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This study addresses low-energy properties of two-leg spin-1 ladders with antiferroma@gfétictrachain
coupling under a uniform or staggered external fidldand a few of their modifications. The generalization to
spinSladders is also discussed. In the strong AF furtgrchain-couplingJd, region, degenerate perturbation
theory applied to spir® ladders predicts Qcritical curves in the parameter spack ,H) for the staggered-
field case, in contrast toSfinite critical regions for the uniform-field case. All critical areas belong to a
universality with central charge=1. On the other hand, we employ Abelian and non-Abelian bosonization
techniques in the weak rung-coupling region. They show that in the spin-1 ladder, a sufficiently strong uniform
field engenders a=1 critical state regardless of the signdf, whereas the staggered field is expected not to
yield any singular phenomena. From the bosonization techniques, new field-theoretical expressions of string
order parameters in the spin-1 systems are also proposed.
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I. INTRODUCTION H :J; S,j 'S,i+l+JLE Sl,j 'SZ,j + Ty, (1)

Spin ladder systems have been investigated theoretically R ! J
for more than a decade. Several real magnets corresponditigereS  is the spin-1 operator on the sitgj); | (=1 or 2)
to them have been synthesized and obsetveA.trigger of  is the chain-number index and the integeuns along each
such studies may be the discovery of hifhmaterials and chain. The intrachain couplingis positive. We will refer to
the connection between the Hubbard magele of the high- ~ Such ladders as “AF” ladders. The interchain couplingis
T. modely and the antiferromagneti¢AF) Heisenberg called the rung coupling. The Zeeman tetn here is cho-
model’ Recently, it has been recognized that spin laddersen as two types:
themselves can provide several theoretically interesting phe- -
nomena: for example, quantum critical phenomena, non- Huz_HE(S-ZLj"'%,J)' (23)
trivial magnetization procességlateaus and cuspghe con- !
nection with field theories and integrable models, topological A )
or exotic orders, etc. Especially, the intensive studies have Hs=- HE (= l)](si,i +S§,i)’ (2b)
largely developed the physics of two-leg séiriadders. .

In the spin ladder systems, like other magnetic systemsyhereH(=0) is the strength of external fields. The lat(@b)
their responses to external magnetic fields have received thbas a staggered field along the chéiri)/H. Obviously, the
oretical and experimental attentions. Recently, in addition teAF rung coupling and the staggered field compete with each
the standard uniform magnetic field, staggered fields, whiclother.
have an alternating component along a direction of the sys- Regarding the case without external fields, some preced-
tem, have been in the spotlight'> Actually, several phe- ing theoretical studié§-18 of the spin-1 ladde(1) exist (al-
nomena induced by them have been observed, and sonteough, as will see in Sec. lll, there are also a few studies
mechanisms generating them in real magnets are kdtvn. dealing with 7). Their results deserve to be summarized
As will be discussed in the next section, uniform- or here for our consideration in later sections. These studies
staggered-field effects in the two-leg s@dadder with AF explain how the first-excitation gap varies in dependence
intrachain coupling have been understood well. In theupon the rung coupling, . At the decoupled point, =0, the
uniform-field magnetization process, a massless phase exigtsodel (1) is reduced to two spin-1 AF chains. As known
between the saturated state and a massive spin-liquid statewfell, the chain has a finite first-excitation gaplaldane
staggered field yields a quantum phase transition. gap.'® Around the decoupled point, the gap reduction takes

Here, the following natural question would arise: how theplace with|J, | increasing. Namely, the gap has a cusp struc-
external fields influence high-spin ®¥-leg ladder systems? ture around), =0. Far from the decoupled point, in the AF-
To answer this(partially), this study specifically addresses rung side, the gap increases together with the growth, of
low-energy properties of two-leg spin-1 ladders with externallt approaches the gap of the rung diniavo spins along the
fields through the use of several analytical tools. Our mairnrung) which is the strong AF rung-coupling limit of the
target is the simple Hamiltonian, model (1). On the other hand, for the ferromagnetieM)-
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gap gap of rung dimer comparison of our results and existing results of %)Iad-
Atal ders will help to elucidate the spin-ladder systems.

The organization of the remainder of this paper is as fol-
lows. First, we give a brief review of two-leg spéﬂadders
T 5 7 J in Sec. Il. As mentioned previously, it is useful in comparing
our spin-1 case with the spi%l-case and highlighting the
FIG. 1. A schematic gap profile in the spin-1 AF ladder. The features of the spin-1 case. Section Ill specifically addresses
symbol A denotes the Haldane gdp-0.41J). For details, see the strong AF rung-coupling regio, >J). For the spin-1
Ref. 18. ladder(1), the DPT provides effective Hamiltonians and pre-
dicts that there are two critical aregzinty in the magne-

rung side, even away from the decoupled point, the gap déization process applying the uniforstaggereyl field. We
creases monotonically. It reaches the Haldane gap of th@lSO apply the DPT to the two-leg spBiadders, to find that
spin-2 AF chain with the bond’=J/2, which is the strong [N the spinS case there are critical regions (points
FM rung-coupling limit.(In general, the two-leg spiB-AF through_the uniforrgstaggerejifield magnetlzatlon process.
ladder with the intrachain couplingis reduced to the spin- !N addition, we propose RVB-type pictures of noncritical
2S AF chain with J’=J/2 in the strong FM rung-coupling phases in the uniform-field case witi,. In Sec. IV, we
limit.)2021 The first-excitation-gap profile is summarized asconsider the weak rung-coupling regi¢d=|J, |) and em-
Fig. 1. A recent quantum Monte Carlo analy8iguantita- ploy some field-theoretical approaches. In particular, to map
tively surveys the ground-stat6&S) properties of the model 1D spin-1 systems onto a field theory, we utilize a non-
(1) without Zeeman terms. It estimates the first-excitationAbelian bosonization(NAB),%>-%° i.e., a Wess-Zumino-
gap and the spin-spin correlation length. Moreover, it pro-Novikov-Witten (WZNW) model description. The first two
poses a new string-type parameter, which is discussed in subsections are devoted to an explanation of the NAB.
later section. The authors conclude that the GS is alway$hrough it, the spin-1 ladde(l) is described by using a
massive fromJ, =0 to o, and is characterized by the fermion field theory, which was originally proposed by
“plaquette-singlet” solid(PSS state, one of short-range Tsvelik?® Subsequently, we will consider the uniform-field
resonating-valence-bon@RVB) states’? which is explained case in Sec. IV C. In this case, the NAB is considerably
in Fig. 2. It smoothly connects two limiting states: the effective because it can treat the uniform Zeeman term
Haldane statdJ, =0) and the rung-dimer statg&], — ). nonperturbatively® From consequences of the DPT in Sec.
The new string parameter is able to capture a feature of thil, the NAB here, and the gap profile in Fig. 1, we can
PSS state. determine the whole GS phase diagram in Sec. IV D. The
Our analysis specifically addresses two regions: the strongritical regime is “simply connected” and hasal critical-
AF rung-coupling region(J, >J) and the weak rung- ity except for the decoupled poidt, =0. In Sec. IV E, we
coupling one(J>1J,|). For the former(latten region, we devote our attention to spin-1 ladders without external fields.
mainly employ degenerate perturbation the@PT) (field- Section IV E 1 is assigned to the evaluation of string-type
theoretical methods In the former region, we can also in- parameters in one-dimensiondD) spin-1 systems within
vestigate two-leg spi% ladders. It contributes to a system- our field-theoretical framework. We propose their field-
atic understanding of spin ladder systems. Furthermore, thd@eoretical expressions. Using a RG analysis, we consider
the GS phase diagram of a spin-1 ladder extended from the
model (1) in Sec. IV E 2. Field-theoretical approaches used
here are not sufficiently efficient for the staggered-field case

2xHaldane Chain with ﬁs. A brief discussion on it is in Sec. IV F. In Sec. V,
we summarize all results and briefly discuss them. The Ap-
pendix offers readers supplements of field-theoretical tech-

———Eo>—Eo—EH>—ao—
J=0

Plaquette-Singlet Solid niques and calculations in Sec. IV.
E E E E E Ji =m0 Il. REVIEW OF SPIN-1/2 LADDERS
Rung Dimer
— In this section, we review low-energy properties of the
S n o X -
— spin5 AF ladder which is equivalent to the moddl), in
FIG. 2. RVB pictures in the GS of the spin-1 AF ladd@y which spin-1 operators are replaced with _séinperators. _
without external fields. The black point denotes a spistate. The For the case without external fields, a finite rung coupling

ellipse including two black points indicates the symmetrization oféNgenders a gapped spin-liquitb long-range orders ocour
two spins states and recovers an original spin-1 site. The black lind>S Irrespe(l:tlve of the sign df, . T_h'? Is true because the GS
represents for the singlet bond, which consists of a $piair. For ~ Of the spins AF Heisenberg chain is criticamasslesgand
0<J, <=, the GS is well described by the PSS state. With increasthe rung coupling is relevant from the standpoint of the per-
ing the rung-coupling, , the weighta (b) increasegdecreasesn  turbative renormalization groufRG) picture?” The spin lig-

the GS wave function, and it approaches the tensor product of sirdid can be illustrated using the short-range RVB picttn&

glet dimers[singlet of the spin-1 pajr For details, see Ref. 18. as in Fig. 3. The figure indicates that the excitation gap in the
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H H=J,-0.50J

Néel phase
spin-liquid
o d g g o o gt phase
-1 000 0+1-10+1-1 00 H=0.60J77 4"
FIG. 3. RVB pictures of the GS of the sp§11adder. Panelsa) 00 Ji

and(b) are typical spin configurations in the AF-rung and FM-rung

spin-liquid phases, respectively. The gray line denotes a singlet FIG. 5. Schematic GS phase diagram of the é)ladder with
bond. Up and down arrows represaﬁ}: +% and —% respectively.  the staggered Zeeman te(2b). In weak and strong rung-coupling
Each number under the dashed loop encircling two sites shows thegions, the transition curve followh=0.60x J‘j’zlJ”2 and h
value of"éZ,J:sijq.giﬂ in (a), and one Oﬁzzsiﬁsé,j in (b). Re- zJL—O_.SOX J, respectively, where the facto®.60 and 0.5pare
moving all sites of%Z:O or §=0, one can see a “hidden” Néel determlned by our numerllcal calcu!atloﬁ%ef. 51). These results
order(+1,-1,+1,-1, ..). For more details, see Refs. 30 and 32, &re consistent with analytical ones in Ref. 14.

spin-liquid phase has the same order as the energy requirégss- The critical phase, except for the decoupled Jine

to cut a singlet bond. In the AF-rung side, singlet bonds tend 0 can be regardeg% as an one-component Tomonaga-
to occur along both chain and rung directions. In contrast-uttinger liquid (-'3—5';-'-.)’ which is identical to a conformal
two spins on the rung tend to construct a triplet state on thdeld theory(CFT)* with the central charge=1. In this area,
FM-rung side. The tendency removes singlet bonds alond'e Magnetization per run@) changes continuously. When
rungs, and allows those along the diagonal direction. Théhe field is increased, quantum transitions take place at lower
FM-rung spin liquid must connect with the GS of the spin-1and upper critical fields(H; and Hy). 74'51%)3/ are of a

AF chain (J, ——-%) smoothly. Therefore, we call it the commensurate-incommensurd@-1C) type:™~*>The upper
Haldane phase. In Refs. 30 and 32, the authors show th&titical field H, can be determined by calculating the exact
these two kinds of massive spin liquifi®) and(b) in Fig. 3]  SPin-wave excitation energy in the saturaigerfect ferro-

can be detected by the two string-type parameters, magnetig state:H,=2J+J, for AF-rung side, andH,=2J
for the FM-rung side. The same logic shows that the upper
O24=- lim <%aeiﬂ2ﬁ;jl+1$5§>, (39 critical fielq of t.he. s_pin—l AF_ chein witb_’ =J/2 (_strong FM
[i=K—ce rung-coupling limiy is 2J, which is consistent with the result
H,=2J.
O =— lim (S eiwxﬁ;.ﬂfﬁ‘ ' 3b Wang et al. have investigated the sp%vstaggered—field
even \j-kpofqﬁ S0 (30) case with the terni2b) by employing the DPT and Abelian

_ bosonizatior?®3944-50They predict that the competition be-
wherea=x,y,z,(--) represents the expectation value of theyyeen the AF rung coupling and the fietticreates a second-
GS. We defined two new operato§=S;+S;; and §'  order quantum phase transition. It belongs to a Gaussian type
=§];+$;+1- Indeed, from Fig. 3, one can confirm that with c=1, and separates a Néeel phase and the massive spin-
O3 o 0 and02,,=0 (02 ,,# 0 andO3 ., =0) are realized in  liquid phase, which continuously connects with the spin-
the AF-rung spin-liquid Haldane phase. liquid (a) in Fig. 3. Furthermore, Ide, Nakamura and Sato

For the uniform-field case, low-energy properties have berecently determined the transition curve with high accuracy
come well understood, but the quantitative GS phase diadsing the level-crossing methtcand a new twisted operator
gram has not been constructed yet as far as we know. Fanethod>® The curve starts from the origin in the space
details, see e.g., Refs. 33-37 and references therein. Tté, ,H) because both the rung-coupling term and the stag-
schematic GS phase diagram is expected as in Fig. 4. Thgered Zeeman term are relevant to the single chain. The GS
spin-liquid, Haldane and saturated phases correspond to mgshase diagram is given in Fig. 5.
sive plateau regions in the uniform-field magnetization pro-

IIl. STRONG RUNG-COUPLING LIMIT
H

H, This section employs the DPT for the strong rung-

coupling region:J, >J. Frequently in 1D systems, theories
of the strong coupling limit such as the DPT provide visual-

saturated phase

(S} =+1

2x (c=1 chain)

7 c=1critical phase _H, izations of GSs and low-lying excitations. This is the case in

g (= 0 the strong rung-coupling limit of the modél), as we dis-

il o Splh-iguidl phiase cuss in this section.
é
0 . Ji

E Haldane phase { §;) = 0 A. Spin-1 ladders
FIG. 4. Schematic GS phase diagram of the spiadder with First, we investigate the spin-1 AF-rung ladder with the
the uniform Zeeman terr2a). uniform field. The DP¥ for this model has already been
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these pseudo-spin operators and original spin-1 ones is

v By S Py =- b+ 2, Py S Py = (- U7, (9
B 12,0) l,jsz,j Lj= 2¥ " a4 LjS,j 1,j_( )U;, (93
s " 2(- 1)
- 11,0) S wh L1zl B own 2D
Bl : P2SiP2j==3Ti+ 3 P2 §;P2;= & i @D
...,..-~~.‘,“|2,1) We read thaS)=0, 1 and 2 correspond t()Tf)zé, (T
12,2)% \I1,1) =-3 (or (U)=3) and (U?)=—3, respectively. Under these

. preparations, we can obtain the following effective Hamil-
FIG. 6. Eigenstates and eigenenergiegiofvith the strength of  tgnian neaH =2]:

the uniform fieldH varying. The thick dotted line corresponds to

the GS. Each vectdr--, --) represents a stafg,5?;. f{ﬁﬁl = |517:[|51
performed, for example in Ref. 54. However, we reproduce it = 2 P1iHPy
here as a preparation for later discussions. b
Under Cond'ItIOH:]L%J, the 0-th approximation takes the => jl[U}( jx+1+ U}’U}’+1+A1szujz+l]
following Hamiltonian: i
o= 7, (4a) —Hy12, U? + const, (10
j i
) L where 7,=2J, A;=3 andH,,=2J, —H+3J. Similarly, near
Hj=3.S;- S~ H(S+S5)), (4b)  H=J,, we obtain
where the original model is reduced to a set of two-body e = T + T + ATZT?
problems on each rung. Because fh# rung Hamiltonian uz %‘72[ T TiTia ¥ AT
H; has two conserved quantitiesz, and Sf one can easily

solve it. Each eigenstate has a one-to-one correspondence to
a statgS,5%; whereS andS” are magnitudes of the rung spin

§ and itsz component, respectively. The solution is given in where 7,=2J, A,=1% andH,,=J, ~H+J/2. Both(10) and
Fig. 6. The GS of the rung encounters two level crossings irf11) are a Spin% XXZ chain with a uniform fielc?®®> Known
the magnetization process. In parameter spdceH), we  exact results on the spi%]-XXZ chain immediately lead to
concentrate on vicinities of these two level-crossing linesthe following predictions. From the mod@l0), in the region
H=J, andH=2J,. Near one lineH=2J , two low-lying  |H,1=<J1(1+A,) the system has e=1 criticality, in which

—H,,>, T; + const, (12)
j

states on thé-th rung are the uniform magnetization and the critical exponents of
pseudo-spin correlation functions vary continuously with
|+ )= |1'1>i’ - )= |2'2>j- (5) H,1 varying. Otherwisdi.e., |H, 1| > J1(1+A,)], the magne-
Low-lying states near another line are tization is saturated. Similarly, froril1), another massless
region withc=1 exists inH, 5| < 7.(1+A,). By interpreting
[+)2;=10,0, [-)25=11,2). (6)  these in the context of the original ladder model in the uni-

The first-order calculation of the DPT is equivalent to pro_fogm field, we Bre‘d'Ct that twe=1 critical areas existJ,
jecting the total Hamiltoniar(1) onto the subspace which ~3J<H<=J, +3Jand 2, -J<H=<2J, +4J. Therefore, in
consists of the set of two stat¢s) [or (6)] over all rungs.  the strong AF rung-coupling region, the spin-1 AF ladder has
o - an intermediate plateau region W(ﬁ):l in addition to two
trivial plateau regions: the saturated state and the PSS state
described in Fig. 2. The presence of the intermediate plateau
is contrasted with the spié—case(Fig. 4). From effective
models(10) and(11), we also see that all critical phenomena
. in the magnetization process do not involve any spontaneous
Poj =+ )22t [+ = )2j25( |- (7)  symmetry breakings. While effective models also predict the
intermediate plateau vanishes at the poifd, ,H)
=(¥3,2)), where the lower and upper boundary cur¥és

Two projection operators can be defined Rs=1I;P,; and
P,=I1;P;;, where

Poj =+ 0o+ =1,

For convenience, we define new sgireperators as

U =300+ )njei+ [ = == 1, :.Jif%i]'andH:ZJi—J cross each other. However, this es-
timation is too rough because the lowest-order DPT is prob-
Uj+ =+ )00, U= Ecar (8)  ablyvalid only in the sufficiently strong rung-coupling cases.

) A recent numerical stud§®” evaluates the vanishing point
Similarly, another spirﬁ- operatorT; is defined by replacing (J,,H)~(1.44),2.7J). It claims that in the subspace fixing
the subscrip(1,j) to (2,j) in Eq. (8). The relation between the total magnetization, the transition between ¢thel re-
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7 A rd > ? r TIXT TV Tz
(@) z E I> E ng = E JLUUL + UV + A UTUT,
J
® T _ _ )i
bbb Hs, 1; (= 1'Uj + const, (14
ooy 1.3 oo
Li=afl W Dpelie ] where U%Y=(-1))U%, U?=U? andHg,=2, ~H-2J. Simi-

FIG. 7. Intermediate plateau state in the spin-1 laddgmwith larly, nezir the lineH=J,, the efiecnve 0”9152 is the same
the uniform field(2a): the case withl— 0 () and the case whete  type asHS1, in which (J73,A;,Uf)— (72,4, T%) and Hgy
is finite (). Thin black bonds mean singlet bonds of sgipair. —>HS’2=JL—H—%J. Unlike the uniform-field cases, the
The dotted bonds mean triplet bonds where otomponents of above two models have effective staggered figtds and
two spins are % In the panel(B), gray plaquettes represent a Hg,, respectively. Because such alternating terms are rel-
super-position state drawn in the lowest part of the figure. evant for the spir‘%— critical chain, infinitesimal values of
staggered fields immediately yield a finite excitation gap. In
gion and the plateau is of a Beresinski-Kosterliz-Thoules®ther words, only when the field ;) vanishes, the GS is
(BKT) type>® critical. Therefore, there exist two critical lingéaot areas
Imitating t_he RVB picture in Fig. 2, we attempt to regard with c=1: H:JL—%‘] and H=2Jl—§~l The former(latten
the mterme_dlate pIaFeau state as a state comprising bon_ds Sfitical line satisfies{U%=0 and <%z>:§(_1)j (=0 and
nearest-neighbor sp%]palrs. One should note that the pairs ! 2 Y
contain triplet bonds as well as singlet ones because the pl
teau ha&S{)zl. From Ref. 59, the necessary condition for a
plateau state is

éﬁ)z%(—l)i). Both lines are of &=1 Gaussian-type transi-
tion in common with the spié— case(Fig. 5. On the critical
lines, the staggered susceptibili(yl)J(a(qzﬂaH) diverges
(see the next subsectiprLike the uniform-field case, any
symmetry breakings do not occur at the transitions.

S,- M, =an integer, (12)  Numerical® and analytic&#%®works show that the staggered

magnetization wﬂ%ﬁf{ (or ﬁgf;) changes continuously with

the staggered field varying. Thereby, we can confirm that the

where S, and M, are, respectively, the sum of spin magni- _ . . - -
O o) : original staggered magnetizatigr1)’ has no plateau,
tudes and magnetizations within the unit cell of the plateau g 99 g drl) <SJZ> P

state. According to this condition, relatio®), and two ef- contrary to the uniform-field cases.

fective models, the plateau state should be invariant und eV\gpsTh Oal:l{ﬂgf%utsﬁeeﬁﬁ;\tlzo;:ggg'gggéffxerlé?;g?'i?]f Ref
the one-site translation along the chain and the exchangee(ﬁ ' 9 y y b '

two chains. These allow us to illustrate the bond picture of 4. Especially, let us consider whether any mechanisms vary-

the intermediate plateau as in Fig. 7. The stgeconnects ng the_ properties of above=1 crltl_cgll_tles emerge or not,
. . : from higher-order effects. In the vicinity of each transition,
with the state(a) smoothly by decreasing the weight

H t fer to bond pict includi inalet qboth two low-lying states in the rung and the perturbative
ereatter, we rc?‘ er ? ond pictures including siNgiet anGacpain coupling part are invariant under spin rotations
triplet bonds as “RVB” pictures.

) . around thez axis of the total spin. Therefore, thg1) sym-
Next, we twrn to the staggered-field case, which has nev%etry cannot be broken by higher-order terms. For instance,

been_dlscussed IN Previous studies. In the 0-th order DPT, thgn anisotropic XY exchange interaction, which brings a mass
eveny rung Hamiltonian has th? same fqrm as k), but .._generation, does not occur. The continuoy$)dymmetry is
the qui one has the uniform field pointing to the OPPOSIe yha of the characteristic natures in thel criticality. Be-
direction to Eq.(4b).' Therefore, Igw—lylng states in odd cause the original modell) has a site-parity symmetry, we
rungs must be modified as follows: can also say that bond-alternating terms, which produce a
mass too, do not appear. As long as we focus on the strong
Y. T R _ o, rung-coupling casegl, > J), anisotropy parametey; ) will
| J1j=o0a = Dy | 1m0 2. 2 (133 not exceed the value of the BKT transition poiligcr=1.
These considerations imply that higher-order perturbations
cannot makes=1 criticalities of transitions change, although
[+)2j2000=10,0), [~ )2jz000— [1,= Dy (13D) they will modify parametersJ;;),Aq(2),Hye) 12) slightly
and generate several new but small teeg., next nearest

Consequently, projection and pseudo-spin operators are red@@ighbor interaction termsn effective models.

fined: new pseudo-spins in ogdsites satisfy the same-type ~ Using analytical tools, we can also evaluate several physi-
relation as Eq(9), in which _%sz+% (_%sz+%) andu;” (T7) cal quantities around each transition. We will discuss them in

are replaced with%UjZ—f (%sz‘%.) and _U;_r (_Tji)a respec- the next subsection along with general sfinases.

tively. Using these new tools, we can also construct effective
models for the staggered-field cases in a similar way deriving
(10) and(11). In the vicinity of the lineH=2J |, the effective Viewing results of DPTs in spié— cases(Figs. 4 and 5,

Hamiltonian is Refs. 14 and 3gand above spin-1 cases, we find it possible

B. Generalization to spin-S ladders
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TABLE |. Effective models around the highest-field linds-2SJ, . Parameter$.7;,A;,H, 1,Hs 1) are values of the effective exchange
coupling constant, the anisotropy parameter, the effective uniform field and the effective staggered field, respectivelyl Tthensitgs the
width of thec=1 critical region along théi-axis in the original parameter spack ,H), M, ; represents the possible vaIues(ﬁT]) in the
critical regionT’, andMs ; is the value of(S'))| at the transition lineH ,=0.

Spin J1 Ay Hua r My, Hs1 Ms 1
1/2 J 1/2 J-H+3J 3J 0—3 J -H-3J 1/4
1 2] 1/4 23, -H+3J 5J 3—1 2], -H-3J 3/4
3/2 3 1/6 33, -H+3J 7 132 3J,-H-3J 5/4
2 4 1/8 43, -H+3J ey 2.2 43, -H-3J 714
S 28J 1/(49 283, -H+*=4) (45+1)J S-3—8 283, -H-54 S-3

to generalize them to two-leg sp®AF ladders with external field and second-highest-field lines. Nevertheless, these two
fields (28 and (2b). Even for the spir§ case, in which§; ~ Will be sufficient to conclude that the sp@icase has &
means a spiis operator, the rung Hamiltonian is solvable critical regions(points in the unifornistaggereyifield mag-
through stategS,s?);, in which S runs from 0 to B The netization process. Note that in the_se two ta}bles, we use the
number of independent statés, 5%, is $25 (2m+1)=(2S ~ Same symbolJi),Ayz),Hy 12) in the spin-1 cases to
+1)2, and the table of Clebsch-GordéBG) coefficients(or ~ represent effective models.

the Wigner-Eckart theorepcan determine the relation be- From these tables, we can extract the following informa-

- G & tion on the GS of the spi-case(i) For uniform-field cases,
t‘l\',\rlleeegi tzirrelnaer:d tr;? ti?iﬁarfgf%%r-l?;nal two spie;, S, ). the critical areas around the highest-field line and second-
9 gy ! highest-field line, respectively, are

‘%S(S +1)-J,S(S+1)-HS? (15 2SJ, -J<=H=<2SJ, +4S], (169
where we consider the eveénrung. In a subspace with a 8%+ 2S-2
fixed value ofS, the GS of the rung i$5,S);, although at (2S-1)J, - 4S-1 JSH<(25-1J,
H=0, all (25+1) states are degenerate. Because the GS en-
ergy of the above subspace goes down with the sldpe - + 245 - 145+ 1J
whenH is increased, the GS of the full space h&level 4S-1 ’
crossingsH=J,,2J,,...,2SJ,. (This is a general result of (16b)

Fig. 6) Hence, one readily expects that the sBicase has

2S critical phenomena in the uniforistaggeregiield mag- which determine the width of the critical regidn in the
netization process. The first-order DPT near each leveltables. The plateau regions exist outside the regionas
crossing line gives the effective model, which is the samewith the spin-1 case(ii) The larger the magnitude of sp#
type as the spin-1 case: we always obtain a %pmxz becomes, the more the widih increases as a result of the
chain with a uniform (staggeref field for the growth of the effective couplingry,). The effective model
uniform(staggeregfield cases. Therefore, even in the s@in- approaches a Spi%l-XY chain. Because plateaus are charac-
cases, similar conclusions as the spin-1 cases can be avairistic in “quantum” spin systems, the growth Bf or the
able. In principle, one can obtain effective models in all vi- decrease of plateau regions, means the system approaches
cinities of level-crossing lines. However, derivations of thethe classical vector spin system. On the other hand, in the
models associated with lower-field crossing lines must calease fixingS, the highest-field critical regiol’ is smaller
culate numerous CG coefficientsyntheses of spinsTables than the second highest-field one. Therefore we expect that
| and Il depict only the effective models near the highest-the lower-field critical regions are largéiii ) Like the spin-1

TABLE Il. Effective models around the second-highest-field liks(2S-1)J, . Parameter$J,,A,,H, 2,1, My 2,Hs 2, Mg o) have the
same roles a&7;,A1,H,1,I",My1,Hg1,Mg ) in Table |, respectively. Note that the sp}nease does not possess the effective model.

Spin J2 Az Huz2 r My,2 Hs2 Ms,2
8 1 19 1 1

1 4 3/16 J—H+3J 2 0—13 J -H-3J 1/4
3/2 =N 5/48 23, -H+3J 2 1.1 2, -H-3J 3/4
2 2 7196 33, -H+3J 5 13 3J,-H-3J 5/4
5/2 e 9/160 43, -H+3J 2 2.2 43, -H-3J 714

8S(25-1) 451 45-3 3289-125-1 _ _1 _ —H-438 _3
S B2, TP (2s-1)3,-H+* 52y E|EIEL) s1.s-5 (25-1J,-H- T S
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case, all intermediate plateaus must vanish at a sufficiently 1 1 12
weak rung-coupling region(iv) For the staggered-field Rip = o 1—7—TarccosA1(2) ’
cases, the transition lines with the highest field and the vem
second-highest field are, respectively,
H=2SJ, - (45— 1)J/2 (173 _m 1Ay J, (20
= - - , v -5 .
. @7 2 arccosAy 12%
H=(2S-1)J, - (4S-23)J/2. (17  Inserting Eq(20) to Eq.(19), we see that whe8 goes from

Il critical oh d ivol one half (ong to «, the pseudo-spin magnetization curve
(v) All critical phenomena do not involve spontaneous Sym-gioheli e | the susceptibility19)] at the midpoint of thesec-

metry breakings as with the spin-1 case. ond) highest-field critical regimefi.e., at H,1=0] de-
Now, let us investigate the physical quantities around eacfgre(];seg monotonically from gﬁe[‘].:.(,) 18 4X”§£21) (0]095 4
criticality in more detail. If we represent the effective model y o7 = '

_l P .
near each transition with thesecong highest field using the xJ7) o 1./27TS‘J (1/47SJ. Fixing S we also fmgl that
pseudo-spin operatad;® (T{") in a similar manner of the Xl(_Hlezo) is larger thanXZ(HUvZZO)'_for example, in the
preceding subsection, the original spins are projected out apin-1 _case, x;(H,1=0)=0.119xJ" and x,(H,>=0)

follows: =0.0954x J™1. These imply a reasonable fact that the larger
I' is, the smaller is the magnetization slope Hty,)=0.
§ —-iutes-i S o (-DWsuUr Sub tly, let ider h tizati h
' — — 3V o §;— DSy, ubsequently, let us consider how magnetization approaches
the value of the plateasaturation. Without utilizing for-
S25-1) mula(19), studies of the C-IC transitiéfr*3have shown that
_1lyzyg_3 = _ ¥ i i At
;- -3T+S-5 S — (-D'24 / e T, near the saturation, the magnetization behaves as
(18) (UD(or (TH) ~ [Hilyz) = Hya M2, (21)

where we consider evejnsites, again. For the staggered-field Where[H{';, | is the critical valueJy;)(1+4;).%° Hence,
cases, as Eq¢13) and(14), we must redefin®j* (T]f”) in all in the magnetization process, the original magnetize(ﬁﬁp

odd+ rungs and defin&? (T%). The relation(18), of course, ~lso behaves, near each plateayti”~H|'% whereH" is
contains Eq(9), and provides the magnetic relation betweenthe critical field of eachc=1 region. This power law is a
the effective and original models. As mentioned earlier, the!niversal property. That is, it is independent of the spin mag-
low-energy properties of the effective models are elucidateditude S and the level-crossing line we choose in the two-
well by several analytical methods. Therefore, the combinaSPin problem of the rung. The spin-wave analysis can exactly
tion of the relation(18) and such methods can provide accu-Calculate the gap in the saturateq state of .each. effective
rate predictions of the original spi&ladders. model. ForH,, 12| >[H{ o |, the excitation gap is estimated
First we discuss the uniform-field cases. According toas|H, 1|~ |Hy'y2)]-°° Again, translating this into the original
Bethe ansaff®%?and Abelian bosonizatiot;***4>°the  model, we see that whei is moved just outside eaatr 1
low-energy physics of the massless ateR )| =< J2)(1 region, the gap grows gsl—H®|.67
+A;(») is governed by the free boson field theory with the Performing the same spin-wave analysis in the saturated
spin-wave[massless excitatigrvelocity vy, and the com- state of the original spi® ladders, we can determine the
pactification radiugy,). (We refer the reader to Appendix A Upper critical uniform fieldH.. The field gives the boundary
for an explanation of Abelian bosonizatioruUtilizing their ~ P€tween the saturation wit)=2S and thec=1 phase just
knowledge, one can derive the uniform susceptibilityunder it. The result is

63
formule® H.=4SJ+2SJ, . (22
o = KU?) (or a<TjZ>) _ _ a;) . (19)  Surprisingly,H. perfectly agrees with the upper critical field
dHy 1 2/ 2m)Ripvi derived from the effective model around the highest-field

line [see the regiolil6a)]. In other wordsH, is not modified
wherea, is the lattice constant. Because the effective fieldpy the higher-order perturbation effects of the DPT. For the
Hy,12) varies linearly with the original fieldH (see Tables |  FM-rung side, the spin-wave theory implies that
and l1I), the relationxl(2)=%(&(S{p/&H) is realized for the
magnetization process varying ort;%* at least in the first-

order DPT. One thus can regard all the behavioxg$) as  \hereH, does not depend upon the rung couplihg Equa-
those of the original susceptibility, except for the differencetions(22) and(23) are a generalization of the critical fiett},

of the factor%. The linear relation between the effective andin the spin% case(Fig. 4).

original fields is often used below. The Bethe ansatz can Next, we shift our focus to the staggered-field cases.
determine the radiuB, ;) and the velocity, ) as functions  When the effective staggered fiektk 1, is vanishing(i.e.,

of Ji(2), Ayz) andHy 12). Especially forH,, ;12)=0, the radius  the GS is masslegsthe bosonization translates the pseudo-
and the velocity are represented analytically as spin operator to the following boson representation:

H.=4SJ (23)
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Uniform-Field Case Staggered-Field Case

(- DA sin(%)’ (24) gxl) 'y, |(_|a2) / / / /
\ &t

2%,

Uor T9) =
J J WRl @

where ¢(x) [x=] X ay] and A, are the boson field and a
nonuniversal constafi$; "°respectively. Here we neglect the

I

i 7-50 i s
so-called Klein factof: From Eqg. (29), a f|n|te_ Hs12) 450| 1 4544254, o= region c=1 curve
leads to a perturbation term proportional to

Hs1(2) SiN(¢/ Ry () for the effective boson field theory, and it 0§ JL 05 J1
then /l:l)Qecomr(]as ?hsme-cl'.sordg.n merI. thf/d\f/equtfx opc(jarato <S1Z,i+322,,-> B1) <S1Z,j+322,j> B2)
;m(¢ 12) has e.scalng imension ) =1/4mRy,) an_ o5 | saturstion 55-1/2 -

is always relevant(i.e., X;;<2). Therefore the scaling g 4 /_/_ .. p B
argument tells us that any small fieldd,(,) yield an exci- e

tation gapm ;) and the pseudo-spin staggered magnetization

(23 # 3/2 J/<— transition point
as 1 /—/_F 12— i
0 0

12-
My ) ~ [Hs 12| 127), (259 0 H 0 o) s H

FIG. 8. Paneldal) and (a2) are, respectively, the GS phase
diagrams in the uniform-field cag@a) and the staggered-field one
. ; (2b). Panels(B1) and(B2) are, respectively, the uniform magneti-
where . i . Hs1 <0, we t‘_r’lke_ the replacemen(—l)’ zation curve in the cag®a) and the staggered one in the cé2b).
—(=1)"* in Eq. (25b). SubstitutingRy,) in Tables I and Il |y he panel 82), we denote the magnetization of the ejenng.
for x;(z, we find that the larger the valu® becomes, the
slower the growths of both the gap and the magnetization

become. In other words, the singularity of the staggered Suéz;'long the chain are subject to taking the singlet state and all

ceptibility  AUD/dHsln_, o (Or  KT)/Hs2ln_,.0) de-  plateaus vanish in the sufficiently weak AF rung-coupling
creases withS increasing. Particularly, in the [imi&—c,  region. From these, in order to build the “RVB” picture for

My~ [Hs 12 and|<ijZ>! (or |<'~rj3|)~|Hs,1(.z>|, which means  the plateau witN§Z>=~S in the spinS case, we should per-
the staggered susceptibility does not diverge at the “transicyrm just the following two proceduresi) puttingétriplet

tion” line Hg2)=0. These can be again interpreted as a sig ~ . e
of the approach to the classical spin system. On the othgorOnds and2S-$) singlet bonds per a rung, an) ‘join-

o : _ ing” two nearest-neighbor rungs by singlet or triplet bonds,
hand, fixingS, one obserVNeZs that when the fields, ﬁzs'z not to break the translational symmetry along the chain. The
are small enoughmy and|(Uf)] are larger thamy, and[(T})|,  plaquette states of the lowest panels in Figs. 2 and 7 are
reSpeC“Ver. We therefore antICIpate that the transition W|trhvai|ab|e for the procedure'i)_ For instance, two plateau
the higher field has a stronger singularity. In the spin-1 casesiaieg with<$=1 and<§z>=2 in the spin% case are de-

we have my~[Hg %88 my~|Hg%9% KUH|~|Hs1|*™®  scribed agA) and(B) in Fig. 9, respectively. Similarly, the
and |<'~er>|~||-|5’2|0-806_ In common with the uniform-field plateau With($20 could be captured by the set of a PSS
casesHs (o) has a linear relation withi. In order to translate ~ State and a spin-liquid sta) in Fig. 3. Following the above
all consequences into ones of the mo@Bl in the original ~ SPeculations, one would easily produce “RVB” pictures for

staggered-field magnetization process, it is sufficient to re@ny plateaus.

~ ~ . . Within the “RVB” picture, every time the GS moves from
place Hs'l@ and <UJ'Z> (or <Ti>)’, respectively, withH anq a plateau to the plateau just above it withincreasing, one
(§))~(=D'Ms 1), WhereMs 5 is the staggered magnetiza- gingiet hond along each rung is cut and exchanged for a
tion par site at each transition lifsee Tables | and )!
Summarizing all the above results about the sprases,
we can draw GS phase diagrams and the uniform and stag _@

(Ulor (T ~ (= DHg g PreZ 2], (25b)

lateau condition12), and the expectation that the bonds

2
“:.)

A

)

‘a?é—
gered magnetizations as in Fig. 8. Notably, Fig. 8 is valid in (A) ‘:f \‘2’/ \‘é'/ \T/ \_;,—
the strong AF rung-coupling limit. N A M M 2 ]

. . . . ‘e ’/‘\ /‘5‘\ /./‘\ /’I

Utilizing solutions of the Bethe ansatz integral equatidns, _Qg/ NG NCOZZERNG )/ é®
values of the nonuniversal constamtg,,'*"° etc., we can
serve more quantitative predictions. We omit them here. @ @ @ @ @

Finally, we speculate the short-range “RVB” picture of the (B) - ~;r Y ~ ~;:—
plateau states in the uniform-field case, without any compu- —§~ I I - s

: . . ; . el ? @) ‘o’e) (@ % @) nnl % @\l % @
tations. The spirs case has &+ 1 plateau regions including QoY N OO /AN )

two trivial plateaus: the saturated state and w0 state.
The guides to guess the “RVB” pictures are the effective FIG. 9. Expected “RVB” pictures for the plateaux wigB)=1
models, in which translational symmetry does not break, theA) and(S)=2 (B) in the sping case.
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massive gap massless twice degenerate GSs. On the other hand, the LS point sepa-
d"?]‘;gzed tnmhzgéed rates the Haldane and massless “trimerized” pliases, s).
p<—| /\ |__—p> The transition belongs to a generalized (SUBKT type N
— e N ability Features of the Haldane phase are the existence of a finite
-1 0 13 1 8 gap between the unique GS and the isolated spin-1 magnon
i : - : mode, and a “hidden” AF order detected by a string order
TB point |(Heisenberg) (AKLT)( Lifshitz | (Lai-Sutherland parameter:
8=0.44)| (massless) '

(massless) ———
| |

Haldane phase

0f=~ lim (SErntsy,
li—kl—
FIG. 10. GS phase diagram and the schematic gap behavior in =(0?, 27

the model(26).
which is the same form as the string param&8a) in the

. l . fAL
triplet bond. This phenomena is reminiscent of successivép'n'zgladqer' except tha" is a spin-1 operator. The
transitions in the spit® bond-alternated chafff:45 7t AKLT >* point &,=3 is noteworthy because its GS is ex-
actly identical to a valence-bond-solid state. Moreover, the

point 8, is the onset of an incommensurability: {@>)
IV. WEAK RUNG-COUPLING LIMIT 0> b4, the real-space spin correlations has an incommen-
surate fluctuation, that connects smoothly with the three-site
period one at the LS point.

Asides from points above, recent studies have described
there are two characteristic point§;s=0.4 (Ref. 84 and
Tifshitz point &, =0.448282n the region -1 5< &y the

omentum of the lowest magnon excitation stayskat
=/ay. However, on the right side afy, it has a deviation
from k=/a,, and splits into two incommensurate momenta,
which smoothly reach the massless pointsm+2a, and
-3m/2ay at the LS chain, respectively. At the Lifshitz point,
an incommensurability appears in the spin structure factor.

This section describes the spin-1 ladd®runder the op-
posite condition to the last sectiod®|J, |,H. We start from
the limit J, =H=0. There, the ladder becomes two decou-
pled spin-1 AF Heisenberg chains. The Haldane gap of th
single chain complicates the mapping to some field theorie
Nevertheless, two famous mappings exfstHaldane’s
method based on a non-linear sigma mod¢LSM)*° and
the method applying a NAB®-25>We will use the latter in
this section. It is useful for treating several additional terms
in first principle, by the perturbation theory and the RG pic-
ture.

B. Effective field theory

A. Critical points of spin-1 AF chain Reviewing the last paragraph, one notes that the TB point

The application of the NAB to 1D spin-1 systethas.73.74 in the model(26) can be adopted as an underlying point to
is supported by low-energy properties of the SIOin_lconsider an effective field theory for the Heisenberg chain

Takhtajan-BabujianTB) chain’>’®and the following spin-1 (6=0). It is likely that the LS point is also available for the

bilinear-biquadratic chain: field theoretical description. However, as mentioned already,
there are three points changing the low-energy properties be-
Hs=JD, [Q '§+1+ 5(% .§+1)2], (26)  tween the LS and Heisenberg points. Therefore, the LS point

i

is not appropriate for deriving the effective theory of the
- Heisenberg point. This subsection provides the effective field
whereJ>0, § is the spin-1 operator on the sifeand the  theory for the spin-1 laddefl) in our notationt’
TB chain corresponds té=-1=6rg. This subsection pre-  The level-2 SW2) WZNW model, which describes the TB
sents a brief review the mode26).”” point, has two primary fields: the >22 matrix field gy,
The efforts of several peopfe®’ since the late 1980's [m ne {1,2}] with left and right conformal weighté2 , )
have advanced our understanding of the ma@@6). In par- 544 the 3¢ 3 matrix fieldd,,,[m,ne{l,2,3] with weights
ticular, the low-energy properties in the regids-0 and (l,%). This WZNW model is identical to three copies of

o<1 h_a"? been el_ucidgted well. The GS pha_se diagf?‘m "?mrcﬁassless Majoran@eal) fermions, as the WZNW model has
the excitation gap in th_|s region are summarlzed asin I:'9(323/2 and theMajorana fermion theory, which is equivalent
10. At I.east three s_pemal points exist .as[de_ from our targety, 4 2D critical Ising model, has=1/2. This identification
the Heisenberg pc_)mp‘—o. The TB chain is integrable and allows a discussion of low-energy properties of the TB chain
has massless excitations with the wave numiersment. using thec=1/2 CFT, instead of the WZNW model. In
k=0 andw/a,. The pointds=1, called the Lai-Sutherland imaginary time formalism where=it (t is real timg, we

(LS) model® is also integrable. It has massless excitationq~I the fermionic Eucli tion for the TB chai
with k=0 and +27/3a,. The low-energy limits of TB and LS ave the fermionic Euclidean action for the chain,

points are, respectively, equal to the level-2(UNZNW

modeP®-92(a CFT) and the level-1 S{B) WZNW model. On S = f drdxu[ 98] + &Rl (28)
the 6 axis, these two points are located in a quantum phase

transition. The TB point separates the Haldane ph&se where§(z) and &(2) [a=1,2,3 are, respectively, the left
<1) and the massive dimerized phase< &), which has  mover of a Majorana fermion with weighﬁé,o) and the
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right mover with(0,%). The velocity of the excitations is  field theory for the Heisenberg chain beyond the TB chain,
the order ofJa,.8° 952Here we introduced the “light-cone” one must add the following two perturbation terms to the
coordinate:z=vr+ix, zZ=v7-ix, d,=3((1/v)d,~id,), anddy ~ action(28):
=%((1/v)ﬁr+iax). The repeated indices are summed. In the
operator formalism, the fermions satisfy the following equal- im& & - NJNJR. (34)
time anticommutation relations{gi(x),gz(y)}:éabéaﬁﬁ(x
-y). On the top of the action, there exist correspondenceds long as the attached terms are restricted to relevant or
among the WZNW primary fields and fields of tiee1/2  marginal ones, only these two terms are admitted and possess
CFT. In accordance with Refs. 17, 74, and @6,(z,2) com-  spin rotational(see Appendix € and one-site translational
prises a bilinear form o&(z) and £&(2), which indeed has symmetrie$® From the forms of Egs(32—(34) and the
the Welghts(z,z) In addition, from Ref. 17, we have Hamiltonian for the TB action28), we can infer that the
3 time reversal transformatior(ﬁa,i)ﬂ(—ga,—i) is mapped
= - to (§,& k,i)— (&, &, —«,—i). Similarly, we infer that
Omr(2,2) EO(T“)m”g“(Z’Z)’ 29 link-parity transformationS'—S%,, and site-parity one
) _ ) §—¢, (§ is fixed correspond to[&(x),&x(X),9(X)]
Where(7o)my= dmn andr » s are the Pauli matrices. The fields _,[+§3( -x), +&(=x),9(-x)] and  [&(x),&X),9(¥)]
G.(z,2) are determined as —[FE(~X), ££(-x),—g(-X)], respectively®
Go= 010203, Ga= i0aflaritiass: (30) Because the Heisenberg poit=0) is far from the TB
point (6=-1), m and\ are phenomenological parameters. It
where 0,(2,2) and u,(2,2) are, respectively, the order and js known that one may take>0 and\ >0 in the Haldane
disorder fields in the critical Ising modeb=1/2 CFT).  phase(Fig. 10.2° The inequalityA >0 means that the term
Here, we use the cyclic index+3=a. Both fieldso, andua  -\J232 is marginally irrelevant. As shown in EB6), the
have weights3s, 7¢). An imaginary uniti is embedded in Eq. |sing model picture tells us than>0 indicates that each
(30) to let the fieldg be a SW2) matrix. The SU2) current  |sing model is in the disordered phage,)# 0. The mass
operatorsJi(z) and Jx(2) in the WZNW model can be de- parameterm must contribute to the Haldane gap. Conse-

fined by fermions as follows: quently, three bands built @f and £ can be regarded as the
i o i spin-1 magnon modes in the chai@6). Running from
P(2)=- Eéabcffffy B2 =- Eeabggffq, (31)  =-1to =0 allows the velocity to be renormalized. How-

ever, it still has the order afa,.2*1%We will use the same

where e, is the totally antisymmetric tensor ang,;=1.  symbolv for the renormalized velocity. In addition tg for
The currents]] o(x) satisfy level-2 S(®2) Kac-Moody alge- the other parametexsn, A, etc), hereafter we use the same
bra. Through the NAB*2597 the spin operator in the TB symbols whether they contain any renormalization effects or

chain is translated into the following sum of the uniform andnot. It is widely believed that the formul@2) is applicable

staggered parts: even for the Heisenberg chain because its low-energy exci-
tations still stay around the uniform poikt0 and the stag-
133 ~ P+ B+iCo(- 1 Trl(g-gh 7] gered oner/a, (see the previous subsectjon
Qg Heretofore, we have obtained an effective field theory for

_pa, ~ the spin-1 Heisenberg chain. This framework was first pro-
=0+ Jp+ Col= Divattasttase, (32 posed by Tsveli® in 1990. Utilizing Eqg.(32), we easily
where bothC, and C, are nonuniversal constants. On the obtain the field theory for the spin-1 laddgl) without ex-
left-hand sidea=1, 2, and 3 correspond tq y andz, re-  ternal fields. The action is

spectively. This formula connects smoothly with the

bosonized spin density of the spintadder?” From Eq.(32), -

one notes that the one-site translation cauges— —g(x Sad:STB[éavgg]+STB[§aa§%]+J drdxim& &z - NI

+a).2425

Here we must mention a subtle point. The OPEs in Ap- +IMEER — NIEIR+ I, ag(JI2 + JEI2 + 3832 + J233)
pendix B 2 show that a disorder field, has an anticommut- ) - -
ing characterso far we implicitly think of it as a bosonic + C1J | Q0KKTaplar1haroTafbar1 a2l (35

objec). One solution to maintain it and the Hermitian prop-

erty of the staggered part of the spin densi8?) is to  where quantities withouiwith) an overtildé” represent fields

modify the staggered part as of the chain 1(chain 2 with 1=1 (1=2). We stress that the

o ko (33) Hamiltonian for the ag:tiorﬁad is invariant under §pin rota-
aflat1fat2 abatifia2: tion, one-site translation, time reversal, two parity transfor-

where the new parametar has the same properties as anmations and exchanging the chain indices.

imaginary unit:x* =-k and k¥>=—1. We will sometimes use On top of the rung-coupling term, it is possible to trans-

this modification below. late the other terms into field-theoretical expressions. The

Making full use of the above relations, one obtains low-uniform Zeeman terni2a) and the staggered on@b) are,
energy properties of the TB chain. In order to achieve theespectively, mapped to
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~y o~ k k
z—Hfdx(Jf+J§+ B+, (369 e(k) e(k)
== C]_H f dX(KO'g,lLl/.LZ + }53711171,2) . (36b) Haldane ga kF /L%(K)
0 k |o -0~ k
H=0 H<m H>m X 7
An advantage of the field theory used here is that the uniforn, Dirac fermion

Zeeman t.erm Is translated into the fermlonlq quadratic fqrm FIG. 11. Band structures of the spin-1 AF chain with a uniform
(368, which can be treated nonperturbatively. Equationg
(36b) is not invariant under time reversal and one-site trans- '

lational operations.

Other considerations regarding symmetries between the <¢R(k) o (k)
spin-1 ladder and its effective theo($5) are found in Ref. (k) YK )
17.
CR(k)> ( d(k) )
. ) =U(k , 39
C. Uniform-field case (CL(k) Us(k) d'(- k) 59

Sections IV A and IV B complete the main preparation _ - 1/2
dealing with the spin-1 laddef). This paragraph presents a \;VE?ES(I() - IZ) (]E)/%}[lzz;(i;/][l%e(g((eg )F k_v&](k)' LZ/ 2821*22
discussion of the ladder with a uniform Zeeman tei2a). _.‘[ )+ ko [2/[26(K) 112 : d3 (k)liﬁi )z+ﬁ]’zl]21/z 3 21762_
We clarify what critical phase emerges when the uniform__ L&) + v € and el ={kv » We o
field is applied. It is easy to infer that a weak rung couplingtaln the diagonalized Hamiltonian,
does not collapse the Haldane gap of two decoupled spin-1 dk
AF chains(see the Introduction and the next subsegtion Hchainlzf 2—[e+(k)¢1(k)¢+(k)+E-(k)l//f(k)l//—(k)
Moreover, in the single chain, a sufficiently strong uniform ™
field engenders &=1 critical state?®191-105Therefore, we + e(k)d'(k)d(k)] + const, (40
take the following strategyi) We review the effective theory
for the c=1 critical phase appearing in the spin-1 chain withWheree.(k) =e(k) £H. The three bands(k) and e, (k) repro-
a strong uniform field® (ii) Then, adding the rung coupling ducé the Zeeman splitting of the spin-1 magnon modes.

terms perturbatively, we investigate the low-energy physicd Neir structures are given in Fig. 11. When the uniform field
of the ladder(1) with a strong uniform field. exceeds a critical valuen, a Fermi surface appears in the

Following the above scenario, first we explain how the!OWest bande_(k) and its low-energy excitations then can be
c=1 state is described within the field-theoretical schemeCaptured as a massless Dirac fermion. This corresponds pre-
We neglect the four-body interaction, theterm. One may Cisely to thec=1 state we are looking for. Here, the mass
interpret that it vanishes via the RG procedure. Actually, it isParametem, after including all the renormalization effects,
believed that the effective theory without theterm is suf- ~ ¢an be identified with the Haldane gap.
ficient to describe the low-energy physics of the Heisenberg Now, in this strong-field regiotH >m), let us recover the

chain? In this case, the Hamiltonian for the chain 1is A term, and take into account the rung coupling. Provided
that we focus on low-energy physics, expanding the modes

- o . ) . . Y. (X) and ¢_(x), respectively, aroundk=0 and the Fermi
Hehain1= | dXiv (Y dih — g dthr) +IM(PLR ~ rifn) momentumk=kg=(H?-m?)Y/v will be allowed. Therefore,
we obtain

FHR* vl +i2(8 08 - 08D +ImEE, | |
Yribr+ I 2§E & - vk &R wR(x)~%g&(x)+e'kFXU+RT(—X)+e_'kFXU_LT(—X),
J

(37
where, for convenience, we introduced a Dir@ompley i i -
fermion P (x) =~ —Ew(x) ~ ie*PU_R"(- x) —ie **U,LT (- x),
L] \r’
(w)_ 1 <§é+i§§) - (4D
w) 2\g+ig) where U,=U(xkg)1,=m/2H[H+(H2£mA)¥?], R(x) and

o ) ) ) ) L(x) are, respectively, the left and right movers of the Dirac
The Hamiltonian(37) is a quadratic form. The uniform field tormion [ (x) ~ eX*R(x) +e KL (x)]. In addition, we de-

mixes two species p and & , while it does not affect o4 the field dk/ 27 . (K &t () i (K) = (dlx ot
&  Through  Fourier  transformations ¢y g(x) ined the field yx) as J(di/2m)e,(K)y(K) k)= fdxy

. (12 " i aldE B
= [ can(dk/ 2m) @y o(K) and & (%)= freo(dki2) X ( SU /2m)#2+m+H). Similarly, we introduce fields, R
x{ec q(k)+e e (K} [& (0 =& R'(x)], and Bogoliu- andy in chain 2. Substituting these new fields for the effec-
bov transformations, ' Y tive field theory (Hcnaintt Henainzt N term+rung coupling
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we obtain the effective Hamiltonigid1) under the condition =d,¢./v’ (6.) is the canonical conjugatelual) of the boson
H>m. (Because it is too lengthy, the explicit form is putin 4  New parameters ifi,, are
Appendix D) In the process, using Eq&tl), we carefully -

approximated mass terms, interaction ones and curdgpts A= v Luzuz N L(Uz U2 (469
while conserving the Hermitian property of each term. More- 2 27 77 Am T T
over, we dumped all terms possessing some rapid fluctuation
factors exgtinkex) (n is an integer. The action toward the V' N oo N oo s Ji8y o o
Hamiltonian(D1) is written as B. = Pl ZTU+U— - ZT(U+ -Ud o (UL +U9)7%,
St=m=SULRLRI+ (&, E]1+ Sy 9] + SLILRLR] (46b)
+SLRLRE E1+SILRLR ) 2 A J
ol ~ ~§ ! S?lt[ e C= \ﬁ[zxagmu_ =2 0uUs U.)?+ —;aO(UE +U2) |,
+ SWELE 1+ ShY U] + Suag (42 i oo
C
whereS;, S, andS;qdenote the free part of each field, the
four-body interaction terms and the staggered part of the J,a
rung-coupling ternfi.e., the final term in Eq(35)], respec- Cy= 2ﬁuiu%, (460)
tively. Integrating out massive fields, €2, ¢, andy leads to “
the effective action containing only soft modesR, L, and Cy o C2J ao )%, (460

R. Through a cumulant ex ansion, it can be expressed as . . .
g P P where a in EqQ. (46d) is the cut-off parameter in the

SHLRLR] =S+ Sh+ (Snom + 2[(Som = (S + -++,  bosonization formulaA3), 8;=i(& &u =i{€&),>0 and
@3 8, =(wHu="H>0. Both &; and 5, are O(1/ag). Ex-

_ cept for these two, the averages of products of two massive
where szzizzsﬁﬁﬁgtag and(---)y indicates the expecta- fermions vanish in the first cumulat$,),. One should note
tion value of free parts of four massive fermions. Because us)y=(us)m # 0 and(oz)y=(a3)y=0. In the derivation of
the Abelian bosonization is useful for interacting Dirac fer- Eq. (45), for simplicity, we assume that the Dirac fermion
mion models(see Appendix A we introduce the boson bands are always half-filled. From this, for example, we em-
fields ¢ ande from the Dirac fermiondL,R) and (E,ﬁ), ployed the relatiol."L-LLT=2LTL-§=2:LL:, where the
respectively. Applying the formuléB10) and the known re- order of & is the inverse of the fermion wave-number cut-
sults of the two-leg spid-ladder with a uniform fieldrefer ~ Off, and the symbb: : means the normal-ordered product.
Egs. (29) and (32) in Ref. 36, we can bosonize the Ising- Observing the HamiltoniatD1) carefully, and using the op-
field product ofSy,gas well as the fermion fields. As a result, €rator product expansid®PB in thec=1 andc=1/2 CFTs

Siagis Mapped as follows: (Appendix B 2, we find that the second cumulant yields new
, interaction terms cd4s8w6h.), cog2\V8m¢_r) and
Cl‘JLaOKKO-aIU'a+1/-La+20-aIU'a+1/-La+2 COS[ QET(¢—,L(R)+3¢—,R(L))] from <(32m)2>M and <Szntssta§?M'

[Here, ¢, | (g Is the left(right) mover of 6,.] This means that

~C4 T cog\m(0- 0
! LaO{’%’% Lyl )] the second cumulant does not produce any vertex operators

+ %(;3;}3 COiw"TT(qS—E)]} ha.wing the s.yrr?metricl l?osort$+, 6, and ¢, ). ToO verify
L . irrel 44 this result, it is sufficient to note that the presence of
uctuating or irrelevant terms,  (44) expli\8m,), expli\86,), exii2\8md, ) and

whered (9) is the dual of the boson field (%), and the first €XPi2V87¢, g) requires, respectively, fermion four-body
(secongl term on the right-hand side is generated fromsxhe termsL'RL'R, L'RIL'R!, L'LTLTL" andRRRR. It is expected
andy (z) components of the rung-coupling staggered partthat except for the above vertex terms, relevant or marginal
The result (44) is also supported by the NLSM interactions do not emerge in the higher cumulants.
approacH_02y104The final ﬂuctuating or irrelevant terms may Besides the discussion related to the epriCit COUnting of
be negligible in the low-energy limit. From Eqei2)—44),  Vertex operators, the Hamiltonigb1) and the cumulant ex-

up to the first cumulant, the effective acti®y yields the Pansion have the following four remarkable poiritsAbove
following bosonized Hamiltonian: vertex operators corresponding to some four-body fermions

occur only through the rung couplingneaning that thex
term does not violate the=1 phase in the decoupled chpin
(i) We can apply an argument in Ref. 59, which cleverly
— — employs the bosonization and symmetries of spin systems.

+Cycog\2mh_) + Cy_coqV8me_)], (45 From Appendix C, the (1) transformation associated with

_ i i ~. = the spin rotation around axis is given byy; g— z//L,Re“P (¢

where we define the symmetric boson fiekd=(¢+¢)/v2 s a real numberin the field theory, which accompaniés
and the antisymmetric onep_=(¢-¢)/\2, and I, —L'e¢ RT—R'e® and y— y&* via Eq. (41). Of course,

Has= f AXATI? + B,(3xp,)? + C by + ATI% + B_(d,p_)?
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fields with an overtilde also receive the same transforma H=2J-J H=J1+11J/3

H=2J 1 +4J /7 (intermediate
plateau

tions. In the boson language, they correspond to a shift of th H
symmetric dual field, — 6, +constant. This (L) symmetry :‘jsatumed phase \
8J H=J1-8J/3
Yt

hence prohibits the emergence of any vertex operators wit
the dual fieldd,. Similarly, let us consider the one-site trans-
lation. As one can see from Eq41l), it causesL'(-x)

— LT(-x-a,)ekF and R'(-x) — RT(-x—ag)e*F®. They are
mapped t0¢,(X) — b, (x+ag) +212K=a,/1, Wherer is the
compactification radius in the=1 theory considered now. It Y
must be close to the value of the massless Dirac fermiol -
1/\4m (see Appendix A Vertex operators witlp, are there- .
fore forbidden, except for those whegebecomes some spe- g = -

cial value. These prohibition rules are actually formed in thechain dimer
above counting of vertex operators. One can confirm that _ . )

U(1) and one-site translational symmetries are maintained in F!G- 12. Schematic GS phase diagram of the spin-1 AF ladder
the Hamiltonian(D1). (iii ) Because the correlation functions (1) With the uniform Zeeman ter2a).

of massive fields decay exponentially, no long-range interac-

tion terms emerge in all the cumulants. For instance, thgowerful as recovering any masslefsmodes in the present
correlation lengths of two-point functions fgf or ¢ are at  case. On the other hand, for the symmetric part, the linear
most the order ofmay) ™ X a,, wherem has the order of the term Cd,¢, is absorbed into the quadratic part by the shift
Haldane gap(=0.41),2%¢ and ma, (~Ja,) must be a con- ¢:+— ¢.+Cx/(2B,). From these results, we conclude that for
stant in the present scaling limit. In fact, the correlation@ strong uniform fieldH>m), only the ¢, mode remains
length of the spin-1 AF Heisenberg chain is only about sixmassless and@= 1 phase is realized, irrespective of the sign
times as large aa,.1°® The connected correlation functions of J .

Ji

of Ising fields o3 and ug also decay exponentiall)? (iv) Finally, we note the limitations and the validity of the
From(iii ), roughly speaking, the expansion can be thought ofmethods used here. The fermion band width in the effective
as aJ, /J expansiort? theory (37) is expected to be smaller than or equalagl).

From all the considerations below Eg5), when the rung Hence, when the uniform field becomes too strong, such as
coupling is sufficiently weak, the bosonized HamiltonianH=J, it is doubtful whether the theorg87) is valid or not.
(45), possibly with vertex operators of antisymmetric fields Furthermore, for such a strong-field case, it may be neces-
only, could be adopted as an effective theory under a strongary to take into account other low-energy excitations. Mean-
uniform field H(>m). Following a standard prescription, we while, the cumulant expansion is not reliable well whén|

perform a Bogoliubov transformation, reachesO(J). For the derivation of Eq(45), we used the
1 - assumption that the Dirac fermion bands is half-filled. Re-
d.=—do,, Il.= \*"Kiﬂiy (47) moving it does not influence the main results presented in

- VK, ) this paragraph. It merely changes parameters in(&§). a

whereK, =vA/B,, and the canonical relations are Conserved:b't'

[6:00,TL.(y)]=[$1(x), II4(y)]=i 8(x~y). From the view of
new boson f|e|d$¢;'H;), interaction terms, D. GS phase diagram of the uniform-field case
la— 4\ — a1 1/ The strategy of the preceding subsection is not suitable
Cos\8m¢.) = codVBmK_¢-), (483 for determining the lower critical uniform field, while we

have already known that the lowest-excitation-gap profile of
cod\276.) = cos( A /&Tal), (48p)  the spin-1ladder is given by Fig. 1. Furthermore, the lowest
K- excitations must consist of a spin-1 magnon trip[&this
expectation is trusted at least for the strong AF or FM rung-
— 8w , coupling regions. Moreover, from our effective thegexci-
cos(\’81-r¢_)=cos( K_¢')’ (489  tations of fermions]  are interpreted as spin-1 magnon
- excitationg and the NLSM analysi& it would be also true
have the scaling dimension&2,1/(2K_) and 2K_, respec-  for the weak rung-coupling regidnTherefore, the gap pro-
tively. The parameterd, and\ yield a deviation fromK, file in Fig. 1 itself is equivalent to the shape of the lower
=1. It, however, would be quite small in the weak rung- critical uniform field in the spac@], ,H). [As H is increased,
coupling region. The most relevant term, hence, isone of the spin-1 magnon bands goes down linearly With
cog\27/K_6’), and it locks the phase field’. Therefore, as a result of the Zeeman splitting. See the bartk).]
the ¢. mode always becomes massive once the rung cou- Taking into account the above lower critical field and pre-
pling J, enters into the system. Other interactionsdictions in Secs. lll and IV C, we can finally draw the whole
cog2V8m¢_ r) and cobv2m(¢_ | r+3¢h-re)] have a GS phase diagram of the spin-1 AF laddgy with the uni-
conformal spin, and it is reported that such fields may engenform field as in Fig. 12. The sharp form of the intermediate
der non-trivial effect$8198 However, they would not be as plateau area is one of the natures of the BKT transition: the
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correlation length outside of the critical phase in the BKTkamura resolves such an ambiguity of the field-theoretical
transition is still anomalously long, and it inversely indicatesexpressions of Eq$3) using a symmetry clevery}2 For our
that the excitation gap, which is proportional to the width ofspin-1 chain case®?+#0 in the Haldane phase, whereas
the plateau in the present case, grows considerably slowly??=0 in the dimerized phassee Fig. 10 Counting on this
Features of the spin-1 GS phase diagram are the phageact, we can propose an appropriate form,

boundary near the decoupled point and the existence of the N 2

intermediate plateau. On the other hand,ahkd. universality O% ~ (parittar2) (51)

in the critical phase is common to both sginand spin-1  which may imply that two edge spins follow the rule select-

cases. ing the disorder-field portion from the exponential p@@X
The formula(51) has the same form as the field-theoretical
E. No-field case form of Egs.(3). That similarity must be one reflection of the
This subsection specifically addresses situations in whicfgct that the FM-rung Spif-AF ladder is tied with the spin-1
spin-1 ladders have no external fields. _AF chain smoothly._ Furthermore, it also reminds us 4t
is exactly mapped into an FM order parameter by a nonlocal
unitary transformatiof!#
Our new proposal51) can also tell us the behavior 6”2
Here, we attempt to evaluate string-type order parameteris the vicinity of the TB chain. A scaling argumegdr the
in spin-1 systems within the field-theoretical description.  exact solution for the 2D Ising modeleads tom~ (5+1)
First, we investigate that of the single spin-1 chajn, Ed.and (u,) ~ (6+1)8 near the chain. Therefore, we predict
(27. The estimation of the nonlocal part©3, that the critical behavior,
=explin=],,S) (note OZ,=0F,) can be done similarly to O~ (5+ 112, (52)
the bosonization technique in Ref. 32, where the string pa-
rameters of spiri} ladders(3) were calculated. In the con- occurs in the Haldane phase close to the TB chain.
tinuum limit, @eexx is approximated as We next examine the spin-1 AF ladder. We denote two
string order parameters of chains 1 and 2@ and 03,
respectively. In Ref. 18, the quantum Monte Carlo simulation

shows that:(i) a new string paramete(r@"i‘f’)‘%‘} is always
finite for the AF-rung side(ii) the string order parameter of
each single chain vanishes, once an AF rung coupling is
ttached in the system; afid ) in the AF-rung side{(bi‘(b%}
decreases until, ~0.4J and then grows monotonically until

1. String order parameters

- Xk~

O~ eXP<ii7T f dy[Ji(y) + J%(y)]), (49)
Xj*+ag

wherex;,=k(j) X 8y and the staggered part of the spin den-

sity is dropped. Constructing the boson theory with the scal
field ¢ from two Ising systems$o,.1,04:2), We can translate

Eq.(49) as J, — (the rung dimer (see Fig. 6 in Ref. 18 From these
~a — results, it is expected that the new string parameter is a quan-
Oex~ €x IIN'WJ dyady(y) tity characterizing the PSS state. We discuss how the field
_ theories reproduce these, and what they can predict. Suppos-
~ exp Fivm(e(x) = ¢(x))] ing that Eq.(51) is applicable even for the spin-1 ladder, we
— have
= {cod V() T isin(\m(x0)} o
X {cog\mh(x)) £ i sin(Vmep(x)} (OF0%) ~ (pariftaritasolar2)’
~ {ar1(X) ar2(X) F Tar1(X) Tar (X} ~ (CO\ T has1) COS N b)) (539
X {Ma+1(xj)ﬂa+2(xj) * 0'a+1(Xj)0'a+2(Xj)}i (50) — =
~{cog\7m®)cog\7D))*. (53b)

where we used EqgA4), (B8), and (B10). The remaining

problem is just two edge spir andS}. [This problem does In Eq. (538, the bosond, is made from the two Ising sys-
not appear in the calculation of Eqe3).] At least in the  tems(o,, 7). In Eq.(53b), bosonsP and® are made from
Haldane phase whefe,)=0, the staggered parts of th? €dge (g,,1,0040) and (Tauqy, Tasy), respectively. Equationss53a)
spins could not contribute t®2. While, the product of23, ~ and(53b) can be evaluated by a bosonized effective theory
and edge-spin uniform parts can be evaluated using OPEEL) [or (E2)] and another theoryE3) plus (E4), respec-
rules:  J% g X 0ar10aio~ Maritlarz  ANd IR X pauiparp  tively. The semiclassical analysis for Eq&1) or (E2) pre-
~ 0,41044+2. Therefore, an expected field-theoretical form of dicts thate, is locked to the point,=0 for the single-chain
O is written aSOaN<©gx>N<Ma+1ﬂa+2>2+<0'a+10'a+2>2- The case(J;=0), and at that time Eq(53a)A h?.S a finite value.
derivation of this form, however, has some subtle aspectsThis is in agreement with the fact thad303)=(09)?#0 is
which are mainly attributable to the continuous-fietdarse- realized at the decoupled point. While, for a wehlt finite)
grained scheme. A similar difficulty is also present in the rung-coupling case, the effective tﬂeo(EZ) possesses a
estimation of Eqs(3).3%'13To eliminate it, some ideas that new potential proportional td, sin(yw¢,), as well as the
are independent of field theories are necessary. Actually, Nanass potential proportional tmcos\4me,). Their combi-
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TABLE lll. Operators in the RG procedure. The siGf(L=0) means the initial value of each running coupling constant in the RG flow.
The parametety is the cut-off parameter defined in E&4).

Operators Scaling dimension Gj(L=0)
0,=33 6,43, 1 mX apx I
02=(23=18a)(zg=15b) 2 0
05=33. e byt ensa) +(FéR+ LR R+ &) 2 0
O4=(8+ ) ER+EL) 2 0
0= I3+ 353t 2 NG
06=3132+ 333 2 JiaoXy
07=0333+ 3833 2 JiagXy
Og=KKOaMa+1har20alar1ibar2 3/4 Cl agx ag*x T
Og=KKO10203010503 3/4 0

nation must vary the locking point from,=0 to a finite and  perturbative RG method based on the TB fixed point be-
small value irrespective of the sign df . Therefore, we comes a reliable tool to investigate the low-energy physics.
reach the same conclusion as the first contentiiof, and We construct one-loop RG equations for coupling

i D2 i constant®® applying the OPE techniqué®1? First, we
predict that the decrease ¢P30%) also occurs in the FM- pplying q :

rung side: the new string parameter would have a cusp stru€onsider all relevant and marginal terms around the fixed
ture like the gap in Fig. 1. Similarly, let us also perform the POINt(28). They are summarized in Table Ill, where we clas-

semiclassical analysis for another theai3) plus (E4). It  Sify them into nine operatorg?;:j=1, ..., 9 to render each
predicts thatd P and ¢, are all locked to zero at the de operator invariant under the spin rotational transformation
il H a -

coupled point. The rung coupling engenders a new potentia(iSee Appendix Pand the interchange of two chains. More-

_ ~ ) ~ over, we introduced energy operatimass term e4(z,2)
(E4) proportional toJ , cog m(©-0)], in which® and® are  _jz:2 Operators®, 5 , o are generated dynamically in the

dual fields ofd® and @, respectively. This potential tends to RG flow, even though they are not present initially in the
fix ® and © instead of® and ®. Fixing ® means that the action(35). _ _ _ _

fluctuation of ® is large becausé and ® are a canonical ~In the low-energy effective action, the dimensionless cou-
conjugate paisee Appendix A Therefore, assuming that Pling constant$G;} toward the operator&);} can be defined

©®-0 is locked in the low-energy limit as the rung coupling &%
is finite, we can predict that the rung coupling makes the dxvdr

9
string parameter of the single chai@?)~ (cog\'m®))? be- Sad=S* + X G; f —= 0 (54)
come zero. This result consistent with the conté@nt More- =1 map
over, it implies that O3 also vanishes in the FM-rung side. whereS* = 5ra[§a-§§]+5rs[ga,2§] is the fixed-point action,
Note that fixing®-© does not meand20%) — 0 because it @y [~O(ap)] is the short-distance cut-off parameter, anis
can be rewritten a@i‘@g)~(cos{\s’;(d>+§>)])+<co{\s’7-r(d> the scaling dimension a;. The RG equations fojG;} are

~ — ~5 the following:
-®)]) and{cog Va(P+d)]) is expected not to have a large
fluctuation. : 1 2_ A2
G1=G; — = (G, + 4G5 - 2G5)G, + w(Gg - Gg),
We see that spin-1 and spinstring parameters take quite e 2712( 2+ 4G5~ 2G5)Gy + m(G5 - Go)
similar field-theoretical expressions. However, one should (554

bear in mind that the effective theory for the sgifiadder is

different from that of the spin-1 ladder: the former is two ) 2 2 2
coupled sine-Gordon-like chailéthe latter is three coupled G,=-2G2+ ?GZGS + ?(ZGE, -GG+ ?G4G7
sine-Gordon-like chains in EGEZ).

. , - 3w?G§ - m°G3, (55b)
2. In the vicinity of the TB point
In this paragraph, we briefly consider the spin-1 ladder, in 1 1 22
which two spin-1 chains are located near the TB pgitid). Gs= §(3G7 = 2Gs)Gs - §G4G7+ 2m°Gg, (550

10), through the perturbative RG technique. In the effective

theory of such a chain, parametensand\ are much smaller _ 1 1

than those of the spin-1 Heisenberg chain. Furthermore, as G, = —(2G, + G3)G; + — (2G5 + G;)G, — 27°GgGq,
mentioned alreadym~ (6+1) is realized. For the region 2w U

wherem, \, andJ, are considerably smaller thah the (550
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4 Ji o~ 8+1 194 Ji

1(3
icicty 7G5 - G3) + —(Eeg +G2+ G2

s dimerized |
phase 1 5=-1 8=0

Gs=2G2+

1,
+ZG ) (55¢

. . - A ~N
dimerized (TB point

(H isemberg\‘

phase 2 (c=2X3/2 ) __[point
Ge=0 (550
L1 1 o 2, 2 FIG. 13. Expected GS phase diagram around two decoupled TB
Gr= 772(2G2 +Gy)Gs* 2712(3G3 +G4+ Gy chains(c=3).
+277(Gg + Gg) Gg, 55 _ o . .
(Gs*+ Go)Cs (559 ized. Taking into account this law and recalling tlatec m,
. 5 1 GG GgxJ,, andm~(5+1) are realized near the TB point, we
Go= —Gg— —=G,Gq + ——2 expect that the phase transition curves follow:
87478 2727070 42 P P
1 1. 3. 1 1 +3, ~ |5+ 1P, (57)
+ ? 7Gy — §G2+ 5(33— ZG4+ §G7 Gg,

around the TB point. Consequently, we can draw the GS
(55h)  phase diagram near the two TB chains as in Fig. 13. In this

figure, the right side> -1 of the horizonta{decoupleglline
5 3 3 J, =0 is probably not corresponding to any phase transitions.
B ﬁG4G8+ QG7G8 In fact, we know that on the Heisenberg lige 0, the point
1 9 3 3 J, =0 does not correspond to Heisenberg line, the GS of the
= 2 S~ _ 9 ; strong AF-rung limit(rung dimey is quite different from one

772(37TG1+ 2" 5Cs 4GS>GQ' (550 ¥ the FM-rung limit(spin-2 AF chaii, both AF- and FM-

: rung sides may belong to the same phase. Whereas it is not
Therein,G;j=dGj(L)/dL andL is the scaling parametéthe  sure whether the left sidé<-1 of the lineJ, =0 corre-
infinitesimal scaling transformation isyy— age®). We  sponds to a phase transition or not. The dimerized phases 1
adopted a simple circle-type cutcff and 2 must break the one-site translational symmetry along

Using the RG equations, we discuss the low-energy propthe chain direction. According to the Zamolodchikovs *
erties near two decoupled TB chains. Close to this fixedheorem,' two critical curves starting from the TB point
point sufficiently, we can approximate them as (c=2x%3/2), belong to a universality class with< 3.

From Fig. 13, it is believed that the area characterized by

S 2_32 . . .
Gy~ Gy + m(Gg - Go), (563 the pSS-state picturéor connected to a spin-2 AF chain
5 1 widely expands around two decoupled Heisenberg chains, in
Ga — (_ + —G1>G8, (56h) the spacd§,J)).
4 T
] 5 3 F. Staggered-field case
Go= (4_1 - 7_761> Go. (569 The low-energy action for the staggered field case is given

) by Eqg.(35) plus Eq.(36b). The latter term is only invariant
CouplingsG,, Gg and Gy are more relevant than the other ynder the 1) rotation around the spinaxis; and it does not
couplings. The couplings, bears a single-chain character, possess the S@) symmetry. This partial violation of the
whereas botfGg and G, are the representatives of the rung symmetry makes each operatdy in Table |1l decoupled to
coupling. Moreover, we may omis, because its initial value o U(1) invariant parts through the OPE betweéh and
is zero. Under these approximations, the treatment of Eq$he staggered terrg86h). Neither part is invariant under the
(56) becomes fairly easier. One can find two nontrivial fixed 5y2) rotation. We have to consider more than 21 coupling
points (Gy,Gg)=(~57/4, £\5/4). Let us assume the pres- constants, to construct the RG equations. Although we actu-
ence of these two fixed points, even though they are nojjly constructed the RG, we do not record them here. We
close to the TB poin({Gy,Gg)=(0,0). Linearization of the  were unable to extract characteristic contents from them be-
approximated RG equations around new fixed points indicause they are extremely complicated. Coupling constants
cates that both points are of a divergent type, thereby implyfor mass, rung-coupling and staggered Zeeman terms all
ing the existence of phase transitions. Similarly, the TB poinfgrow up just monotonically. Therefore, the GS in the
is of a divergent type. Therefore, there exist two phase transtaggered-field case must have some massive excitations.
sition curves connecting the TB point and a new fixed pointMoreover, two critical curves in the AF-rung sidgig. 8) do
or anc_)ther. In the _vicinity of the TB point where approxima- not reach the origitd, ,H)=(0,0). We infer that the present
tions G;=G; anngzﬁGg are allowed, a conservation law field-theoretical strategy cannot predict how the curves fin-
under the RG transformatiofG,/Gg |~ a constant, is real- ish.
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(S=aninteger) |\ o »s, (S=ahalfinteger) |, _q.05, logical aspects. Establishing more sophisticated bosoniza-
ut @ Ht € tions is an interesting but difficult problem that remains for a

future work.
Nowadays, several spi%rladder compounds have been

4SJ c=1 4SJ reportedt—® Unfortunately, the materials regarded as a spin-1
T T ladder have never been found. An organic compound
= “BIP-TENO”® may be a candidate of spin-1 ladders, but its

0 i 0 i magnetic behavior differs from the simple laddéy. Suit-
FIG. 14. Expected GS phase diagrams of two-leg SpikF able theoretical predictions regarding it have not been con-
structed.

saturated saturated

phase phase

ladder with the uniform Zeeman ter(2a).

V. SUMMARY AND DISCUSSIONS

We explored the spin-1 AF ladd€d) and some of its
extensions. In the strong AF rung-coupling region, we per-  First, the author would like to thank Masaki Oshikawa for
formed the DPT and found that the GS phase diagram of thg critical reading of this manuscript and fruitful discussions.
uniform(staggereyifield case includes two=1 critical areas  He also thanks Munehisa Matsumoto, Kiyomi Okamoto, and
(curvey. Subsequently, we extended these results to the spifgasaaki Nakamura for several useful comments related to
Sladders, and predicted that the si@umiform (staggerelt  gpin jadders and quantum phase transitions. Furthermore, he
field case has 2 c=1 areas(curves. Figure 8 summarizes g atefylly acknowledges lan Affleck for pointing out the im-
GS phase diagrams and the magnetization curves. The qu%értance of estimatingi,, in Sec. IV C. This work was
critical uniform fields(22) and(23) were determined by the supported by a 21st Cetri%ury COE Program at Tokyo Tech

spin-wave analysis; we saw that, surprisingly, E2QR) is “Nanometer-Scale Quantum Physics” o

S . ysics” by the Ministry of
equal to predictions of first-order DP{see Table)l We also Education, Culture, Sports, Science and Technology.
proposed the “RVB” picture of each plateémassivg state. ' ' '

On the other hand, we applied field-theoretical methods
for the weak rung-coupling region. For the uniform-field APPENDIX A: ABELIAN BOSONIZATION RULE
case, we employed the non-Abelian bosonization efficiently. ) ) ) ] ]
Combining the consequences of weak and strong rung- !N this apggemgg, we briefly summarize the Abelian
coupling analyses, we complete the GS phase diagram of t sonizatiof “#"used in Secs. lll and IV, which is
uniform-field case as in Fig. 12. Meanwhile, our field- deeply related with the concept of TLL amsk1 CFT.(Our
theoretical approach was not efficient for the staggered-fielotation is similar to Refs. 38 and 48. _
case. Therefore, the GS phase diagram is not determined Bosonization shows thafl+1)D Dirac fermion models
perfectly. The uncertain area, i.e., the area where the criticéi’® equivalent to &l +1)D boson field theory. The main root

curves in F|g &Za) vanish, is probab|y located in an inter- of this tEChnique lies in the identification between the mass-
mediate AF rung-coupling region, which must be distantless Dirac fermion and the massless free scalar boson field

ACKNOWLEDGMENTS

from both weak and strong rung-coupling regions. theories. The former Hamiltonian is represented as
Using those field theories, we revisited and discovered .
some properties of 1D spin-1 systems without external fields. Hpirac= f dxiv (Y] A = Yk dbr) (A1)

We showed that field theories can describe string order pa-

rameters in spin-1 systems, and proposed form@asand  \yhere i (2) and (@ are, respectively, the left and right
(53). We hope that these formulas are useful in the search f%oving components of the Dirac fermion. The sigrde-
some new string-type parameters in spin-1 systems. We al§phies the “light” velocity.[In real time formalismz andz
considered the GS phase diagram around two decoupled Tﬁeans, respectivelyi(ut+x) and i(vt-x).] The fermions

chains(Fig. 13. obe . . X )
. ) y the equal-time  anticommutation relations

Through the pre;ent WorK, one obtalns' GS phage d'a{wZ(X),¢p(y)}=5aﬁ5(x—y) and{y,,(x), 5(y)}=0. The corre-
grams of both the splé-and spin-1 ladders with the uniform sponding massless boson theory has the following Hamil-

Zeeman term(2g) (see Figs. 4 and 32Th_e form_er(lattet) tonian (here we do not make the terms of the zero-mode
model consists of two gaplesgapped spin chains. These ., itationd447 cleai:

and our prediction of Fig. 8 enable us to expect that phase

diagrams of two-leg integer-spin and half-integer-spin AF - v, )

ladders are written as in Fig. 14. On the other hand, for the Hscatar= J dXE[H + (k)] (A2)

staggered-field case, we can give only the following two pre-

dictions about the spi-ladders. For the two-leg integer- whereg(z,2)= ¢, (2)+ ¢r(2) is the scalar boson field (g, is

spin ladders, critical curves in Fig. @«) vanish in a weak the left (right) mover of ¢ and I[1=4,¢/v is the canonical

AF rung-coupling region. For the half-integer-spin ladders,conjugate of. The Hamiltonian/A2) can be mapped to the

Figs. 5 and 8 imply that the origi@@, ,H)=(0,0) is perhaps same form for the dual field(z,z)= ¢ _— ¢r. The equal-time

a multicritical point, from which 3 critical curves start. commutation relations among boson fields are defined as
Except for the spirg cases, the bosonization techniques[$r(X), pr(Y)1=-[HL(X), PL(y)]=(i/4)sgr(x-y) and

for higher spin systems have some subtle and phenomenpé, (), pr(y)]=0. Since above two theories have a chiral
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U(l) symmetry, this method is called the “Abelian” theory emerges as the effective field theory in Sec. IV.
bosonization.
They have the following operator identities: 1. Ising model

7 N Here, we summarize relations between the Ising model on
(2= o exf- V4 (2], (A33)  the square lattice and its continuum limiThe contents here
almost follows Ref. 116.
It is well known that both the order-disorder phase tran-

Yr(2) = ”L eXF[i\"ETd)R(EH, (A3b) sition in the 2D Ising model and the quantum phase transi-
\27a tion in the 1D transverse Ising modEl*® belong to the

universality of thec=1/2 CFT38:39119-12fThese two models
re connected with each other via the transfer matrix method.
he latter Hamiltonian is

where 7, g, called Klein factors/=°are necessary to guar-
antee the anticommutation relation between the left and righ?
movers of the fermions, and they hence sati§fy, 7.}
=26,, The factora in Eqgs.(A3) is a parameter which order r— z 2 )

is the inverse of the wave-number cutoff of the Dirac fer- Tm g[ ojoint ho)'(]’ BD
mion. The exponential-type operators are called “vertex op- . ) . o
erators.” Using a point-splitting techniqd®?® one can also wherecd? is a component of Pauli matrices settling in sjte

bosonize the u) CurrentsJL and JR as follows: andh is the transverse field. The critical pOint IieShFF._T if
0=<h< 7 (h>J), the order parameter satisfiéﬁ) # 0(=0).
1 Here, let us introduce the disorder oper on the dual
J@ =y (== , Ada e, 1€ p 3@11/2
L@ =y (2) in WpL (Ada) lattice {j+1/2} as
]
t 1 z = H A X = oo’ (BZa)
IR@) = Yriri(D) = = xR, (A4b) Kz v Mi+12= 919+
N =
where the symHo: : stands for the normal-ordered product. -1
[Note that the aabovea@?’l) currents are different fro_m the of: 11 ,L’XJ+1/2, G)J_<: sz_llzﬂjzﬂ,z, (B2b)
SU(2) currents]’ andJg in Sec. IV. However, if we think of p=0

the c=1 CFT here as the=1 part of thec=3/2 WZNW
model, one component of the &) currents is proportional
to the U1) current. See EqB8).]

From these relations, one sees that Dirac fermion models » a. _1 a .
even involving arbitrary interactions can be mapped to a bo- Hrltoyh J.h] = Hnl{ugiaphh, I (B3
son theory with vertex operators. The RG flow lets severafrhis is called the Kramers-Wannier duality. The self-dual
kinds of interacting Dirac fermion models go to a free bosonpoint is just the critical onéa=.7. The ordered phase in the
theory with a modified velocityit is different fromv in  original Ising model, wheréaf#o, corresponds to the dis-
HamiltoniangAl) and(A2)] and a compactification radil&  ordered phase in the dual model, whéié, ,,»=0, andvice
[which deg%rg'{é‘?s the period of the boson asygrsa In the vicinity of the critical point, continuum limits of
¢=¢+2aR], "> in the low-energy limit. Nowadays, the ;74,2 are, respectively, associated with the order field
terminology “TLL” means the low-energy properties of such cr](z,_zj ahd disorder fieldu(z,2) in the c=1/2 CFT,which

';?r:m'cinl gcﬁ_els or tthe fcolrlr(:ﬁp?ndmg freetkk])osqn thiﬁr'esare identical witho,(z,2) and u,(z,2) respectively in Sec.
ec= consists of all the Iree boson teores with an,,, -, i« \orthwhile emphasizing that the relation betw:

?Arggrie;r{/r\%us. The radius of the massless Dirac fermlor};md 1.1, is nonlocal: these two commute wheer k, bt
We mention the scaling dimensionsA| +Ag and con- amgg;??;ﬁ;:hfxﬂ;%rs can be introduced as

formal spinss=A, —Ag of primary fields in thec=1 CFT,

whereA| g is the left(right) conformal weight. In our nota- 7= Ofﬂjz—l/z: = iofﬂjzﬂ/z, (B4)

tion, the conformal weights of the vertex operator _ _ _ :

exi(a ¢ +ardR)] is (A, AR)=(a?/8,a’/8m). Possible thre{’?wW}—_t{fj’@g—]?f%k,_{m'ik}—o- Inversely Ising op-

values ofa; and ai can be determined by the modular in- erators are written by fermions as

where w7, obey the same commutation relations as Pauli

matrices. From Egq9B2), we have

variance. The currenty andJg always have weightgl,0) =il W= =187, (B5a)
and(0,1), respectively. In the Dirac fermiofAl), ¢ andyg J i By KOS
have weightd$,0) and(0,3), respectively. -1 j
(TJ-Z:inj}_[li{pnp, ,ujz+1,2= l_lli{pnp. (B5b)
= p:

APPENDIX B: ISING MODEL AND c=1/2 CFT . . . .
The Hamiltonian(B1) can be described by these fermions,

We review some facts in terms of the 2D statisti@al 1D  and is solvable in the fermion language. In particular, con-
transversg Ising model andc=1/2 CFT. Thelatter field sidering the vicinity of the critical pointt=7, one can trans-
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form it to the following field-theoretical Hamiltonian:

Hp = f dXig(fL héL — Erdkér) +IMELér,  (BO)

wherev=27a5, m=2(h-), x=j X ay and a, is the lattice
constant. New Majoran@eal fermions ¢ and &z are de-
fined as

&=(n+OIN2, &=~ nh2,

wheren(x) = njl\s’go andZ(x) :gj/\s'go. At the critical point,
the mass term vanishes, and the effective field th&Bg)

(B7)

PHYSICAL REVIEW B 71, 024402(2005

1
m(z,2(0,0) ~ F 7Z*(0,0,  (B11ld

—

(2D (0,0 ~ g%l[é”"‘z”m + T2 ()],

(Blle

f

w2 D0(0,0 ~ i1,4[ & 1AL (0) + TR 0)],

then becomes a massless Majorana fermion model, which is

just ac=1/2 CFT. Thefields & and &g are corresponding to
& and & in Sec. IV B, respectively. From Eq¢B5b) and
(B7), it is obvious thaté  has a nonlocal relation witkr
and u, too.

Two copies of the critical Majorana fermion theories are

equivalent to the massless Dirac fermigal), i.e., ac
=1/2+1/2=1 CFT.Here let us denote the fields of two

=1/2 systems, the corresponding Dirac fermion and boson

theories as(& g, 01, 1), (& .02, 12), Y defined as Eq.
(37), and ¢_g, respectively. The (1) currents in Eq(A4)
are written by Majorana fermions as follows:

I=ide, h=iGé (B8)
Energy operators; ,=i&%r? are mapped to
o1+ o, =iyl Yr= vl =75 % cosdmg),  (B)

where 7_r are Klein factors in Eq(A3). In addition, it is

believed that order and disorder fields are bosonize

a§8,116,l22

H — —
o105~ SIN(VT),  pipy ~ coSN ),

o1y ~ COE( \‘/7—70), M102 ~ S|n(\’7—70), (BlO)

where 6 is the dual ofe.

2. OPE

We write down the OPEs among the primary fields in the

c=1/2 CFT17:39.112123he identity operator 1, the leftight)

mover &  of the Majorana fermion, the energy operator

£(z,2)=i& &, the order fieldr and the disorder ong. These

are deriveé®??by making use of fusion rules and the Abe-

lian bosonization based on the fact that two copiescof
=1/2 CFTsform a massless Dirac fermion model,cal
CFT. The results are

1
&fﬁ€d0)~‘§;£, (B11a)
1
&KDERO0) ~ —, (B11b
27z
(2,2)0(0,0) ~ +m7¥%(0,0), (B11o

| |1/4

(B11f)
i /4

£.20(0,0 ~ —=;1(0.0, (B11g
—i7l4

&(2)0(0,0) ~ ,1Qm0® (B11h
—il4

£@p(0,0 ~ —-=;0(0,0, (B11i)
i /4

&R(@)p(0,0) ~ 2,jmd0® (B11j)

As a reflection of nonlocal natures amoggg), o and ,
some OPEs have a branch cut. The OB&1e indicates
that the product of the order and disorder fields must have a
fermionic property. Following Ref. 112, in the main text, we

ften use a rule that a disorder field anticommutes with other

isorder fields(when we consider some copies of1/2
CFTy9 and fermion fields, but commutes with itself and order
fields. This is responsible for the improvem&®as).

As mentioned in Sec. 1V, three copies@f1/2 CFTs are
equivalent to the level-2 S@) WZNW model. Using the
definition of the SW2) currents(31), OPEs(B2a) and(B2b),
we obtain the following OPEs among the currents:

Ja(Z)JL(O) 77222 +i€anc (Z), (B12)
a b . ab . J&(O)
R(2)JR(0) 427 *l€apc omz (B13)

APPENDIX C: SU(2) SYMMETRY IN SPIN SYSTEMS AND
THE WZNW MODEL

We consider what transformation for the effective field
theories(28) or (35) is corresponding to the global spin ro-
tational transformation for spin-1 systems.

The latter can be represented by a vector rotation form as

é = T~ @) Ty(= ) T~ <P1)§ = Réq,

whereQ:T(gx,S}’,S‘Z) and T,(¢) stands for the 3D rotation
abouta axis by anglep [an S@3) matrix]. For exampleT,
is defined as

(Cy
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T,(p)=|—sing cose O (C2
0 0 1
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U r— explie) i gr. (C7

This is used in Sec. IV C.

APPENDIX D: EFFECTIVE HAMILTONIAN IN SEC. IV B

From Eq.(32), the spin rotation on the lattice is interpreted,
in the WZNW model, as

Jr— R (C39

H
| - RI, (C3b)
where J,=T(AL, 2,38 and 1="(G1,G0,Gs)

OCT(O']_,MZ'LL?,,0'2/.L3M1,0'3/.L1/.L2). The tranSfOI’mation for the
spin uniform par{C3a) is reproduced by the following trans-
formation for Majorana fermions:

sEL,R - RgL,Ra (CH
where £,="(£1,£,£). One can confirm that the effective
theory for the Heisenberg chalitq. (28) plus Eq.(34)] is
invariant under the rotatioriC4). Especially, the level-2
SU(2) WZNW model (28) is invariant both under the rota-

tion of left moversg_—ﬂzé_ and under that of right movers

ER*) Rég. These two symmetries must correspond to the chi-
ral SU2) symmetry of the WZNW model. Reversely, both
terms in Eq(34) violate the chiral symmetry, and are invari-
ant just under the “diagonal” rotation.

Next, we focus on the rotation of the spin staggered part
(C3b). When one represents the action of the WZNW model
by using the matrix fieldy,383° its global SU2) symmetry
means that the action is invariant under

g— VgV, (C5)
whereV is a SU2) matrix. A natural expectation is that the
transformation(C5) leads to the rotatioC3h). Following
this idea, in fact, one can verify that if the matikis pa-
rametrized as follows:

n2
Hint
g iestenl2 cos% —jeritesenizgin £2
V = )
— iei(‘P3_‘P1)/2 sin %2 ei(‘P3+<P1)/2 COS%

(C6)

the explicit correspondence betwg&Bb) and(C5) appears.
From a rotationC3b), one also finds the spin rotatigl)
does not affect/;=oy0,03. Proving that the actio(28) and
operatorg); in Table Ill are invariant under the spin rotation
is an easy work.

We touch the rotation around spiraxis §— T,(-¢)S;. It
does not affect the component of the spin, and provides the
transformations g *)COS(,D% -sin <p§ and giﬂsin (,Dfi
+cos<pg In the Dirac fermion picture, defined by E8),
these Y1) transformations are

024402-20

whe

Hl_

int

The effective Hamiltonian for the spin-1 ladddy with a
uniform field (2@ under the conditioid >m is

eff:f dx[ﬁfree(LaR-gz lﬂ + Hfree( E{Ei

+HE(LRLR) +H2(LRLR;
+H|nt(L RLR; ¢¢)+Hmt§§

+ Hstag{"'uu)],

&)
2 :b + Hﬁ‘lt(lpv:b)
(DY)

re

2
Hfree = iv'(LT&XL - RTﬁXR) + wT(_ ;)_mé&*‘ m+ H)‘//

+io (0,8 - B gR) +ImE, (D2a

A -
ZUEUE{(RTR— RR)2+ (L'L-LL?2+ (R— R)?

~ .\
+(L—L)3- Z(ui +UH{(R'R-RR)(LTL - LLT)
+(R—R)(L — E)} - NU2UHRRLL' + LTLRR

+(RL—RL)} L) (u2 +UHA(R'R-RRN(R

SR+ (LIL-LLYL =D} + ‘hTaO(UE +U?Y(R'R

-RRYLML-LLY+(R—RI(L — L)}

+43, a,U2UARLILR + LR'RL™], (D2Db)

=iNU,U{[RR-RR +LIL-LLNEE +[R— R+L

— LIEE) + 3. a0{[UZ(RR+ RR) + UA(LTL
+LLH]EE + [VA(RR+RR) + V2L + LLYEES
-iJ 8 U, U{[RR-RR + LT - LL"EE

+[RIR-RRM+LTL - LL"E&}, (D20

Hip = %(UE +UA{(y 'y~ " [R'R-RR + LTL - LL"]

+(p— PR—R+L— L]+ %u+u_{¢*¢<R*R
+L1) + gy (RR+LLY + (R L,y — RL, )}

22+ Uy IRR-RRI+ 1T
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J,ag , whereB, = 2\/ (2ma)?, B, 3¢ J, 8/ 2 andB,~ C1J, ag. We

2 U, -u) cannot consider the Klein factors correctly, because the for-
mulas (B10) are not perfect. However, here let us assume
that it is allowed. Actually, the same Hamiltonian in Ref. 17
(though its notation is different from oyrsurely seems to

X (! (RLT+ LTRD + y"y(RR+ L) + hc},

(D2d)
work well.
N 3 Like Ref. 17, we take the following mean-field prescrip-
Hi = iE{(dfrlp— PN EE+ (p— PEE) + LTao(,,ﬂr/, tion for Haq (i) We neglectB, , 5 terms, and leave only the

free part(fermion kinetic and mass termand the most rel-
evant interactiorB, term. (ii) For the weak AF rung-coupling
case, the mass potential (:@éqrd)a) will be still dominant,
and therefore the fielg, is locked near the poinp,=0. This

- J, -~ -
-PEB €8 -0 T EB B,

(D28)  argument allows the following approximation: ¢gs¢,)
— B (a constant Through(i) and(ii), the HamiltoniarH,,q
Hie=- —{(M Y+ (= D} 's reduced to
+ %(w*w— P — ), (D2f) Hiaq = f x{ (112 + (3xp)’] = — cos<\4w¢a>
~ - — 2 f
Hstag: C%JLaOKKO'aMa+1Ma+20'aMa+1Ma+2- (D2g) + BB, sinly qua)} - (F2

We define a new velocity’ =(H?>-nm?)Y%/H. In the inter-
action terms?-lInt , Dirac fermionsL and R stand forL(-x)
and R(-x), respectively. From the field-theoretical point of  Next, we consider the case that three boson fielglsD
view, biquadratic terms such &s'L—LL")? should be inter- and & are composed of(0,.5,),

. e ) , and
preted as a product of two point-splitting terms. For example ~  ~ ivelv. Lik (Cﬁ‘+1faa+2-) £
(LTL-LL"? means lim o(LTL~LL)(=x) X (LTL~LLM)(-x (Gas1,0as0), respectively. Like Eq(EL), the fermion free
+9) —0 part in the total Hamiltonian is mapped to

This is three copies of a double-sine-Gordon mdé&For
details of this mean-field argument, see Ref. 17.

APPENDIX E: ABELIAN BOSONIZATION IN THE SPIN-1

3 = v 2 2 2 2 =2
LADDER Hiree= f dXZ[(Ha+ (Oypa)?) + (Hd> + (0, D)%) + (HQ)

The low-energy action for the spin-1 AF ladder is given in
Eq. (35). If we make the boson theory with a scalar fietd
from two Ising systems, ando, (a=1,2,3, we can obtain
a bosonized Hamiltonian for the actig®5) through several
relations in Appendices A and B. It has been already given in
Ref. 17. The result is wherqu) and Hq) are canonical conjugated momentadof

and @, respectively. The most relevant rung-coupling term
J LaocleO'a/.La+1/La+20'a/.La+1,lLa+2 is mapped as follows:

+(@D)9] - W_n;[cos( Vamg,) + cod V4md)

+ cog\4md)], (E3)

3
7:(Iad = E dX{ %[Hg + (axd’a)z] - ﬂ COS(\’/ETd’a)
a=1 T

+ By[COY V47 ¢h,) cOS VAT hi)

+ COY\470,)cod 47 0,,1)] + BTN,y

+ Oy Padybars] + B SIN(V4me)SIN( A7 b )
+ SNV 470,) SIN(V470501)]

+ B, sin(\/mé,)cog \r’;gz’)aﬂ)coi\";(bm)} , (ED

~J [sin( \r’:rqsa)cos( \r"'a_-rCID)cos( \f’;&')) + cog V"?rgba)
x{cod\'7®)cog V7®) + sin(\7®)sin(\7®)}]
— J,Bcod\m(® - 0)]. (E4)

On the right side of the arrow-, we performed the same
mean-field approximation used in E@2): cogy W(]ﬁa)*)B
and sirf\/'m¢,) — 0.
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