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We study the quantum Ising antiferromagnet on the kagome lattice, with weak transverse field dynamics and
other local perturbations. We analytically demonstrate the possibility of a disordered zero-temperature phase
that is smoothly connected to the phase at strong transverse fields. This is done by means of an appropriate
mapping to a compact U(1) gauge theory on the honeycomb lattice that is coupled to a charge-1 matter field.
Our results are consistent with existing Monte-Carlo calculations. The differences with commonly studied
quantum Ising models on other two-dimensional lattices(in which such disordered phases are not obtained at
weak transverse fields) is explained. Ordered phases are also shown to be possible in principle in the weak
transverse field limit, and are briefly studied.
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I. INTRODUCTION

Geometrically frustrated quantum magnets hold a very
important role in the active and challenging search for exotic
quantum phases and spin liquids. It is hoped that the strongly
competing exchange interactions between spins may in some
cases prevent not only the development of magnetic order,
but any other long range order as well. In certain circum-
stances the resulting state(known as a “spin liquid”), disor-
dered by quantum fluctuations, could possess various un-
usual properties, such as nontrivial topological structure and
fractionalized excitations. Much of the effort to find such
fractionalized spin liquid states has been motivated by pro-
posals of their relationship to the pseudo-gap phase of high
temperature superconductors,1–3 as well as many other un-
usual systems.4–7 In addition, their topological properties
seem very promising for future applications in quantum
computing.8,9

Out of many lattices that can host a frustrated magnet, the
pyrochlore and kagome attract most attention. Quantum liq-
uid arising from only the nearest neighbor interactions has
not yet been ruled out in these systems, unlike in many oth-
ers which initially had been looked upon with great hope.
The reason for this is most probably their corner-sharing
structure that yields an extremely large classical degeneracy.
The two-dimensional kagome lattice(Fig. 1) has been a
promising host for exotic physics for more than ten years.10

Various physical states have been found at low temperatures
in experiments on nonideal kagome magnets with spinS
ù3/2, ranging from magnetically ordered ones in
Jarosites,11 to paramagnetic ones in SrCr9pGa12−9pO19
(SCGO),12,13 Cu3V2O7sOHd2·2H2O (Volborthite) (Ref. 14)
and Ba2Sn2ZnGa3Cr7O22 (QS ferrite).15 Numerical computa-
tions on small samples have provided hints of a liquid caused
by quantum fluctuations in the ideal kagome lattice spinS
=1/2 Heisenberg model.16–18Furthermore, in comparison to
other spin systems,19,20 this one appears to have a rather un-
usual spectrum, compatible with gapped spin-carrying exci-
tations and a band of seemingly gapless singlet states below
the spin-gap(within the predictive power of finite size scal-
ing). There have been several theoretical attempts to under-

stand the unusual spectrum of the kagome lattice quantum
Heisenberg antiferromagnet and the nature of its ground-
state, often using very indirect but insightful approaches.
Some of them favored a spin liquid,16,21–25while some other
opened up a possibility of a valence bond crystal.26–28 Ap-
parently, the kagome lattice antiferromagnets are excellent
and promising systems in which exotic phases of matter
could be found.

A simpler theoretical context in which the effects of quan-
tum dynamics on classical geometrically frustrated magnets
may be studied is provided by considering frustrated Ising
models perturbed by a transverse magnetic field. If the trans-
verse field is strong(much larger than the typical exchange
energy scales of the Ising interaction), disordered paramag-
netic phases will result. The interesting and nontrivial ques-
tions therefore arise in the limit of weak transverse fields.
What is the effect of such a weak transverse field on the
classical Ising magnet? Generally a number of different out-
comes are possible. Consider the rather common situation
where the classical Ising magnet has a macroscopic number
of degenerate ground states, and no long range magnetic or-
der even at zero temperature. In some such cases a weak
transverse field is known to immediately select a particular

FIG. 1. kagome lattice is a corner-sharing two-dimensional lat-
tice. The frustrated units are triangular plaquettes, and they are only
minimally connected into the lattice.
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ordered ground state from this degenerate manifold. This
phenomenon, known as “order-by-disorder,” happens for in-
stance for the triangular Ising antiferromagnet, or the fully
frustrated square lattice Ising model in weak transverse
fields.29 In contrast, Monte-Carlo calculations on the kagome
lattice29,30 report that the quantum Ising antiferromagnet
stays disordered even in the presence of weak transverse
fields. This phenomenon has been dubbed “disorder-by-
disorder.”

While it is known that the classical Ising antiferromagnet
on the kagome lattice remains disordered at all
temperatures,31 the role of quantum effects in the kagome
systems has not been understood that well. Our interest in
this paper is in elucidating better the physics of the kagome
quantum Ising antiferromagnet in weak transverse fields, and
possibly other local perturbations consistent with the Ising
symmetry. Our particular focus will be on obtaining some
analytical understanding of the disordered paramagnetic
phase found in numerical calculations. To that end we de-
velop a reformulation of the model in terms of an appropriate
gauge theory that lives on the honeycomb lattice. The gen-
eral structure of the phases of this gauge theory will be ana-
lyzed through duality transformations. Our approach enables
us to understand differences between the kagome lattice and
the analogous problems on the square or triangular lattices
where order-by-disorder seems to occur.

Besides its intrinsic interest, the problem studied in this
paper also serves as a useful technical playground for learn-
ing about some of the fundamental issues that arise in ana-
lytical studies of frustrated magnets. Theoretical demonstra-
tions of quantum liquid-like behavior in specific microscopic
models of spin or boson systems are rare, and currently in-
volve interactions beyond the nearest neighbor.32–36 The
ideas developed in this paper may perhaps motivate the con-
struction of simpler microscopic models that display exotic
phenomena such as fractionalization. We emphasize however
that the paramagnetic “liquid” phase discussed in the present
paper is nonexotic, and is expected to be smoothly connected
to that which obtains in the large transverse field limit.

II. LATTICE FIELD THEORY OF FLUCTUATING SPINS

The basic model that we want to study is the antiferro-
magnetic Ising model in the transverse magnetic field on the
kagome lattice(TFIM):

H = Jo
ki j l

Si
zSj

z − Go
i

Si
x. s1d

Herei , j label the sites of the kagome lattice, andSi is a spin
S= 1

2 moment at sitei. J is the antiferromagnetic Ising inter-
action strength, andG is the strength of the transverse mag-
netic field. More generally, we will focus on the regime
where the energy scaleJ, which fixes an easy axis, is much
larger than all other energy scalessJ@Gd, and consider vari-
ous ways in which dynamics can be given to the spins, with-
out conserving any quantities(clearly, the alternate limits of
largeG is trivial). The main goal is to study the structure of
possible phases that can emerge when the frustrated Ising
antiferromagnet is endowed with weak quantum dynamics

(that preserves Ising, but no other spin symmetries).
Our strategy is as follows. We derive a low energy effec-

tive theory that is appropriate in the easy axis limit. This may
be represented as a compact U(1) gauge theory on the hon-
eycomb lattice that is coupled to a bosonic “matter” field
(with gauge charge 1). There is in addition a nonzero static
backgroundcharge at each site. The utility of a compact U(1)
gauge theory(with appropriate background charges) to de-
scribing the low energy physics of frustrated easy-axis mag-
nets has been pointed out several times in the literature.
However, in contrast to the kagome lattice, on other lattices
typically the gauge theory has no dynamical matter fields. In
two spatial dimensions on these other lattices the gauge
theory is in a confined phase, and the presence of back-
ground charges leads to broken translation symmetry. Pres-
ence of the additional dynamic matter field distinguishes the
kagome lattice from these other lattices. As we will see, it is
now possible to have a phase that is also “confining”(more
precisely a Higgs phase), which preserves translation sym-
metry even in the presence of the background charges. For
the original kagome TFIM this describes a translation invari-
ant paramagnet. The general possibility of such translation
invariant Higgs phases in such gauge theories has been dis-
cussed before.37

We analyze the gauge theory appropriate for the kagome
TFIM using duality transformations. The dual theory will
turn out to be equivalent to a certainXYmodel with a three-
fold anisotropy. The disordered phase of this model is the
Higgs phase discussed above. The ordered phase describes a
situation where there is order-by-disorder in the original
kagome magnet. Approximations and transformations that
we make obscure microscopic details, and hence are not ap-
propriate for obtaining quantitative results. However, they
preserve symmetries and details at low energy scales, that is
the universality class of the original spin model, so that they
reliably yield a qualitative picture of possible phases. Obtain-
ing this picture is our primary goal. In other words, we do
not analyze the detailed phase diagram of any one particular
model, but rather focus on the qualitative question of
whether a trivial paramagnet(that is smoothly connected to
the one at large transverse fields) can obtain when the clas-
sical kagome magnet is perturbed by arbitrarily weak quan-
tum fluctuations that only preserve Ising symmetry. This is a
universal question(with a negative answer for the square or
triangular lattices).

A. U(1) gauge theory

The nearest neighbor Ising coupling on the kagome lattice
can be conveniently written as a sum of terms defined on the
triangular plaquettes:

Hz = Jo
ki j l

Si
zSj

z =
J

2o
n

So
iPn

Si
zD2

+ const. s2d

This allows us to easily describe the sector of low energy
states: the total spin on every triangle should be ±1/2. Spin
configurations that satisfy this condition areleast frustrated.
Let us express these states using a set of variables defined on
thehoneycomblattice, whose sites we will label byp andq.
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Figure 2 illustrates the relationship between the kagome and
honeycomb lattices. The honeycomb bonds contain kagome
sites, and we can associate with them the kagome spins:Si

z

;Skpql
z . On the other hand, the honeycomb sites reside inside

the kagome triangular plaquettes. It is useful to keep track of
the total spin(whether it is +1/2 or −1/2) on any triangular
kagome plaquette. We therefore introduce a variablesp

z that
measures the total plaquette spin:

s∀pd sp
z = o

qPp

Skpql
z . s3d

We impose a restriction to the low energy sector by requiring
thatsp

z take only values ±12. Note that when a kagome spin is
flipped (provided that flipping does not introduce more frus-
tration), sp

z on the triangles that contain it change sign in the
same direction. With only the Ising interaction present there
is a large number of classical ground states: every spin con-
figuration that satisfies Eq.(3) with sp

z= ±1/2 is aclassical
ground state. Inclusion of theG or other terms in the Hamil-
tonian will split this huge degeneracy of the ground state
manifold.

It is possible to perturbatively construct an effective
theory that describes the low energy dynamics in the ground
state manifold, and express it on the honeycomb lattice:

Heff = −
G

2 o
kpql

ssp
+Skpql

+ sq
+ + H.c.d − ¯

− tő sSk12l
+ Sk23l

− Sk34l
+ Sk45l

− Sk56l
+ Sk61l

− + H.c.d − ¯ .

s4d

The Hilbert space of this theory is defined only by the least
frustrated states. The lowest order dynamical term is a single
kagome spin flipS± caused by the transverse field, and the
operatorss± simply project-out the states that are not mini-
mally frustrated. At higher orders of perturbation theory mul-
tiple spins are being flipped, and the smallest “ring-
exchange” term appears at the sixth order, so thatt,G6/J5.
Alternately, we could have imagined adding such a ring-
exchange term to the original model(in addition to the trans-
verse field term). We will examine the properties of this ef-
fective Hamiltonian in the low energy subspace for arbitrary

G andt. The pure transverse field model then corresponds to
the particular limitG@ t. All fluctuations are constrained by
(3). The effective theory will have this general form for all
kinds of kagome spin models with an easy axis, provided
that dynamics preserves only the Ising symmetry.

The Hamiltonian(4) can be interpreted as a model of
charged bosons moving in the presence of a fluctuating elec-
tromagnetic field. In order to formulate this interpretation,
we need to exploit the bipartite nature of the honeycomb
lattice. Let us introduce a fixed field«p that takes values +1
and −1 on two different sublattices, as shown in Fig. 3. Then,
define

np = «pSsp
z +

1

2
D , s5d

Epq = «pSSkpql
z +

1

2
D .

Note thatEpq=−Eqp, so that it can be viewed as a vector
living on the bonds of the honeycomb lattice. This will be
interpreted as an integer-valued “electric” field. The integer
np will be interpreted as the gauge charge of a bosonic “mat-
ter” field that couples to the electric field. The constraint(3)
becomes

s∀pd o
qPp

Epq = np + «p, s6d

where the sum on the left-hand side is taken over three hon-
eycomb sites neighboring top. Natural interpretation of this
equation is Gauss’ Law: divergence of the electric fieldEpq is
equal to the total local charge. Note that the boson occupa-
tion numbersnp take values 0 and«p. There is an additional
fixed background charge distribution«p.

At this level, the boson occupation number and electric
field strength are constrained to only two integer values by
(5). It is useful to soften this “hard core” by allowingnp and
Epq to take arbitrary integer values, but penalizing fluctua-
tions where either quantity assumes values different from
that dictated by the hard-core condition. It will also be useful
to introduce the corresponding conjugate operators,wp and
Apq, which are angular variables inf0,2pd. The boson cre-

FIG. 2. The relationship between the honeycomb and kagome
lattices. Every honeycomb bond contains one kagome site, while
every kagome triangle contains a honeycomb site.

FIG. 3. Fixed background charge«p= ±1 on the honeycomb
sites, and the electric fieldEpq

s0d created by it(up to a multiplicative
factor). On every honeycomb bond we defineEpq

s0d=«p/2=−Eqp
s0d=

−«q/2 sdiv Es0d= 3
2«pd.

THEORY OF THE KAGOME LATTICE ISING… PHYSICAL REVIEW B 71, 024401(2005)

024401-3



ation and annihilation operatorssp
± simply become

exps±i«pwpd, and similar holds for the electric field:Sspqd
±

→exps±i«pApqd. Now it is straight forward to rewrite the
Hamiltonian (4) as a compact U(1) gauge theory(up to a
constant),

s7d

We have labeled byEpq
s0d a fixed background electric field that

originates due to the background charge(see Fig. 3). The
terms proportional toU1 andU2 penalize fluctuations of the
boson number and the electric field away from the preferred
“hard-core” values.

We see thatApq plays role of a vector potential. The term
at the lowest order of perturbation theory describes boson
hopping on the honeycomb lattice, while the term at the sixth
order gives energy cost to the “magnetic flux”(away from
2p3 integer values). It is also easy to write down other
terms consistent with the symmetries and theUs1d gauge
structure. Fluctuations are subject to the Gauss’ Law(6).
Note that the charged bosons cannot screen out the back-
ground chargesnp→ h0,«pjd without paying a large price
sU1,U2d. This is a consequence of magnetic frustration in the
original kagome spin model. In fact, there is a large number
of degenerate boson configurations that accomplish the best
possible screening, and they correspond to the minimally
frustrated states. However, the very fact that there is a matter
field in this compact U(1) gauge theory distinguishes the
kagome lattice from other commonly studied two-
dimensional lattices. This bosonic matter emerges as a con-
sequence of the particularly large manifold of minimally
frustrated states, and it gives hope that after its condensation
a translation symmetric paramagnetic phase could result37 on
the kagome lattice(which will be demonstrated later in the
paper). In contrast, there are no matter fields in analogous
compact U(1) gauge theories of the triangular and the fully
frustrated square lattice Ising antiferromagnets(with weak
transverse field dynamics), and in such circumstances a long
range order develops.38,39

B. Duality transformation

In this section we perform a duality transformation on the
compact U(1) gauge theory derived above. This will enable
us to analyze the structure of the possible phases. The duality
transformation proceeds in a standard fashion. We first derive
the path-integral form of the compact U(1) gauge theory. All
terms denoted by ellipses in(7) will be ignored. The action
will contain a usual Berry’s phase(we will omit the time
index):

SB = − io
t
So

kpql
ApqDtEpq + o

p

wpDtnpD , s8d

and a potential energy part:

SP = o
t

dtFU1o
kpql

sEpq − Epq
s0dd2 + U2o

p
Snp −

«p

2
D2G ,

wheredt is the imaginary time increment. The kinetic en-
ergy part will be obtained by applying Villain’s approxima-
tion to the cosine terms in(7):

et cosu < o
m=−`

`

e−Km2−imu, t = 2e−K → 0. s9d

Two new integer-valued Villain fields will appear: a particle
current j pq, and a magnetic field scalarBr that lives inside
plaquettes of the honeycomb lattice, or equivalently on the
dual triangular lattice sites(see Fig. 4):

s10d

We will treat the constantsK1 and K2 as free parameters
(they are in principle determined in terms of the microscopic
parameters that define the original kagome Hamiltonian).
Our interest is in exploring the general nature of the possible
phases that are contained in this dual action. The angular
variableswp and Apq can now be formally integrated out,
yielding Kronecker-delta factors in the path-integral for all
integer-valued expressions that they couple to. Such factors
simply express familiar laws of electrodynamics. The inte-
gral over the boson phase angle will give rise to the current
conservation law:

FIG. 4. Duality between the honeycomb and triangular lattices.
The triangular lattice sites sit inside the honeycomb plaquettes, and
vice versa. Duality between a honeycomb lattice vectorp→q and a
triangular lattice vectorr → r8 is shown in the lower-left portion of
the graph: their directions are related by the right-hand rule. Diver-
gence on the honeycomb lattice translates into negative lattice curl
on the triangular lattice(we always take circulation in the counter-
clockwise sense).
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E
0

2p

dwp → Dtnp + o
qPp

jpq = 0, s11d

while the integral over the vector potential will reproduce a
two-dimensional Maxwell’s equation:

E
0

2p

dApq → DtEpq + j pq = Br − Br8. s12d

The direction of the triangular lattice vectorBr −Br8 in the
last equation is related to the direction ofEpq by the right-
hand rule(see Fig. 4).

The Equations(6), (11), and (12) can be solved on the
dual triangular lattice, whose sites will be labeled byr and
r8. As is standard, we first define spatial components of a
dual gauge fieldArr8 on the dual triangular lattice, and a fixed
background gauge fieldA

rr8
s0d, such that their circulations on a

triangular plaquette are determined by the charge contained
“inside” the plaquette:

s13d

The background gauge fieldA
rr8
s0d can be specified in many

different ways, and we will discuss a convenient choice later.
For now, we will only assume that it does not depend on
imaginary time. If we substitute these definitions into Gauss’
Law (6), and note that the honeycomb lattice divergence of
the electric field translates into the negative triangular lattice
curl, we can solve it by writing

Epq = xr − xr8 − Arr8 − Arr8
s0d . s14d

Again, orientation of the vectors on the right-hand side is
related to that ofEpq by the right-hand rule. The new fieldxr
is an allowed degree of freedom, since the lattice curl of a
pure gradient vector field is zero. Care must be taken to
ensure the integer-valued nature ofEpq. A convenient way to
enforce this will be discussed below. Let us also define tem-
poral components of the dual gauge fields:

s∀rd Ar,r+t̂ = Br − Dtxr, Ar,r+t̂
s0d = 0. s15d

Substituting this and(14) into (12) gives us an expression for
the particle current:

j pq = Ar,r+t̂ − Ar8,r8+t̂ + DtArr8 = r̂ pq · curlA. s16d

Therefore, the current becomes expressed as lattice curl of
the dual vector potential, taken on the triangular lattice tem-
poral plaquette that is pierced by the current vectorj = j r̂.
Finally, we note that the current conservation(11) is not
independent from Gauss’ Law(6) and Maxwell’s equation
(12).

We can now obtain a dual form of the following action
that remained after integrating out the conjugate angles:

S= o
t
FU1dto

kpql
sEpq − Epq

s0dd2 + K1ő
r

Br
2

+ U2dto
p
Snp −

«p

2
D2

+ K2o
kpql

j pq
2 G . s17d

We will eliminateEpq, Br, np, and j pq using (14), (15), (13),
and(16), respectively. The particle number and current terms
together yield curls of the dual vector potential on spatial and
temporal plaquettes of the triangular lattice. Though not nec-
essary, for convenience we setU2dt=K2=g/2, and U1dt
=K1=e2/2 (affects only high energy scales, not universality
class) and consider the phase diagram in the resulting section
of the coupling constant space. In order to complete the du-
ality transformation, we must also translate the quantities
Epq

s0d and«p into the dual language. A natural dual counterpart
of the background electric field vectorEpq

s0d is A
rr8
s0d, since both

are determined by the background charge distribution«p. In
the spirit of Eq.(14) this suggests the identificationEpq

s0d=
−3

2A
rr8
s0d, shown in Fig. 5. However, the values ofA

rr8
s0d are then

not integers, and compensation is necessary in order to keep
Epq integer-valued in(14). A convenient solution is to require
that xr fields take a particular noninteger and site-dependent
set of values. Specifically, we demand thatxr −xr

s0d be inte-
gers, with the fixed fractional offsetsxr

s0d as illustrated in Fig.
6. Then, the dual action is

S=
e2

2 o
krr8l

Sxr − xr8 − Arr8 +
1

2
Arr8

s0dD2

+
g

2 o
plaq.

FcurlSA −
1

2
As0dDG2

, s18d

where the first summation extends over all space-time links,
and the second over all spatial and temporal plaquettes. Let
us also shift

FIG. 5. Convenient definition of the fixed background gauge
field A

rr 8
s0d

. On every bondA
rr 8
s0d

=1/3 in thegiven directionr → r8, so
that its(counter-clockwise) circulations yield«p on every plaquette.
This vector field is formally dual to that ofEpq

s0d on the honeycomb
lattice (up to a factor).
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A → A −
1

2
A0. s19d

The action then reads as

S=
e2

2 o
krr8l

sxr − xr8 − Arr8d
2 +

g

2 o
plaq.

scurl Ad2. s20d

In this theoryxr −xr
s0d, andArr8+A

rr8
s0d /2 take integer values.

The fractional residuaxr
s0d are given in Fig. 6(d).

It will actually be convenient to impose these integer con-
ditions on thexr andArr8 fields softly (in the same spirit as
the usual sine-Gordon description of Coulomb gases). The
result is a generalized sine-Gordon theory with the structure

S=
e2

2 o
krr8l

sxr − xr8 − Arr8d
2 +

g

2 o
plaq.

scurl Ad2

− K o
krr8l

cos 2pSArr8 +
1

2
Arr8

s0dD − ¯ − go
r

cos 2psxr

− xr
s0dd − ¯ . s21d

In principle, higher harmonics of the lowest order cosine
terms shown above must also be included. The fieldsxr and
Arr8 now take real values. Let us absorb the fieldxr into Arr8
by the shift

Arr8 → Arr8 + xr − xr8, s22d

to get the action

S=
e2

2 o
krr8l

Arr8
2 +

g

2 o
plaq.

scurl Ad2 − K o
krr8l

cos 2pSxr − xr8

+ Arr8 +
1

2
Arr8

s0dD − go
r

cos 2psxr − xr
s0dd. s23d

Note that the term proportional toe2 appears as a “mass”
term for the gauge fieldArr8. We therefore integrate outArr8.
This may be explicitly done in the following manner. We
formally expand exps−Sd in powers ofK, and decompose
every cosine factor from the expansion using the Euler’s for-
mula 2 cosu=expsiud+exps−iud. The expansion takes the
following form:

e−S= expHgo
r

cos 2psxr − xr
s0ddJ

3 o
hmrr 8j

Chmrr 8j
expH− Fe2

2 o
krr8l

Arr8
2 +

g

2 o
plaq.

scurl Ad2

+ o
r

2pimrr8Sxr − xr8 + Arr8 +
1

2
Arr8

s0dDGJ , s24d

FIG. 6. (a) Fixed background gauge fieldA
rr 8
s0d

. (b) A curl-less vector fieldArr 8
8 . Every arrow contributes 1/3 in the given direction, so that

the sumA
rr 8
s0d

+Arr 8
8 is an integer-valued vector field.(c) A scalar fieldxr8 whose gradient gives the curl-less vector field:Arr 8

8 =xr8
8 −xr8. (d)

Fractional partsxr
s0d of the scalar fieldxr8. Requiring that the fieldsxr in (14) have fractional parts equal toxr

s0d compensates for fractional
values ofA

rr 8
s0d

, and makesEpq an integer.
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wheremrr8 are integers, andhmrr8j denotes their distribution
on the whole lattice. This is a Gaussian form, andArr8 can be
easily integrated out. Clearly, this causeshmrr8j dependent
renormalization of theChmrr 8j

factors, which in turn corre-

sponds to the renormalization ofK. After resummation over
mrr8, an XY model is obtained at the lowest order in(renor-
malized) K:

S= − K o
krr8l

cos 2pSxr − xr8 +
1

2
Arr8

s0dD − go
r

cos 2psxr − xr
s0dd

− OsK2,g2d. s25d

The variables 2pxr should be treated as angles. Adding in-
tegers toxr in the gauge theory(20) can always be compen-
sated by a gauge transformation, so that the gauge inequiva-
lent states in(25) correspond to different fractional parts of
xr. This is why the obtained effective theory is anXYmodel.
Physically, the dual field 2pxr represents the phase of an
operator that creates 2p units of vorticity in the bosonic mat-
ter field of the original honeycomb lattice U(1) gauge theory
(7), and thus must fundamentally be a phase, after the redun-
dant gauge degrees of freedom have been removed. The
structure of this theory is such that theXY field fluctuates in
the presence of a fixed staggered flux, and there is also an
external field that apparently explicitly breaks theXY (and
apparently also lattice) symmetries(see Fig. 7). The physical
meaning of this explicit symmetry breaking term is as fol-
lows. In the original honeycomb lattice gauge theory 2p vor-
tices of the bosonic matter field carry 2p units of the U(1)
gauge flux. As the theory iscompact, instanton events where
this gauge flux changes by 2p are allowed—thus the vortic-
ity is not strictly conserved. The explicitXYsymmetry break-
ing term in the dual representation precisely describes these
instanton events.

What is the actual symmetry of this action? As discussed
above, wheng=0 there is a globalXY symmetry that is ap-
parently broken whengÞ0. However, a discreteZ3 sub-
group of the globalXY symmetry survives when combined
with translation by one lattice spacing. For instance, the ac-
tion is invariant under translation along the horizontalx axis
by one unit:

xr → xr−x̂ +
2

3
. s26d

Similar transformation properties obtain under other transla-
tions (as well as the other lattice symmetries).

Let us finally note that manipulations similar to those pre-
sented in this paper have been used in some analogous prob-
lems of quantum paramagnets.40,41 Also, theories similar to
the one developed here emerge in the context of paramag-
netic phases of frustrated Heisenberg magnets: they then de-
scribe instanton events which originate from the nontrivial
Berry’s phases in the Heisenberg model path-integral.42,43

C. Phase diagram

Armed with the dual formulation, we can now see quali-
tatively why a translation invariant phase is possible in this
model. Consider the limitg=0. Then the resulting globalXY
model will (for K small enough) possess a disordered phase
with short-ranged correlations for thexr field. Upon increas-
ing K a transition to an ordered phase with some pattern of
XY ordering will occur. Now consider turning on a smallg.
Its effects will be innocuous in the small-K disordered phase.
In particular, the discreteZ3 symmetry of 2

3 shifts of thexr
field, which realize lattice translations(26), will continue to
stay unbroken. This is therefore a translation-invariant phase.
It is readily seen that this phase is also invariant under all
other lattice symmetries. Theg term will have a much more
significant effect in the large-K ordered phase, where theXY
symmetry is completely broken: it will pin the overall orien-
tation of theXYordering pattern. Lattice symmetries are con-
sequently expected to be broken in such a phase.

The existence of the disordered translation-invariant
phase is our primary conclusion. How do we think about it in
terms of the original gauge theory? From the physical dis-
cussion above, the fielde2ipxr creates 2p flux of the original
gauge field, which in turn is bound to a 2p vortex in the
phase of the bosonic matter field. Thus the disordered phase
is to be thought of as a “Higgs” phase where the bosonic
matter fields have condensed—which gaps out their vortices.
Indeed, our gauge model is closely related to a similar one
discussed in Ref. 37(the “N=1 SJ model”) where similar
phenomena were shown to arise. Note that the Higgs phase is
preferred by the boson hopping term in the gauge theory.
Thus it is reasonable to expect that this phase is realized in
the limit G@ t. This expectation is indeed consistent with the
numerical results of Refs. 29 and 30.

We can formally back up this discussion by considering
an alternate soft-spin version of the dualXY model. To that
end we define

Fr , e2pixr . s27d

We have labeled the triangular lattice sites by their corre-
sponding vectorsr. After substituting this into theXY model
(25) and relaxing the “hard-spin” condition onFr we obtain
a “soft-spin” lattice theory:

FIG. 7. (a) Field lines of the background gauge fieldA
rr 8
s0d

/2 that

produces a staggered flux.(b) ExternalXY field 2pxr
s0d that breaks

XYand translational symmetries[compare with Fig. 6(d)]. This field
is constant on any given sublattice of the triangular lattice.
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S= −
K

2 o
krr8l

sFr
*e−ipArr 8

s0d
Fr8 + H.c.d + r uFru2 + uuFru4 + ¯

− go
r

se−iQrFr + H.c.d − ¯ . s28d

The quadratic part of this action can be diagonalized to ob-
tain

o
q

s− K«q + rduFqu2, s29d

where

«q = cosSqx −
p

3
D + cosS− qx + Î3qy

2
−

p

3
D

+ cosS− qx − Î3qy

2
−

p

3
D . s30d

It is straightforward to show that«q is maximized at two
different wavevectors:q=0 and q=−Q, where Q is the
wavevector that describes the spatial variation of the external
XY field:

Q =
4p

3
x̂, e2pixr

s0d
= eiQr. s31d

In order to aid understanding of this special wavevector, we
plot its location on the reciprocal lattice in Fig. 8.

In the following, we focus on the limitK@g. The fluc-
tuations at low energies will be dominated by the modes in
vicinity of the two different wavevectors,q=0 andq=−Q.
Such fluctuations can be expressed by

Fr = c1,r + e−iQrc2,r , s32d

wherec1,r andc2,r are fields that vary slowly on the scale of
the lattice spacing. It is then useful to go to a continuum limit
which focuses on the long wavelength fluctuations of these
two fields. This continuum theory must be expressed in terms
of c1,r and c2,r only, and must be invariant under all sym-
metry transformations of the lattice theory(28). First, we
note that the quadratic part(29) is invariant under globalXY
rotationsFr →eiuFr, as well as all lattice symmetry transfor-

mations at small deviationsk from the wavevectorsqP h0,
−Qj:

s∀ad − K«q+k = const +kk2 + Osk3d. s33d

In addition, there is also a symmetry under exchanging the
two kinds of slowly varying fields,c1,r ↔c2,r. On the other
hand, as discussed in the previous section, theg term (and
various similar higher order terms) break theXY symmetry
explicitly, and reduce the symmetry group to a discrete set of
transformations. It is easy to show that under a unit transla-
tion by r̂ the fields transform as

c1,r → eiQr̂c1,r−r̂, c2,r → e−iQr̂c2,r−r̂ . s34d

Note that this rotates the phases ofc1 andc2 by 120 degrees
in opposite directions. Similarly, the symmetry transforma-
tion c1,r ↔c2,r of the quadratic part of the action must be
accompanied by lattice inversionr →−r in order to keep the
whole action(28) invariant:

c1,r → c2,−r, c2,r → c1,−r . s35d

The remaining lattice transformations do not give rise to fur-
ther reduction of the symmetry group. We may now write
down a Landau-Ginzburg effective field theory, symmetric
under transformations(34) and (35):

S=E dkfsr + kk2dsuc1,ku2 + uc2,ku2d + sa + bk2dsc1,kc2,−k

+ H.c.dg −E drfbsc1,r
2 c2,r + c2,r

2 c1,r + H.c.d + gsc1,r
3

+ c2,r
3 + H.c.dg +E drfusuc1,ru4 + uc2,ru4d + u8uc1,ru2uc2,ru2

+ u9sc1,rc2,r + H.c.dsuc1,ru2 + uc2,ru2dg + ¯ . s36d

It is clear that at least for the couplingr sufficiently large and
positive a stable disordered phase will exist where theZ3
symmetry is unbroken. This then corresponds to the transla-
tion symmetric phase of the original lattice model.

Ordered phases are also possible in this theory. In order to
reveal their structure, we simply consider the static classical
XYfield configurations that minimize the action of the effec-
tive XY model (25). Let us ignore the termsOsK2,g2d, and
restrict our attention to configurations where the value 2pxr
depends only on the sublattice to which the siter belongs.
The energy per unit-cell of such configurations is

E = − 3KFcos 2pSx1 − x2 +
1

6
D + cos 2pSx2 − x3 +

1

6
D

+ cos 2pSx3 − x1 +
1

6
DG − go

n=1

3

cos 2psxn − xn
s0dd,

s37d

where we have labeled the sublattices by 1, 2, 3 in such a
way that the background gauge field vectorArr8

s0d circulates in
the direction 1→2→3→1. Two kinds of states can be
found. For sufficiently largeg, the XY field simply follows
the “external” XY field: xr =xr

s0d, and anXY “spin density

FIG. 8. (a) A direct triangular lattice, and a choice of primitive
vectors: a1= x̂ ,a2= 1

2x̂+
Î3
2 ŷ. (b) Reciprocal lattice with primitive

vectorsb1=2psx̂− 1
Î3

ŷd ,b2=2p ·s2/Î3dŷ. The shaded region repre-
sents the first Brillouin zone. Emphasized corners of the Brillouin
zone represent the wave vectorQ=s4p /3dx̂ (three equivalent
points).
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wave” is established at the wavevectorQ. Naively, theXY
rotation and lattice symmetries appear explicitly broken in
this state. However, the angular order parameter 2pxr

=2pxr
s0d is invariant under the lattice translations(26) (and

other lattice transformations), so that this state of the effec-
tive XY model corresponds to the disordered state of the
original spin model. On the other hand, ifg=0 the ordering
will be determined by the nearest-neighbor interactionK. As
we have argued before, there are two ordering wavevectors(
q=0 andq=−Q) preferred by theK term, but neither of them
coincides with the wavevector that describes spatial varia-
tions of the externalXY field xr

s0d. Consequently, any small
nonzerog will introduce frustration, and deform the sponta-
neously orderedXY “spin density wave” preferred by theK
term. Even though the precise description of the ordering
pattern is complicated, it is at least apparent that theXY
fieldsxr align with the external fieldxr

s0d on one sublattice of
the triangular lattice, while on the other two sublattices they
cant toward the external field, simultaneously trying to pre-
serve the preferred ordering wavevector. An arbitrary choice
of sublattice for the alignment gives rise to a three-fold de-
generacy, so that theg term breaks the continuousXY sym-
metry down to aZ3 subgroup, associated with lattice trans-
formations[as evident in the Eq.(34)]. However, the choice
of the “parent” ordering wave vector(q=0 or q=−Q) for
sufficiently small g is also available, and we will briefly
discuss its physical origin.

One symmetry transformation that we have ignored so far
is the global spin-flip in the original spin model on the
kagome lattice:Si

z→−Si
z. It is straightforward to trace back

how this transformation affects the quantities of the U(1)
gauge theory, and its dual theory on the triangular lattice. For
example, at the level of Eq.(18), which describes the dual
theory on the triangular lattice with integer-valued gauge
field Arr8, and integer-valuedxr −xr

s0d, the global spin-flip
corresponds to

Arr8 → sArr8
s0d + xr8

s0d − xr
s0dd − Arr8,

xr → − xr − xr
s0d. s38d

Note that the action(18) is invariant under this transforma-
tion, and that the integer constraints are not affected. Only
the second part of this transformation(involving thexr field)
survives in the effectiveXY theory (25). If we now turn to
the continuum limit, we find from(31), (32) and(38) that the
global spin-flip is represented by

c1,r → c2,r
* , c2,r → c1,r

* . s39d

Since the fieldsc1,r and c2,r describe theXY “spin density
waves” at wavevectorsq=0 andq=−Q, respectively, we see
that the spin-flip formally exchanges these two kinds of order
in the effective theory. Apparently, this transformation is
completely independent from lattice translations. Therefore,
the choice of the “parent” ordering wave vector(q=0 or q
=−Q) in the spontaneously ordered phase must correspond to
the choice of direction of the global magnetization.

We can finally sketch the phase diagram of the effective
XY model(25), as shown in Fig. 9. The phaseD is invariant

under lattice translations(26) and global spin-flip(38), so
that it corresponds to the disordered phase of the original
spin model(4), realized forG@ t. The spontaneously long-
range ordered phase LRO is obtained in the opposite limit of
strong hexagon ring-exchangeG! t. We argued that this
phase has global Ising magnetization, while the translation
symmetry is broken in a threefold degenerate manner. This
naturally suggests a microscopic description of the order pa-
rameter given in Fig. 10. We would like to note that such a
state exactly corresponds to the state with one-third of the
saturated magnetization on the kagome lattice that was found
responsible for plateaus in the magnetization curves of some
kagome-based systems.44 The phase transition is most likely
of the second order(if we had considered a smalllongitudi-
nal field in the original kagome lattice spin model, the ulti-
mate continuum limit would have been anXY model with a
threefold XY anisotropy, which has a second order transi-
tion).

FIG. 9. A schematic phase diagram of the effectiveXY model
(25). D corresponds to the disordered phase of the original kagome
spin model. LRO is a spontaneously long-range ordered and mag-
netized phase.

FIG. 10. The most symmetric pattern of three-fold translational
symmetry breaking on the kagome lattice. Roughly speaking, the
six spins on the emphasized hexagons are alternating, and coher-
ently resonating as a singletsu↑ ↓ ↑ ↓ ↑ ↓ l+ u↓ ↑ ↓ ↑ ↓ ↑ ld /Î2, while
the remaining spins are ferromagnetically aligned with each other
and break the global spin-flip symmetry. Note that in the Hamil-
tonian (4) the energy is reduced byOstd on every resonating
hexagon.
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III. DISCUSSION

The theory of the kagome lattice quantum Ising model
that we have presented in this paper reveals that a disordered
ground state is found for a weak transverse field. This disor-
dered phase breaks no symmetries and is not topologically
ordered either. It is therefore expected to be smoothly con-
nected to the completely uncorrelated phase at a large trans-
verse field. The same conclusion has been strongly suggested
by Monte Carlo simulations,29,30 where no phase transition
was detected as the strength of transverse field was varied.

Such disordered phases seem to be exceptions rather than
the rule for a large set of two-dimensional frustrated lattice
models with a similar structure. If the classical ground state
manifold is macroscopically degenerate in a system with dis-
crete degrees of freedom, a typical situation is that quantum
fluctuations reduce the degeneracy down to the one associ-
ated with broken lattice symmetries, creating “order-by-
disorder.” Examples include the hard-core quantum dimer
and Ising models on most studied simple lattices.29,30 The
analysis in this paper provides a route to understanding the
differences between these common situations with order-by-
disorder and the kagome quantum Ising antiferromagnet. We
have demonstrated how the kagome lattice quantum Ising
model can be described by a compact U(1) gauge theory
with some fixed background charge at each lattice site. Such
a gauge theoretic description has been useful in studies of
similar Ising models on other frustrated lattices. The crucial
distinction between the kagome and other common systems
is in the fact that the U(1) gauge theory of the kagome sys-
tem contains a dynamical matter field. Without a matter field,
these gauge theories of the frustrated magnets in two-
dimensions always ultimately live in a confined phase that
breaks the translation symmetry. The latter is caused by the
fixed background charge in the gauge theory. However, in
the presence of dynamical matter fields a translation invari-
ant(“Higgs”) phase is generally possible. In situations where
the matter field has gauge charge 2(as happens in the gauge

theoretic description of quantum dimer models on nonbipar-
tite lattices) such a Higgs phase also possesses topological
order and associated “vison” excitations: for instance, there
is a nontrivial ground state degeneracy on topologically non-
trivial manifolds. In the problem discussed in this paper the
matter field had gauge charge 1. The resulting Higgs phase,
while translation invariant, is topologically trivial. This then
lends strong support to the conjecture in Ref. 30 that weak
transverse fields on the kagome Ising magnet lead to a phase
that is smoothly connected to the trivial paramagnet that is
obtained at strong transverse fields.

In fact, topological triviality of the discovered disordered
phase is a very interesting detail. From the beginning of the
quest for interesting quantum spin liquids, the frustrated
magnets had been looked upon with great hope. In particular,
the systems with extremely large classical ground state de-
generacy have attracted considerable attention. The pyro-
chlore and kagome lattices are thought to be ideal candidates
for the spin liquid, because their corner-sharing structure
provides such an extremely large degeneracy, which is then
dramatically lifted even by weak quantum fluctuations. How-
ever, in the case of the kagome lattice transverse-field quan-
tum Ising model, the corner-sharing geometry seemingly
makes the lattice virtually disconnected. Even though there is
no long-range order in the ground state, the obtained disor-
dered phase is not a topologically ordered spin liquid. One
may then ask whether a frustrated, but somewhat more con-
nected, lattice would be a better platform to seek topologi-
cally nontrivial spin liquids. Another question is if a more
correlated spin dynamics, such as the one found in aniso-
tropic easy-axis Heisenberg models, is more likely to yield
such interesting spin liquids. These issues are left open for
future work.
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