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Phase diagram of the three-dimensional axial next-nearest-neighbor Ising model
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The three-dimensional axial next-nearest-neighbor Ising model is studied by a modified tensor product
variational approach. A global phase diagram is constructed with numerous commensurate and incommensu-
rate magnetic phases. The devil's stairs behavior for the model is confirmed. The wavelength of the spin
modulated phases increases to infinity at the boundary with the ferromagnetic phase. Widths of the commen-
surate phases are considerably narrower than those calculated by mean-field approximations.
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I. INTRODUCTION respectively. The model is described by the lattice Hamil-

Periodically modulated magnetic structures have attractefPnian
scientific interest for several decades both experimentally

and theoretically. A nontrivial phase diagram obtained by H==312 0 (Tis k+ T a1+ T ar)
j, i+1,, i,j+1) ],

experimental measurements in cerium antimoni@eSh ik

shows a variety of different commensurately ordered mag-

netic structures with the underlying lattié8. The three- +JZE i j KTi+2, ks (1)
dimensional (3D) Szg axial next-nearest-neighbor Ising iik

(ANNNI) model has been considered as a theoretical candi-

date for CeSb since it exhibits a rich structure when it iswhere the subscripts j, andk of the Ising spino=+1 refer
treated by mean-field approximatiéithe 3DS=5 ANNNI {0 thex, y, andz coordinates, respectively. The ferromagnetic
model is another example that .shows.a non.trivial spin mOdU'mteractionJ1>O acts between the nearest neighbors &nd
lated phase—the so-called devil’s stairs. This model has been g js the competing antiferromagnetic interaction between
analyzed theoretically by various approaches, includinghe next-nearest-neighbors imposed only in thgirection.
high-temperature series expansidfislow-temperature se- Figure 1 shows the layer-to-layer transfer maffixo the
ries expansiond,mean-field approximation'sMonte-Carlo z direction which connects two adjacent spin layer$ and
simulations? an effective-field approximatiohfree-fermion ] (each of the sizé x « in the x andy directions. The

methods, a phenomenological renormalization, and oth ransfer matrix can be exactly expressed as the product of
methods reviewed in Refs. 10 and 11. The Monte Carlo Y exp P

simulations have also been applied to tBe% ANNNI partially overlapped local Boltzmann weightsf. Fig. 1)
model with a finite number of spin layet$Recently, Henkel
and Pleimling considered an anisotropic scaling at the Lif-
shitz point using the Wolff cluster algorithm and critical ex- Tlolo]= H H WiE,;J{‘TF}' (2)
ponents have been calculaféd. e

The purpose of this paper is to clarify the phase structure ) _ ) )
of the 3D S=3 ANNNI model. Our interest is to study the e simplify the notations using a group of six spins
spin modulated phases at intermediate temperatures, particu-
larly, the stability Qf commensurate phases. For this purpose {o} = (0101 jovn 01 010 jr0wn 1), (3)
we apply a numerical variational method, the tensor product
variational method TPVA), to the model. In Sec. Il we in-
troduce the 3D ANNNI model and briefly discuss the varia- . IR
tional background of the TPVA appliedyto the system. WeBoItzmann We_'ghwi?i of the Hamiltonian in Eq(1) has the

: : following form:

present the numerical results in Sec. Ill, where we construct
the global phase diagram of the model and analyze the spin
modulated phases. We summarize the obtained results in Se
IV. In the Appendix, a numerical self-consistent optimizing
process is reviewed and efficiency of the modified TPVA is
discussed. g

L-2 +oo

with the index rulei’=i+1,i"=i+2, andj’=j+1. The local

Gijtl  CirlLjtl  Cisdjal

Gi,j Oitl, Oi+2,j

B

II. MODEL AND NONUNIFORM PRODUCT g ’ ‘ : -’ Wif

VARIATIONAL STATE .
FIG. 1. The layer-to-layer transfer matri{ o| o] (left) illus-

We study theS=% ANNNI model on a simple cubic lat- trated in the case fol=5 and the local Boltzmann weight
tice with the sizel X « X o along thex, y, andz directions, \/\/i‘:j‘j{aﬁL (right).
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FIG. 2. Graphical representation of the local variational weight
Vi lo} (left) used to construct the trial functiow (right) in the 3.0
particular case fotk.=5. i
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+ oy jr o +;i,j;i’,j +;i"j;i”,j +a,jr;ir,jr FIG. 3. The global phase diagram of the 3D ANNNI model
3 obtained by the TPVA. The Lifshitz poinP, is denoted by the
+;i,’j,;i,/’j,) - _Z(O'i,jo'i",j + 0o+ ;i’j;i,,’j black circle. The dotted lines enclose extremely narrow commensu-
4 rate phases.
+;i,j’;i",j')]} (4) L-2 +w
— 2
wlwy=> 11 11 (Vijlah?, (8
[o] i=1 j=-c

with kg being the Boltzmann constant and the temperature

For reasons of simplicity and brevity, we consider1 and have also the product forms. Thus these quantities can be

kg=1 throughout all calculations. accurately calculated by means of renormalization tech-
We consider a variational problem for the transfer matrixniques, particularly, we used the density matrix renormaliza-

Tl o|o]. For a given trial functiof¥), the variational parti- tion group(DMRG).1>1¢

tion function per layer is given by

Ill. RESULTS
WYY 2 Vo1 Tlolo]¥ o]
NalWP) = = : . (5 Figure 3 shows the global phase diagram of the ANNNI
(W) E[U] (V[o])? model obtained by the TPVA. It consists of:

(i) a paramagneti¢disordereg phase;
The TPVA is a numerical variational method that assumes a (i) @ uniformly ordered ferromagnetic phase;

trial function written by the product of local weights For (i) an antiphase with the periodic spin alignment
the ANNNI model, ¥ is written in the product form of mu- (**TTL|+*) for which we use the notatiof2) in the follow-
tually overlapped local weight&f. Fig. 2 ing; and
(iv) arich area of spin modulated phases.
L-2 +o The region of the spin modulated phases separates the an-
vol=1] 11 V, {0}, (6) tiphase from the paramagnetic phase. The paramagnetic, fer-
i=1 j=—o romagnetic, and the modulated phases meet at the Lifshitz
point P,. In our calculations, it is located a/J;=0.26 and
where we have used the simplified notation in E). kgT. /J;=3.83 and is in good agreement with the latest

In order to study nonuniform spin modulated phases, théMonte Carlo calculations carried out by Pleimling and Hen-
local variational weights/; ;{o} must be position dependent kel J5/3,=0.2704) and kgT,/J;=3.747%50) (from Ref.
along thex direction. EachV thus contains 2=64 adjustable  13).

parameters. Since we have written the trial functibnas The resulting phase diagram does not contradict to previ-
well as the transfer matrig in the product forms, both the ous knowledge of the model. The phase boundary lines sepa-
numerator of Eq(5), rating the ferromagnetic phase, the paramagnetic phase, the
antiphase, and the spin modulated phases are in good agree-

L-2 += ment with the phase boundaries obtained by the Monte Carlo

winvy= > [l 11 Vij{eWe{ola}Vi{e}, (7) calculations$ We found new features of the model in the

[o][o"] i1 j== region of the modulated phases, where the Monte Carlo

simulations have not yielded a satisfactory answer. Our re-

and its denominator, sults are thought of as a supplement to the achievements
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FIG. 4. The five selected lined;B;, A;B,, AsBs, P By, and

A,B, in the region of modulated phases. The poi@isandC, are
marked by the white triangles

FIG. 5. The spontaneous magnetizat{ot) vs the positiori on
the lattice in thex direction calculated at; (the upper graphand
at C, (the lower ong with the lattice sizd.=401. In order to show

computed by the mean-field approximatibhat higher tem- ~ the data in detail, we plat=120, ..., 170.

peratures and by the low-temperature series expansions valighyelengths by means of the Fourier transform.
at low temperaturekgT/J; <4.° Figure 5 shows the spin polarizatiofis,) at two param-

In the rest of this section, we focus on the region ofeter points:C, on the lineA;B; andC, on A,B,. These two

the modulated phases that contains a multitude of variougoints are chosen near the phase boundaries. The spin polar-
commensurate and incommensurate phases. For example,iﬂtion at Cl exhibits the commensurate pha$65,2>

Fig. 3 we plotted a few narrow areas of typical commensu— GLLLTTTLLLTTTLLLTT--) with the average

rate  phases such as@3,2=(-11711), ()  modulation wavelengthn=17/3 (the upper graph The

=CTTTLLL) D=0 TTT 111 L), ete. all en- |ower graph shows the commensurate phas€.awith A
closed by the dotted lines. Note that the widths of thesex 16.7 on the same region a|ong thalirection.

phases are substantially narrower compared to the mean-field Now, we give a brief discussion on the influence of

approximatiod and the effective-field approximatidn. boundary conditions imposed to the system on the resulting
spin polarization. In Fig. 6 we plofo;) for three different
types of the boundary conditions. We consider a lattice with
the size 40K « X » and analyze the data @. On the upper
. ) ‘graph, the spin polarization is calculated for the fixed bound-
tation and _the average modulat|o_n \{vz_ivelengthThe an-  aries on the left enghe spins are aligned to the “up” direc-
t|!ohase @=11111111 has pe_r|od|C|t)_/ of four lattice tion) and the free boundaries on the right end. The Fourier
sites, thus\=4. Another example is the high-order commen- .4 nsform applied to the whole regior 0,1, ..., 400yields
surate phase3,(3,2)% which represents the periodic spin ) =16.7+0.53. On the intermediate graph, the parallel fixed
sequencé( 1T/ 1[1T/1]11) and yields\=26/5. boundary conditions on both sides are impogaé spins are
We calculate the spin modulations along five representagligned “up” at the ends It givesA=16.7+0.41. Finally, the
tiVe |ineS as depiCted in F|g 4 W|th their ending pOintS |isted|ower graph ShOWS the antipara”el fixed boundaﬁ‘w” on
in Table I. When we obtain the spontaneous magnetizatioghe |eft end and “down” on the right epdwith A
(spin polarizatiop (o;), we compute the corresponding =16.7+0.41. The choice of the boundary conditions does not
affect the numerical results significantly. The larger the lat-
tice size considered, the less influence of the boundaries is
obtained, especially, off of the phase boundaries.

A. Wavelength analysis

We first explain the relation between the conventional no

TABLE |. The positions of the points depicted in Fig. 4.

Point  J,/J; kgT/Jq Point  J,/J; ksT/Jq In Fig. 7 we plot the wavelength with respect dg/J;
calculated on the three ling§B,, A,B,, andAzBs;. The dot-
PL 0.2600 3.83 Bo 0.555 1.9812 ted line is a guide for the eye to point out this structure. Near
Ay 0.3560 2.95 By 1.000  4.2500  the boundary with the ferromagnetic phase, the wavelength
Az 0.4113 2.50 B> 1.000 4.1250 rapidly increases. This is contradictory to the known results
As 0.4605 2.00 Bs 1.000 4.0000 coming from the mean-field approximation. The mean-field
A, 0.4908 1.50 = 0.514 1.5000 approximation yields the first-order transitions between fer-
c, 0.5750 3.3921 o 0.418 25185  romagnetic phase and the individual commensurate phases

on the boundary lingin detail, see Ref. )/
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i Several commensurate phases with the integer value afe la-

o ) beled. The inset shows the area around the commensurate(phase
FIG. 6. The spontaneous magnetization obtaine@.afor the

lattice size 40X o X 0. The upper, middle, and lower graphs dis-
play (o) for the three different boundary conditions. reason, we selected an area around the commensurate phases

(5) and(5,4), where the wavelength locks-in as shown in the
In the inset of Fig. 7 we plot details of the wavelength NS€t
in the vicinity of the commensurate pha&;. We observed
that the commensurate phaggs (32, 2), and(3,2) “lock-in"
at small regions 08,/J; (on the lineA;B5) and the so-called . . -
“devil’'s stairs” behavior is observeld.On the contrary, the To compare our results with analytical predictions, par-

P : - : jcularly, with the low-temperature series expansions
stairslike structure is not visible at higher temperatures, a%cu fd _ .
seen on the liné,B, near the paramagnetic boundary. LTSE),® we have selected the lin&,B, which corresponds

; - . to the temperaturkzT/J;=1.5. The computed data are plot-
Figure 8 shows\ on the line from the poinB, to the o B+l ~ .
Lifshitz point P_. The wavelength diverges toward the cal- ted '? Fig. 9. Thllla golmlmer;surate ph&%éx—? Iocks-mr |
culated Lifshitz point atl,/J;=0.26. The stairslike structure 2nd forms a well-visible plateau. Note that the mean-field
is revealed if we zoom in on the phase diagram. For this

B. Low temperature behavior
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FIG. 7. The divergence of at the boundary with the ferromag- FIG. 9. The calculation ok on the lineA,B, at the temperature
netic phase. The black circles, squares, and triangles, respectivekgT/J;=1.5. The dashed rectangle borders an area shown in Fig.
correspond to the selected points on the liAgB;, A,B,, andAgB. 10. The inset illustrates the behavior of the corresponding wave

The inset shows behavior afaround the commensurate ph&3e vectorg.
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FIG. 10. The resulting devil's stairs with=6 observed on the FIG. 11. Comparison of the numerical resultskgf/J,;=1.5
line A4B,. (the black squargaith the low-temperature series expansions rep-
. - . resented by the dashed stairslike cu¢veRef. 6).
calculationé do not exhibit any phases with>6 at Y ( 9
kgT/J;=2. It should be also noted that both the mean-field . .
approximation(at higher temperaturgsand the LTSE(at Here, we summarize those commensurate phases which
very low temperaturesdo not result in the spring of phases Were obtained by the numerical analysis of this model. Be-
with \>6 from the multiphase point,/J;=0.5. tween two main commensurate phaggsand(p+1), where
Figure 10 illustrates the stairslike structuredfind cor- p=2,3,4,..., newhigh-order commensurate phases are

responds to the magnified area shown by the dashed reqtresent, such agp™!,p+1), (p,(p+1)™, (p,(p,p+1)"),
angle in Fig. 9. The commensurate phases lock-in at rationalnd ((p, p+1)", p+1), with n=2,3,4,....Subsequently, the
values of\ and are separated by high-order commensuratgy|jowing higher-order commensurate phases were found

phases andpossibly incommensurate ones. Several com-;yn+1 11 1)M p" p+1) and +1)1m +1)0
mensurate phases are denoted above the stairslike curveiﬁ m:g 3) 4,p ,F()atc> {p.(p.p+ ™% p, (p,p+1)%,

Fig. 10.
The LTSE yields a spring of an infinity of the commen-
surate phases, such @3 and(3,2") forn=1,2,3,...which IV. SUMMARY
separate the ferromagnetic phase and the antiphase. The tran-
sition from the region of the spin modulated phages- 4) We applied the modified TPVA to the 3D ANNNI model

to the antiphasé\=4) in our calculations does not contradict and obtained the global phase diagram. The location of the
to the LTSE. The existence of additional intermediate phased,ifshitz point agrees with calculations performed by the
(3,2",3,2% n=1,2,3,..., ahigher temperatures was later high-temperature series expansibhand the recent Monte
reported by the LTSE. Our results contain all these commenCarlo calculation$? The region of the modulated phases ex-
surate phases. Moreover, we found unpredicted phases. Faibits a very complex structure. We found ti{ay the com-
example, the transition between the pha&sand (3,2 is  mensurate phases are substantially narrower than those re-
not of the first order as reported by the LTSE. We found thaported so far,(2) the wavelength of the spin modulated
these two phases are separated by many commensurgt®mmensurajephases diverges at the boundary with the
phases, e.g{3",2) and(3,(3,2™') for n=1,2,3,... and ferromagnetic phas€3) the commensurate phases merge at
the others of higher-orders as reported in Ref. 9. We obtaine®w temperatures tending toward the multiphase point
such rich spin modulated phases alsoXor 6, see Fig. 10. J2/J;=0.5 and at low temperatures the wavelengths with
In Fig. 11 we depict our numerical results calculated at>6 are obtained, an@4) many (possibly infinity phases
kgT/J;=1.5 and compare them with the results obtained byhave been found within the modulated phase, which have not
the LTSE. The notatiory, corresponds to the antiphase Yet been reported.
wave vectorq=/2. Note that while the LTSE gives the
first-order tr_ansitio_n among individual commensurate phases, ACKNOWLEDGMENTS
our calculations yield subsequent stairslike structures among
them. Moreover, the LTSE calculations do not yield the com- A. G. thanks A. Surda for an interesting discussion about
mensurate phases wid>6. the incommensurate phases in the ANNNI model. This work
We, therefore, conjecture that the “complete” devil’s stairshas been partially supported by the Grant-in-Aid for Scien-
structure exists at intermediate temperatures. The completdic Research from Ministry of Education, Science, Sports
devil's stairs structure suggests there are no first-ordeand Culture(Grants No. 09640462 and No. 116403 #hd
transitionst® by the Slovak Grant Agency, VEGA No. 2/7201/21 and
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2/3118/23. A. G. is also supported by Japan Society for the TABLE Il. The critical temperature; for the 3D Ising model
Promotion of SciencéP01193. (J,=0). We calculate the relative erroeswith respect toT. ob-
tained by Monte Carlo simulation&ef. 19.

APPENDIX Numerical method Te €/[%)]
1. Optimizing process for the local variational weights ] ] -
; . o o Mean-field approximationiRef. 11 6.000 33.0
We briefly describe the optimizing process of finding out . amers-wannier approximatiaiRef. 20 4.587 1.7

the_ Iocal_ v_arla_tlongl weights in order to maximize E(ﬁ)_. _TPVA with 16 parametergRef. 19 4570 13
This optimization is based on a self-consistent equation in

the TPVA to achieve the minimum of the free energy. Nu- '+ VA With 64 parameters 4.554 0.9
merical details in the TPVA have been reported in Ref. 17. Monte Carlo simulations 4.512
In order to maximize the variational partition function in

Eq. (5), by a proper tuning of the local variational weighs
we define two objects. One is the matrix objéthat rep- depend orV. The convergence parametecontrols the rate

resents a punctured classical systemefined on the two- &t Which the improvement process \gfis performed.
layer spin system which corresponds to the numerator COnsequently, we compute the free energy per strip
(P|7I¥) of the variational partition function. It is defined as

fneW: - kBT In Avar (A8)

B; ololo} =\NF,‘O{UIF} > I IT Viddo}

and compare it with the free enerdy,q calculated with the

o = ki €£0
(o1 previousV.
X WE {0}V (o (A1)
Analogously, the vector objectl is the punctured system 2. Efficiency of the algorithm
defined on the one-layer spin system, After the trial function|W) is optimized, we calculate the
spontaneous magnetization at a site
Aiolot = >III1 ViAotV o} (A2)
[5] ki €+0 Vo ¥

The configuration sums in Eq&A1) and(A2) are taken over ) (V|W)

all the spin variables except for the six at the center of the

system. In particular, except for Since the competing interactions exist only along xhei-

(0} = (0 40 . Tt 102 ) (A3) rection, the system is translation invariant with respect to the
1,071+1,001+2,0%1,191+1,19i+2, y andz directions. Therefore the spontaneous magnetization

and analogously fofo} in Eq. (A1). The notationdl,i[l,.,  {oi) is independent of and we usedoa;) instead.

excludeV; o{o} andV; o{a} from the product. Having defined In order to estimate the numerical accuracy of the im-

these two objects, the variational partition function can beproved TPVA, we compare the calculation of the critical

transformed into the expression

-5.45
E{U},{a Vi,O{O-}Bi,O{(T'aVi,O{a
Nvar= . (A4) _5.46|
E{U} Vi,O{U}Ai,O{U}Vi,O{U} I,
) o . o 2 547}
Now, consider a variation o¥,,, with respect to variations g P
of the local variational weights S _gagl
QQ L L L 1
o 200 400 600 800 1000
5)\_\’”:25}\_‘“37 (A5) ;_549_ i
= . 2 s
v i Wi,j :c:; ~ 1LR
. o 8 550 -~ 2LR
Carrying out the extremal conditiod\/dV;;=0, the self- S 2RL ~
consistent equation for the local variational weights is 2 s
then obtained, §
(&)
B, oo} -552 —————
Vigho} =2 == —Violol. (A6)
@ Aioo} 553

0 100 200 300 400 500 600 700 800 900 1000
The improvement oV is performed as !
Violat =V olo} + eVig"o} (A7) FIG. 12. Typical convergence process of the free enéfdpr
' ' b the lattice size of 100% « X . The inset shows a detailed view

through 64-parameter adjust. The self-consistent relation, Egyear the vicinity of the free energy minimum up to the eleventh
(AB), is a nonlinear equation sindg o and A4, , themselves  sweep(11RL).
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temperaturd, in the pure Ising model, i.e., wheh=0, with  any|¢|<107? is sufficient for the most cases.
other numerical methods. Table Il summarizes the obtained In Fig. 12 we illustrate an example which demonstrates
T.. It is obvious that the mean-field approximation overesti-the systematic decay of the free energy during the DMRG
matesT, and does not give reliable results near the phassweeping process until it finally converges. After the DMRG
boundaries. The improved TPVA with the 64 variational pa-infinite system methodISM) is finished, the first left-right
rameters results in bettdy, than the original TPVA with 16 sweep(1LR) proceeds followed by the first right-left sweep
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