barrier is assumed to dominate all other resistances of this
circuit, the spin channels are shown in Fig. 1sbd as shorted in
each magnet and/or external-contact region by spin-lattice
relaxation due to spin-orbit coupling. One may disregard
spin accumulationand the related distinction between elec-
tric and electrochemical potentials that are important when a
nonmagnetic metallic spacer substitutes for the barrier.29 Us

includes all elastic terms arising from atomic disorder due to
alloying, defects, interfacial atomic interdiffusion, etc. The
state indicesp, q simply enumerate the exact eigenstates
up,sl, uq,s8l of H in the Bardeen basis. Each such state
incorporates effects of all multiple elastic scatterings without
limit.

Employing the spinor transformation connecting quanti-
zation axesl and r , the transfer matrix element takes the
form

kp,suH − «uq,s8l = 3 gp,+;q,+ cos
u

2
gp,+;q,− sin

u

2

− gp,−;q,+ sin
u

2
gp,−;q,− cos

u

2
4 .

s6d

Direct extension of BTM30 to our spin-dependent case gives
the expression

gp,s;q,s8sxd =
− "2

2m
E dydzscp,s]xwq,s8 − wq,s8]xcp,sd,

s7d

where the integral is over unit area for coordinatex lying
appropriatelyssee belowd inside the barrier. The energiesep,s
and eq,s8 may differ only infinitesimally from the Fermi
value «=«F. The HamiltonianH, the left scp,sd and right
swq,s8d orbital wave functions, and these matrix elementss7d
are real.

Only the neglect of cross-barrier overlapskp,s uq,s8l al-
lows use of the Fermi golden rule of perturbation theory,
which is strictly valid for an orthonormal basis. Substitution
of the perturbations6d into this rule is followed by summa-
tion over the initial states in an infinitessimal energy band of
width eV. Thus the partial electric current density flowing
between channels in FL and channels8 in FR becomes

Js,s8 =
− 2pe2V

"
o
p,q

8kp,suH − «Fuq,s8l2 s8d

at T=0 K. The 8 in op,q8 imposes the conditions
«F, s«p,s ,«q,s8d,«F+eV.

Notations in the equivalent circuit shown in Fig. 1sbd
make plain the relations

JLs = Js,+ + Js,−, JRs8 = J+,s8 + J−,s8, ss,s8 = ± d s9d

needed in Eq.s4d. The right-hand sides of these equations are
evaluated from Eqs.s6d–s8d.

Next we write the total electric current densityJ=JL,+
+JL,−. With the notation

Gs,s8 =
2peV

"
o
p,q

8gp,s;q,s8
2 s10d

for interchannel particle-number tunneling conduction with
the angular factor omitted, the above equations combine to
give Eq.s1d with

J0 = esG+,+ + G−,− + G+,− + G−,+d/2 s11d

and the electric magnetoconduction coefficient

i = esG+,+ + G−,− − G+,− − G−,+d/2J0. s12d

Equations4d becomes

TR = − s"tRJ0/2edsinu s13d

or, in coordinate-free form,

TR = s"tRJ0/2edr 3 sl 3 r d, s14d

with the torque coefficient

tR = esG+,+ + G+,− − G−,− − G−,+d/2J0. s15d

The fact that the linear combination of the parametersGs,s8
appearing in Eq.s12d differs from that in Eq.s15d and a
similar one forTL precludes any fully general connection
between torques and electrical current.

IV. LEFT-RIGHT SEPARABILITY AND POLARIZATION
FACTORS

Particularly interesting relations arise if the summation in
Eq. s10d for the inter-channel particle current happens to
separate into left- and right-dependent factors in the form

Gs,s8 = fVL,sVR,s8. s16d

Here the coefficientf, which we make no attempt to evalu-
ate, is independent ofs, s8. sSections VI and VII address
conditions for this separability.d Then Eq.s11d gives

J0 =
ef

2
sVL,+ + VL,−dsVR,+ + VR,−d, s17d

and Eq.s12d gives Eq.s3d with the tunneling polarization
parameters

Pi =
Vi,+ − Vi,−

Vi,+ + Vi,−
si = L,Rd, s18d

which are directly measurable using FIS junctions.9 In these
terms, Eqs.s1d and s3d give the magnetoconduction and Eq.
s14d the torque with

tR = PL . s19d

Similarly, the torque on the left magnet is
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TL = − s"tLJ0/2edsinu, tL = PR s20d

or, in coordinate-free form,

TL =
"tL

2e
J0l 3 sr 3 ld. s21d

Equationss3d, s19d, and s21d show the very close relation
between current-driven torques and magnetoconduction at
the same voltage, summarized byi=tLtR, if the separability
condition s16d is satisfied.

The groundbreaking paper of Julliere14 gave equations
equivalent tos3d and s18d taking VLs and VRs8 to be spin-
dependent basis-state densities at«=«F. It appeared to at-
tribute the dimensionless magnetocurrent coefficient
i=PLPR to bulk properties of the two magnetic compositions
involved. But the analytically solved free-electron
rectangular-potential model1 shows that an interface-
dependent factor must be included inVi,s as well. The
transfer-Hamiltonian treatment of this toy model follows im-
mediately from the spinless treatment30 giving

Vi,s = ki,s/sk0
2 + ki,s

2 d, s22d

where

ki,s
2 = 2mEi,s/"2 andk0

2 = 2mB/"2. s23d

Here,Ei,s is the kinetic energy at the Fermi level andB is the
barrier potential measured from the Fermi level. Equation
s18d now gives

Pi =
ki,+ − ki,−

ki,+ + ki,−
·

k0
2 − ki,+ki,−

k0
2 + ki,+ki,−

s24d

in agreement with Ref. 1. In this formula, the first factor
depends purely on basis-state densities in the magnet, while
the second mixes magnet and barrier properties. The results
of the toy model1 satisfy the general magnetoconduction re-
lations s1d and s3d, and torque relationss14d, s19d, and s21d
with this substitution.

We note in passing that experimental variation of barrier
heightB shows considerable support for the zero ofi at the
barrier potential satisfyingk0

2−ki,+ki,−=0 expected from Eq.
s24d31 sfor small Vd. Therefore, in spite of its fundamental
naivete, this toy model enjoys some degree of credibility. It
illustrates the general fact that, even when separability holds,
each polarization factor is a property of the electron structure
of the magnet and barriercombinationas demonstrated by
many experiments and calculations. Section VII will discuss
how tunnel polarization may vary with barrier thickness.

V. FINITE BIAS AND TORQUE ASYMMETRY

In experiments, TMRfdefined by Eq.s2dg typically de-
creases significantly with increasing finiteV.9 Voltage-
dependence of interfacial transmission, special state density
distributions, extrinsic impurity effects, and inelastic tunnel-
ing contribute to this decrease.9,12 This is important because
large voltages will be required to read and write in a two-
terminal memory element.

The toy polarizations of Eq.s24d will serve to illustrate
qualitatively the very unsymmetric effect of finiteV on

voltage-driven pseudotorque. One calculation of TMR uses
the WKB approximation for the free-electron wave function
within the constant-slope barrier potential sketched in Fig.
2.32 The interfacial transmissions are approximated by those
of the flat-potential polarizationss24d. The authors cite some
experimental support for their results.

It is the decrease ofPi in the particular electrode that
collectsthe tunneled electrons that primarily accounts for the
decrease ofi in the calculated result.32 In Fig. 2, for V.0,
the collecting electrode lies on the right. Note that the elec-
trons whose energy lie in a narrow bandsshaded in Fig. 2d
just below the Fermi level of the emitting electrode on the
left of the barrier dominate the tunneling current because of
the strong energy dependence of the WKB factor
expf−2eksxddxg in the transmission coefficient. Since these
hot electrons lie an amount well above the Fermi level on the
right, this energy shifteV must be taken into account when
estimatingPR.

We simplify this model one step further and neglect the
width of the shaded current band in Fig. 2. It is then clear
that Eqs.s23d and s24d with i =L are still correct forPL,
neglecting correction for the finite slope of the barrier poten-
tial. However, the equations

kRs
2 = 2msERs + eVd/"2 andk0

2 = 2msB − eVd/"2, s25d

obtained by addingeV to each electron energy on the right,
must replace Eqs.s23d for i =R.

Figure 3 plots the curvestL =PR and tR=PL evaluated
from the preceding three equations as well as TMR from
Eqs.s2d and s3d versusV for the special example of a sym-
metric junction with the parameterskL− =kR−;k−, kL+ =kR+
;10k−, and k0=6.4k−, whereby each electrode has the
V=0 polarizationPL =PR=0.5. In this illustration, TMRsVd
is symmetric because it involves bothPL andPR, butPL,RsVd
and the torque coefficientstL,RsVd are not. Although the
theory in the preceding section assumed smallV, the present
discussion makes reasonable the application of the results to
finite V with the understanding that the polarization of the
collecting electrode generally depends more strongly onV.
Of course, this toy calculation cannot make quantitative pre-
dictions of theV-dependence, which must rest on details of
electron structure.9,12

Note that while criticalcurrent densityfor magnetic exci-
tation is appropriate to junctions with metallic spacers, the
high resistance of a MTJ makes critical voltage more appro-
priate. sIndeed, strictly speaking, the critical current of a

FIG. 2. Schematic junction potential for finite V. The shaded bar
indicates the energy range of most of the tunneling electrons.
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constant-currentgenerator will generallydiffer from the cur-
rent density flowing at threshold in the presence of constant
external voltage.d Another significant difference between me-
tallic and insulating spacers lies in the angular symmetry of
the torque. The fixed sinu-dependence at constantV in the
tunneling case has no counterpart in the metallic case where
more general torque expressions typically contribute to
asymmetry of excitation threshold.20 Now we see that the
nonohmic resistance of a tunneling barrier gives rise to the
torque asymmetry oftRsVd exhibited in Fig. 3, which natu-
rally reflects in yet another origin for asymmetry of voltage
threshold.

VI. IDEAL-MIDDLE MODEL FOR SEPARABILITY

A recent publication compares existing theoretical argu-
ments supporting the existence of tunnel-polarization
factors.17 Each of them assumes incident states with definite
crystalline momentum. One common type of argument as-
sumes complete absence of disorder so that the tunneling
through a thick barrier is dominated by a single value of
lateral momentum. A different model of Tsymbal and
Pettifor15 recovers factorization and therefore the Julliere for-
mula in a tight-binding single-band modeldisordered only
within the barrier. Similarly, the model of Mathon and Um-
erski attributes the factorization to phase decoherence due to
disorder within the barrier.9,16 These treatments are aug-
mented with arguments based on the Feynman path integral
in a disordered barrier.17 Our treatment below complements
these arguments with the contrary tack of foregoing lateral
momentum quantization completely within the electrodes
and I /F interfaces while preserving ideal crystalline ordering
or vacuum within the middle of the barrier.

Figure 4 indicates the structural scheme. The leftscp,sd
and rightswq,s8d orbital basis functions for the transfer ma-
trix, introduced in Sec. III, are governed in detail by the
general potentialUs or s8 depending on crystal structure, al-
loy composition, defects, F/ I interface roughness and atomic

interdiffusion, etc. The quantum numbersp and q do not
refer to any diagonal operator. Exceptionally, theideal-
middleB of the barrier consists of an ideal crystalline slab or
vacuum region defined byaøxøb where the planes
x=a,b are dubbedportals of the ideal middle. In order to
define the left and right basis-state sets of the Bardeen
theory, the barrier potential extends into alternative semi-
infinite spacessaøxd andsxøbd, where it is greater than«F,
independent of or periodically dependent ony, z and inde-
pendent ofs ands8. The respective conditionscp,s→0 for
x→` and wq,s8→0 for x→−` complete the definitions of
cp,s andwq,s8.

The effective-mass theorem33 is valid when« is near the
bottomk =k0 of the conduction band within regionB. Then
the evanescent portion of a left-magnet basis function within
this region is approximated by

cp,s = Cp,ssx,y,zducb,k0
sx,y,zd, s26d

where Cp,s satisfiessHbar−«p,sdCp,s=0 and Cp,s→0 for
x→`, anducb,k0

is the Bloch function for the bottom of the
conduction band. The effective barrier Hamiltonian is
Hbar=−"2¹2/2mcb+Usxd, where mcb is the effective
mass andUsxd s.«Fd is the spin-independent atomically
smoothed effective barrier potential. Similarly for FR,
wq,s8=Fq,s8ucb,k0

with Fq,s8→0 for x→−`. In case of
vacuum, sC ,Fd are indistinguishable fromsc ,wd. sNote,
however, that this treatment fails if bothV is finite and the FI
interfaces are disordered, for thenU depends ony and z as
well asx.d

Assuming periodic boundary conditions in thes=sy,zd
subspace, the evanescent portions of left and right basis
states withinB are conveniently Fourier expanded in spaces
with the WKB approximation giving

Cp,s = o
k

lp,sskdfksk,ad/ksk,xdg1/2

3expF−E
a

x

ksk,x8ddx8 + ik · sG s27d

and

FIG. 3. Schematic effect of finite voltage on TMR, polarization,
and torque coefficients illustrated by the toy free-electron model of
a physically symmetric magnetic tunnel junction. Note that TMR is
symmetric, but the other coefficients are not. The parameters are
k0=6.4k−, k+=10k−.

FIG. 4. Depiction of the ideal-middle model of a magnetic tun-
neling junction. Disorder without limit is permitted in both elec-
trodes and barrier except within a central slabB of the barrier lying
between the portal planesx=a,b.
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Fq,s8 = o
k

mq,s8skdfksk,bd/ksk,xdg1/2

3expF−E
x

b

ksk,x8ddx8 + ik · sG , s28d

where the sumsSk are carried over a two-dimensional re-
duced Brillouin zone. These formulas employ the function

ksk,xd = fk0
2sxd + k2g1/2, with k0

2 = 2mcbfUsxd − «Fg/"2,

s29d

whereik is the imaginary component of the wave vector in
regionB. Note that Eqs.s27d and s28d reduce to expansions
of cp,s andwq,s8 with coefficientslp,sskd andmq,s8skd on the
portal planesx=a andx=b, respectively.

The transfer-Hamiltonian matrix element of Eq.s7d is
evaluated at anyx lying within the intervalaøxøb. Conse-
quentlyC, F, andmcb may replacec, w, andm respectively
in this formula. One convenient choice to evaluate Eq.s7d is
x=xmax, satisfyingUsxdøUsxmaxd for all x because the result-
ing condition ]k0/]xsxmaxd=0 simplifies the mathematics.
sInclusion in U of the image potential due to electron-
electron correlation will often insure the presence of a maxi-
mum, even ifuVu is large.d Substitution of Eqs.s27d ands28d
followed by integration overy andz, with the assistance of
the identityeds2 expfisk −k8d ·sg=dk,k8 reduces Eq.s7d to

gp,s;q,s8 = SkFsw,kdlp,s
* skdmq,s8skd, s30d

where

Fsw,kd =
− 4p2"2

mcb
k1/2sk,adk1/2sk,bdexpF−E

a

b

dxksk,xdG .

s31d

Here we use the barrier-middle thicknessw=b−a, and note
lp,s

* skd=lp,ss−kd andmq,s8
* skd=mq,s8s−kd becauseCp,s and

Fq,s8 are real. fWhen w varies in our discussion below,
lp,sskd andmq,s8skd remain unchanged because they pertain
to the semi-infinite barrier independent ofw. We merely ex-
pand or contract the ideal middle of the barrier in Eq.s31d.g
After rearranging the order of sums, Eq.s10d with substitu-
tion of s30d and s31d becomes

Gs,s8 =
2peV

"
o
k

Fsw,kdo
k8

Fsw,k8dLssk,k8dMs8sk,k8d,

s32d

where each of the two functions

Ls = Sp8lp,s
* skdlp,ssk8d, Ms8 = Sq8mq,s8skdmq,s8

* sk8d

s33d

depends only on parameters of the left and right magnet-and-
barrier combinations, respectively. The8 on S8 signifies the
conditions given previously for Eq.s8d.

In the presence of atomic disorder, the sums in Eqs.s33d
are carried over many states of randomized character. There-
fore, they have the nature of statistical auto-correlations iny,

z space, which should depend smoothly onk andk8 and are
Taylor-expandable aboutk =k8=0. sSee Sec. V for the very
different toy free-electron case of vanishing disorder,1 in
which one may formally replacep→k9, q→k- so thatLs

and Ms8 become proportional todk,k8.d In addition, with
increasing thicknessw=b−a of regionB, the exponential in
Eq. s31d becomes ever more sharply peaked atk =0. Sum-
mation overk andk8 of the terms in these Taylor series’ for
finite w gives the corresponding terms

Gs,s8swd = Gs,s8
s0d swd + Gs,s8

s1d swd + . . . s34d

The initial constants in both Taylor expansions yield

Gs,s8
s0d swd = fswdVL,s

s0d VR,s
s0d s35d

with VL,s
s0d ;Lss0,0d andV

R,s8
s0d ;Ms8s0,0d. Here factors in-

dependent ofs and s8 are absorbed intof. Therefore, to
leading order in this expansion, the integrations in Eq.s32d
tend to the left-right separation of the forms16d.

Written in full, the parameters needed in the general po-
larization formula s18d are, to lowest order in the Taylor
expansions of Eqs.s33d, the basis-state weights

VL,s
s0d = o

p
SE E dydzCp,ssa,y,zdD2

, s36d

VR,s8
s0d = o

q
SE E dydzFq,s8sb,y,zdD2

, s37d

whereeedydzis carried over unit junction area at the portal
positions a and b. fSee Sec. VII for development of
G

s,s8
s1d swd.g Note that the latter two equations differ generally

from the local state (or charge) densityoften cited in con-
nection with tunneling.sLSD~eedydzCp,s

2 d They reduce to
the LSD in the complete absence of disorder when each of
the two sums reduces to a single termCk=0,s

2 and Fk=0,s8
2

independent ofy andz.

VII. CORRECTION OF POLARIZATION AT FINITE
THICKNESS

The nonorthogonality between left and right basis func-
tions constitutes a basic weakness of the BTM. Even though
the validity of golden-rule transition rates in BTM is not
generally assured, it has an enormous acceptance in the lit-
erature. The toy free-electron MTJ theory, though founded
directly on a solution of the wave equation in the entire ideal
nondisordered FIF system having a flat barrier potential, was
evaluated only to leading order in theexponentialparameter
e−kw sRef. 1d. The BTM calculation for the same model
agrees exactly with its results, as one knew it should from
previous non-spin-dependent tunneling theory.19

Let us assume that BTM is correct to the same exponen-
tial degree for our ideal-middle model as for the toy model.
The previous section showed that the BTM supports tunnel-
polarization phenomenology in lowest order. Continuing
with BTM, we derive here a correction to Eqs.s18d, s36d,
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and s37d for polarization, which we find below variesalge-
braically, not exponentially, withw−1. Therefore, these cor-
rections should be reliable in spite of this general weakness
of the BTM.

Further progress requires parametrization of the auto-
corellation functions defined by Eq.s33d. Note first the con-
sequence of assuming that the possibly disordered atomic
configuration in FL produces no electrostatic potential in FR
and vice versa. From Eqs.s27d, s28d, and s33d, in-plane
translation of thesdisorderedd microscopic potential of only
the left electrodeaccording tos→s+sB,Cd, wheresB,Cd is
a periodic-lattice translation of the barrier middle, has the
effects, from Eq. s33d, Ls→Lsexpfisk8−kd ·sB,Cdg and
Ms8→Ms8. Averaging over all possible such phase
changes makesLs and Ms8 diagonal and eliminates all
terms with k Þk8 from the double sum in Eq.s32d. This
equation now becomes

Gs,s8 =
2peV

"
o
k

F2skdLsskdMs8skd s38d

using the now diagonal forms ofLs andMs8.
Parenthetically, note thatin the special case of vanishing

disorder, the state indicesp and q becomem,k and n,k,
respectively, withm,n the respective band indices andk the
lateral crystalline momentum. Let the basis states be normal-
ized to unity. Then the diagonal elements of Eq.s33d reduce
to

Ls = Smulm,sskdu2/vx,m,sskd,

Ms8 = Sn,s8umn,s8skdu2/vx,n,sskd s39d

with factors independent ofs and s8 omitted. Herevx,m,s
=]«m,sskd /]kx andvx,n,s8=]«n,s8skd /]kx are velocity compo-
nents normal to the junction plane. Their presence in these
formulas follows from the restriction onS8 in the basic for-
mula s8d.

To evaluate Eq.s38d for finite disorder, specialize to small
V and constantU insideB. After evaluation of the integral in
Eq. s31d, it reduces to the form

Gs,s8 = f1o
k

k2skde−2wkskdLsskdMs8skd,

where f1 does not depend ons or s8. For largew, this sum
weights smallk heavily, as mentioned above. Therefore pa-
rametrizeLs and Ms8 for small k with the lateral spatial
correlation scalessjs ,hs8d defined by the formulas

Lsskd = Lss0df1 − js
2k2 + Osk4dg,

Ms8skd = Ms8s0df1 − hs8
2 k2 + Osk4dg s40d

and approximate Eq.s29d with k<k0+sk2/2k0d in the expo-
nent of Eq.s31d. After approximatingok sover one BZd with
an infinite integral, one finds by elementary integration a
result equivalent, to first order inw−1, to

Gs,s8swd < Gs,s8
s0d swd + Gs,s8

s1d swd s41d

< f2swdLss0dS1 −
k0js

2

w + k0
−1D

3Ms8s0dS1 −
k0hs8

2

w + k0
−1D , s42d

where, once again, factors independent of boths ands8 are
absorbed intof2. Thus to this approximation,Gs,s8 once
again has the factored forms16d. sIt appears that in order
w−2, Gs,s8 does not separate this way into left- and right-
dependent factors.d The corrected left polarization factor, ac-
cording to Eq.s18d reduces on expansion to

PL = PL
s0d +

1

2
s1 − PL

s0d2d
k0sj−

2 − j+
2d

w + k0
−1 + . . . with

PL
s0d =

L+s0d − L−s0d
L+s0d + L−s0d

, s43d

and similarly forPR. Thus, from given Bardeen basis func-
tions, one can obtain polarization factors, correctly to order
w−1, in a disordered electrode-barrier combination.

VIII. DISCUSSION

Although it is valid only in the limit of weak transmis-
sion, predictions from Bardeen’s tunneling theory18 are inter-
esting because it does not require electron momentum within
the electrodes to be conserved. Our application to elastic
tunneling through ordered or disordered magnetic tunneling
junctions yields the following conclusions:

1. In Section III, we found that the torque at constant
externalvoltageis generally proportional to sinu fEq. s13dg.
This result is a direct consequence of the single-transition
nature of tunneling and the simple form of the spinor trans-
formations6d. It contrasts with the more general angular de-
pendence conditioned on electron structure and spin-channel
resistance parameters in the case of a metallic spacer.20

2. In general, polarization factors do not exist in the ab-
sence of special assumptions, in agreement with previous
theory.9,12

3. In Section IV, we found that if the polarization factors
are well defined, then at constant applied voltage, the electric
current and in-plane torque obey the relationss1d, s13d, and
s20d. These similar relations are interconnected by the pres-
ence of the common factorJ0sVd, which we do not attempt to
calculate. The dimensionless coefficients in these relations
are expressed in terms of the polarizations bytR=PL,
tL =PR, i=PLPR, implying i=tLtR. In particular, these gen-
eral relations are satisfied by the special results of a direct
solution of the Schroedinger equation for the toy model of
parabolic bands and ideal rectangular potential barrier.1

4. Experimentally, TMR is known to usually diminish
with increasing external voltageV.9,10 In Sec. V we consid-
ered that it is the polarizing factor of thecollector electrode
that decreases more strongly withV, resulting in the unsym-
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metric schematic pattern of voltage dependence of torque
indicated in Fig. 3. This lack of symmetry due to the rela-
tions tR=PL and tL =PR implies that the threshold voltage
for initiation of dynamic excitation will be increasingly
asymmetric at the higher valuess.100 mVd likely needed
for writing in memory. Cases may well arise in which
voltage-driven switching works in only one direction. For
selected experimental junctions, switching is observed at a
voltage sufficiently high for TMR to become negligible.7

Figure 3 indicates how this may happen for switching in but
one direction, from AP to P. However, our theory wouldnot
explain anysymmetricpersistence of switching at voltages
great enough to destroy TMR, if this is observed.

5. Our approach to the validation of polarization factors
complements previous studies that accounted for atomic dis-
order in the barrier assuming electrode states with well-
defined crystalline momentum.15–17 We assume that the bar-
rier is thick and includes an ideal crystalline or vacuum
middle region of thicknessw as in Fig. 4. Then a polarization
factor, given by Eq.s43d, is valid to first order inw−1 even in
the presence of disorder in the electrodes and interfaces suf-
ficient to destroy the conservation of lateral crystalline mo-
mentum throughout the electrode and interface regions. The
key basis-state weight factorss36d ands37d are more general
than the conventional local state density.

6. Our conclusion that the validity of polarization factors
increases with increasingw tends to undermine our predic-
tions of voltage asymmetry of torque shown schematically in
Fig. 3. For, experimental spin-transfer effects such as switch-
ing will require very thin barriers, making the separability
condition assumed in Fig. 3 less valid. Previous
proposals12,17 that validity of polarization factors is attribut-
able to certain defect states or amorphicity in the barrier are
more promising in this respect.

7. Belashenko and coauthors17 find that certain first-
principle TMR computations for realistic barrier thickness
may be poorly approximated by proportionality toe−kw. This
casts additional doubt on the applicability of the ideal middle
to the very thin junctions needed for spin-momentum trans-
fer experiments. However, our conclusions from this model

may bear significantly on magnetoresistance experiments
carried out with greater thickness, as suggested below.

8. Our parametrized expressions43d for dependence of
tunnel polarization on ideal-middle thicknessw is without
precedent. A strong dependence is expected from certain
compositions, such as Co, Ni, and certain alloys, such as
FeCo, lying on the negative-slope region of the Slater-
Pauling curve;34 for, their strong contrast between heavily
4sp-weighted density of majority-spin and heavily 3d-
weighted density of minority-spin bands may be reflected in
strongly contrasting magnitudes of left lateral autocorellation
scalesj+ andj−. Theoretical estimation of the left polariza-
tion factor will require prior first-principle computation of
the Bardeen basis functionscp,s for the disordered electrode-
barrier system. From these, one must invert the seriess27d to
evaluate the diagonal elements of the Fourier coefficients
lp,s. Then Taylor expansion of the diagonal element in the
first Eq. s33d for substitution into the first Eq.s40d provides
the coefficientsL±s0d andj±. These parameters must then be
substituted into Eqs.s43d to obtain the left polarization fac-
tor.

9. In fact, experimental junctions having composition
Fe/Al2O3/FeCo show dependence of TMR on barrier
thickness10 at T=2 K, where our assumption of elastic tun-
neling should be valid. A monotonic dependence on thick-
ness, expected from Eq.s42d, is observed for two crystallo-
graphic orientations on single-crystal Fe, but not for the
third. Although thessayd right electrodesFeCod lies on the
negative-slope side, the left electrodesFed lies on the
positive-slope side of the Slater-Pauling curve where high 3d
density exists for both signs of spin so that there may be little
difference betweenj+ andj−. Junctions with both electrodes
taken from the negative-slope side may yield a more pro-
nounced thickness dependence of TMR on barrier thickness
according to the present theory.
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