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This study addresses low-energy properties of two-leg spin-1 ladders with antiferromagnetic(AF) intrachain
coupling under a uniform or staggered external fieldH, and a few of their modifications. The generalization to
spin-S ladders is also discussed. In the strong AF rung(interchain)-couplingJ' region, degenerate perturbation
theory applied to spin-S ladders predicts 2S critical curves in the parameter spacesJ' ,Hd for the staggered-
field case, in contrast to 2S finite critical regions for the uniform-field case. All critical areas belong to a
universality with central chargec=1. On the other hand, we employ Abelian and non-Abelian bosonization
techniques in the weak rung-coupling region. They show that in the spin-1 ladder, a sufficiently strong uniform
field engenders ac=1 critical state regardless of the sign ofJ', whereas the staggered field is expected not to
yield any singular phenomena. From the bosonization techniques, new field-theoretical expressions of string
order parameters in the spin-1 systems are also proposed.
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I. INTRODUCTION

Spin ladder systems have been investigated theoretically
for more than a decade. Several real magnets corresponding
to them have been synthesized and observed.1–6 A trigger of
such studies may be the discovery of high-Tc materials and
the connection between the Hubbard model(one of the high-
Tc models) and the antiferromagnetic(AF) Heisenberg
model.7 Recently, it has been recognized that spin ladders
themselves can provide several theoretically interesting phe-
nomena: for example, quantum critical phenomena, non-
trivial magnetization processes(plateaus and cusps), the con-
nection with field theories and integrable models, topological
or exotic orders, etc. Especially, the intensive studies have
largely developed the physics of two-leg spin-1

2 ladders.
In the spin ladder systems, like other magnetic systems,

their responses to external magnetic fields have received the-
oretical and experimental attentions. Recently, in addition to
the standard uniform magnetic field, staggered fields, which
have an alternating component along a direction of the sys-
tem, have been in the spotlight.8–15 Actually, several phe-
nomena induced by them have been observed, and some
mechanisms generating them in real magnets are known.9,14

As will be discussed in the next section, uniform- or
staggered-field effects in the two-leg spin-1

2 ladder with AF
intrachain coupling have been understood well. In the
uniform-field magnetization process, a massless phase exists
between the saturated state and a massive spin-liquid state. A
staggered field yields a quantum phase transition.

Here, the following natural question would arise: how the
external fields influence high-spin orN-leg ladder systems?
To answer this(partially), this study specifically addresses
low-energy properties of two-leg spin-1 ladders with external
fields through the use of several analytical tools. Our main
target is the simple Hamiltonian,

Ĥ = Jo
l,j

SW l,j ·SW l,j+1 + J'o
j

SW1,j ·SW2,j + ĤZ, s1d

whereSW l,j is the spin-1 operator on the sitesl , jd; l (=1 or 2)
is the chain-number index and the integerj runs along each
chain. The intrachain couplingJ is positive. We will refer to
such ladders as “AF” ladders. The interchain couplingJ' is

called the rung coupling. The Zeeman termĤZ here is cho-
sen as two types:

Ĥu = − Ho
j

sS1,j
z + S2,j

z d, s2ad

Ĥs = − Ho
j

s− 1d jsS1,j
z + S2,j

z d, s2bd

whereHsù0d is the strength of external fields. The latter(2b)
has a staggered field along the chains−1d jH. Obviously, the
AF rung coupling and the staggered field compete with each
other.

Regarding the case without external fields, some preced-
ing theoretical studies16–18 of the spin-1 ladder(1) exist (al-
though, as will see in Sec. III, there are also a few studies

dealing with Ĥu). Their results deserve to be summarized
here for our consideration in later sections. These studies
explain how the first-excitation gap varies in dependence
upon the rung couplingJ'. At the decoupled pointJ'=0, the
model (1) is reduced to two spin-1 AF chains. As known
well, the chain has a finite first-excitation gap(Haldane
gap).19 Around the decoupled point, the gap reduction takes
place withuJ'u increasing. Namely, the gap has a cusp struc-
ture aroundJ'=0. Far from the decoupled point, in the AF-
rung side, the gap increases together with the growth ofJ'.
It approaches the gap of the rung dimer(two spins along the
rung) which is the strong AF rung-coupling limit of the
model (1). On the other hand, for the ferromagnetic(FM)-
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rung side, even away from the decoupled point, the gap de-
creases monotonically. It reaches the Haldane gap of the
spin-2 AF chain with the bondJ8=J/2, which is the strong
FM rung-coupling limit.(In general, the two-leg spin-S AF
ladder with the intrachain couplingJ is reduced to the spin-
2S AF chain with J8=J/2 in the strong FM rung-coupling
limit.)20,21 The first-excitation-gap profile is summarized as
Fig. 1. A recent quantum Monte Carlo analysis18 quantita-
tively surveys the ground-state(GS) properties of the model
(1) without Zeeman terms. It estimates the first-excitation
gap and the spin-spin correlation length. Moreover, it pro-
poses a new string-type parameter, which is discussed in a
later section. The authors conclude that the GS is always
massive fromJ'=0 to `, and is characterized by the
“plaquette-singlet” solid(PSS) state, one of short-range
resonating-valence-bond(RVB) states,22 which is explained
in Fig. 2. It smoothly connects two limiting states: the
Haldane statesJ'=0d and the rung-dimer statesJ'→`d.
The new string parameter is able to capture a feature of the
PSS state.

Our analysis specifically addresses two regions: the strong
AF rung-coupling regionsJ'@Jd and the weak rung-
coupling onesJ@ uJ'ud. For the former(latter) region, we
mainly employ degenerate perturbation theory(DPT) (field-
theoretical methods). In the former region, we can also in-
vestigate two-leg spin-S ladders. It contributes to a system-
atic understanding of spin ladder systems. Furthermore, the

comparison of our results and existing results of spin-1
2 lad-

ders will help to elucidate the spin-ladder systems.
The organization of the remainder of this paper is as fol-

lows. First, we give a brief review of two-leg spin-1
2 ladders

in Sec. II. As mentioned previously, it is useful in comparing
our spin-1 case with the spin-1

2 case and highlighting the
features of the spin-1 case. Section III specifically addresses
the strong AF rung-coupling regionsJ'@Jd. For the spin-1
ladder(1), the DPT provides effective Hamiltonians and pre-
dicts that there are two critical areas(points) in the magne-
tization process applying the uniform(staggered) field. We
also apply the DPT to the two-leg spin-S ladders, to find that
in the spin-S case there are 2S critical regions (points)
through the uniform(staggered)-field magnetization process.
In addition, we propose RVB-type pictures of noncritical

phases in the uniform-field case withĤu. In Sec. IV, we
consider the weak rung-coupling regionsJ@ uJ'ud and em-
ploy some field-theoretical approaches. In particular, to map
1D spin-1 systems onto a field theory, we utilize a non-
Abelian bosonization(NAB),23–25 i.e., a Wess-Zumino-
Novikov-Witten (WZNW) model description. The first two
subsections are devoted to an explanation of the NAB.
Through it, the spin-1 ladder(1) is described by using a
fermion field theory, which was originally proposed by
Tsvelik.26 Subsequently, we will consider the uniform-field
case in Sec. IV C. In this case, the NAB is considerably
effective because it can treat the uniform Zeeman term
nonperturbatively.26 From consequences of the DPT in Sec.
III, the NAB here, and the gap profile in Fig. 1, we can
determine the whole GS phase diagram in Sec. IV D. The
critical regime is “simply connected” and has ac=1 critical-
ity except for the decoupled pointJ'=0. In Sec. IV E, we
devote our attention to spin-1 ladders without external fields.
Section IV E 1 is assigned to the evaluation of string-type
parameters in one-dimensional(1D) spin-1 systems within
our field-theoretical framework. We propose their field-
theoretical expressions. Using a RG analysis, we consider
the GS phase diagram of a spin-1 ladder extended from the
model (1) in Sec. IV E 2. Field-theoretical approaches used
here are not sufficiently efficient for the staggered-field case

with Ĥs. A brief discussion on it is in Sec. IV F. In Sec. V,
we summarize all results and briefly discuss them. The Ap-
pendix offers readers supplements of field-theoretical tech-
niques and calculations in Sec. IV.

II. REVIEW OF SPIN-1/2 LADDERS

In this section, we review low-energy properties of the
spin-12 AF ladder which is equivalent to the model(1), in
which spin-1 operators are replaced with spin-1

2 operators.
For the case without external fields, a finite rung coupling

engenders a gapped spin-liquid(no long-range orders occur)
GS irrespective of the sign ofJ'. This is true because the GS
of the spin-12 AF Heisenberg chain is critical(massless) and
the rung coupling is relevant from the standpoint of the per-
turbative renormalization group(RG) picture.27 The spin liq-
uid can be illustrated using the short-range RVB picture28–32

as in Fig. 3. The figure indicates that the excitation gap in the

FIG. 1. A schematic gap profile in the spin-1 AF ladder. The
symbol DHal denotes the Haldane gaps.0.41Jd. For details, see
Ref. 18.

FIG. 2. RVB pictures in the GS of the spin-1 AF ladder(1)
without external fields. The black point denotes a spin-1

2 state. The
ellipse including two black points indicates the symmetrization of
two spin-12 states and recovers an original spin-1 site. The black line
represents for the singlet bond, which consists of a spin-1

2 pair. For
0,J',`, the GS is well described by the PSS state. With increas-
ing the rung-couplingJ', the weighta sbd increases(decreases) in
the GS wave function, and it approaches the tensor product of sin-
glet dimers[singlet of the spin-1 pair]. For details, see Ref. 18.
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spin-liquid phase has the same order as the energy required
to cut a singlet bond. In the AF-rung side, singlet bonds tend
to occur along both chain and rung directions. In contrast,
two spins on the rung tend to construct a triplet state on the
FM-rung side. The tendency removes singlet bonds along
rungs, and allows those along the diagonal direction. The
FM-rung spin liquid must connect with the GS of the spin-1
AF chain sJ'→−`d smoothly. Therefore, we call it the
Haldane phase. In Refs. 30 and 32, the authors show that
these two kinds of massive spin liquids[(a) and(b) in Fig. 3]
can be detected by the two string-type parameters,

Oodd
a = − lim

u j−ku→`
kSj

aeipon=j+1
k−1 Sn

a
Sk

al, s3ad

Oeven
a = − lim

u j−ku→`
kS̃j

aeipon=j+1
k−1 S̃n

a
S̃k

al, s3bd

wherea=x,y,z,k¯l represents the expectation value of the

GS. We defined two new operatorsSj
a=S1,j

a +S2,j
a and S̃j

a

=S1,j
a +S2,j+1

a . Indeed, from Fig. 3, one can confirm that
Oeven

a Þ0 andOodd
a =0 (Oodd

a Þ0 andOeven
a =0) are realized in

the AF-rung spin-liquid(Haldane) phase.
For the uniform-field case, low-energy properties have be-

come well understood, but the quantitative GS phase dia-
gram has not been constructed yet as far as we know. For
details, see e.g., Refs. 33–37 and references therein. The
schematic GS phase diagram is expected as in Fig. 4. The
spin-liquid, Haldane and saturated phases correspond to mas-
sive plateau regions in the uniform-field magnetization pro-

cess. The critical phase, except for the decoupled lineJ'

=0, can be regarded as an one-component Tomonaga-
Luttinger liquid (TLL ),38 which is identical to a conformal
field theory(CFT)39 with the central chargec=1. In this area,
the magnetization per rungkSj

zl changes continuously. When
the field is increased, quantum transitions take place at lower
and upper critical fields(H1 and H2). They are of a
commensurate-incommensurate(C-IC) type.40–43 The upper
critical field H2 can be determined by calculating the exact
spin-wave excitation energy in the saturated(perfect ferro-
magnetic) state:H2=2J+J' for AF-rung side, andH2=2J
for the FM-rung side. The same logic shows that the upper
critical field of the spin-1 AF chain withJ8=J/2 (strong FM
rung-coupling limit) is 2J, which is consistent with the result
H2=2J.

Wang et al. have investigated the spin-1
2 staggered-field

case with the term(2b) by employing the DPT and Abelian
bosonization.38,39,44–50They predict that the competition be-
tween the AF rung coupling and the fieldH creates a second-
order quantum phase transition. It belongs to a Gaussian type
with c=1, and separates a Néel phase and the massive spin-
liquid phase, which continuously connects with the spin-
liquid (a) in Fig. 3. Furthermore, Ide, Nakamura and Sato51

recently determined the transition curve with high accuracy
using the level-crossing method52 and a new twisted operator
method.53 The curve starts from the origin in the space
sJ' ,Hd because both the rung-coupling term and the stag-
gered Zeeman term are relevant to the single chain. The GS
phase diagram is given in Fig. 5.

III. STRONG RUNG-COUPLING LIMIT

This section employs the DPT for the strong rung-
coupling region:J'@J. Frequently in 1D systems, theories
of the strong coupling limit such as the DPT provide visual-
izations of GSs and low-lying excitations. This is the case in
the strong rung-coupling limit of the model(1), as we dis-
cuss in this section.

A. Spin-1 ladders

First, we investigate the spin-1 AF-rung ladder with the
uniform field. The DPT35 for this model has already been

FIG. 3. RVB pictures of the GS of the spin-1
2 ladder. Panels(a)

and(b) are typical spin configurations in the AF-rung and FM-rung
spin-liquid phases, respectively. The gray line denotes a singlet
bond. Up and down arrows representSl,j

z = + 1
2 and −1

2, respectively.
Each number under the dashed loop encircling two sites shows the

value of S̃j
z=S1,j

z +S2,j+1
z in (a), and one ofSj

z=S1,j
z +S2,j

z in (b). Re-

moving all sites ofS̃j
z=0 or Sj

z=0, one can see a “hidden” Néel
order s+1,−1, +1,−1, . . .d. For more details, see Refs. 30 and 32.

FIG. 4. Schematic GS phase diagram of the spin-1
2 ladder with

the uniform Zeeman term(2a).

FIG. 5. Schematic GS phase diagram of the spin-1
2 ladder with

the staggered Zeeman term(2b). In weak and strong rung-coupling
regions, the transition curve followsh.0.603J'

3/2/J1/2 and h
.J'−0.503J, respectively, where the factors(0.60 and 0.50) are
determined by our numerical calculations(Ref. 51). These results
are consistent with analytical ones in Ref. 14.
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performed, for example in Ref. 54. However, we reproduce it
here as a preparation for later discussions.

Under conditionJ'@J, the 0-th approximation takes the
following Hamiltonian:

Ĥ0-th = o
j

Ĥ j , s4ad

Ĥ j = J'SW1,j ·SW2,j − HsS1,j
z + S2,j

z d, s4bd

where the original model is reduced to a set of two-body
problems on each rung. Because thej-th rung Hamiltonian

Ĥ j has two conserved quantities,SW j
2 and Sj

z, one can easily
solve it. Each eigenstate has a one-to-one correspondence to
a stateuS ,Szl j whereS andSz are magnitudes of the rung spin

SW j and itsz component, respectively. The solution is given in
Fig. 6. The GS of the rung encounters two level crossings in
the magnetization process. In parameter spacesJ' ,Hd, we
concentrate on vicinities of these two level-crossing lines;
H=J' and H=2J'. Near one line,H=2J', two low-lying
states on thej-th rung are

u + l1,j ; u1,1l j, u− l1,j ; u2,2l j . s5d

Low-lying states near another line are

u + l2,j ; u0,0l j, u− l2,j ; u1,1l j . s6d

The first-order calculation of the DPT is equivalent to pro-
jecting the total Hamiltonian(1) onto the subspace which
consists of the set of two states(5) [or (6)] over all rungs.

Two projection operators can be defined asP̂1=p j P̂1,j and

P̂2=p j P̂2,j, where

P̂1,j = u + l1,j1,jk+ u + u− l1,j1,jk− u,

P̂2,j = u + l2,j2,jk+ u + u− l2,j2,jk− u. s7d

For convenience, we define new spin-1
2 operators as

Uj
z = 1

2fu + l1,j1,jk+ u − u− l1,j1,jk− ug,

Uj
+ = u + l1,j1,jk− u, Uj

− = u− l1,j1,jk+ u. s8d

Similarly, another spin-12 operatorTW j is defined by replacing
the subscripts1, jd to s2, jd in Eq. (8). The relation between

these pseudo-spin operators and original spin-1 ones is

P̂1,jSl,j
z P̂1,j = − 1

2Uj
z + 3

4, P̂1,jSl,j
± P̂1,j = s− 1dlUj

7, s9ad

P̂2,jSl,j
z P̂2,j = − 1

2Tj
z + 1

4, P̂2,jSl,j
± P̂2,j =

2s− 1dl

Î3
Tj

7. s9bd

We read thatkSj
zl=0, 1 and 2 correspond tokTj

zl= 1
2, kTj

zl
=−1

2 (or kUj
zl= 1

2) and kUj
zl=−1

2, respectively. Under these
preparations, we can obtain the following effective Hamil-
tonian nearH=2J':

Ĥu,1
eff ; P̂1ĤP̂1

= o
i,j

P̂1,iĤP̂1,j

= o
j

J1fUj
xUj+1

x + Uj
yUj+1

y + D1Uj
zUj+1

z g

− Hu,1o
j

Uj
z + const, s10d

whereJ1=2J, D1= 1
4 andHu,1=2J'−H+ 3

2J. Similarly, near
H=J', we obtain

Ĥu,2
eff = o

j

J2fTj
xTj+1

x + Tj
yTj+1

y + D2Tj
zTj+1

z g

− Hu,2o
j

Tj
z + const, s11d

whereJ2= 8
3J, D2= 3

16 andHu,2=J'−H+J/2. Both (10) and
(11) are a spin-12 XXZ chain with a uniform field.55 Known
exact results on the spin-1

2 XXZ chain immediately lead to
the following predictions. From the model(10), in the region
uHu,1uøJ1s1+D1d the system has ac=1 criticality, in which
the uniform magnetization and the critical exponents of
pseudo-spin correlation functions vary continuously with
Hu,1 varying. Otherwise[i.e., uHu,1u.J1s1+D1d], the magne-
tization is saturated. Similarly, from(11), another massless
region withc=1 exists inuHu,2uøJ2s1+D2d. By interpreting
these in the context of the original ladder model in the uni-
form field, we predict that twoc=1 critical areas exist:J'

− 8
3JøHøJ'+ 11

3 J and 2J'−JøHø2J'+4J. Therefore, in
the strong AF rung-coupling region, the spin-1 AF ladder has
an intermediate plateau region withkSj

zl=1 in addition to two
trivial plateau regions: the saturated state and the PSS state
described in Fig. 2. The presence of the intermediate plateau
is contrasted with the spin-1

2 case(Fig. 4). From effective
models(10) and(11), we also see that all critical phenomena
in the magnetization process do not involve any spontaneous
symmetry breakings. While effective models also predict the
intermediate plateau vanishes at the pointsJ' ,Hd
= s 14

3 J, 25
3 Jd, where the lower and upper boundary curvesH

=J'+ 11
3 J andH=2J'−J cross each other. However, this es-

timation is too rough because the lowest-order DPT is prob-
ably valid only in the sufficiently strong rung-coupling cases.
A recent numerical study56,57 evaluates the vanishing point
sJ' ,Hd<s1.44J,2.7Jd. It claims that in the subspace fixing
the total magnetization, the transition between thec=1 re-

FIG. 6. Eigenstates and eigenenergies ofĤ j with the strength of
the uniform fieldH varying. The thick dotted line corresponds to
the GS. Each vectoru¯,¯) represents a stateuS ,Szl j.
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gion and the plateau is of a Beresinski-Kosterliz-Thouless
(BKT) type.58

Imitating the RVB picture in Fig. 2, we attempt to regard
the intermediate plateau state as a state comprising bonds of
nearest-neighbor spin-1

2 pairs. One should note that the pairs
contain triplet bonds as well as singlet ones because the pla-
teau haskSj

zl=1. From Ref. 59, the necessary condition for a
plateau state is

Su − Mu = an integer, s12d

whereSu and Mu are, respectively, the sum of spin magni-
tudes and magnetizations within the unit cell of the plateau
state. According to this condition, relations(9), and two ef-
fective models, the plateau state should be invariant under
the one-site translation along the chain and the exchange of
two chains. These allow us to illustrate the bond picture of
the intermediate plateau as in Fig. 7. The statesbd connects
with the statesad smoothly by decreasing the weightb.
Hereafter, we refer to bond pictures including singlet and
triplet bonds as “RVB” pictures.

Next, we turn to the staggered-field case, which has never
been discussed in previous studies. In the 0-th order DPT, the
even-j rung Hamiltonian has the same form as Eq.(4b), but
the odd-j one has the uniform field pointing to the opposite
direction to Eq. (4b). Therefore, low-lying states in odd
rungs must be modified as follows:

u + l1,j=odd→ u1,− 1l j, u− l1,j=odd→ u2,− 2l j , s13ad

u + l2,j=odd= u0,0l j, u− l2,j=odd→ u1,− 1l j . s13bd

Consequently, projection and pseudo-spin operators are rede-
fined: new pseudo-spins in odd-j sites satisfy the same-type
relation as Eq.(9), in which −1

2Uj
z+ 3

4
s−1

2Tj
z+ 1

4
d andUj

7 sTj
7d

are replaced with1
2Uj

z− 3
4

s 1
2Tj

z− 1
4

d and −Uj
± s−Tj

±d, respec-
tively. Using these new tools, we can also construct effective
models for the staggered-field cases in a similar way deriving
(10) and(11). In the vicinity of the lineH=2J', the effective
Hamiltonian is

Ĥs,1
eff = o

j

J1fŨj
xŨj+1

x + Ũj
yŨj+1

y + D1Ũj
zŨj+1

z g

− Hs,1o
j

s− 1d jŨj
z + const, s14d

whereŨj
x,y=s−1d jUj

x,y, Ũj
z=Uj

z and Hs,1=2J'−H− 3
2J. Simi-

larly, near the lineH=J', the effective oneĤs,2
eff is the same

type asĤs,1
eff, in which sJ1,D1,Ũj

ad→ sJ2,D2,T̃j
ad and Hs,1

→Hs,2=J'−H− 1
2J. Unlike the uniform-field cases, the

above two models have effective staggered fieldsHs,1 and
Hs,2, respectively. Because such alternating terms are rel-
evant for the spin-12 critical chain, infinitesimal values of
staggered fields immediately yield a finite excitation gap. In
other words, only when the fieldHs,1s2d vanishes, the GS is
critical. Therefore, there exist two critical lines(not areas)
with c=1: H=J'− 1

2J and H=2J'− 3
2J. The former(latter)

critical line satisfieskŨj
zl=0 and kSj

zl= 3
2s−1d j (kT̃j

zl=0 and
kSj

zl= 1
2s−1d j). Both lines are of ac=1 Gaussian-type transi-

tion in common with the spin-12 case(Fig. 5). On the critical
lines, the staggered susceptibilitys−1d js]kSj

zl /]Hd diverges
(see the next subsection). Like the uniform-field case, any
symmetry breakings do not occur at the transitions.
Numerical10 and analytical9,60 works show that the staggered

magnetization inĤs,1
eff (or Ĥs,2

eff) changes continuously with
the staggered field varying. Thereby, we can confirm that the
original staggered magnetizations−1d jkSj

zl has no plateau,
contrary to the uniform-field cases.

We should discuss effects of the higher-order terms ofJ in
the DPT, although they have already been explained in Ref.
14. Especially, let us consider whether any mechanisms vary-
ing the properties of abovec=1 criticalities emerge or not,
from higher-order effects. In the vicinity of each transition,
both two low-lying states in the rung and the perturbative
intrachain coupling part are invariant under spin rotations
around thez axis of the total spin. Therefore, the U(1) sym-
metry cannot be broken by higher-order terms. For instance,
an anisotropic XY exchange interaction, which brings a mass
generation, does not occur. The continuous U(1) symmetry is
one of the characteristic natures in thec=1 criticality. Be-
cause the original model(1) has a site-parity symmetry, we
can also say that bond-alternating terms, which produce a
mass too, do not appear. As long as we focus on the strong
rung-coupling casessJ'@Jd, anisotropy parameterD1s2d will
not exceed the value of the BKT transition pointDBKT =1.
These considerations imply that higher-order perturbations
cannot makec=1 criticalities of transitions change, although
they will modify parameterssJ1s2d ,D1s2d ,Hussd,1s2dd slightly
and generate several new but small terms(e.g., next nearest
neighbor interaction terms) in effective models.

Using analytical tools, we can also evaluate several physi-
cal quantities around each transition. We will discuss them in
the next subsection along with general spin-S cases.

B. Generalization to spin-S ladders

Viewing results of DPTs in spin-1
2 cases(Figs. 4 and 5,

Refs. 14 and 34) and above spin-1 cases, we find it possible

FIG. 7. Intermediate plateau state in the spin-1 ladder(1) with
the uniform field(2a): the case withJ→0 sad and the case whereJ
is finite sbd. Thin black bonds mean singlet bonds of spin-1

2 pair.
The dotted bonds mean triplet bonds where bothz components of
two spins are +12. In the panelsbd, gray plaquettes represent a
super-position state drawn in the lowest part of the figure.
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to generalize them to two-leg spin-SAF ladders with external

fields (2a) and (2b). Even for the spin-S case, in whichSW l,j
means a spin-S operator, the rung Hamiltonian is solvable
through statesuS ,Szl j, in which S runs from 0 to 2S. The
number of independent statesuS ,Szl j is om=0

2S s2m+1d=s2S
+1d2, and the table of Clebsch-Gordan(CG) coefficients(or
the Wigner-Eckart theorem) can determine the relation be-

tween them and the states of original two spinssSW1,j ,SW2,jd.
The eigen energy of the stateuS ,Szl j is

J'

2
SsS + 1d − J'SsS+ 1d − HSz, s15d

where we consider the even-j rung. In a subspace with a
fixed value ofS, the GS of the rung isuS ,Sl j, although at
H=0, all s2S+1d states are degenerate. Because the GS en-
ergy of the above subspace goes down with the slope −S
when H is increased, the GS of the full space has 2S level
crossings:H=J' ,2J' , . . . ,2SJ'. (This is a general result of
Fig. 6.) Hence, one readily expects that the spin-S case has
2S critical phenomena in the uniform(staggered)-field mag-
netization process. The first-order DPT near each level-
crossing line gives the effective model, which is the same
type as the spin-1 case: we always obtain a spin-1

2 XXZ
chain with a uniform (staggered) field for the
uniform(staggered)-field cases. Therefore, even in the spin-S
cases, similar conclusions as the spin-1 cases can be avail-
able. In principle, one can obtain effective models in all vi-
cinities of level-crossing lines. However, derivations of the
models associated with lower-field crossing lines must cal-
culate numerous CG coefficients(syntheses of spins). Tables
I and II depict only the effective models near the highest-

field and second-highest-field lines. Nevertheless, these two
will be sufficient to conclude that the spin-S case has 2S
critical regions(points) in the uniform(staggered)-field mag-
netization process. Note that in these two tables, we use the
same symbolssJ1s2d ,D1s2d ,Hussd,1s2dd in the spin-1 cases to
represent effective models.

From these tables, we can extract the following informa-
tion on the GS of the spin-Scase.(i) For uniform-field cases,
the critical areas around the highest-field line and second-
highest-field line, respectively, are

2SJ' − J ø H ø 2SJ' + 4SJ, s16ad

s2S− 1dJ' −
8S2 + 2S− 2

4S− 1
J ø H ø s2S− 1dJ'

+
24S2 − 14S+ 1

4S− 1
J,

s16bd

which determine the width of the critical regionG in the
tables. The plateau regions exist outside the regionsG, as
with the spin-1 case.(ii ) The larger the magnitude of spinS
becomes, the more the widthG increases as a result of the
growth of the effective couplingJ1s2d. The effective model
approaches a spin-1

2 XY chain. Because plateaus are charac-
teristic in “quantum” spin systems, the growth ofG, or the
decrease of plateau regions, means the system approaches
the classical vector spin system. On the other hand, in the
case fixingS, the highest-field critical regionG is smaller
than the second highest-field one. Therefore we expect that
the lower-field critical regions are larger.(iii ) Like the spin-1

TABLE I. Effective models around the highest-field linesH=2SJ'. ParameterssJ1,D1,Hu,1,Hs,1d are values of the effective exchange
coupling constant, the anisotropy parameter, the effective uniform field and the effective staggered field, respectively. The signG denotes the
width of thec=1 critical region along theH-axis in the original parameter spacesJ' ,Hd, Mu,1 represents the possible values ofkSl,j

z l in the
critical regionG, andMs,1 is the value ofukSl,j

z lu at the transition lineHs,1=0.

Spin J1 D1 Hu,1 G Mu,1 Hs,1 Ms,1

1 /2 J 1/2 J'−H+ 1
2J 3J 0→ 1

2 J'−H− 1
2J 1/4

1 2J 1/4 2J'−H+ 3
2J 5J 1

2 →1 2J'−H− 3
2J 3/4

3/2 3J 1/6 3J'−H+ 5
2J 7J 1→ 3

2 3J'−H− 5
2J 5/4

2 4J 1/8 4J'−H+ 7
2J 9J 3

2 →2 4J'−H− 7
2J 7/4

S 2SJ 1/s4Sd 2SJ'−H+ 4S−1
2 J s4S+1dJ S− 1

2 →S 2SJ'−H− 4S−1
2 J S− 1

4

TABLE II. Effective models around the second-highest-field linesH=s2S−1dJ'. ParameterssJ2,D2,Hu,2,G ,Mu,2,Hs,2,Ms,2d have the
same roles assJ1,D1,Hu,1,G ,Mu,1,Hs,1,Ms,1d in Table I, respectively. Note that the spin-1

2 case does not possess the effective model.

Spin J2 D2 Hu,2 G Mu,2 Hs,2 Ms,2

1 8
3J 3/16 J'−H+ 1

2J 19
3 J 0→ 1

2 J'−H− 1
2J 1/4

3/2 24
5 J 5/48 2J'−H+ 3

2J 53
5 J 1

2 →1 2J'−H− 3
2J 3/4

2 48
7 J 7/96 3J'−H+ 5

2J 103
7 J 1→ 3

2 3J'−H− 5
2J 5/4

5/2 80
9 J 9/160 4J'−H+ 7

2J 169
9 J 3

2 →2 4J'−H− 7
2J 7/4

S 8Ss2S−1d

4S−1 J
4S−1

16Ss2S−1d s2S−1dJ'−H+ 4S−3
2 J 32S2−12S−1

4S−1 J S−1→S− 1
2 s2S−1dJ'−H− 4S−3

2 J S− 3
4
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case, all intermediate plateaus must vanish at a sufficiently
weak rung-coupling region.(iv) For the staggered-field
cases, the transition lines with the highest field and the
second-highest field are, respectively,

H = 2SJ' − s4S− 1dJ/2, s17ad

H = s2S− 1dJ' − s4S− 3dJ/2. s17bd

(v) All critical phenomena do not involve spontaneous sym-
metry breakings as with the spin-1 case.

Now, let us investigate the physical quantities around each
criticality in more detail. If we represent the effective model
near each transition with the(second) highest field using the
pseudo-spin operatorUj

a sTj
ad in a similar manner of the

preceding subsection, the original spins are projected out as
follows:

Sl,j
z → − 1

2Uj
z + S− 1

4, Sl,j
± → s− 1dlÎSUj

7,

Sl,j
z → − 1

2Tj
z + S− 3

4, Sl,j
± → s− 1dl2ÎSs2S− 1d

4S− 1
Tj

7,

s18d

where we consider even-j sites, again. For the staggered-field
cases, as Eqs.(13) and(14), we must redefineUj

a sTj
ad in all

odd-j rungs and defineŨj
a sT̃j

ad. The relation(18), of course,
contains Eq.(9), and provides the magnetic relation between
the effective and original models. As mentioned earlier, the
low-energy properties of the effective models are elucidated
well by several analytical methods. Therefore, the combina-
tion of the relation(18) and such methods can provide accu-
rate predictions of the original spin-S ladders.

First we discuss the uniform-field cases. According to
Bethe ansatz36,61,62 and Abelian bosonization,38,39,44–50 the
low-energy physics of the massless areauHu,1s2duøJ1s2ds1
+D1s2dd is governed by the free boson field theory with the
spin-wave[massless excitation] velocity v1s2d and the com-
pactification radiusR1s2d. (We refer the reader to Appendix A
for an explanation of Abelian bosonization.) Utilizing their
knowledge, one can derive the uniform susceptibility
formula9,63

x1s2d ;
]kUj

zl
]Hu,1

Sor
]kTj

zl
]Hu,2

D =
a0

s2pd2R1s2d
2 v1s2d

, s19d

wherea0 is the lattice constant. Because the effective field
Hu,1s2d varies linearly with the original fieldH (see Tables I
and II), the relationx1s2d=

1
2s]kSl,j

z l /]Hd is realized for the
magnetization process varying onlyH,64 at least in the first-
order DPT. One thus can regard all the behavior ofx1s2d as
those of the original susceptibility, except for the difference
of the factor1

2. The linear relation between the effective and
original fields is often used below. The Bethe ansatz can
determine the radiusR1s2d and the velocityv1s2d as functions
of J1s2d, D1s2d andHu,1s2d. Especially forHu,1s2d=0, the radius
and the velocity are represented analytically as

R1s2d =
1

Î2p
S1 −

1

p
arccosD1s2dD1/2

,

v1s2d =
p

2

Î1 − D1s2d
2

arccosD1s2d
J1s2da0. s20d

Inserting Eq.(20) to Eq. (19), we see that whenS goes from
one half (one) to `, the pseudo-spin magnetization curve
slope[i.e., the susceptibility(19)] at the midpoint of the(sec-
ond) highest-field critical regime[i.e., at Hu,1s2d=0] de-
creases monotonically from 1/Î3pJ>0.1843J−1 s0.0954
3J−1d to 1/2pSJ s1/4pSJd. Fixing S, we also find that
x1sHu,1=0d is larger thanx2sHu,2=0d. For example, in the
spin-1 case, x1sHu,1=0d>0.1193J−1 and x2sHu,2=0d
>0.09543J−1. These imply a reasonable fact that the larger
G is, the smaller is the magnetization slope atHu,1s2d=0.
Subsequently, let us consider how magnetization approaches
the value of the plateau(saturation). Without utilizing for-
mula(19), studies of the C-IC transition40–43have shown that
near the saturation, the magnetization behaves as

kUj
zlsor kTj

zld , uHu,1s2d
cr − Hu,1s2du1/2, s21d

where uHu,1s2d
cr u is the critical valueJ1s2ds1+D1s2dd.65 Hence,

in the magnetization process, the original magnetizationkSl,j
z l

also behaves, near each plateau,,uHcr−Hu1/2, whereHcr is
the critical field of eachc=1 region. This power law is a
universal property. That is, it is independent of the spin mag-
nitude S and the level-crossing line we choose in the two-
spin problem of the rung. The spin-wave analysis can exactly
calculate the gap in the saturated state of each effective
model. ForuHu,1s2du. uHu,1s2d

cr u, the excitation gap is estimated
asuHu,1s2du− uHu,1s2d

cr u.66 Again, translating this into the original
model, we see that whenH is moved just outside eachc=1
region, the gap grows asuH−Hcru.67

Performing the same spin-wave analysis in the saturated
state of the original spin-S ladders, we can determine the
upper critical uniform fieldHc. The field gives the boundary
between the saturation withkSj

zl=2S and thec=1 phase just
under it. The result is

Hc = 4SJ+ 2SJ'. s22d

Surprisingly,Hc perfectly agrees with the upper critical field
derived from the effective model around the highest-field
line [see the region(16a)]. In other words,Hc is not modified
by the higher-order perturbation effects of the DPT. For the
FM-rung side, the spin-wave theory implies that

Hc = 4SJ, s23d

whereHc does not depend upon the rung couplingJ'. Equa-
tions(22) and(23) are a generalization of the critical fieldH2

in the spin-12 case(Fig. 4).
Next, we shift our focus to the staggered-field cases.

When the effective staggered fieldHs,1s2d is vanishing(i.e.,
the GS is massless), the bosonization translates the pseudo-
spin operator to the following boson representation:
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Ũj
zsor T̃j

zd <
a0]xf

2pR1s2d
+ s− 1d jA1s2d sinS f

R1s2d
D , s24d

where fsxd fx= j 3a0g and A1s2d are the boson field and a
nonuniversal constant,68–70 respectively. Here we neglect the
so-called Klein factor.47–50 From Eq. (24), a finite Hs,1s2d
leads to a perturbation term proportional to
Hs,1s2d sinsf /R1s2dd for the effective boson field theory, and it
then becomes a sine-Gordon model. The vertex operator
sinsf /R1s2dd has the scaling dimensionx1s2d=1/4pR1s2d

2 and
is always relevant(i.e., x1s2d,2). Therefore the scaling
argument9 tells us that any small fieldsHs,1s2d yield an exci-
tation gapm1s2d and the pseudo-spin staggered magnetization
as

m1s2d , uHs,1s2du1/f2−x1s2dg, s25ad

kŨj
zlsor kT̃j

zld , s− 1d juHs,1s2dux1s2d/f2−x1s2dg, s25bd

where if Hs,1s2d,0, we take the replacements−1d j

→ s−1d j+1 in Eq. (25b). SubstitutingR1s2d in Tables I and II
for x1s2d, we find that the larger the valueS becomes, the
slower the growths of both the gap and the magnetization
become. In other words, the singularity of the staggered sus-

ceptibility u]kŨj
zl /]Hs,1uHs,1→0 (or u]kT̃j

zl /]Hs,2uHs,2→0) de-
creases withS increasing. Particularly, in the limitS→`,

m1s2d,uHs,1s2du and ukŨj
zlu sor ukT̃j

zlud,uHs,1s2du, which means
the staggered susceptibility does not diverge at the “transi-
tion” line Hs,1s2d=0. These can be again interpreted as a sign
of the approach to the classical spin system. On the other
hand, fixingS, one observes that when the fieldsHs,1=Hs,2

are small enough,m1 andukŨj
zlu are larger thanm2 andukT̃j

zlu,
respectively. We therefore anticipate that the transition with
the higher field has a stronger singularity. In the spin-1 case,

we have m1,uHs,1u0.878, m2,uHs,2u0.903, ukŨj
zlu,uHs,1u0.756

and ukT̃j
zlu,uHs,2u0.806. In common with the uniform-field

cases,Hs,1s2d has a linear relation withH. In order to translate
all consequences into ones of the model(1) in the original
staggered-field magnetization process, it is sufficient to re-

place Hs,1s2d and kŨj
zl (or kT̃j

zl), respectively, withH and
kSl,j

z l−s−1d jMs,1s2d, whereMs,1s2d is the staggered magnetiza-
tion par site at each transition line(see Tables I and II).

Summarizing all the above results about the spin-S cases,
we can draw GS phase diagrams and the uniform and stag-
gered magnetizations as in Fig. 8. Notably, Fig. 8 is valid in
the strong AF rung-coupling limit.

Utilizing solutions of the Bethe ansatz integral equations,9

values of the nonuniversal constantsA1s2d,
14,70 etc., we can

serve more quantitative predictions. We omit them here.
Finally, we speculate the short-range “RVB” picture of the

plateau states in the uniform-field case, without any compu-
tations. The spin-S case has 2S+1 plateau regions including
two trivial plateaus: the saturated state and theH=0 state.
The guides to guess the “RVB” pictures are the effective
models, in which translational symmetry does not break, the

plateau condition(12), and the expectation that the bonds
along the chain are subject to taking the singlet state and all
plateaus vanish in the sufficiently weak AF rung-coupling
region. From these, in order to build the “RVB” picture for

the plateau withkSj
zl=S̃ in the spin-S case, we should per-

form just the following two procedures:(i) putting S̃ triplet

bonds ands2S−S̃d singlet bonds per a rung, and(ii ) “join-
ing” two nearest-neighbor rungs by singlet or triplet bonds,
not to break the translational symmetry along the chain. The
plaquette states of the lowest panels in Figs. 2 and 7 are
available for the procedure(ii ). For instance, two plateau
states withkSj

zl=1 and kSj
zl=2 in the spin-32 case are de-

scribed as(A) and (B) in Fig. 9, respectively. Similarly, the
plateau withkSj

zl=0 could be captured by the set of a PSS
state and a spin-liquid state(a) in Fig. 3. Following the above
speculations, one would easily produce “RVB” pictures for
any plateaus.

Within the “RVB” picture, every time the GS moves from
a plateau to the plateau just above it withH increasing, one
singlet bond along each rung is cut and exchanged for a

FIG. 8. Panelssa1d and sa2d are, respectively, the GS phase
diagrams in the uniform-field case(2a) and the staggered-field one
(2b). Panelssb1d and sb2d are, respectively, the uniform magneti-
zation curve in the case(2a) and the staggered one in the case(2b).
In the panelsb2d, we denote the magnetization of the even-j rung.

FIG. 9. Expected “RVB” pictures for the plateaux withkSj
zl=1

(A) and kSj
zl=2 (B) in the spin-32 case.
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triplet bond. This phenomena is reminiscent of successive
transitions in the spin-S bond-alternated chain.25,45,71

IV. WEAK RUNG-COUPLING LIMIT

This section describes the spin-1 ladder(1) under the op-
posite condition to the last section:J@ uJ'u ,H. We start from
the limit J'=H=0. There, the ladder becomes two decou-
pled spin-1 AF Heisenberg chains. The Haldane gap of the
single chain complicates the mapping to some field theories.
Nevertheless, two famous mappings exist:72 Haldane’s
method based on a non-linear sigma model(NLSM)19 and
the method applying a NAB.23–25 We will use the latter in
this section. It is useful for treating several additional terms,
in first principle, by the perturbation theory and the RG pic-
ture.

A. Critical points of spin-1 AF chain

The application of the NAB to 1D spin-1 systems17,26,73,74

is supported by low-energy properties of the spin-1
Takhtajan-Babujian(TB) chain75,76 and the following spin-1
bilinear-biquadratic chain:

Ĥd = Jo
j

fSW j ·SW j+1 + dsSW j ·SW j+1d2g, s26d

whereJ.0, SW j is the spin-1 operator on the sitej , and the
TB chain corresponds tod=−1=dTB. This subsection pre-
sents a brief review the model(26).77

The efforts of several people78–87 since the late 1980’s
have advanced our understanding of the model(26). In par-
ticular, the low-energy properties in the regionJ.0 and
uduø1 have been elucidated well. The GS phase diagram and
the excitation gap in this region are summarized as in Fig.
10. At least three special points exist aside from our target,
the Heisenberg pointd=0. The TB chain is integrable and
has massless excitations with the wave numbers(momenta)
k=0 andp /a0. The pointdLS=1, called the Lai-Sutherland
(LS) model,88 is also integrable. It has massless excitations
with k=0 and ±2p /3a0. The low-energy limits of TB and LS
points are, respectively, equal to the level-2 SU(2) WZNW
model89–92(a CFT) and the level-1 SU(3) WZNW model. On
the d axis, these two points are located in a quantum phase
transition. The TB point separates the Haldane phasesudu
ø1d and the massive dimerized phasesd,dTBd, which has

twice degenerate GSs. On the other hand, the LS point sepa-
rates the Haldane and massless “trimerized” phasesd.dLSd.
The transition belongs to a generalized SU(3) BKT type.93

Features of the Haldane phase are the existence of a finite
gap between the unique GS and the isolated spin-1 magnon
mode, and a “hidden” AF order detected by a string order
parameter:

Oa = − lim
u j−ku→`

kSj
aeipon=j+1

k−1 Sn
a
Sk

al,

;kÔal, s27d

which is the same form as the string parameter(3a) in the
spin-12 ladder, except thatSj

a is a spin-1 operator. The
AKLT 94 point daklt=

1
3 is noteworthy because its GS is ex-

actly identical to a valence-bond-solid state. Moreover, the
point daklt is the onset of an incommensurability: ins1. d
d.daklt, the real-space spin correlations has an incommen-
surate fluctuation, that connects smoothly with the three-site
period one at the LS point.

Asides from points above, recent studies have described
there are two characteristic points:ddis>0.4 (Ref. 84) and
Lifshitz point dLif >0.44.81,82 In the region −1,d,ddis, the
momentum of the lowest magnon excitation stays atk
=p /a0. However, on the right side ofddis, it has a deviation
from k=p /a0, and splits into two incommensurate momenta,
which smoothly reach the massless points +3p /2a0 and
−3p /2a0 at the LS chain, respectively. At the Lifshitz point,
an incommensurability appears in the spin structure factor.

B. Effective field theory

Reviewing the last paragraph, one notes that the TB point
in the model(26) can be adopted as an underlying point to
consider an effective field theory for the Heisenberg chain
sd=0d. It is likely that the LS point is also available for the
field theoretical description. However, as mentioned already,
there are three points changing the low-energy properties be-
tween the LS and Heisenberg points. Therefore, the LS point
is not appropriate for deriving the effective theory of the
Heisenberg point. This subsection provides the effective field
theory for the spin-1 ladder(1) in our notation.17

The level-2 SU(2) WZNW model, which describes the TB
point, has two primary fields: the 232 matrix field gmn

fm,nP h1,2jg with left and right conformal weightss 3
16 , 3

16
d

and the 333 matrix fieldFmn fm,nP h1,2,3jg with weights
s 1

2 , 1
2

d. This WZNW model is identical to three copies of
massless Majorana(real) fermions, as the WZNW model has
c=3/2 and theMajorana fermion theory, which is equivalent
to a 2D critical Ising model, hasc=1/2. This identification
allows a discussion of low-energy properties of the TB chain
using the c=1/2 CFT, instead of the WZNW model. In
imaginary time formalism wheret= it (t is real time), we
have the fermionic Euclidean action for the TB chain,

STB =E dt dxvfjL
a]z̄jL

a + jR
a]zjR

ag, s28d

wherejL
aszd and jR

asz̄d fa=1,2,3g are, respectively, the left
mover of a Majorana fermion with weightss 1

2 ,0d and the

FIG. 10. GS phase diagram and the schematic gap behavior in
the model(26).
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right mover with s0, 1
2

d. The velocity of the excitationsv is
the order ofJa0.

89,95 Here, we introduced the “light-cone”
coordinate:z=vt+ ix, z̄=vt− ix, ]z=

1
2(s1/vd]t− i]x), and ]z̄

= 1
2(s1/vd]t+ i]x). The repeated indices are summed. In the

operator formalism, the fermions satisfy the following equal-
time anticommutation relations:hja

asxd ,jb
bsydj=dabdabdsx

−yd. On the top of the action, there exist correspondences
among the WZNW primary fields and fields of thec=1/2
CFT. In accordance with Refs. 17, 74, and 96,Fmnsz, z̄d com-
prises a bilinear form ofjL

aszd and jR
asz̄d, which indeed has

the weightss 1
2 , 1

2
d. In addition, from Ref. 17, we have

gmnsz,z̄d ~ o
a=0

3

stadmnGasz,z̄d, s29d

wherest0dmn=dmn andt1,2,3 are the Pauli matrices. The fields
Gasz, z̄d are determined as

G0 = s1s2s3, Ga = isama+1ma+2, s30d

where sasz, z̄d and masz, z̄d are, respectively, the order and
disorder fields in the critical Ising model(c=1/2 CFT).
Here, we use the cyclic indexa+3=a. Both fieldssa andma

have weightss 1
16 , 1

16
d. An imaginary uniti is embedded in Eq.

(30) to let the fieldg be a SU(2) matrix. The SU(2) current
operatorsJL

aszd and JR
asz̄d in the WZNW model can be de-

fined by fermions as follows:

JL
aszd = −

i

2
eabcjL

bjL
c, JR

asz̄d = −
i

2
eabcjR

bjR
c , s31d

where eabc is the totally antisymmetric tensor ande123=1.
The currentsJL,R

a sxd satisfy level-2 SU(2) Kac-Moody alge-
bra. Through the NAB,24,25,97 the spin operator in the TB
chain is translated into the following sum of the uniform and
staggered parts:

1

a0
Sj

a < JL
a + JR

a + iC0s− 1d j Trfsg − g†dtag

= JL
a + JR

a + C1s− 1d jsama+1ma+2, s32d

where bothC0 and C1 are nonuniversal constants. On the
left-hand side,a=1, 2, and 3 correspond tox, y and z, re-
spectively. This formula connects smoothly with the
bosonized spin density of the spin-1

2 ladder.27 From Eq.(32),
one notes that the one-site translation causesgsxd→−gsx
+a0d.24,25

Here we must mention a subtle point. The OPEs in Ap-
pendix B 2 show that a disorder fieldma has an anticommut-
ing character(so far we implicitly think of it as a bosonic
object). One solution to maintain it and the Hermitian prop-
erty of the staggered part of the spin density(32) is to
modify the staggered part as

sama+1ma+2 → ksama+1ma+2, s33d

where the new parameterk has the same properties as an
imaginary unit:k* =−k andk2=−1. We will sometimes use
this modification below.

Making full use of the above relations, one obtains low-
energy properties of the TB chain. In order to achieve the

field theory for the Heisenberg chain beyond the TB chain,
one must add the following two perturbation terms to the
action (28):

imjL
ajR

a − lJL
aJR

a . s34d

As long as the attached terms are restricted to relevant or
marginal ones, only these two terms are admitted and possess
spin rotational(see Appendix C) and one-site translational
symmetries.98 From the forms of Eqs.(32)–(34) and the
Hamiltonian for the TB action(28), we can infer that the
time reversal transformationsSj

a, id→ s−Sj
a,−id is mapped

to sjL
a ,jR

a ,k , id→ sjR
a ,jL

a ,−k ,−id. Similarly, we infer that
link-parity transformation Sj

a→S−j+1
a and site-parity one

Sj
a→S−j

a (S0
a is fixed) correspond to fjL

asxd ,jR
asxd ,gsxdg

→ f7jR
as−xd , ±jL

as−xd ,gs−xdg and fjL
asxd ,jR

asxd ,gsxdg
→ f7jR

as−xd , ±jL
as−xd ,−gs−xdg, respectively.99

Because the Heisenberg pointsd=0d is far from the TB
point sd=−1d, m andl are phenomenological parameters. It
is known that one may takem.0 andl.0 in the Haldane
phase(Fig. 10).26 The inequalityl.0 means that the term
−lJL

aJR
a is marginally irrelevant. As shown in Eq.(B6), the

Ising model picture tells us thatm.0 indicates that each
Ising model is in the disordered phasekmalÞ0. The mass
parameterm must contribute to the Haldane gap. Conse-
quently, three bands built ofjL

a andjR
a can be regarded as the

spin-1 magnon modes in the chain(26). Running fromd
=−1 to d=0 allows the velocityv to be renormalized. How-
ever, it still has the order ofJa0.

84,100We will use the same
symbolv for the renormalized velocity. In addition tov, for
the other parameters(m, l, etc.), hereafter we use the same
symbols whether they contain any renormalization effects or
not. It is widely believed that the formula(32) is applicable
even for the Heisenberg chain because its low-energy exci-
tations still stay around the uniform pointk=0 and the stag-
gered onep /a0 (see the previous subsection).

Heretofore, we have obtained an effective field theory for
the spin-1 Heisenberg chain. This framework was first pro-
posed by Tsvelik26 in 1990. Utilizing Eq. (32), we easily
obtain the field theory for the spin-1 ladder(1) without ex-
ternal fields. The action is

Slad = STBfjL
a,jR

ag + STBfj̃L
a,j̃R

ag +E dt dxfimjL
ajR

a − lJL
aJR

a

+ imj̃L
aj̃R

a − lJ̃L
aJ̃R

a + J'a0sJL
aJ̃R

a + JR
aJ̃L

a + JL
aJ̃L

a + JR
aJ̃R

ad

+ C1
2J'a0kk̃sama+1ma+2s̃am̃a+1m̃a+2g, s35d

where quantities without(with) an overtildẽ represent fields
of the chain 1(chain 2) with l =1 sl =2d. We stress that the
Hamiltonian for the actionSlad is invariant under spin rota-
tion, one-site translation, time reversal, two parity transfor-
mations and exchanging the chain indices.

On top of the rung-coupling term, it is possible to trans-
late the other terms into field-theoretical expressions. The
uniform Zeeman term(2a) and the staggered one(2b) are,
respectively, mapped to
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<− HE dxsJL
3 + JR

3 + J̃L
3 + J̃R

3d, s36ad

<− C1HE dxsks3m1m2 + k̃s̃3m̃1m̃2d. s36bd

An advantage of the field theory used here is that the uniform
Zeeman term is translated into the fermionic quadratic form
(36a), which can be treated nonperturbatively. Equation
(36b) is not invariant under time reversal and one-site trans-
lational operations.

Other considerations regarding symmetries between the
spin-1 ladder and its effective theory(35) are found in Ref.
17.

C. Uniform-field case

Sections IV A and IV B complete the main preparation
dealing with the spin-1 ladder(1). This paragraph presents a
discussion of the ladder with a uniform Zeeman term(2a).
We clarify what critical phase emerges when the uniform
field is applied. It is easy to infer that a weak rung coupling
does not collapse the Haldane gap of two decoupled spin-1
AF chains (see the Introduction and the next subsection).
Moreover, in the single chain, a sufficiently strong uniform
field engenders ac=1 critical state.26,101–105Therefore, we
take the following strategy.(i) We review the effective theory
for thec=1 critical phase appearing in the spin-1 chain with
a strong uniform field.26 (ii ) Then, adding the rung coupling
terms perturbatively, we investigate the low-energy physics
of the ladder(1) with a strong uniform field.

Following the above scenario, first we explain how the
c=1 state is described within the field-theoretical scheme.
We neglect the four-body interaction, thel term. One may
interpret that it vanishes via the RG procedure. Actually, it is
believed that the effective theory without thel term is suf-
ficient to describe the low-energy physics of the Heisenberg
chain.26 In this case, the Hamiltonian for the chain 1 is

Ĥchain1=E dxivscL
† ]xcL − cR

† ]xcRd + imscL
†cR − cR

†cLd

+ HscR
†cR + cL

†cLd + i
v
2

sjL
3 ]xjL

3 − jR
3]xjR

3d + imjL
3jR

3 ,

s37d

where, for convenience, we introduced a Dirac(complex)
fermion,

ScR

cL
D =

1
Î2
SjR

1 + ijR
2

jL
1 + ijL

2 D . s38d

The Hamiltonian(37) is a quadratic form. The uniform field
mixes two speciesjL,R

1 and jL,R
2 , while it does not affect

jL,R
3 . Through Fourier transformations cL,Rsxd

=ek:allsdk/2pdeikxcL,Rskd and jL,R
3 sxd=ek.0sdk/2pd

3heikxcL,Rskd+e−ikxcL,R
† skdj fjL,R

3 †sxd=jL,R
3 sxdg, and Bogoliu-

bov transformations,

ScRskd
cLskd

D = UskdSc+skd
c−

†skd
D ,

ScRskd
cLskd

D = U3skdS dskd
d†s− kd

D , s39d

where Uskd11,12=m/ f2eskdseskd7kvdg1/2, Uskd21,22

= ± ifeskd7kvg1/2/ f2eskdg1/2, U3skd11,12=Uskd11,12, U3skd21,22

= ifeskd7kvg1/2/ f2eskdg1/2 and eskd=fskvd2+m2g1/2, we ob-
tain the diagonalized Hamiltonian,

Ĥchain1=E dk

2p
fe+skdc+

†skdc+skd + e−skdc−
†skdc−skd

+ eskdd†skddskdg + const, s40d

wheree±skd=eskd±H. The three bandseskd ande±skd repro-
duce the Zeeman splitting of the spin-1 magnon modes.
Their structures are given in Fig. 11. When the uniform field
exceeds a critical valuem, a Fermi surface appears in the
lowest bande−skd and its low-energy excitations then can be
captured as a massless Dirac fermion. This corresponds pre-
cisely to thec=1 state we are looking for. Here, the mass
parameterm, after including all the renormalization effects,
can be identified with the Haldane gap.

Now, in this strong-field regionsH.md, let us recover the
l term, and take into account the rung coupling. Provided
that we focus on low-energy physics, expanding the modes
c+sxd and c−sxd, respectively, aroundk=0 and the Fermi
momentumk=kF=sH2−m2d1/2/v will be allowed. Therefore,
we obtain

cRsxd <
1
Î2

csxd + eikFxU+R†s− xd + e−ikFxU−L†s− xd,

cLsxd <
i

Î2
csxd − ieikFxU−R†s− xd − ie−ikFxU+L†s− xd,

s41d

where U±=Us±kFd12=m/Î2HfH+sH2±m2d1/2g, Rsxd and
Lsxd are, respectively, the left and right movers of the Dirac
fermion fc−sxd<eikFxRsxd+e−ikFxLsxdg. In addition, we de-
fined the field csxd as esdk/2pde+skdc+

†skdc+skd<edx c†

3(−sv2/2md]x
2+m+H)c. Similarly, we introduce fieldsL̃, R̃

andc̃ in chain 2. Substituting these new fields for the effec-

tive field theory sĤchain1+Ĥchain2+l term+rung couplingd,

FIG. 11. Band structures of the spin-1 AF chain with a uniform
field H.
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we obtain the effective Hamiltonian(D1) under the condition
H.m. (Because it is too lengthy, the explicit form is put in
Appendix D.) In the process, using Eqs.(41), we carefully
approximated mass terms, interaction ones and currentsJL,R

a

while conserving the Hermitian property of each term. More-
over, we dumped all terms possessing some rapid fluctuation
factors exps±inkFxd (n is an integer). The action toward the
Hamiltonian(D1) is written as

SH.m = S0
1fL,R,L̃,R̃g + S0

2fja
3,j̃a

3g + S0
3fc,c̃g + Sint

1 fL,R,L̃,R̃g

+ Sint
2 fL,R,L̃,R̃;ja

3,j̃a
3g + Sint

3 fL,R,L̃,R̃;c,c̃g

+ Sint
4 fja

3,j̃a
3 ;c,c̃g + Sint

5 fc,c̃g + Sstag, s42d

whereS0
a, Sint

a andSstagdenote the free part of each field, the
four-body interaction terms and the staggered part of the
rung-coupling term[i.e., the final term in Eq.(35)], respec-

tively. Integrating out massive fieldsja
3, j̃a

3, c, andc̃ leads to

the effective action containing only soft modesL, R, L̃, and

R̃. Through a cumulant expansion, it can be expressed as

SefffL,R,L̃,R̃g = S0
1 + Sint

1 + kS̄intlM + 1
2fkS̄int

2 lM − kS̄intlM
2 g + ¯ ,

s43d

where S̄int=oa=2
5 Sint

a +Sstag, and k¯lM indicates the expecta-
tion value of free parts of four massive fermions. Because
the Abelian bosonization is useful for interacting Dirac fer-
mion models(see Appendix A), we introduce the boson

fields f and f̃ from the Dirac fermionssL ,Rd and sL̃ ,R̃d,
respectively. Applying the formula(B10) and the known re-
sults of the two-leg spin-12 ladder with a uniform field[refer
Eqs. (29) and (32) in Ref. 36], we can bosonize the Ising-
field product ofSstagas well as the fermion fields. As a result,
Sstag is mapped as follows:

C1
2J'a0kk̃sama+1ma+2s̃am̃a+1m̃a+2

, C1
2J'a0hm3m̃3 cosfÎpsu − ũdg

+ 1
2s3s̃3 cosfÎpsf − f̃dgj

+ fluctuating or irrelevant terms, s44d

whereu sũd is the dual of the boson fieldf sf̃d, and the first
(second) term on the right-hand side is generated from thex
and y szd components of the rung-coupling staggered part.
The result (44) is also supported by the NLSM
approach.102,104The final fluctuating or irrelevant terms may
be negligible in the low-energy limit. From Eqs.(42)–(44),
up to the first cumulant, the effective actionSeff yields the
following bosonized Hamiltonian:

Ĥ1st=E dxfAP+
2 + B+s]xf+d2 + C ]xf+ + AP−

2 + B−s]xf−d2

+ Cu− cossÎ2pu−d + Cf− cossÎ8pf−dg, s45d

where we define the symmetric boson fieldf+=sf+f̃d /Î2

and the antisymmetric onef−=sf−f̃d /Î2, and P±

=]tf± /v8 su±d is the canonical conjugate(dual) of the boson

f±. New parameters inĤ1st are

A =
v8

2
−

l

2p
U+

2U−
2 +

l

4p
sU+

2 − U−
2d2, s46ad

B± =
v8

2
−

l

2p
U+

2U−
2 −

l

4p
sU+

2 − U−
2d2 ±

J'a0

2p
sU+

2 + U−
2d2,

s46bd

C =Î 2

p
F2ldjU+U− −

l

4
dcsU+ + U−d2 +

J'a0

2
sU+

2 + U−
2dG ,

s46cd

Cf− = 2
J'a0

p2a2U+
2U−

2, s46dd

Cu− ~ C1
2J'a0km3lM

2 , s46ed

where a in Eq. (46d) is the cut-off parameter in the

bosonization formula(A3), dj= ikjL
3jR

3lM = ikj̃L
3j̃R

3lM .0 and

dc=kcc†lM =kc̃c̃†lM .0. Both dj and dc are Os1/a0d. Ex-
cept for these two, the averages of products of two massive
fermions vanish in the first cumulantkSintlM. One should note
km3lM =km̃3lM Þ0 andks3lM =ks̃3lM =0. In the derivation of
Eq. (45), for simplicity, we assume that the Dirac fermion
bands are always half-filled. From this, for example, we em-
ployed the relationL†L−LL†=2L†L−d0=2:L†L:, where the
order of d0 is the inverse of the fermion wave-number cut-
off, and the symbol : : means the normal-ordered product.
Observing the Hamiltonian(D1) carefully, and using the op-
erator product expansion(OPE) in thec=1 andc=1/2 CFTs
(Appendix B 2, we find that the second cumulant yields new
interaction terms cossÎ8pu−d, coss2Î8pf−,LsRdd and
cosfÎ2psf−,LsRd+3f−,RsLddg from ksSint

2 d2lM and kSint
2 SstaglM.

[Here,f±,LsRd is the left(right) mover ofu±.] This means that
the second cumulant does not produce any vertex operators
having the symmetric bosonsf+, u+ and f+,LsRd. To verify
this result, it is sufficient to note that the presence of
expsiÎ8pf+d, expsiÎ8pu+d, expsi2Î8pf+,Ld and
expsi2Î8pf+,Rd requires, respectively, fermion four-body

termsL†RL̃†R̃, L†R†L̃†R̃†, L†L†L̃†L̃† andRRR̃R̃. It is expected
that except for the above vertex terms, relevant or marginal
interactions do not emerge in the higher cumulants.

Besides the discussion related to the explicit counting of
vertex operators, the Hamiltonian(D1) and the cumulant ex-
pansion have the following four remarkable points.(i) Above
vertex operators corresponding to some four-body fermions
occur only through the rung coupling(meaning that thel
term does not violate thec=1 phase in the decoupled chain).
(ii ) We can apply an argument in Ref. 59, which cleverly
employs the bosonization and symmetries of spin systems.
From Appendix C, the U(1) transformation associated with
the spin rotation aroundz axis is given bycL,R→cL,Reiw (w
is a real number) in the field theory, which accompaniesL†

→L†eiw, R†→R†eiw and c→ceiw via Eq. (41). Of course,
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fields with an overtilde also receive the same transforma-
tions. In the boson language, they correspond to a shift of the
symmetric dual fieldu+→u++constant. This U(1) symmetry
hence prohibits the emergence of any vertex operators with
the dual fieldu+. Similarly, let us consider the one-site trans-
lation. As one can see from Eq.(41), it causesL†s−xd
→L†s−x−a0de−ikFa0 andR†s−xd→R†s−x−a0deikFa0. They are
mapped tof+sxd→f+sx+a0d+2Î2kFa0/ r, where r is the
compactification radius in thec=1 theory considered now. It
must be close to the value of the massless Dirac fermion
1/Î4p (see Appendix A). Vertex operators withf+ are there-
fore forbidden, except for those wherekF becomes some spe-
cial value. These prohibition rules are actually formed in the
above counting of vertex operators. One can confirm that
U(1) and one-site translational symmetries are maintained in
the Hamiltonian(D1). (iii ) Because the correlation functions
of massive fields decay exponentially, no long-range interac-
tion terms emerge in all the cumulants. For instance, the
correlation lengths of two-point functions forja

3 or c are at
most the order ofsma0d−13a0, wherem has the order of the
Haldane gaps>0.41Jd,106 and ma0 s,Ja0d must be a con-
stant in the present scaling limit. In fact, the correlation
length of the spin-1 AF Heisenberg chain is only about six
times as large asa0.

106 The connected correlation functions
of Ising fields s3 and m3 also decay exponentially.107 (iv)
From(iii ), roughly speaking, the expansion can be thought of
as aJ' /J expansion.14

From all the considerations below Eq.(45), when the rung
coupling is sufficiently weak, the bosonized Hamiltonian
(45), possibly with vertex operators of antisymmetric fields
only, could be adopted as an effective theory under a strong
uniform field Hs.md. Following a standard prescription, we
perform a Bogoliubov transformation,

f±8 =
1

ÎK±

f±, P±8 = ÎK±P±, s47d

whereK±=ÎA/B±, and the canonical relations are conserved:
ff±sxd ,P±sydg=ff±8sxd ,P±8sydg= idsx−yd. From the view of
new boson fieldssf±8 ,P±8d, interaction terms,

cossÎ8pf−d = cossÎ8pK−f−8d, s48ad

cossÎ2pu−d = cosSÎ28p

K−
u−8D , s48bd

cossÎ8pf−d = cosSÎ8p

K−
f−8D , s48cd

have the scaling dimensions 2K−,1 /s2K−d and 2/K−, respec-
tively. The parametersJ' and l yield a deviation fromK±
=1. It, however, would be quite small in the weak rung-
coupling region. The most relevant term, hence, is
cossÎ2p /K−u−8d, and it locks the phase fieldu−8. Therefore,
the f−8 mode always becomes massive once the rung cou-
pling J' enters into the system. Other interactions
coss2Î8pf−,LsRdd and cosfÎ2psf−,LsRd+3f−,RsLddg have a
conformal spin, and it is reported that such fields may engen-
der non-trivial effects.38,108 However, they would not be as

powerful as recovering any masslessf−8 modes in the present
case. On the other hand, for the symmetric part, the linear
term C]xf+ is absorbed into the quadratic part by the shift
f+→f++Cx/ s2B+d. From these results, we conclude that for
a strong uniform fieldsH.md, only the f+8 mode remains
massless and ac=1 phase is realized, irrespective of the sign
of J'.

Finally, we note the limitations and the validity of the
methods used here. The fermion band width in the effective
theory (37) is expected to be smaller than or equal toOsJd.
Hence, when the uniform field becomes too strong, such as
H*J, it is doubtful whether the theory(37) is valid or not.
Furthermore, for such a strong-field case, it may be neces-
sary to take into account other low-energy excitations. Mean-
while, the cumulant expansion is not reliable well whenuJ'u
reachesOsJd. For the derivation of Eq.(45), we used the
assumption that the Dirac fermion bands is half-filled. Re-
moving it does not influence the main results presented in
this paragraph. It merely changes parameters in Eq.(45) a
bit.

D. GS phase diagram of the uniform-field case

The strategy of the preceding subsection is not suitable
for determining the lower critical uniform field, while we
have already known that the lowest-excitation-gap profile of
the spin-1 ladder is given by Fig. 1. Furthermore, the lowest
excitations must consist of a spin-1 magnon triplet.[This
expectation is trusted at least for the strong AF or FM rung-
coupling regions. Moreover, from our effective theory(exci-
tations of fermionsjL,R

a are interpreted as spin-1 magnon
excitations) and the NLSM analysis,16 it would be also true
for the weak rung-coupling region.] Therefore, the gap pro-
file in Fig. 1 itself is equivalent to the shape of the lower
critical uniform field in the spacesJ' ,Hd. [As H is increased,
one of the spin-1 magnon bands goes down linearly withH,
as a result of the Zeeman splitting. See the bande−skd.]

Taking into account the above lower critical field and pre-
dictions in Secs. III and IV C, we can finally draw the whole
GS phase diagram of the spin-1 AF ladder(1) with the uni-
form field as in Fig. 12. The sharp form of the intermediate
plateau area is one of the natures of the BKT transition: the

FIG. 12. Schematic GS phase diagram of the spin-1 AF ladder
(1) with the uniform Zeeman term(2a).
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correlation length outside of the critical phase in the BKT
transition is still anomalously long, and it inversely indicates
that the excitation gap, which is proportional to the width of
the plateau in the present case, grows considerably slowly.
Features of the spin-1 GS phase diagram are the phase
boundary near the decoupled point and the existence of the
intermediate plateau. On the other hand, thec=1 universality
in the critical phase is common to both spin-1

2 and spin-1
cases.

E. No-field case

This subsection specifically addresses situations in which
spin-1 ladders have no external fields.

1. String order parameters

Here, we attempt to evaluate string-type order parameters
in spin-1 systems within the field-theoretical description.

First, we investigate that of the single spin-1 chain, Eq.

(27). The estimation of the nonlocal partÔex
a

;expsipon=j+1
k−1 Sn

ad (noteÔex
a†=Ôex

a ) can be done similarly to
the bosonization technique in Ref. 32, where the string pa-
rameters of spin-12 ladders(3) were calculated. In the con-

tinuum limit, Ôex
a is approximated as

Ôex
a < expS± ipE

xj+a0

xk−a0

dyfJL
asyd + JR

asydgD , s49d

wherexks jd=ks jd3a0 and the staggered part of the spin den-
sity is dropped. Constructing the boson theory with the scalar
field f from two Ising systemsssa+1,sa+2d, we can translate
Eq. (49) as

Ôex
a < expS7 iÎpE dy]yfsydD

, expf7 iÎpsfsxkd − fsxjddg

= hcossÎpfsxkdd 7 isinsÎpfsxkddj

3 hcossÎpfsxjdd ± i sinsÎpfsxjddj

, hma+1sxkdma+2sxkd 7 sa+1sxkdsa+2sxkdj

3 hma+1sxjdma+2sxjd ± sa+1sxjdsa+2sxjdj, s50d

where we used Eqs.(A4), (B8), and (B10). The remaining
problem is just two edge spinsSj

a andSk
a. [This problem does

not appear in the calculation of Eqs.(3).] At least in the
Haldane phase whereksal=0, the staggered parts of the edge

spins could not contribute toOa. While, the product ofÔex
a

and edge-spin uniform parts can be evaluated using OPE
rules: JL,R

a 3sa+1sa+2,ma+1ma+2 and JL,R
a 3ma+1ma+2

,sa+1sa+2. Therefore, an expected field-theoretical form of

Oa is written asOa,kÔex
a l,kma+1ma+2l2+ksa+1sa+2l2. The

derivation of this form, however, has some subtle aspects,
which are mainly attributable to the continuous-field(coarse-
grained) scheme. A similar difficulty is also present in the
estimation of Eqs.(3).32,113 To eliminate it, some ideas that
are independent of field theories are necessary. Actually, Na-

kamura resolves such an ambiguity of the field-theoretical
expressions of Eqs.(3) using a symmetry cleverly.113 For our
spin-1 chain case,OaÞ0 in the Haldane phase, whereas
Oa=0 in the dimerized phase(see Fig. 10). Counting on this
fact, we can propose an appropriate form,

Oa , kma+1ma+2l2, s51d

which may imply that two edge spins follow the rule select-

ing the disorder-field portion from the exponential partÔex
a .

The formula(51) has the same form as the field-theoretical
form of Eqs.(3). That similarity must be one reflection of the
fact that the FM-rung spin-1

2 AF ladder is tied with the spin-1
AF chain smoothly. Furthermore, it also reminds us thatOa

is exactly mapped into an FM order parameter by a nonlocal
unitary transformation.114

Our new proposal(51) can also tell us the behavior ofOa

in the vicinity of the TB chain. A scaling argument(or the
exact solution for the 2D Ising model) leads tom,sd+1d
and kmal,sd+1d1/8 near the chain. Therefore, we predict
that the critical behavior,

Oa , sd + 1d1/2, s52d

occurs in the Haldane phase close to the TB chain.
We next examine the spin-1 AF ladder. We denote two

string order parameters of chains 1 and 2 asO1
a and O2

a,
respectively. In Ref. 18, the quantum Monte Carlo simulation

shows that:(i) a new string parameterkÔ1
aÔ2

al is always
finite for the AF-rung side;(ii ) the string order parameter of
each single chain vanishes, once an AF rung coupling is

attached in the system; and(iii ) in the AF-rung side,kÔ1
aÔ2

al
decreases untilJ',0.4J and then grows monotonically until
J'→` (the rung dimer) (see Fig. 6 in Ref. 18). From these
results, it is expected that the new string parameter is a quan-
tity characterizing the PSS state. We discuss how the field
theories reproduce these, and what they can predict. Suppos-
ing that Eq.(51) is applicable even for the spin-1 ladder, we
have

kÔ1
aÔ2

al , kma+1m̃a+1ma+2m̃a+2l2

, kcossÎpfa+1dcossÎpfa+2dl2 s53ad

,kcossÎpFdcossÎpF̃dl2. s53bd

In Eq. (53a), the bosonfa is made from the two Ising sys-

temsssa,s̃ad. In Eq. (53b), bosonsF andF̃ are made from
ssa+1,sa+2d and ss̃a+1,s̃a+2d, respectively. Equations(53a)
and (53b) can be evaluated by a bosonized effective theory
(E1) [or (E2)] and another theory(E3) plus (E4), respec-
tively. The semiclassical analysis for Eqs.(E1) or (E2) pre-
dicts thatfa is locked to the pointfa=0 for the single-chain
casesJ'=0d, and at that time Eq.(53a) has a finite value.

This is in agreement with the fact thatkÔ1
aÔ2

al=sO1
ad2Þ0 is

realized at the decoupled point. While, for a weak(but finite)
rung-coupling case, the effective theory(E2) possesses a
new potential proportional toJ'sinsÎpfad, as well as the
mass potential proportional tomcossÎ4pfad. Their combi-
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nation must vary the locking point fromfa=0 to a finite and
small value irrespective of the sign ofJ'. Therefore, we
reach the same conclusion as the first content of(iii ), and

predict that the decrease ofkÔ1
aÔ2

al also occurs in the FM-
rung side: the new string parameter would have a cusp struc-
ture like the gap in Fig. 1. Similarly, let us also perform the
semiclassical analysis for another theory,(E3) plus (E4). It

predicts thatF, F̃, andfa are all locked to zero at the de-
coupled point. The rung coupling engenders a new potential

(E4) proportional toJ'cosfpsQ−Q̃dg, in which Q andQ̃ are

dual fields ofF and F̃, respectively. This potential tends to

fix Q and Q̃ instead ofF and F̃. Fixing Q means that the
fluctuation ofF is large becauseF and Q are a canonical
conjugate pair(see Appendix A). Therefore, assuming that

Q−Q̃ is locked in the low-energy limit as the rung coupling
is finite, we can predict that the rung coupling makes the

string parameter of the single chainkÔal,kcossÎpFdl2 be-
come zero. This result consistent with the content(ii ). More-

over, it implies thatkÔal also vanishes in the FM-rung side.

Note that fixingQ−Q̃ does not meankÔ1
aÔ2

al→0 because it

can be rewritten askÔ1
aÔ2

al,kcosfÎpsF+F̃dgl+kcosfÎpsF
−F̃dgl and kcosfÎpsF+F̃dgl is expected not to have a large
fluctuation.

We see that spin-1 and spin-1
2 string parameters take quite

similar field-theoretical expressions. However, one should
bear in mind that the effective theory for the spin-1

2 ladder is
different from that of the spin-1 ladder: the former is two
coupled sine-Gordon-like chains;27 the latter is three coupled
sine-Gordon-like chains in Eq.(E1).

2. In the vicinity of the TB point

In this paragraph, we briefly consider the spin-1 ladder, in
which two spin-1 chains are located near the TB point(Fig.
10), through the perturbative RG technique. In the effective
theory of such a chain, parametersm andl are much smaller
than those of the spin-1 Heisenberg chain. Furthermore, as
mentioned already,m,sd+1d is realized. For the region
where m, l, and J' are considerably smaller thanJ, the

perturbative RG method based on the TB fixed point be-
comes a reliable tool to investigate the low-energy physics.

We construct one-loop RG equations for coupling
constants109 applying the OPE technique.110–112 First, we
consider all relevant and marginal terms around the fixed
point (28). They are summarized in Table III, where we clas-
sify them into nine operatorshO j : j =1, . . . ,9j to render each
operator invariant under the spin rotational transformation
(see Appendix D) and the interchange of two chains. More-
over, we introduced energy operator(mass term) «asz, z̄d
= ijL

ajR
a. OperatorsO2,3,4,9 are generated dynamically in the

RG flow, even though they are not present initially in the
action (35).

In the low-energy effective action, the dimensionless cou-
pling constantshGjj toward the operatorshO jj can be defined
as

Slad = S* + o
j=1

9

Gj E dxvdt

pa0
2−xj

O j , s54d

whereS* = STBfjL
a ,jR

ag+STBfj̃L
a , j̃R

ag is the fixed-point action,
a0 f,Osa0dg is the short-distance cut-off parameter, andxj is
the scaling dimension ofO j. The RG equations forhGjj are
the following:

Ġ1 = G1 −
1

2p2sG2 + 4G3 − 2G5dG1 + psG8
2 − G9

2d,

s55ad

Ġ2 = − 2G1
2 +

2

p2G2G5 +
2

p2s2G5 − G7dG3 +
2

p2G4G7

− 3p2G8
2 − p2G9

2, s55bd

Ġ3 =
1

2p2s3G7 − 2G5dG3 −
1

2p2G4G7 + 2p2G8
2, s55cd

Ġ4 =
1

2p2s2G2 + G3dG7 +
1

p2s2G5 + G7dG4 − 2p2G8G9,

s55dd

TABLE III. Operators in the RG procedure. The signGjsL=0d means the initial value of each running coupling constant in the RG flow.
The parametera0 is the cut-off parameter defined in Eq.(54).

Operators Scaling dimensionxj GjsL=0d

O1=Sa=1
3 «a+ «̃a 1 m3a03

p

v

O2=sSa=1
3 «adsSb=1

3 «̃bd 2 0

O3=Sa.b
3 2s«a«̃b+«b«̃ad+sjL

ajR
b +jL

bjR
adsj̃L

aj̃R
b + j̃L

bj̃R
ad 2 0

O4=sjL
ajR

b +jR
ajL

bdsj̃L
aj̃R

b + j̃R
aj̃L

bd 2 0

O5=JR
aJL

a+ J̃R
aJ̃L

a 2 −l3
p

v

O6=JL
aJ̃L

a+JR
aJ̃R

a 2 J'a03
p

v

O7=JR
aJ̃L

a+JL
aJ̃R

a 2 J'a03
p

v

O8=kk̃sama+1ma+2s̃am̃a+1m̃a+2 3/4 C1
2J'a03a0

5/43
p

v

O9=kk̃s1s2s3s̃1s̃2s̃3 3/4 0
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Ġ5 = 2G1
2 +

4

p2G2G3 − p2sG8
2 − G9

2d +
1

p2S3

2
G2

2 + G3
2 + G4

2

+
1

2
G5

2D , s55ed

Ġ6 = 0, s55fd

Ġ7 =
1

p2s2G2 + G4dG3 +
1

2p2s3G3
2 + G4

2 + G7
2d

+ 2p2sG8 + G9dG8, s55gd

Ġ8 =
5

4
G8 −

1

2p2G4G9 +
G7G9

4p2

+
1

p2SpG1 −
1

8
G2 +

3

2
G3 −

1

4
G4 +

1

2
G7DG8,

s55hd

Ġ9 =
5

4
G9 −

3

2p2G4G8 +
3

8p2G7G8

−
1

p2S3pG1 +
9

8
G2 +

3

2
G3 −

3

4
G5DG9. s55id

Therein,Ġj =dGjsLd /dL andL is the scaling parameter(the
infinitesimal scaling transformation isa0→a0e

dL). We
adopted a simple circle-type cutoff.110

Using the RG equations, we discuss the low-energy prop-
erties near two decoupled TB chains. Close to this fixed
point sufficiently, we can approximate them as

Ġ1 < G1 + psG8
2 − G9

2d, s56ad

Ġ8 < S5

4
+

1

p
G1DG8, s56bd

Ġ9 < S5

4
−

3

p
G1DG9. s56cd

CouplingsG1, G8 and G9 are more relevant than the other
couplings. The couplingG1 bears a single-chain character,
whereas bothG8 andG9 are the representatives of the rung
coupling. Moreover, we may omitG9 because its initial value
is zero. Under these approximations, the treatment of Eqs.
(56) becomes fairly easier. One can find two nontrivial fixed
points sG1,G8d=s−5p /4 , ±Î5/4d. Let us assume the pres-
ence of these two fixed points, even though they are not
close to the TB pointsG1,G8d=s0,0d. Linearization of the
approximated RG equations around new fixed points indi-
cates that both points are of a divergent type, thereby imply-
ing the existence of phase transitions. Similarly, the TB point
is of a divergent type. Therefore, there exist two phase tran-
sition curves connecting the TB point and a new fixed point
or another. In the vicinity of the TB point where approxima-

tions Ġ1<G1 andĠ8< 5
4G8 are allowed, a conservation law

under the RG transformation,uG1/G8
4/5u< a constant, is real-

ized. Taking into account this law and recalling thatG1~m,
G8~J', and m,sd+1d are realized near the TB point, we
expect that the phase transition curves follow:

±J' , ud + 1u5/4, s57d

around the TB point. Consequently, we can draw the GS
phase diagram near the two TB chains as in Fig. 13. In this
figure, the right sided.−1 of the horizontal(decoupled) line
J'=0 is probably not corresponding to any phase transitions.
In fact, we know that on the Heisenberg lined=0, the point
J'=0 does not correspond to Heisenberg line, the GS of the
strong AF-rung limit(rung dimer) is quite different from one
of the FM-rung limit (spin-2 AF chain), both AF- and FM-
rung sides may belong to the same phase. Whereas it is not
sure whether the left sided,−1 of the line J'=0 corre-
sponds to a phase transition or not. The dimerized phases 1
and 2 must break the one-site translational symmetry along
the chain direction. According to the Zamolodchikov’s “c
theorem,”115 two critical curves starting from the TB point
sc=233/2d, belong to a universality class withc,3.

From Fig. 13, it is believed that the area characterized by
the PSS-state picture(or connected to a spin-2 AF chain)
widely expands around two decoupled Heisenberg chains, in
the spacesd ,J'd.

F. Staggered-field case

The low-energy action for the staggered field case is given
by Eq. (35) plus Eq.(36b). The latter term is only invariant
under the U(1) rotation around the spinz axis; and it does not
possess the SU(2) symmetry. This partial violation of the
symmetry makes each operatorO j in Table III decoupled to
two U(1) invariant parts through the OPE betweenO j and
the staggered term(36b). Neither part is invariant under the
SU(2) rotation. We have to consider more than 21 coupling
constants, to construct the RG equations. Although we actu-
ally constructed the RG, we do not record them here. We
were unable to extract characteristic contents from them be-
cause they are extremely complicated. Coupling constants
for mass, rung-coupling and staggered Zeeman terms all
grow up just monotonically. Therefore, the GS in the
staggered-field case must have some massive excitations.
Moreover, two critical curves in the AF-rung side(Fig. 8) do
not reach the originsJ' ,Hd=s0,0d. We infer that the present
field-theoretical strategy cannot predict how the curves fin-
ish.

FIG. 13. Expected GS phase diagram around two decoupled TB
chainssc=3d.
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V. SUMMARY AND DISCUSSIONS

We explored the spin-1 AF ladder(1) and some of its
extensions. In the strong AF rung-coupling region, we per-
formed the DPT and found that the GS phase diagram of the
uniform(staggered)-field case includes twoc=1 critical areas
(curves). Subsequently, we extended these results to the spin-
S ladders, and predicted that the spin-S uniform (staggered)-
field case has 2S c=1 areas(curves). Figure 8 summarizes
GS phase diagrams and the magnetization curves. The upper
critical uniform fields(22) and (23) were determined by the
spin-wave analysis; we saw that, surprisingly, Eq.(22) is
equal to predictions of first-order DPTs(see Table I). We also
proposed the “RVB” picture of each plateau(massive) state.

On the other hand, we applied field-theoretical methods
for the weak rung-coupling region. For the uniform-field
case, we employed the non-Abelian bosonization efficiently.
Combining the consequences of weak and strong rung-
coupling analyses, we complete the GS phase diagram of the
uniform-field case as in Fig. 12. Meanwhile, our field-
theoretical approach was not efficient for the staggered-field
case. Therefore, the GS phase diagram is not determined
perfectly. The uncertain area, i.e., the area where the critical
curves in Fig. 8s2ad vanish, is probably located in an inter-
mediate AF rung-coupling region, which must be distant
from both weak and strong rung-coupling regions.

Using those field theories, we revisited and discovered
some properties of 1D spin-1 systems without external fields.
We showed that field theories can describe string order pa-
rameters in spin-1 systems, and proposed formulas(51) and
(53). We hope that these formulas are useful in the search for
some new string-type parameters in spin-1 systems. We also
considered the GS phase diagram around two decoupled TB
chains(Fig. 13).

Through the present work, one obtains GS phase dia-
grams of both the spin-1

2 and spin-1 ladders with the uniform
Zeeman term(2a) (see Figs. 4 and 12). The former(latter)
model consists of two gapless(gapped) spin chains. These
and our prediction of Fig. 8 enable us to expect that phase
diagrams of two-leg integer-spin and half-integer-spin AF
ladders are written as in Fig. 14. On the other hand, for the
staggered-field case, we can give only the following two pre-
dictions about the spin-S ladders. For the two-leg integer-
spin ladders, critical curves in Fig. 8s2ad vanish in a weak
AF rung-coupling region. For the half-integer-spin ladders,
Figs. 5 and 8 imply that the originsJ' ,Hd=s0,0d is perhaps
a multicritical point, from which 2S critical curves start.

Except for the spin-12 cases, the bosonization techniques
for higher spin systems have some subtle and phenomeno-

logical aspects. Establishing more sophisticated bosoniza-
tions is an interesting but difficult problem that remains for a
future work.

Nowadays, several spin-1
2 ladder compounds have been

reported.1–5 Unfortunately, the materials regarded as a spin-1
ladder have never been found. An organic compound
“BIP-TENO”6 may be a candidate of spin-1 ladders, but its
magnetic behavior differs from the simple ladder(1). Suit-
able theoretical predictions regarding it have not been con-
structed.
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APPENDIX A: ABELIAN BOSONIZATION RULE

In this appendix, we briefly summarize the Abelian
bosonization38,39,44–50 used in Secs. III and IV, which is
deeply related with the concept of TLL andc=1 CFT. (Our
notation is similar to Refs. 38 and 48.)

Bosonization shows thats1+1dD Dirac fermion models
are equivalent to as1+1dD boson field theory. The main root
of this technique lies in the identification between the mass-
less Dirac fermion and the massless free scalar boson field
theories. The former Hamiltonian is represented as

ĤDirac =E dxivscL
† ]xcL − cR

† ]xcRd, sA1d

where cLszd and cRsz̄d are, respectively, the left and right
moving components of the Dirac fermion. The signv de-
notes the “light” velocity.[In real time formalism,z and z̄
means, respectively,isvt+xd and isvt−xd.] The fermions
obey the equal-time anticommutation relations
hca

†sxd ,cbsydj=dabdsx−yd andhcasxd ,cbsydj=0. The corre-
sponding massless boson theory has the following Hamil-
tonian (here we do not make the terms of the zero-mode
excitations44,47 clear):

ĤScalar=E dx
v
2

fP2 + s]xfd2g, sA2d

wherefsz, z̄d=fLszd+fRsz̄d is the scalar boson field,fLsRd is
the left (right) mover of f and P=]tf /v is the canonical
conjugate off. The Hamiltonian(A2) can be mapped to the
same form for the dual fieldusz, z̄d=fL−fR. The equal-time
commutation relations among boson fields are defined as
ffRsxd ,fRsydg=−ffLsxd ,fLsydg=si /4dsgnsx−yd and
ffLsxd ,fRsydg=0. Since above two theories have a chiral

FIG. 14. Expected GS phase diagrams of two-leg spin-S AF
ladder with the uniform Zeeman term(2a).
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U(1) symmetry, this method is called the “Abelian”
bosonization.

They have the following operator identities:

cLszd =
hL

Î2pa
expf− iÎ4pfLszdg, sA3ad

cRsz̄d =
hR

Î2pa
expfiÎ4pfRsz̄dg, sA3bd

wherehL,R, called Klein factors,47–50 are necessary to guar-
antee the anticommutation relation between the left and right
movers of the fermions, and they hence satisfyhha,hbj
=2dab. The factora in Eqs.(A3) is a parameter which order
is the inverse of the wave-number cutoff of the Dirac fer-
mion. The exponential-type operators are called “vertex op-
erators.” Using a point-splitting technique,47,48 one can also
bosonize the U(1) currentsJL andJR as follows:

JLszd = :cL
†cL:szd =

1
Îp

]xfL, sA4ad

JRsz̄d = :cR
†cR:sz̄d =

1
Îp

]xfR, sA4bd

where the symbol : : stands for the normal-ordered product.
[Note that the above U(1) currents are different from the
SU(2) currentsJL

a andJR
a in Sec. IV. However, if we think of

the c=1 CFT here as thec=1 part of thec=3/2 WZNW
model, one component of the SU(2) currents is proportional
to the U(1) current. See Eq.(B8).]

From these relations, one sees that Dirac fermion models
even involving arbitrary interactions can be mapped to a bo-
son theory with vertex operators. The RG flow lets several
kinds of interacting Dirac fermion models go to a free boson
theory with a modified velocity[it is different from v in
Hamiltonians(A1) and(A2)] and a compactification radiusR
[which determines the period of the boson as
f=f+2pR],39,45,48 in the low-energy limit. Nowadays, the
terminology “TLL” means the low-energy properties of such
fermion models or the corresponding free boson theories.
The c=1 CFT consists of all the free boson theories with an
arbitrary radius. The radius of the massless Dirac fermion
(A2) is 1/Î4p.

We mention the scaling dimensionsx=DL+DR and con-
formal spinss=DL−DR of primary fields in thec=1 CFT,
whereDLsRd is the left(right) conformal weight. In our nota-
tion, the conformal weights of the vertex operator
expfisaLfL+aRfRdg is sDL ,DRd=saL

2 /8p ,aR
2 /8pd. Possible

values ofaL and aR can be determined by the modular in-
variance. The currentsJL and JR always have weights(1,0)
and(0,1), respectively. In the Dirac fermion(A1), cL andcR

have weightss 1
2 ,0d and s0, 1

2
d, respectively.

APPENDIX B: ISING MODEL AND c=1/2 CFT

We review some facts in terms of the 2D statistical(or 1D
transverse) Ising model andc=1/2 CFT. Thelatter field

theory emerges as the effective field theory in Sec. IV.

1. Ising model

Here, we summarize relations between the Ising model on
the square lattice and its continuum limit.(The contents here
almost follows Ref. 116.)

It is well known that both the order-disorder phase tran-
sition in the 2D Ising model and the quantum phase transi-
tion in the 1D transverse Ising model117,118 belong to the
universality of thec=1/2 CFT.38,39,119–121These two models
are connected with each other via the transfer matrix method.
The latter Hamiltonian is

ĤTI = − o
j

fJs j
zs j+1

z + hs j
xg, sB1d

wheres j
a is a component of Pauli matrices settling in sitej ,

andh is the transverse field. The critical point lies inh=J: if
0øh,J sh.Jd, the order parameter satisfiesks j

zlÞ0s=0d.
Here, let us introduce the disorder operatorm j+1/2

a on the dual
lattice h j +1/2j as

m j+1/2
z = p

p=1

j

sp
x, m j+1/2

x = s j
zs j+1

z , sB2ad

s j
z = p

p=0

j−1

mp+1/2
x , s j

x = m j−1/2
z m j+1/2

z , sB2bd

wherem j+1/2
x,y,z obey the same commutation relations as Pauli

matrices. From Eqs.(B2), we have

ĤTIfhs j
aj;J,hg = ĤTIfhm j+1/2

a j;h,Jg. sB3d

This is called the Kramers-Wannier duality. The self-dual
point is just the critical oneh=J. The ordered phase in the
original Ising model, whereks j

zlÞ0, corresponds to the dis-
ordered phase in the dual model, wherekm j+1/2

z l=0, andvice
versa. In the vicinity of the critical point, continuum limits of
s j

z andm j+1/2
z are, respectively, associated with the order field

ssz, z̄d and disorder fieldmsz, z̄d in the c=1/2 CFT,which
are identical withsasz, z̄d and masz, z̄d respectively in Sec.
IV. It is worthwhile emphasizing that the relation betweens j

z

and mk+1/2
z is nonlocal: these two commute whenj .k, but

anticommute otherwise.
Real fermion operators can be introduced as

h j = s j
zm j−1/2

z , z j = is j
zm j+1/2

z , sB4d

wherehh j ,hkj=hz j ,zkj=2d jk, hh j ,zkj=0. Inversely Ising op-
erators are written by fermions as

s j
x = iz jh j, m j+1/2

x = − iz jh j+1, sB5ad

s j
z = ih jp

p=1

j−1

izphp, m j+1/2
z = p

p=1

j

izphp. sB5bd

The Hamiltonian(B1) can be described by these fermions,
and is solvable in the fermion language. In particular, con-
sidering the vicinity of the critical pointh=J, one can trans-
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form it to the following field-theoretical Hamiltonian:

ĤTI <E dxi
v
2

sjL ]xjL − jR ]xjRd + imjLjR, sB6d

where v=2Ja0, m=2sh−Jd, x= j 3a0 and a0 is the lattice
constant. New Majorana(real) fermions jL and jR are de-
fined as

jL = sh + zd/Î2, jR = sz − hd/Î2, sB7d

wherehsxd=h j /Î2a0 andzsxd=z j /Î2a0. At the critical point,
the mass term vanishes, and the effective field theory(B6)
then becomes a massless Majorana fermion model, which is
just ac=1/2 CFT. Thefields jL andjR are corresponding to
jL

a and jR
a in Sec. IV B, respectively. From Eqs.(B5b) and

(B7), it is obvious thatjLsRd has a nonlocal relation withs
andm, too.

Two copies of the critical Majorana fermion theories are
equivalent to the massless Dirac fermion(A1), i.e., a c
=1/2+1/2=1 CFT.Here let us denote the fields of twoc
=1/2 systems, the corresponding Dirac fermion and boson
theories assjL,R

1 ,s1,m1d, sjL,R
2 ,s2,m2d, cL,R defined as Eq.

(37), and fL,R, respectively. The U(1) currents in Eq.(A4)
are written by Majorana fermions as follows:

JL = ijL
1jL

2, JR = ijR
1jR

2 . sB8d

Energy operators«1,2= ijL
1,2jR

1,2 are mapped to

«1 + «2 = iscL
†cR − cR

†cLd = i
hLhR

pa
cossÎ4pfd, sB9d

wherehL,R are Klein factors in Eq.(A3). In addition, it is
believed that order and disorder fields are bosonized
as38,116,122

s1s2 , sinsÎpfd, m1m2 , cossÎpfd,

s1m2 , cossÎpud, m1s2 , sinsÎpud, sB10d

whereu is the dual off.

2. OPE

We write down the OPEs among the primary fields in the
c=1/2 CFT:17,39,112,122the identity operator 1, the left(right)
mover jLsRd of the Majorana fermion, the energy operator
«sz, z̄d= ijLjR, the order fields and the disorder onem. These
are derived39,122by making use of fusion rules and the Abe-
lian bosonization based on the fact that two copies ofc
=1/2 CFTsform a massless Dirac fermion model, ac=1
CFT. The results are

jLszdjLs0d ,
1

2pz
, sB11ad

jRsz̄djRs0d ,
1

2pz̄
, sB11bd

ssz,z̄dss0,0d ,
1

uzu1/4 + puzu3/4«s0,0d, sB11cd

msz,z̄dms0,0d ,
1

uzu1/4 − puzu3/4«s0,0d, sB11dd

ssz,z̄dms0,0d ,
Îp

uzu1/4feip/4z1/2jLs0d + e−ip/4z̄1/2jRs0dg,

sB11ed

msz,z̄dss0,0d ,
Îp

uzu1/4fe−ip/4z1/2jLs0d + eip/4z̄1/2jRs0dg,

sB11fd

jLszdss0,0d ,
eip/4

2Îpz1/2
ms0,0d, sB11gd

jRsz̄dss0,0d ,
e−ip/4

2Îpz̄1/2
ms0,0d, sB11hd

jLszdms0,0d ,
e−ip/4

2Îpz1/2
ss0,0d, sB11id

jRsz̄dms0,0d ,
eip/4

2Îpz̄1/2
ss0,0d. sB11jd

As a reflection of nonlocal natures amongjLsRd, s and m,
some OPEs have a branch cut. The OPE(B11e) indicates
that the product of the order and disorder fields must have a
fermionic property. Following Ref. 112, in the main text, we
often use a rule that a disorder field anticommutes with other
disorder fields(when we consider some copies ofc=1/2
CFTs) and fermion fields, but commutes with itself and order
fields. This is responsible for the improvement(33).

As mentioned in Sec. IV, three copies ofc=1/2 CFTs are
equivalent to the level-2 SU(2) WZNW model. Using the
definition of the SU(2) currents(31), OPEs(B2a) and(B2b),
we obtain the following OPEs among the currents:

JL
aszdJL

bs0d ,
dab

4p2z2 + ieabc

JL
cs0d
2pz

, sB12d

JR
asz̄dJR

bs0d ,
dab

4p2z̄2 + ieabc

JR
cs0d
2pz̄

. sB13d

APPENDIX C: SU(2) SYMMETRY IN SPIN SYSTEMS AND
THE WZNW MODEL

We consider what transformation for the effective field
theories(28) or (35) is corresponding to the global spin ro-
tational transformation for spin-1 systems.

The latter can be represented by a vector rotation form as

SW j → Tzs− w3dTys− w2dTzs− w1dSW j ; RSW j , sC1d

whereSW j =
TsSj

x,Sj
y,Sj

zd and Taswd stands for the 3D rotation
abouta axis by anglew [an SO(3) matrix]. For example,Tz
is defined as
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Tzswd = 1 cosw sinw 0

− sinw cosw 0

0 0 1
2 . sC2d

From Eq.(32), the spin rotation on the lattice is interpreted,
in the WZNW model, as

JWL,R → RJWL,R, sC3ad

IW → RIW, sC3bd

where JWa=TsJa
1 ,Ja

2 ,Ja
3d and IW=TsG1,G2,G3d

~Tss1m2m3,s2m3m1,s3m1m2d. The transformation for the
spin uniform part(C3a) is reproduced by the following trans-
formation for Majorana fermions:

jWL,R → RjWL,R, sC4d

wherejWa;Tsja
1 ,ja

2 ,ja
3d. One can confirm that the effective

theory for the Heisenberg chain[Eq. (28) plus Eq.(34)] is
invariant under the rotation(C4). Especially, the level-2
SU(2) WZNW model (28) is invariant both under the rota-

tion of left moversjWL→RjWL and under that of right movers

jWR→RjWR. These two symmetries must correspond to the chi-
ral SU(2) symmetry of the WZNW model. Reversely, both
terms in Eq.(34) violate the chiral symmetry, and are invari-
ant just under the “diagonal” rotation.

Next, we focus on the rotation of the spin staggered part
(C3b). When one represents the action of the WZNW model
by using the matrix fieldg,38,39 its global SU(2) symmetry
means that the action is invariant under

g → VgV†, sC5d

whereV is a SU(2) matrix. A natural expectation is that the
transformation(C5) leads to the rotation(C3b). Following
this idea, in fact, one can verify that if the matrixV is pa-
rametrized as follows:

V =1 e−isw3+w1d/2 cos
w2

2
− ie−isw3−w1d/2 sin

w2

2

− ieisw3−w1d/2 sin
w2

2
eisw3+w1d/2 cos

w2

2
2 ,

sC6d

the explicit correspondence between(C3b) and(C5) appears.
From a rotation(C3b), one also finds the spin rotation(C1)
does not affectG1=s1s2s3. Proving that the action(28) and
operatorsO j in Table III are invariant under the spin rotation
is an easy work.

We touch the rotation around spinz axisSW j →Tzs−wdSW j. It
does not affect thez component of the spin, and provides the
transformations ja

1 →coswja
1 −sinwja

2 and ja
2 →sinwja

1

+coswja
2. In the Dirac fermion picture, defined by Eq.(38),

these U(1) transformations are

cL,R → expsiwdcL,R. sC7d

This is used in Sec. IV C.

APPENDIX D: EFFECTIVE HAMILTONIAN IN SEC. IV B

The effective Hamiltonian for the spin-1 ladder(1) with a
uniform field (2a) under the conditionH.m is

Ĥeff =E dxfĤfreesL,R,ja
3,cd + ĤfreesL̃,R̃,j̃a

3,c̃d

+ Ĥint
1 sL,R,L̃,R̃d + Ĥint

2 sL,R,L̃,R̃;ja
3,j̃a

3d

+ Ĥint
3 sL,R,L̃,R̃;c,c̃d + Ĥint

4 sja
3,j̃a

3 ;c,c̃d + Ĥint
5 sc,c̃d

+ Ĥstagss,mdg, sD1d

where

Ĥfree= iv8sL†]xL − R†]xRd + c†S−
v2

2m
]x

2 + m+ HDc

+ i
v
2

sjL
3]xjL

3 − jR
3]xjR

3d + imjL
3jR

3 , sD2ad

Ĥint
1 = −

l

4
U+

2U−
2hsR†R− RR†d2 + sL†L − LL†d2 + sR→ R̃d2

+ sL → L̃d2j −
l

4
sU+

4 + U−
4dhsR†R− RR†dsL†L − LL†d

+ sR→ R̃dsL → L̃dj − lU+
2U−

2hR†RLL† + L†LRR†

+ sR,L → R̃,L̃dj +
J'a0

4
sU+

2 + U−
2d2hsR†R− RR†dsR

→ R̃d + sL†L − LL†dsL → L̃dj +
J'a0

4
sU+

2 + U−
2d2hsR†R

− RR†dsL̃†L̃ − L̃L̃†d + sR→ R̃dsL̃ → Ldj

+ 4J'a0U+
2U−

2fRL†L̃R̃† + LR†R̃L̃†g, sD2bd

Ĥint
2 = ilU+U−hfR†R− RR† + L†L − LL†gjL

3jR
3 + fR→ R̃+ L

→ L̃gj̃L
3j̃R

3j + J'a0hfU+
2sR†R̃+ RR̃†d + U−

2sL†L̃

+ LL̃†dgjR
3j̃R

3 + fU−
2sR†R̃+ RR̃†d + U+

2sL†L̃ + LL̃†dgjL
3j̃L

3j

− iJ'a0U+U−hfR†R̃− RR̃† + L†L̃ − LL̃†gjL
3j̃R

3

+ fR̃†R− R̃R† + L̃†L − L̃L†gj̃L
3jR

3j, sD2cd

Ĥint
3 =

l

8
sU+

2 + U−
2dhsc†c − cc†dfR†R− RR† + L†L − LL†g

+ sc → c̃dfR→ R̃+ L → L̃gj +
l

2
U+U−hc†csR†R

+ L†Ld + cc†sRR† + LL†d + sR,L,c → R̃,L̃,c̃dj

−
J'a0

4
sU+

2 + U−
2dhsc†c − cc†dfR̃†R̃− R̃R̃† + L̃†L̃
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− L̃L̃†g + sR̃,L̃,c → R,L,c̃dj +
J'a0

2
sU+ − U−d2

3hc†c̃†sR†L̃† + L†R̃†d + c†c̃sR†R̃+ L†L̃d + h.c.j,

sD2dd

Ĥint
4 = i

l

2
hsc†c − cc†djL

3jR
3 + sc → c̃dj̃L

3j̃R
3j +

J'a0

2
sc†c̃

− c̃†cdsjR
3j̃R

3 + jL
3j̃L

3d − i
J'a0

2
sc†c̃ + c̃†cdsjL

3j̃R
3 + j̃L

3jR
3d,

sD2ed

Ĥint
5 = −

l

16
hsc†c − c†cd2 + sc → c̃dj

+
J'a0

4
sc†c − cc†dsc → c̃d, sD2fd

Ĥstag= C1
2J'a0kk̃sama+1ma+2s̃am̃a+1m̃a+2. sD2gd

We define a new velocityv8=sH2−m2d1/2v /H. In the inter-

action termsĤint
1−5, Dirac fermionsL and R stand forLs−xd

and Rs−xd, respectively. From the field-theoretical point of
view, biquadratic terms such assL†L−LL†d2 should be inter-
preted as a product of two point-splitting terms. For example,
sL†L−LL†d2 means limd→0sL†L−LL†ds−xd3 sL†L−LL†ds−x
+dd.

APPENDIX E: ABELIAN BOSONIZATION IN THE SPIN-1
LADDER

The low-energy action for the spin-1 AF ladder is given in
Eq. (35). If we make the boson theory with a scalar fieldfa
from two Ising systemssa ands̃a sa=1,2,3d, we can obtain
a bosonized Hamiltonian for the action(35) through several
relations in Appendices A and B. It has been already given in
Ref. 17. The result is

Ĥlad = o
a=1

3 E dxHv
2

fPa
2 + s]xfad2g −

m

pa
cossÎ4pfad

+ B1fcossÎ4pfadcossÎ4pfa+1d

+ cossÎ4puadcossÎ4pua+1dg + B2fPaPa+1

+ ]xfa]xfa+1g + B3fsinsÎ4pfadsinsÎ4pfa+1d

+ sinsÎ4puadsinsÎ4pua+1dg

+ B4 sinsÎpfadcossÎpfa+1dcossÎpfa+2dJ , sE1d

whereB1~2l / s2pad2, B2,3~J'a0/2p andB4,C1
2J'a0. We

cannot consider the Klein factors correctly, because the for-
mulas (B10) are not perfect. However, here let us assume
that it is allowed. Actually, the same Hamiltonian in Ref. 17
(though its notation is different from ours) surely seems to
work well.

Like Ref. 17, we take the following mean-field prescrip-

tion for Ĥlad. (i) We neglectB1,2,3 terms, and leave only the
free part(fermion kinetic and mass terms) and the most rel-
evant interactionB4 term.(ii ) For the weak AF rung-coupling
case, the mass potential −cossÎ4pfad will be still dominant,
and therefore the fieldfa is locked near the pointfa=0. This
argument allows the following approximation: cossÎpfad
→B (a constant). Through(i) and (ii ), the HamiltonianĤlad
is reduced to

Ĥlad
MF = o

a=1

3 E dxHv
2

fPa
2 + s]xfad2g −

m

pa
cossÎ4pfad

+ B2B4 sinsÎpfadJ . sE2d

This is three copies of a double-sine-Gordon model.123 For
details of this mean-field argument, see Ref. 17.

Next, we consider the case that three boson fieldsfa, F

and F̃ are composed of ssa,s̃ad, ssa+1,sa+2d, and
ss̃a+1,s̃a+2d, respectively. Like Eq.(E1), the fermion free
part in the total Hamiltonian is mapped to

Ĥfree=E dx
v
2

fsPa
2 + s]xfad2d + sPF

2 + s]xFd2d + sP̃
F̃

2

+ s]xF̃d2dg −
m

pa
fcossÎ4pfad + cossÎ4pFd

+ cossÎ4pF̃dg, sE3d

wherePF and P̃F̃ are canonical conjugated momenta ofF

and F̃, respectively. The most relevant rung-coupling term
J'a0C1

2kk̃sama+1ma+2s̃am̃a+1m̃a+2 is mapped as follows:

,J'fsinsÎpfadcossÎpFdcossÎpF̃d + cossÎpfad

3hcossÎpQdcossÎpQ̃d + sinsÎpQdsinsÎpQ̃djg

→ J'B cosfÎpsQ − Q̃dg. sE4d

On the right side of the arrow→, we performed the same
mean-field approximation used in Eq.(E2): cossÎpfad→B
and sinsÎpfad→0.

LOW-ENERGY PROPERTIES OF TWO-LEG SPIN-1… PHYSICAL REVIEW B 71, 024402(2005)

024402-21



1E. Daggoto and T. M. Rice, Science271, 618(1996); T. M. Rice,
Z. Phys. B: Condens. Matter103, 165 (1997).

2M. Azuma, Z. Hiroi, M. Takano, K. Ishida, and Y. Kitaoka, Phys.
Rev. Lett. 73, 3463(1994); K. Kojima, A. Keren, G. M. Luke,
B. Nachumi, W. D. Wu, Y. J. Uemura, M. Azuma, and M. Ta-
kano, ibid. 74, 2812(1995).

3Z. Honda, Y. Nonomura, and K. Katsumura, J. Phys. Soc. Jpn.
66, 3689(1997).

4G. Chabuoussant, M.-H. Julien, Y. Fagot-Revurat, M. Hanson, L.
P. Lévy, C. Berthier, M. Hovatić, and O. Piovesana, Eur. Phys. J.
B 6, 167 (1998).

5D. Arčon, A. Lappas, S. Margadonna, K. Prassides, E. Ribera, J.
Veciana, C. Rovira, R. T. Henriques, and M. Almeida, Phys.
Rev. B 60, 4191(1999).

6K. Katoh, Y. Hosokoshi, K. Inoue, and T. Goto, J. Phys. Soc. Jpn.
69, 1008(2000); T. Goto, M. I. Bartrashevich, Y. Hosokoshi, K.
Kato, and K. Inoue, Physica B294–295, 43 (2001); T. Sakai, N.
Okazaki, K. Okamoto, K. Kindo, Y. Narumi, Y. Hosokoshi, K.
Kato, K. Inoue, and T. Goto,ibid. 329–333, 1203(2003); Phys.
Status Solidi B236, 429 (2003).

7E. Manousakis, Rev. Mod. Phys.63, 1 (1991).
8M. Oshikawa and I. Affleck, Phys. Rev. Lett.79, 2883(1997).
9I. Affleck and M. Oshikawa, Phys. Rev. B60, 1038(1999).

10M. Tsukano and K. Nomura, J. Phys. Soc. Jpn.67, 302 (1998).
11A. Zheludev, E. Ressouche, S. Maslov, T. Yokoo, S. Raymond,

and J. Akimitsu, Phys. Rev. Lett.80, 3630(1998).
12S. Maslov and A. Zheludev, Phys. Rev. B57, 68 (1998); Phys.

Rev. Lett. 80, 5786(1998).
13E. Ercolessi, G. Morandi, P. Pieri, and M. Roncaglia, Phys. Rev.

B 62, 14 860(2000).
14Y.-J. Wang, F. H. L. Essler, M. Fabrizio, and A. A. Nersesyan,

Phys. Rev. B66, 024412(2002).
15M. Sato and M. Oshikawa, Phys. Rev. B69, 054406(2004).
16D. Sénéchal, Phys. Rev. B52, 15 319(1995).
17D. Allen and D. Sénéchal, Phys. Rev. B61, 12 134(2000).
18S. Todo, M. Matsumoto, C. Yasuda, and H. Takayama, Phys. Rev.

B 64, 224412(2001).
19For example, see F. D. M. Haldane, Phys. Rev. Lett.50, 1153

(1983); E. Fradkin,Field Theories of Condensed Matter Systems
(Addison-Wesley, New York, 1991); A. Auerbach,Interacting
Electrons and Quantum Magnetism(Springer-Verlag, New York,
1994), and Ref. 7.

20M. Matsumoto(private communication, 2004).
21M. Matsumoto, S. Todo, M. Nakamura, C. Yasuda, and H.

Takayama, Physica B329–333, 1010(2003).
22In the paper, a RVB state means a linear combination of the tensor

products, each of which is constructed by a dimer covering(the
dimer is the singlet of a spin-1

2 pair). “Short-range” implies that
all the bonds consist of two nearest neighboring sites.

23E. Witten, Commun. Math. Phys.92, 455 (1984).
24I. Affleck, Nucl. Phys. B265, 409 (1986).
25I. Affleck and F. D. M. Haldane, Phys. Rev. B36, 5291(1987).
26A. M. Tsvelik, Phys. Rev. B42, 10 499(1990).
27D. G. Shelton, A. A. Nersesyan, and A. M. Tsvelik, Phys. Rev. B

53, 8521(1996).
28S. R. White, R. M. Noack, and D. J. Scalapino, Phys. Rev. Lett.

73, 886 (1994).
29S. R. White, Phys. Rev. B53, 52 (1996).
30Y. Nishiyama, N. Hatano, and M. Suzuki, J. Phys. Soc. Jpn.64,

1967 (1995).

31G. Sierra and M. A. Martín-Delgado, Phys. Rev. B56, 8774
(1997).

32E. H. Kim, G. Fáth, J. Sólyom, and D. J. Scalapino, Phys. Rev. B
62, 14 965(2000).

33D. C. Cabra, A. Honecker, and P. Pujol, Phys. Rev. Lett.79, 5126
(1997).

34D. C. Cabra, A. Honecker, and P. Pujol, Phys. Rev. B58, 6241
(1998).

35F. Mila, Eur. Phys. J. B6, 201 (1998).
36A. Furusaki and S. C. Zhang, Phys. Rev. B60, 1175(1999).
37T. Hikihara and A. Furusaki, Phys. Rev. B63, 134438(2001).
38A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik,Bosonization

and Strongly Correlated Systems(Cambridge University Press,
Cambridge, England, 1998).

39P. D. Francesco, P. Mathieu, and D. Sénéchal,Conformal Field
Theory(Springer-Verlag, New York, 1997).

40V. L. Pokrovsky and A. L. Talapov, Phys. Rev. Lett.42, 65
(1979).

41H. J. Schulz, Phys. Rev. B22, 5274(1980).
42R. Chitra and T. Giamarchi, Phys. Rev. B55, 5816(1997).
43S. M. Bhattacharjee and S. Mukherji, J. Phys. A31, L695 (1998).
44F. D. M. Haldane, Phys. Rev. Lett.47, 1840 (1981); J. Phys. C

14, 2585(1981).
45I. Affleck, in Champs, Cordes et Phenomenes Critiques; Fields,

Strings and Critical Phenomena, edited by E. Brézin and J.
Zinn-Justin(Elsevier, Amsterdam, 1989), p. 564.

46Bosonization, edited by M. Stone(World Scientific, Singapore,
1994).

47J. v. Delft and H. Schoeller, Ann. Phys.(Leipzig) 4, 225 (1998).
48D. Sénéchal, cond-mat/9908262(unpublished).
49H. J. Schulz, G. Cuniberti, and P. Pieri, inField Theories for

Low-Dimensional Condensed Matter Systems, edited by G. Mo-
randi et al. (Springer-Verlag, New York, 2000).

50E. Abdalla, M. Cristina, B. Abdalla, and K. D. Rothe,Non-
Perturbative Methods in 2 Dimensional Quantum Field Theory,
2nd ed.(World Scientific, Singapore, 2001).

51K. Ide, M. Nakamura, and M. Sato, 58th Annual Meeting of the
Physical Society of Japan, 2003.

52K. Nomura and A. Kitazawa, cond-mat/0201072(unpublished).
53M. Nakamura and J. Voit, Phys. Rev. B65, 153110(2002); M.

Nakamura and S. Todo, Phys. Rev. Lett.89, 077204(2002).
54K. Okamoto, N. Okazaki, and T. Sakai, J. Phys. Soc. Jpn.70, 636

(2001).
55For example, see Refs. 34, 60, and 70.
56T. Sakai, K. Okamoto, K. Okunishi, and M. Sato, J. Phys.: Con-

dens. Matter16, S785(2004). This paper has a mistake. In Eq.
(7), J1

scrd=0.491 should be replaced withJ1
scrd=0.695.

57K. Okamoto, K. Okunishi, and T. Sakai(in preparation).
58In this paper, we say the phase transition is of a BKT type, only

when it can be regarded as the transition of thes1+1dD sine-
Gordon model that the marginal relevant sin term becomes mar-
ginal irrelevant or vice-versa. Since in a particle language, the
chemical potential changes when the magnetization(or uniform
field) is changed, the effective theory near the transition occur-
ring with increasing(decreasing) the magnetization will become
a misfit sine-Gordon model rather than a simple sine-Gordon
model.

59M. Oshikawa, M. Yamanaka, and I. Affleck, Phys. Rev. Lett.78,
1984 (1997).

60F. C. Alcaraz and A. L. Malvezzi, J. Phys. A28, 1521(1995).

MASAHIRO SATO PHYSICAL REVIEW B71, 024402(2005)

024402-22



61V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin,Quantum
Inverse Scattering Method and Correlation Functions(Cam-
bridge University Press, Cambridge, England, 1993).

62M. Takahashi,Thermodynamics of One-Dimensional Solvable
Models (Cambridge University Press, Cambridge, England,
1999).

63S. Eggert, I. Affleck, and M. Takahashi, Phys. Rev. Lett.73, 332
(1994).

64This is reliable near the level-crossing line considered.
65Of course, it is possible to obtain the result(21) from the formula

(19).
66The bosonization can lead to the same gap behavior, too, although

the spin-wave analysis is simpler and exact.
67As in Ref. 64, each effective model is valid around the corre-

sponding level-crossing line of the two-spin problem. This gap
behavior thus is reliable only whenH is close toHcr enough.

68S. Lukyanov and A. Zamolodchikov, Nucl. Phys. B493, 571
(1997).

69S. Lukyanov, Mod. Phys. Lett. A12, 2543(1997).
70T. Hikihara and A. Furusaki, Phys. Rev. B69, 064427(2004).
71G. Sierra, J. Phys. A29, 3299(1996); cond-mat/9610057(unpub-

lished).
72Besides these two, Schulz’s method based on the Abelian

bosonization[see H. J. Schulz, Phys. Rev. B34, 6372 (1986)]
are often used in high spin systems. However, its starting point,
the spin-12 XY chain, is far from the SU(2) Heisenberg point
considered now.

73T. Inami and S. Odake, Phys. Rev. Lett.70, 2016(1993).
74A. Kitazawa and K. Nomura, Phys. Rev. B59, 11 358(1998).
75L. Takhtajan, Phys. Lett.87A, 479 (1982).
76J. Babujian, Phys. Lett.90A, 479(1982); Nucl. Phys. B215, 317

(1983).
77In Refs. 82 and 85, the fine reviews are found.
78J. Sólyom, Phys. Rev. B36, 8642(1987).
79T. Kennedy, J. Phys.: Condens. Matter2, 5737(1990).
80G. Fáth and J. Sólyom, Phys. Rev. B44, 11 836(1991); J. Phys.:

Condens. Matter5, 8983(1993); Phys. Rev. B47, 872 (1993);
51, 3620(1995).

81R. J. Bursill, T. Xiang, and G. A. Gehring, J. Phys. A28, 2109
(1995).

82U. Schollwöck, Th. Jolicoeur, and T. Garel, Phys. Rev. B53,
3304 (1996).

83A. Schmitt, K-H. Mütter, M. Karbach, Y. Yu, and G. Müller,
Phys. Rev. B58, 5498(1998).

84O. Golinelli, Th. Jolicoeur, and E. S. Sørensen, Eur. Phys. J. B
11, 199 (1999).

85G. Fáth and A. Süto, Phys. Rev. B62, 3778(2000).
86K. Nomura, J. Phys. Soc. Jpn.72, 476 (2003).
87A. Läuchli, G. Schmid, and S. Trebst, cond-mat/0311082(unpub-

lished).
88C. K. Lai, J. Math. Phys.15, 1675(1974); B. Sutherland, Phys.

Rev. B 12, 3795(1975).
89F. C. Alcaraz and M. J. Martins, J. Phys. A21, L381 (1988); 21,

4397 (1988).
90I. Affleck, D. Geppner, H. J. Shultz, and T. Zimann, J. Phys. A2,

511 (1989).
91L. V. Avdeev, J. Phys. A23, L485 (1990).
92C. Itoi and H. Mukaida, J. Phys. A27, 4695(1994).

93C. Itoi and M. H. Kato, Phys. Rev. B55, 8295(1997).
94I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev. Lett.

59, 799 (1987); Commun. Math. Phys.115, 477 (1988).
95I. Affleck, Phys. Rev. Lett.56, 2763(1986).
96A. B. Zamolodchikov and V. A. Fateev, Yad. Fiz.43, 1031

(1986) [Sov. J. Nucl. Phys.43, 657 (1986)].
97D. C. Cabra, P. Pujol, and C. von Reichenbach, Phys. Rev. B58,

65 (1998).
98The most relevant termgsxd can not appear in the action because

it is forbidden by the one-site translational symmetry. Further-
more, for example, the productgsxdgsx+a0d is relevant, too.
However, it is translated into fermionic operators through the
operator product expansions of thec=1/2 CFT [see Eq.(30)
and Appendix B 2].

99Generally, the effective theory, derived from a lattice model as a
continuum limit, has higher symmetries than the lattice model.
Hence, sometimes symmetries of the lattice do not uniquely as-
sociate with one of the effective theory. In our case, there may
exist more suitable correspondences than those we adopt here.

100M. Takahashi, Phys. Rev. Lett.62, 2313(1989).
101T. Sakai and M. Takahashi, Phys. Rev. B42, 1090 (1990); J.

Phys. Soc. Jpn.60, 760 (1991); 60, 3615(1991); Phys. Rev. B
43, 13 383(1991).

102I. Affleck, Phys. Rev. B41, 6697(1990); 43, 3215(1991).
103E. S. Sørensen and I. Affleck, Phys. Rev. Lett.71, 1633(1993).
104R. M. Konik and P. Fendley, Phys. Rev. B66, 144416(2002).
105G. Fáth, Phys. Rev. B68, 134445(2003).
106S. Todo and K. Kato, Phys. Rev. Lett.87, 047203(2001).
107T. T. Wu, B. McCoy, C. A. Tracy, and E. Barouch, Phys. Rev. B

13, 316 (1976).
108A. A. Nersesyan, A. O. Gogolin, and F. H. L. Eßler, Phys. Rev.

Lett. 81, 910 (1998).
109Note that the RG equations do not contain renormalizations of

fields and velocities.
110J. L. Cardy,Scaling and Renormalization in Statistical Physics

(Cambridge University Press, Cambridge, England, 1996).
111L. Balents and M. P. A. Fisher, Phys. Rev. B53, 12 133(1996).
112D. Allen and D. Sénéchal, Phys. Rev. B55, 299 (1997).
113M. Nakamura, Physica B329–333, 1000(2003).
114M. Kohmoto and H. Tasaki, Phys. Rev. B46, 3486(1992).
115A. B. Zamolodchikov, Pis’ma Zh. Eksp. Teor. Fiz.43, 565

(1986) [JETP Lett. 43, 730 (1986)]; Yad. Fiz. 46, 1819(1987)
[Sov. J. Nucl. Phys.46, 1090(1987)].

116M. Fabrizio, A. O. Gogolin, and A. A. Nersesyan, Nucl. Phys. B
580, 647 (2000).

117B. K. Chakrabarti, A. Dutta, and P. Sen,Quantum Ising Phases
and Transitions in Transverse Ising Models(Springer-Verlag,
Berlin, 1996).

118S. Sachdev,Quantum Phase Transitions(Cambridge University
Press, Cambridge, 2001).

119J. B. Kogut, Rev. Mod. Phys.51, 659 (1979).
120D. Boyanovsky, Phys. Rev. B39, 6744(1989).
121C. Itzykson and J-M. Druffe,Statistical Field Theory, Vols. 1

and 2(Cambridge University Press, Cambridge, 1991).
122P. D. Francesco, H. Saleur, and J. B. Zuber, Nucl. Phys. B290,

527 (1987).
123G. Delfino and G. Mussardo, Nucl. Phys. B516, 675 (1998).

LOW-ENERGY PROPERTIES OF TWO-LEG SPIN-1… PHYSICAL REVIEW B 71, 024402(2005)

024402-23


