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The three-dimensional axial next-nearest-neighbor Ising model is studied by a modified tensor product
variational approach. A global phase diagram is constructed with numerous commensurate and incommensu-
rate magnetic phases. The devil’s stairs behavior for the model is confirmed. The wavelength of the spin
modulated phases increases to infinity at the boundary with the ferromagnetic phase. Widths of the commen-
surate phases are considerably narrower than those calculated by mean-field approximations.
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I. INTRODUCTION

Periodically modulated magnetic structures have attracted
scientific interest for several decades both experimentally
and theoretically. A nontrivial phase diagram obtained by
experimental measurements in cerium antimonide(CeSb)
shows a variety of different commensurately ordered mag-
netic structures with the underlying lattice.1,2 The three-
dimensional (3D) S= 5

2 axial next-nearest-neighbor Ising
(ANNNI ) model has been considered as a theoretical candi-
date for CeSb since it exhibits a rich structure when it is
treated by mean-field approximation.3 The 3DS= 1

2 ANNNI
model is another example that shows a nontrivial spin modu-
lated phase—the so-called devil’s stairs. This model has been
analyzed theoretically by various approaches, including
high-temperature series expansions,4,5 low-temperature se-
ries expansions,6 mean-field approximations,7 Monte-Carlo
simulations,8 an effective-field approximation,9 free-fermion
methods, a phenomenological renormalization, and other
methods reviewed in Refs. 10 and 11. The Monte Carlo
simulations have also been applied to theS= 1

2 ANNNI
model with a finite number of spin layers.12 Recently, Henkel
and Pleimling considered an anisotropic scaling at the Lif-
shitz point using the Wolff cluster algorithm and critical ex-
ponents have been calculated.13

The purpose of this paper is to clarify the phase structure
of the 3D S= 1

2 ANNNI model. Our interest is to study the
spin modulated phases at intermediate temperatures, particu-
larly, the stability of commensurate phases. For this purpose
we apply a numerical variational method, the tensor product
variational method(TPVA), to the model. In Sec. II we in-
troduce the 3D ANNNI model and briefly discuss the varia-
tional background of the TPVA applied to the system. We
present the numerical results in Sec. III, where we construct
the global phase diagram of the model and analyze the spin
modulated phases. We summarize the obtained results in Sec.
IV. In the Appendix, a numerical self-consistent optimizing
process is reviewed and efficiency of the modified TPVA is
discussed.

II. MODEL AND NONUNIFORM PRODUCT
VARIATIONAL STATE

We study theS= 1
2 ANNNI model on a simple cubic lat-

tice with the sizeL3`3` along thex, y, andz directions,

respectively. The model is described by the lattice Hamil-
tonian

H = − J1o
i,j ,k

si,j ,kssi+1,j ,k + si,j+1,k + si,j ,k+1d

+ J2o
i,j ,k

si,j ,ksi+2,j ,k, s1d

where the subscriptsi, j , andk of the Ising spins= ±1 refer
to thex, y, andz coordinates, respectively. The ferromagnetic
interactionJ1.0 acts between the nearest neighbors andJ2
.0 is the competing antiferromagnetic interaction between
the next-nearest-neighbors imposed only in thex direction.

Figure 1 shows the layer-to-layer transfer matrixT to the
z direction which connects two adjacent spin layersfsg and
fs̄g (each of the sizeL3` in the x and y directions). The
transfer matrix can be exactly expressed as the product of
partially overlapped local Boltzmann weights(cf. Fig. 1)

Tfsus̄g = p
i=1

L−2

p
j=−`

+`

Wi,j
B hsus̄j. s2d

We simplify the notations using a group of six spins

hsj ; ssi,jsi8,jsi9,jsi,j8si8,j8si9,j8d, s3d

with the index rulei8= i +1, i9= i +2, andj8= j +1. The local
Boltzmann weightWi,j

B of the Hamiltonian in Eq.(1) has the
following form:

FIG. 1. The layer-to-layer transfer matrixTfs u s̄g (left) illus-
trated in the case forL=5 and the local Boltzmann weight
Wi,j

B hs u s̄j (right).
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Wi,j
B hsus̄j = expH 1

kBT
FJ1

6
ssi,js̄i,j + si8,js̄i8,j + si9,js̄i9,j

+ si,j8s̄i,j8 + si8,j8s̄i8,j8 + si9,j8s̄i9,j8 + si,jsi,j8

+ si8,jsi8,j8 + si9,jsi9,j8 + s̄i,js̄i,j8 + s̄i8,js̄i8,j8

+ s̄i9,js̄i9,j8d +
J1

8
ssi,jsi8,j + si8,jsi9,j + si,j8si8,j8

+ si8,j8si9,j8 + s̄i,js̄i8,j + s̄i8,js̄i9,j + s̄i,j8s̄i8,j8

+ s̄i8,j8s̄i9,j8d −
J2

4
ssi,jsi9,j + si,j8si9,j8 + s̄i,js̄i9,j

+ s̄i,j8s̄i9,j8dGJ s4d

with kB being the Boltzmann constant and the temperatureT.
For reasons of simplicity and brevity, we considerJ1=1 and
kB=1 throughout all calculations.14

We consider a variational problem for the transfer matrix
Tfs u s̄g. For a given trial functionuCl, the variational parti-
tion function per layer is given by

lvarsCd =
kCuTuCl
kCuCl

=
ofsg,fs̄g CfsgTfsus̄gCfs̄g

ofsg sCfsgd2
. s5d

The TPVA is a numerical variational method that assumes a
trial function written by the product of local weightsV. For
the ANNNI model,C is written in the product form of mu-
tually overlapped local weights(cf. Fig. 2)

Cfsg = p
i=1

L−2

p
j=−`

+`

Vi,jhsj, s6d

where we have used the simplified notation in Eq.(3).
In order to study nonuniform spin modulated phases, the

local variational weightsVi,jhsj must be position dependent
along thex direction. EachV thus contains 26=64 adjustable
parameters. Since we have written the trial functionC as
well as the transfer matrixT in the product forms, both the
numerator of Eq.(5),

kCuTuCl = o
fsg,fs8g

p
i=1

L−2

p
j=−`

+`

Vi,jhsjWi,j
B hsus̄jVi,jhs̄j, s7d

and its denominator,

kCuCl = o
fsg

p
i=1

L−2

p
j=−`

+`

sVi,jhsjd2, s8d

have also the product forms. Thus these quantities can be
accurately calculated by means of renormalization tech-
niques, particularly, we used the density matrix renormaliza-
tion group(DMRG).15,16

III. RESULTS

Figure 3 shows the global phase diagram of the ANNNI
model obtained by the TPVA. It consists of:

(i) a paramagnetic(disordered) phase;
(ii ) a uniformly ordered ferromagnetic phase;
(iii ) an antiphase with the periodic spin alignment

(¯↑↑↓↓¯) for which we use the notationk2l in the follow-
ing; and

(iv) a rich area of spin modulated phases.
The region of the spin modulated phases separates the an-
tiphase from the paramagnetic phase. The paramagnetic, fer-
romagnetic, and the modulated phases meet at the Lifshitz
point PL. In our calculations, it is located atJ2

L /J1=0.26 and
kBTL /J1=3.83 and is in good agreement with the latest
Monte Carlo calculations carried out by Pleimling and Hen-
kel J2

L /J1=0.270s4d and kBTL /J1=3.7475s50d (from Ref.
13).

The resulting phase diagram does not contradict to previ-
ous knowledge of the model. The phase boundary lines sepa-
rating the ferromagnetic phase, the paramagnetic phase, the
antiphase, and the spin modulated phases are in good agree-
ment with the phase boundaries obtained by the Monte Carlo
calculations.8 We found new features of the model in the
region of the modulated phases, where the Monte Carlo
simulations have not yielded a satisfactory answer. Our re-
sults are thought of as a supplement to the achievements

FIG. 2. Graphical representation of the local variational weight
Vi,jhsj (left) used to construct the trial functionC (right) in the
particular case forL=5.

FIG. 3. The global phase diagram of the 3D ANNNI model
obtained by the TPVA. The Lifshitz pointPL is denoted by the
black circle. The dotted lines enclose extremely narrow commensu-
rate phases.
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computed by the mean-field approximations7,9 at higher tem-
peratures and by the low-temperature series expansions valid
at low temperatureskBT/J1!4.6

In the rest of this section, we focus on the region of
the modulated phases that contains a multitude of various
commensurate and incommensurate phases. For example, in
Fig. 3 we plotted a few narrow areas of typical commensu-
rate phases such ask3,2l=s¯↑ ↑ ↑ ↓ ↓¯ d, k3l
=s¯↑ ↑ ↑ ↓ ↓ ↓¯ d, k4l=s¯↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓¯ d, etc. all en-
closed by the dotted lines. Note that the widths of these
phases are substantially narrower compared to the mean-field
approximation7 and the effective-field approximation.9

A. Wavelength analysis

We first explain the relation between the conventional no-
tation and the average modulation wavelengthl. The an-
tiphase k2l= ↑ ↑ ↓ ↓ ↑ ↑ ↓↓ has periodicity of four lattice
sites, thusl=4. Another example is the high-order commen-
surate phasek3,s3,2d2l which represents the periodic spin
sequence(↑↑↑↓↓↓↑↑↓↓↓↑↑) and yieldsl=26/5.

We calculate the spin modulations along five representa-
tive lines as depicted in Fig. 4 with their ending points listed
in Table I. When we obtain the spontaneous magnetization
(spin polarization) ksil, we compute the corresponding

wavelengths by means of the Fourier transform.
Figure 5 shows the spin polarizationsksil at two param-

eter points:C1 on the lineA1B1 andC2 on A2B2. These two
points are chosen near the phase boundaries. The spin polar-
ization at C1 exhibits the commensurate phasek35,2l
;s¯↓ ↓ ↓ ↑ ↑ ↑ ↓ ↓ ↓ ↑ ↑ ↑ ↓ ↓ ↓ ↑ ↑¯ d with the average
modulation wavelengthl=17/3 (the upper graph). The
lower graph shows the commensurate phase atC2 with l
<16.7 on the same region along thex direction.

Now, we give a brief discussion on the influence of
boundary conditions imposed to the system on the resulting
spin polarization. In Fig. 6 we plotksil for three different
types of the boundary conditions. We consider a lattice with
the size 4013`3` and analyze the data atC2. On the upper
graph, the spin polarization is calculated for the fixed bound-
aries on the left end(the spins are aligned to the “up” direc-
tion) and the free boundaries on the right end. The Fourier
transform applied to the whole regioni =0,1, . . . ,400yields
l=16.7±0.53. On the intermediate graph, the parallel fixed
boundary conditions on both sides are imposed(the spins are
aligned “up” at the ends). It givesl=16.7±0.41. Finally, the
lower graph shows the antiparallel fixed boundaries(“up” on
the left end and “down” on the right end) with l
=16.7±0.41. The choice of the boundary conditions does not
affect the numerical results significantly. The larger the lat-
tice size considered, the less influence of the boundaries is
obtained, especially, off of the phase boundaries.

In Fig. 7 we plot the wavelength with respect toJ2/J1
calculated on the three linesA1B1, A2B2, andA3B3. The dot-
ted line is a guide for the eye to point out this structure. Near
the boundary with the ferromagnetic phase, the wavelength
rapidly increases. This is contradictory to the known results
coming from the mean-field approximation. The mean-field
approximation yields the first-order transitions between fer-
romagnetic phase and the individual commensurate phases
on the boundary line(in detail, see Ref. 7).

FIG. 4. The five selected linesA1B1, A2B2, A3B3, PLB0, and
A4B4 in the region of modulated phases. The pointsC1 andC2 are
marked by the white triangles

TABLE I. The positions of the points depicted in Fig. 4.

Point J2/J1 kBT/J1 Point J2/J1 kBT/J1

PL 0.2600 3.83 B0 0.555 1.9812

A1 0.3560 2.95 B1 1.000 4.2500

A2 0.4113 2.50 B2 1.000 4.1250

A3 0.4605 2.00 B3 1.000 4.0000

A4 0.4908 1.50 B4 0.514 1.5000

C1 0.5750 3.3921 C2 0.418 2.5185

FIG. 5. The spontaneous magnetizationksil vs the positioni on
the lattice in thex direction calculated atC1 (the upper graph) and
at C2 (the lower one) with the lattice sizeL=401. In order to show
the data in detail, we ploti =120, . . . ,170.
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In the inset of Fig. 7 we plot details of the wavelengthl
in the vicinity of the commensurate phasek3l. We observed
that the commensurate phasesk3l, k32,2l, andk3,2l “lock-in”
at small regions ofJ2/J1 (on the lineA3B3) and the so-called
“devil’s stairs” behavior is observed.10 On the contrary, the
stairslike structure is not visible at higher temperatures, as
seen on the lineA1B1 near the paramagnetic boundary.

Figure 8 showsl on the line from the pointB0 to the
Lifshitz point PL. The wavelength diverges toward the cal-
culated Lifshitz point atJ2/J1=0.26. The stairslike structure
is revealed if we zoom in on the phase diagram. For this

reason, we selected an area around the commensurate phases
k5l andk5,4l, where the wavelength locks-in as shown in the
inset.

B. Low temperature behavior

To compare our results with analytical predictions, par-
ticularly, with the low-temperature series expansions
(LTSE),6 we have selected the lineA4B4 which corresponds
to the temperaturekBT/J1=1.5. The computed data are plot-
ted in Fig. 9. The commensurate phasek3l sl=6d locks-in
and forms a well-visible plateau. Note that the mean-field

FIG. 6. The spontaneous magnetization obtained atC2 for the
lattice size 4013`3`. The upper, middle, and lower graphs dis-
play ksil for the three different boundary conditions.

FIG. 7. The divergence ofl at the boundary with the ferromag-
netic phase. The black circles, squares, and triangles, respectively,
correspond to the selected points on the linesA1B1, A2B2, andA3B3.
The inset shows behavior ofl around the commensurate phasek3l.

FIG. 8. The behavior of the wavelengthl on the linePLB0.
Several commensurate phases with the integer value ofl are la-
beled. The inset shows the area around the commensurate phasek5l.

FIG. 9. The calculation ofl on the lineA4B4 at the temperature
kBT/J1=1.5. The dashed rectangle borders an area shown in Fig.
10. The inset illustrates the behavior of the corresponding wave
vectorq.
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calculations7 do not exhibit any phases withl.6 at
kBT/J1&2. It should be also noted that both the mean-field
approximation(at higher temperatures) and the LTSE(at
very low temperatures) do not result in the spring of phases
with l.6 from the multiphase pointJ2/J1=0.5.

Figure 10 illustrates the stairslike structure ofl and cor-
responds to the magnified area shown by the dashed rect-
angle in Fig. 9. The commensurate phases lock-in at rational
values ofl and are separated by high-order commensurate
phases and(possibly) incommensurate ones. Several com-
mensurate phases are denoted above the stairslike curve in
Fig. 10.

The LTSE yields a spring of an infinity of the commen-
surate phases, such ask3l andk3,2nl for n=1,2,3, . . .,which
separate the ferromagnetic phase and the antiphase. The tran-
sition from the region of the spin modulated phasessl.4d
to the antiphasesl=4d in our calculations does not contradict
to the LTSE. The existence of additional intermediate phases,
k3,2n,3 ,2n+1l n=1,2,3, . . ., athigher temperatures was later
reported by the LTSE. Our results contain all these commen-
surate phases. Moreover, we found unpredicted phases. For
example, the transition between the phasesk3l and k3,2l is
not of the first order as reported by the LTSE. We found that
these two phases are separated by many commensurate
phases, e.g.,k3n,2l and k3,s3,2dn+1l for n=1,2,3, . . . and
the others of higher-orders as reported in Ref. 9. We obtained
such rich spin modulated phases also forl.6, see Fig. 10.

In Fig. 11 we depict our numerical results calculated at
kBT/J1=1.5 and compare them with the results obtained by
the LTSE. The notationqk2l corresponds to the antiphase
wave vectorq=p /2. Note that while the LTSE gives the
first-order transition among individual commensurate phases,
our calculations yield subsequent stairslike structures among
them. Moreover, the LTSE calculations do not yield the com-
mensurate phases withl.6.

We, therefore, conjecture that the “complete” devil’s stairs
structure exists at intermediate temperatures. The complete
devil’s stairs structure suggests there are no first-order
transitions.10

Here, we summarize those commensurate phases which
were obtained by the numerical analysis of this model. Be-
tween two main commensurate phaseskpl andkp+1l, where
p=2,3,4, . . ., new high-order commensurate phases are
present, such askpn−1,p+1l, kp,sp+1dnl, kp,sp,p+1dn−1l,
and ksp,p+1dn,p+1l, with n=2,3,4, . . ..Subsequently, the
following higher-order commensurate phases were found
kspn+1,p+1dm,pn,p+1l andkfp,sp,p+1dn+1gm,p,sp,p+1dnl,
for m=2,3,4, . . .,etc.

IV. SUMMARY

We applied the modified TPVA to the 3D ANNNI model
and obtained the global phase diagram. The location of the
Lifshitz point agrees with calculations performed by the
high-temperature series expansions4,5 and the recent Monte
Carlo calculations.13 The region of the modulated phases ex-
hibits a very complex structure. We found that(1) the com-
mensurate phases are substantially narrower than those re-
ported so far,(2) the wavelength of the spin modulated
(commensurate) phases diverges at the boundary with the
ferromagnetic phase,(3) the commensurate phases merge at
low temperatures tending toward the multiphase point
J2/J1=0.5 and at low temperatures the wavelengths withl
.6 are obtained, and(4) many (possibly infinity) phases
have been found within the modulated phase, which have not
yet been reported.

ACKNOWLEDGMENTS

A. G. thanks A. Šurda for an interesting discussion about
the incommensurate phases in the ANNNI model. This work
has been partially supported by the Grant-in-Aid for Scien-
tific Research from Ministry of Education, Science, Sports
and Culture(Grants No. 09640462 and No. 11640376) and
by the Slovak Grant Agency, VEGA No. 2/7201/21 and

FIG. 10. The resulting devil’s stairs withlù6 observed on the
line A4B4.

FIG. 11. Comparison of the numerical results atkBT/J1=1.5
(the black squares) with the low-temperature series expansions rep-
resented by the dashed stairslike curve(in Ref. 6).

PHASE DIAGRAM OF THE THREE-DIMENSIONAL… PHYSICAL REVIEW B 71, 024404(2005)

024404-5



2/3118/23. A. G. is also supported by Japan Society for the
Promotion of Science(P01192).

APPENDIX

1. Optimizing process for the local variational weights

We briefly describe the optimizing process of finding out
the local variational weights in order to maximize Eq.(5).
This optimization is based on a self-consistent equation in
the TPVA to achieve the minimum of the free energy. Nu-
merical details in the TPVA have been reported in Ref. 17.

In order to maximize the variational partition function in
Eq. (5), by a proper tuning of the local variational weightsV,
we define two objects. One is the matrix objectB that rep-
resents a punctured classical system18 defined on the two-
layer spin system which corresponds to the numerator
kCuTuCl of the variational partition function. It is defined as

Bi,0hsus̄j = Wi,0
B hsus̄j o

fs̃g,fs̃̄g

p
kÞi

p
,Þ0

Vk,,hsj

3 Wk,,
B hsus̄jVk,,hs̄j. sA1d

Analogously, the vector objectA is the punctured system
defined on the one-layer spin system,

Ai,0hsj = o
fs̃g

p
kÞi

p
,Þ0

Vk,,hsjVk,,hsj. sA2d

The configuration sums in Eqs.(A1) and(A2) are taken over
all the spin variabless except for the six at the center of the
system. In particular, except for

hsj = ssi,0si+1,0si+2,0si,1si+1,1si+2,1d sA3d

and analogously forhs̄j in Eq. (A1). The notationspkÞip,Þ0

excludeVi,0hsj andVi,0hs̄j from the product. Having defined
these two objects, the variational partition function can be
transformed into the expression

lvar =
ohsj,hs̄j Vi,0hsjBi,0hsus̄jVi,0hs̄j

ohsj Vi,0hsjAi,0hsjVi,0hsj
. sA4d

Now, consider a variation oflvar with respect to variations
of the local variational weights

dlvar

dC
; o

i,j

dlvar

dVi,j
. sA5d

Carrying out the extremal condition,dl /dVi,j =0, the self-
consistent equation for the local variational weightsVi,j is
then obtained,

Vi,0
newhsj = o

hs̄j

Bi,0hsus̄j
Ai,0hsj

Vi,0hs̄j. sA6d

The improvement ofV is performed as

Vi,0hsj = Vi,0hsj + «Vi,0
newhsj sA7d

through 64-parameter adjust. The self-consistent relation, Eq.
(A6), is a nonlinear equation sinceBi,0 andAi,0 themselves

depend onV. The convergence parameter« controls the rate
at which the improvement process ofV is performed.

Consequently, we compute the free energy per strip

Fnew= − kBT ln lvar sA8d

and compare it with the free energyFold calculated with the
previousV.

2. Efficiency of the algorithm

After the trial functionuCl is optimized, we calculate the
spontaneous magnetization at a site

ksi,jl =
kCusi,juCl

kCuCl
. sA9d

Since the competing interactions exist only along thex di-
rection, the system is translation invariant with respect to the
y andz directions. Therefore the spontaneous magnetization
ksi,jl is independent onj and we usedksil instead.

In order to estimate the numerical accuracy of the im-
proved TPVA, we compare the calculation of the critical

TABLE II. The critical temperatureTc for the 3D Ising model
sJ2=0d. We calculate the relative errorse with respect toTc ob-
tained by Monte Carlo simulations(Ref. 19).

Numerical method Tc e / f%g

Mean-field approximation(Ref. 11) 6.000 33.0

Kramers-Wannier approximation(Ref. 20) 4.587 1.7

TPVA with 16 parameters(Ref. 17) 4.570 1.3

TPVA with 64 parameters 4.554 0.9

Monte Carlo simulations 4.512

FIG. 12. Typical convergence process of the free energyF for
the lattice size of 10013`3`. The inset shows a detailed view
near the vicinity of the free energy minimum up to the eleventh
sweep(11RL).
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temperatureTc in the pure Ising model, i.e., whenJ2=0, with
other numerical methods. Table II summarizes the obtained
Tc. It is obvious that the mean-field approximation overesti-
matesTc and does not give reliable results near the phase
boundaries. The improved TPVA with the 64 variational pa-
rameters results in betterTc than the original TPVA with 16
parameters.17,21

We set up the convergence parameteru«u=10−2. Assuming

any u«u&10−2 is sufficient for the most cases.
In Fig. 12 we illustrate an example which demonstrates

the systematic decay of the free energy during the DMRG
sweeping process until it finally converges. After the DMRG
infinite system method(ISM) is finished, the first left-right
sweep(1LR) proceeds followed by the first right-left sweep
(1RL) and so on. Each step of the finite system method de-
creases the free energy until its minimum is reached.

1P. Fisher, B. Lebech, G. Meier, B. D. Rainford, and O. Vogt, J.
Phys. C 11, 345 (1978).

2J. Rossat-Mignod, P. Burlet, J. Villain, H. Bartholin, Wang
Tcheng-Si, D. Florence, and O. Vogt, Phys. Rev. B16, 440
(1977).

3J. von Boehm and P. Bak, Phys. Rev. Lett.42, 122 (1979).
4S. Redner and H. E. Stanley, J. Phys. C10, 4765(1977); Phys.

Rev. B 16, 4901(1977).
5J. Otmaa, J. Phys. A18, 365 (1985).
6M. E. Fisher and W. Selke, Phys. Rev. Lett.44, 1502(1980); A.

M. Szpilka and M. E. Fisher,ibid. 57, 1044(1986); M. E. Fisher
and A. M. Szpilka, Phys. Rev. B36, 644 (1987); 36, 5343
(1987).

7P. Bak and J. von Boehm, Phys. Rev. B21, 5297(1980).
8W. Selke and M. E. Fisher, Phys. Rev. B20, 257 (1979); K.

Kaski and W. Selke,ibid. 31, 3128(1985).
9A. Šurda, Phys. Rev. B69, 134116(2004).

10P. Bak, Rep. Prog. Phys.45, 587 (1982).
11W. Selke, Phys. Rep.170, 213 (1988); W. Selke, inPhase Tran-

sitions and Critical Phenomena, edited by C. Domb and J. L.
Lebowitz (Academic, New York, 1992), Vol. 15.

12W. Selke, M. Pleimling, and D. Catrein, Eur. Phys. J. B27, 321
(2002).

13M. Pleimling and M. Henkel, Phys. Rev. Lett.87, 125702(2001);
M. Henkel and M. Pleimling, Comput. Phys. Commun.147,

161 (2002).
14The numerical calculations were performed by the MIPSproFOR-

TRAN compiler on the RISC Unix cluster, the IntelFORTRAN

Compiler on the Pentium4 Linux workstations, and the Compaq
FORTRAN compiler on HPC-Alpha UP21264 Linux workstation.

15S. R. White, Phys. Rev. Lett.69, 2863(1992); Phys. Rev. B48,
10 345(1993).

16T. Nishino, J. Phys. Soc. Jpn.64, 3598(1995).
17T. Nishino, K. Okunishi, Y. Hieida, N. Maeshima, and Y. Akutsu,

Nucl. Phys. B 575, 504 (2000); T. Nishino, K. Okunishi, Y.
Hieida, N. Maeshima, Y. Akutsu, and A. Gendiar, Prog. Theor.
Phys. 105, 409(2001); A. Gendiar and T. Nishino, Phys. Rev. E
65, 046702(2002); A. Gendiar, N. Maeshima, and T. Nishino,
Prog. Theor. Phys.110, 691 (2003).

18M. A. Martín-Delgado, J. Rodriguez-Laguna, and G. Sierra, Nucl.
Phys. B 601, 569 (2001).

19W. Janke and R. Villanova, Nucl. Phys. B489, 679 (1997).
20H. A. Kramers and G. H. Wannier, Phys. Rev.60, 263 (1941).
21Originally we have formulated the TPVA by use of the corner

transfer matrix renormalization group[T. Nishino and K. Okun-
ishi, J. Phys. Soc. Jpn.65, 891 (1996)]. Here we employed the
DMRG because the incommensurately and/or commensurately
modulated phases require the use of the DMRG[A. Gendiar and
A. Šurda, Phys. Rev. B62, 3960(2000)].

PHASE DIAGRAM OF THE THREE-DIMENSIONAL… PHYSICAL REVIEW B 71, 024404(2005)

024404-7


