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Theory of the kagome lattice Ising antiferromagnet in weak transverse fields
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We study the quantum Ising antiferromagnet on the kagome lattice, with weak transverse field dynamics and
other local perturbations. We analytically demonstrate the possibility of a disordered zero-temperature phase
that is smoothly connected to the phase at strong transverse fields. This is done by means of an appropriate
mapping to a compact (@) gauge theory on the honeycomb lattice that is coupled to a charge-1 matter field.
Our results are consistent with existing Monte-Carlo calculations. The differences with commonly studied
guantum Ising models on other two-dimensional lattigeswvhich such disordered phases are not obtained at
weak transverse fielglss explained. Ordered phases are also shown to be possible in principle in the weak
transverse field limit, and are briefly studied.
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[. INTRODUCTION stand the unusual spectrum of the kagome lattice quantum
Heisenberg antiferromagnet and the nature of its ground-
Geometrically frustrated quantum magnets hold a verystate, often using very indirect but insightful approaches.
important role in the active and challenging search for exoticSome of them favored a spin liqut8?1-?5while some other
quantum phases and spin liquids. It is hoped that the stronglgpened up a possibility of a valence bond cry$tat® Ap-
competing exchange interactions between spins may in sonparently, the kagome lattice antiferromagnets are excellent
cases prevent not only the development of magnetic ordegnd promising systems in which exotic phases of matter
but any other long range order as well. In certain circum-could be found.
stances the resulting stagienown as a “spin liquidy, disor- A simpler theoretical context in which the effects of quan-
dered by quantum fluctuations, could possess various urium dynamics on classical geometrically frustrated magnets
usual properties, such as nontrivial topological structure andhay be studied is provided by considering frustrated Ising
fractionalized excitations. Much of the effort to find such models perturbed by a transverse magnetic field. If the trans-
fractionalized spin liquid states has been motivated by proverse field is strongmuch larger than the typical exchange
posals of their relationship to the pseudo-gap phase of highnergy scales of the Ising interactjpisordered paramag-
temperature superconductdr$,as well as many other un- netic phases will result. The interesting and nontrivial ques-
usual system$:’ In addition, their topological properties tions therefore arise in the limit of weak transverse fields.
seem very promising for future applications in quantumWhat is the effect of such a weak transverse field on the
computing®® classical Ising magnet? Generally a number of different out-
Out of many lattices that can host a frustrated magnet, theomes are possible. Consider the rather common situation
pyrochlore and kagome attract most attention. Quantum ligwhere the classical Ising magnet has a macroscopic number
uid arising from only the nearest neighbor interactions ha®f degenerate ground states, and no long range magnetic or-
not yet been ruled out in these systems, unlike in many otheer even at zero temperature. In some such cases a weak
ers which initially had been looked upon with great hope.transverse field is known to immediately select a particular
The reason for this is most probably their corner-sharing
structure that yields an extremely large classical degeneracy.
The two-dimensional kagome lattiog-ig. 1) has been a
promising host for exotic physics for more than ten yeérs.
Various physical states have been found at low temperatures
in experiments on nonideal kagome magnets with spin
=3/2, ranging from magnetically ordered ones in
Jarosites! to paramagnetic ones in SkBa;-,019
(SCGO,'?*2 CuyV,0,(0H),- 2H,0 (Volborthite) (Ref. 14
and BaSn,ZnGaCr,0,, (QS ferrite.*> Numerical computa-
tions on small samples have provided hints of a liquid caused
by quantum fluctuations in the ideal kagome lattice spin
=1/2 Heisenberg modéf-18 Furthermore, in comparison to
other spin system®,2°this one appears to have a rather un-
usual spectrum, compatible with gapped spin-carrying exci-
tations and a band of seemingly gapless singlet states below FIG. 1. kagome lattice is a corner-sharing two-dimensional lat-
the spin-gagwithin the predictive power of finite size scal- tice. The frustrated units are triangular plaquettes, and they are only
ing). There have been several theoretical attempts to undeminimally connected into the lattice.
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ordered ground state from this degenerate manifold. Thigthat preserves Ising, but no other spin symmelfries
phenomenon, known as “order-by-disorder,” happens for in- Our strategy is as follows. We derive a low energy effec-
stance for the triangular Ising antiferromagnet, or the fullytive theory that is appropriate in the easy axis limit. This may
frustrated square lattice Ising model in weak transversde represented as a compagtlJgauge theory on the hon-
fields2° In contrast, Monte-Carlo calculations on the kagomeeycomb lattice that is coupled to a bosonic “matter” field
lattice?>30 report that the quantum Ising antiferromagnet(with gauge charge)l There is in addition a nonzero static
stays disordered even in the presence of weak transverdackgroundcharge at each site. The utility of a compacil
fields. This phenomenon has been dubbed “disorder-bygauge theorywith appropriate background chargde de-
disorder.” scribing the low energy physics of frustrated easy-axis mag-
While it is known that the classical Ising antiferromagnetnets has been pointed out several times in the literature.
on the kagome lattice remains disordered at allHowever, in contrast to the kagome lattice, on other lattices
temperatured! the role of quantum effects in the kagome typically the gauge theory has no dynamical matter fields. In
systems has not been understood that well. Our interest itwo spatial dimensions on these other lattices the gauge
this paper is in elucidating better the physics of the kagomeheory is in a confined phase, and the presence of back-
quantum Ising antiferromagnet in weak transverse fields, anground charges leads to broken translation symmetry. Pres-
possibly other local perturbations consistent with the Isingence of the additional dynamic matter field distinguishes the
symmetry. Our particular focus will be on obtaining somekagome lattice from these other lattices. As we will see, it is
analytical understanding of the disordered paramagnetinow possible to have a phase that is also “confinifigbre
phase found in numerical calculations. To that end we deprecisely a Higgs phagewhich preserves translation sym-
velop a reformulation of the model in terms of an appropriatemetry even in the presence of the background charges. For
gauge theory that lives on the honeycomb lattice. The genthe original kagome TFIM this describes a translation invari-
eral structure of the phases of this gauge theory will be anaant paramagnet. The general possibility of such translation
lyzed through duality transformations. Our approach enablemvariant Higgs phases in such gauge theories has been dis-
us to understand differences between the kagome lattice amissed beforé’
the analogous problems on the square or triangular lattices We analyze the gauge theory appropriate for the kagome
where order-by-disorder seems to occur. TFIM using duality transformations. The dual theory will
Besides its intrinsic interest, the problem studied in thisturn out to be equivalent to a certa¥Y model with a three-
paper also serves as a useful technical playground for leartfield anisotropy. The disordered phase of this model is the
ing about some of the fundamental issues that arise in anddiggs phase discussed above. The ordered phase describes a
lytical studies of frustrated magnets. Theoretical demonstrasituation where there is order-by-disorder in the original
tions of quantum liquid-like behavior in specific microscopic kagome magnet. Approximations and transformations that
models of spin or boson systems are rare, and currently innve make obscure microscopic details, and hence are not ap-
volve interactions beyond the nearest neighBof® The  propriate for obtaining quantitative results. However, they
ideas developed in this paper may perhaps motivate the copreserve symmetries and details at low energy scales, that is
struction of simpler microscopic models that display exoticthe universality class of the original spin model, so that they
phenomena such as fractionalization. We emphasize howevegliably yield a qualitative picture of possible phases. Obtain-
that the paramagnetic “liquid” phase discussed in the preseitg this picture is our primary goal. In other words, we do
paper is nonexotic, and is expected to be smoothly connecteatbt analyze the detailed phase diagram of any one particular

to that which obtains in the large transverse field limit. model, but rather focus on the qualitative question of
whether a trivial paramagnéthat is smoothly connected to
Il. LATTICE FIELD THEORY OF FLUCTUATING SPINS the one at large transverse fieldsn obtain when the clas-

sical kagome magnet is perturbed by arbitrarily weak quan-
The basic model that we want to study is the antiferro-tum fluctuations that only preserve Ising symmetry. This is a
magnetic Ising model in the transverse magnetic field on theniversal questioriwith a negative answer for the square or
kagome lattic TFIM): triangular latticey

H:Jg sfgz—rz s (1)

ij i

Herei,]j label the sites of the kagome lattice, afds a spin
S:% moment at site. J is the antiferromagnetic Ising inter-
action strength, andl is the strength of the transverse mag-
netic field. More generally, we will focus on the regime J 2
where the energy scalk which fixes an easy axis, is much sz‘]z §§= 52 (2 SZ) + const. (2)
larger than all other energy scalgls>T"), and consider vari- @) A \ies

ous ways in which dynamics can be given to the spins, withThis allows us to easily describe the sector of low energy
out conserving any quantitigslearly, the alternate limits of states: the total spin on every triangle should be +1/2. Spin
largeI is trivial). The main goal is to study the structure of configurations that satisfy this condition deast frustrated
possible phases that can emerge when the frustrated Isiriget us express these states using a set of variables defined on
antiferromagnet is endowed with weak quantum dynamicshe honeycombattice, whose sites we will label by andg.

A. U(1) gauge theory

The nearest neighbor Ising coupling on the kagome lattice
can be conveniently written as a sum of terms defined on the
triangular plaquettes:
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FIG. 2. The relationship between the honeycomb and kagome FIG. 3. Fixed background chargg,=+1 on the honeycomb
lattices. Every honeycomb bond contains one kagome site, whilsites, and the electric field® created by itfup to a multiplicative
every kagome triangle contains a honeycomb site. facton. On every honeycomb bond we defiE%%:sp/Z:—Eﬁﬁf:

—64/2 (divEQ=1g,).
Figure 2 illustrates the relationship between the kagome and
honeycomb lattices. The honeycomb bonds contain kagomE andt. The pure transverse field model then corresponds to
sites, and we can associate with them the kagome sfins: the particular limitI’>t. All fluctuations are constrained by
ssfw. On the other hand, the honeycomb sites reside insidé3). The effective theory will have this general form for all

the kagome triangular plaquettes. It is useful to keep track ofinds of kagome spin models with an easy axis, provided
the total spin(whether it is +1/2 or —1/Ron any triangular  that dynamics preserves only the Ising symmetry.

kagome plaquette. We therefore introduce a variaplthat The Hamiltonian(4) can be interpreted as a model of
measures the total plaguette spin: charged bosons moving in the presence of a fluctuating elec-
tromagnetic field. In order to formulate this interpretation,
(Op) 8= > Sog- (3) We need to exploit the bipartite nature of the honeycomb
qep lattice. Let us introduce a fixed fielg, that takes values +1

_ o .. and -1 on two different sublattices, as shown in Fig. 3. Then,
We impose a restriction to the low energy sector by requiringyefine

thats] take only values % Note that when a kagome spin is
flipped (provided that flipping does not introduce more frus- _ 1
tration), % on the triangles that contain it change sign in the Mp=&p %Jr 2/’
same direction. With only the Ising interaction present there
is a large number of classical ground states: every spin con- 1
figuration that satisfies Eq3) with %211/2 is aclassical Epq= gp(gpq) + —).
ground state. Inclusion of thé or other terms in the Hamil- 2
tonian will split this huge degeneracy of the ground stateygte thatE..=—E
manifold. Pd
It is possible to perturbatively construct an effective
theory that describes the low energy dynamics in the groun
state manifold, and express it on the honeycomb lattice:

(5

g SO that it can be viewed as a vector
living on the bonds of the honeycomb lattice. This will be
interpreted as an integer-valued “electric” field. The integer
ﬂp will be interpreted as the gauge charge of a bosonic “mat-
ter” field that couples to the electric field. The constraBjt
y FE(** H) becomes
=—-—= S +H.c)— -
o 2<PC|> pS<pq>Sq (Op) 2 qu:np+8pa (6)
qep

- t% ($12>523>$34>SZ455256>$61> +H.c)— - .

where the sum on the left-hand side is taken over three hon-
(4) eycomb sites neighboring f@ Natural interpretation of this

equation is Gauss’ Law: divergence of the electric figlgis
The Hilbert space of this theory is defined only by the leasiequal to the total local charge. Note that the boson occupa-
frustrated states. The lowest order dynamical term is a singlgon numbersn, take values 0 and,,. There is an additional
kagome spin flipS* caused by the transverse field, and thefixed background charge distributies.
operatorss® simply project-out the states that are not mini- At this level, the boson occupation number and electric
mally frustrated. At higher orders of perturbation theory mul-field strength are constrained to only two integer values by
tiple spins are being flipped, and the smallest “ring-(5). It is useful to soften this “hard core” by allowing, and
exchange” term appears at the sixth order, so thaf®/J°. Eyq to take arbitrary integer values, but penalizing fluctua-
Alternately, we could have imagined adding such a ring-tions where either quantity assumes values different from
exchange term to the original mod@h addition to the trans- that dictated by the hard-core condition. It will also be useful
verse field term We will examine the properties of this ef- to introduce the corresponding conjugate operatpgsand
fective Hamiltonian in the low energy subspace for arbitrary. A, which are angular variables [@,27). The boson cre-

024401-3



P. NIKOLIC AND T. SENTHIL PHYSICAL REVIEW B 71, 024401(2005

ation and annihilation operatorss: simply become
exp(xiepep), and similar holds for the electric fieIcB(ipq)
—expxiepApg). Now it is straight forward to rewrite the
Hamiltonian (4) as a compact (1) gauge theoryup to a
constany,

2
&
H=U,2 (Epy—EQV + U, 2, (np - f) -T2 cos(g,
{pg) p {pg)

&
_¢p_qu)_ "‘—12 Cos(E qu) _ ...
O 2 (7)

We have labeled bE(O) a fixed background electric field that
originates due to the background chaigee Fig. 3. The FIG. 4. Duality between the honeycomb and triangular lattices.
terms proportional tdJ, and U, penalize fluctuations of the The triangular lattice sites sit inside the honeycomb plaquettes, and
boson number and the electric field away from the preferredice versaDuality between a honeycomb lattice vecpor-g and a
“hard-core” values. triangular lattice vector —r’ is shown in the lower-left portion of

We see thajqu plays role of a vector potential. The term the graph: their directions are related by the right-hand rule. Diver-
at the lowest order of perturbation theory describes bosofence on the honeyfzomb lattice translatgs intg negative lattice curl
hopping on the honeycomb lattice, while the term at the sixttP" the _tnangular latticéwe always take circulation in the counter-
order gives energy cost to the “magnetic fludway from ~ Clockwise sense
27 X integer valuep It is also easy to write down other .
terms consistent with the symmetries and th€l) gauge _ (02 €
structure. Fluctuations are subject to the Gauss’ L&y S’“; or Ul@% (qu—qu)) +U2% (np__e> ]
Note that the charged bosons cannot screen out the back-
ground charge(n,—{0,ep}) without paying a large price
(Uy,U,). This is a consequence of magnetic frustration in thevhere 67 is the imaginary time increment. The kinetic en-
original kagome spin model. In fact, there is a large numbefrdy part will be obtained by applying Villain’s approxima-
of degenerate boson configurations that accomplish the beten to the cosine terms iv):
possible screening, and they correspond to the minimally
frustrated states. However, the very fact that there is a matter o
field in this compact dl) gauge theory distinguishes the gieostd~ g Km-ime ¢~ oe K _, g (9)
kagome lattice from other commonly studied two- P—
dimensional lattices. This bosonic matter emerges as a con-
sequence of the particularly large manifold of minimally
frustrated states, and it gives hope that after its condensati
a translation symmetric paramagnetic phase could Fésrit
the kagome latticéwhich will be demonstrated later in the
papej. In contrast, there are no matter fields in analogou

o'l;Yvo new integer-valued Villain fields will appear: a particle
currentj,,, and a magnetic field scal@; that lives inside
plaguettes of the honeycomb lattice, or equivalently on the
Sdual triangular lattice sitegsee Fig. 4

compact Y1) gauge theories of the triangular and the fully
frustrated square lattice Ising antiferromagnetsth weak SK=E K]EBZ+KZE 72 +i2j (0, — @, — A,)
transverse field dynamigsand in such circumstances a long - o, | et ettt TP THM
range order develop§:3° o
+iX B,(E qu)].
Oy {pq)

B. Duality transformation (10)

In this section we perform a duality transformation on the

compact 1) gauge theory derived above. This will enable \ve will treat the constant&; and K, as free parameters
us to analyze the structure of the possible phases. The dualiyhey are in principle determined in terms of the microscopic
transformation proceeds in a standard fashion. We first derivgarameters that define the original kagome Hamiltopian
the path-integral form of the compact1) gauge theory. All - Qyr interest is in exploring the general nature of the possible
terms denoted by ellipses (i) will be ignored. The action phases that are contained in this dual action. The angular
will contain a usual Berry's phaseve will omit the time  variablesg, and A,, can now be formally integrated out,

index): yielding Kronecker-delta factors in the path-integral for all
. integer-valued expressions that they couple to. Such factors
S=- i ((E ApeA Epg* > ‘PpAfnp>' ®) simply express familiar laws of electrodynamics. The inte-
T \pe P gral over the boson phase angle will give rise to the current
and a potential energy part: conservation law:
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2w . > > >
f d‘Pp - Arnp+ 2 Jpq:Oy (11
0 qep

while the integral over the vector potential will reproduce a
two-dimensional Maxwell’s equation:

27
f dApq, — AEpq+ipg=B-B.. (12
0

The direction of the triangular lattice vect& —B,, in the
last equation is related to the direction Bf, by the right-
hand rule(see Fig. 4.

The Equationg6), (11), and(12) can be solved on the
dual triangular lattice, whose sites will be labeled rognd
r'. As is standard, we first define spatial components of a FIG. 5. Convenient definition of the fixed background gauge
dual gauge field,, on the dual triangular lattice, and a fixed field A”). On every bond\")=1/3 in thegiven directionr —r’, so
background gauge fielAi??, such that their circulations on a that its(counter-clockwisgcirculations yieldsé, on every plaquette.

. : . N o
triangular plaquette are determined by the charge containetiis vector field is formally dual to that d; on the honeycomb

“inside” the plaquette: lattice (up to a facto.
&p B
(Vp) X Ap=n, XAY=¢, s=> lulérE (Epq— EQ)2+ K, B?
(rr') (rr'y (13) T (pa) O
2
) e _% )
The background gauge fleldf? can be specified in many +U25T§ <np 2) "'KZ%Jpq} 17

different ways, and we will discuss a convenient choice later.

For now, we will only assume that it do_e_s_ not _depend ONWe will eliminate E,q, By, Ny, andjy,q using(14), (15), (13),

imaginary time. If we substitute these definitions into Gaussand(16), respectively. The particle number and current terms
Law (6), and note that the honeycomb lattice divergence otogether yield curls of the dual vector potential on spatial and
the electric field translates into the negative triangular latticRemporal plaquettes of the triangular lattice. Though not nec-

curl, we can solve it by writing essary, for convenience we sebor=K,=g/2, and U867
© =K,=¢€?/2 (affects only high energy scales, not universality
Epg=Xr = Xor — A — AL (14)  clasy and consider the phase diagram in the resulting section

of the coupling constant space. In order to complete the du-
Again, orientation of the vectors on the right-hand side isality transformation, we must also translate the quantities
related to that o, by the right-hand rule. The new fiejgd Egg ande, into the dual language. A natural dual counterpart
is an allowed degree of freedom, since the lattice curl of af the background electric field vectEto(; is Ai?f, since both
pure gradient vector field is zero. Care mus_t be taken tQe getermined by the background charge distributiorin
ensure the integer-valued natureEf,. A convenient way to

S . ; the spirit of Eq.(14) this suggests the identificatid®® =
enforce this will be discussed below. Let us also define tem <0§’ shown ?n(Fi ) 5 Howge?/er the values,@&m are ?gen
poral components of the dual gauge fields: 9.9 ' T

-3
_EArr”
not integers, and compensation is necessary in order to keep
O A .-=B -Ay, A?.=0. 15 Epq mteger-valued i14). A convenient solution is to require
(00 Arrz =By = Ao T (19 that y, fields take a particular noninteger and site-dependent

. (0) .
Substituting this andl4) into (12) gives us an expression for set of values. Specifically, we demand that x, be inte-

the particle current; gers, with the fixed fractional offse % as illustrated in Fig.
6. Then, the dual action is
qu:Ar,r+3-_Ar’,r'+3-+ArArr’ :qu' curlA. (16) 2
e 1 0

) S:_E Xr_Xr’_Arr""_Arrr
Therefore, the current becomes expressed as lattice curl of 2.0 2
the dual vector potential, taken on the triangular lattice tem- 9
ppral plaguette that is pierced by the current ve.c;tejf. + 92 {curl(A——A(o))} , (18)
Finally, we note that the current conservati@tl) is not plag.
independent from Gauss’ La@) and Maxwell's equation
(12). where the first summation extends over all space-time links,

We can now obtain a dual form of the following action and the second over all spatial and temporal plaquettes. Let
that remained after integrating out the conjugate angles: us also shift
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(©) (d)

FIG. 6. (a) Fixed background gauge flekfnf (b) A curl-less vector fleIdA”, Every arrow contributes 1/3 in the given direction, so that

the sumA(?)+A”, is an integer-valued vector fielgc) A scalar fieldy, whose gradient gives the curl-less vector fleitkﬂr er X;- (d)
Fractional parts(( of the scalar fieldy,. Requiring that the fieldg, in (14) have fractional parts equal pdo) compensates for fractional

p
values ofA o and makeds,, an integer.

L Arr = A+ Xe = X (22
A—A-ZA,. 19
— A=A (19 |
; to get the action
The action then reads as
e g ,
=5 2 (Xr X T Arr’)2 E (Curl A)2 (20) E Arr' + - 2 2 (Curl A) -K 2 cOoS 217 =X
2 (rr'y plaq (rr') plag. 'y
In this theor © © ' ©
YXi—Xx; » andA, +A /2 take integer values. +A, + E cos 2(x, - x9). 23)
(0)

The fractional residug,™ are given in Fig. €).

It will actually be convenient to impose these integer con-
ditions on they, and A, fields softly(in the same spirit as
the usual sine-Gordon description of Coulomb gaséhe
result is a generalized sine-Gordon theory with the structur

Note that the term proportional t& appears as a “mass”

term for the gauge field, . We therefore integrate o, .
his may be explicitly done in the following manner. We
ormally expand ex@-S) in powers ofK, and decompose

e 5> g B every cosine factor from the expansion using the Euler’s for-
=3 2 =X = A+ 5% (curlA) mula 2 cos9=exp(if)+exp—if). The expansion takes the
" ' following form:
1
-K 2, cos2r| A, + = (0)) s = COS 2
<§> ( T2 yzr" b e = eXD[ 2 €0S 2n(x; - XEO))}
r
-xi7) - (21) g )
In principle, higher harmonics of the lowest order cosine x {mE,}C{m P = 2 A”'+ 2%lq (curl A)
terms shown above must also be included. The figjdsnd " <" ’
A,;» now take real values. Let us absorb the figldnto A,/ ) 1
by the shift r + 2 2mime (X~ xe F A0+ SAT ) e (29
r
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2

Xr— X+ 5 (26)

Similar transformation properties obtain under other transla-
> > > > tions (as well as the other lattice symmetpies
M Let us finally note that manipulations similar to those pre-
sented in this paper have been used in some analogous prob-
@ (o) lems of quantum paramagnéfs’ Also, theories similar to
S 0 the one developed here emerge in the context of paramag-
FIG. 7. (a) Field lines of the background gauge fiekf)/2 that  petic phases of frustrated Heisenberg magnets: they then de-

produces a staggered fluh) ExternalXY field 2mx'” that breaks  scribe instanton events which originate from the nontrivial

XYand translational symmetrigsompare with Fig. @)]. This field  Berry’s phases in the Heisenberg model path-interé.
is constant on any given sublattice of the triangular lattice.

wherem,,, are integers, anfim, .} denotes their distribution C. Phase diagram

on the whole lattice. This is a Gaussian form, @d can be Armed with the dual formulation, we can now see quali-
easily integrated out. Clearly, this causes, } dependent (atyely why a translation invariant phase is possible in this
renormalization of theCyy, ,; factors, which in turn corre-  model. Consider the limiy=0. Then the resulting globa{Y
sponds to the renormalization &f. After resummation over model will (for K small enoughpossess a disordered phase
m,», an XY model is obtained at the lowest order(ienor-  with short-ranged correlations for thg field. Upon increas-
malized K: ing K a transition to an ordered phase with some pattern of
XY ordering will occur. Now consider turning on a small
Its effects will be innocuous in the smaﬂgisordered phase.
_ 1 0 0 In particular, the discret&; symmetry of5 shifts of they,
S=- KZ cos 271'(Xr —Xxe t EArr’> - 7’2 cos 2m(x, = x”) field, which realize lattice translatior(QG),swill continue to
' stay unbroken. This is therefore a translation-invariant phase.
- O(K2,9). (25 It is readily seen that this phase is also invariant under all
other lattice symmetries. Thgterm will have a much more
significant effect in the larg&- ordered phase, where tixeY
The variables Zy, should be treated as angles. Adding in- symmetry is completely broken: it will pin the overall orien-
tegers toy, in the gauge theorg20) can always be compen- tation of theXY ordering pattern. Lattice symmetries are con-
sated by a gauge transformation, so that the gauge inequivaequently expected to be broken in such a phase.
lent states in(25) correspond to different fractional parts of  The existence of the disordered translation-invariant
xr- This is why the obtained effective theory is Al¥ model.  phase is our primary conclusion. How do we think about it in
Physically, the dual field 2y, represents the phase of an terms of the original gauge theory? From the physical dis-
operator that createsmunits of vorticity in the bosonic mat- cussion above, the fielef ™ creates 2 flux of the original
ter field of the original honeycomb lattice(l) gauge theory gauge field, which in turn is bound to ar2vortex in the
(7), and thus must fundamentally be a phase, after the reduphase of the bosonic matter field. Thus the disordered phase
dant gauge degrees of freedom have been removed. The to be thought of as a “Higgs” phase where the bosonic
structure of this theory is such that ti field fluctuates in  matter fields have condensed—which gaps out their vortices.
the presence of a fixed staggered flux, and there is also dndeed, our gauge model is closely related to a similar one
external field that apparently explicitly breaks th¥ (and  discussed in Ref. 3tthe “N=1 SJ modely where similar
apparently also lattigesymmetriegsee Fig. J. The physical phenomena were shown to arise. Note that the Higgs phase is
meaning of this explicit symmetry breaking term is as fol- preferred by the boson hopping term in the gauge theory.
lows. In the original honeycomb lattice gauge theory\dr-  Thus it is reasonable to expect that this phase is realized in
tices of the bosonic matter field carryr2units of the W1)  the limit I'>t. This expectation is indeed consistent with the
gauge flux. As the theory isompact instanton events where numerical results of Refs. 29 and 30.
this gauge flux changes byr2are allowed—thus the vortic- We can formally back up this discussion by considering
ity is not strictly conserved. The explickY symmetry break- an alternate soft-spin version of the do@ model. To that
ing term in the dual representation precisely describes thesend we define
instanton events.
What is the actual symmetry of this action? As discussed
above, wheny=0 there is a globaKY symmetry that is ap-
parently broken wheny+# 0. However, a discret&; sub-
group of the globalXY symmetry survives when combined We have labeled the triangular lattice sites by their corre-
with translation by one lattice spacing. For instance, the acsponding vectors. After substituting this into thXY model
tion is invariant under translation along the horizontalxis ~ (25) and relaxing the “hard-spin” condition ch, we obtain
by one unit: a “soft-spin” lattice theory:

O, ~ X, (27)
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Y 3 mations at small deviations from the wavevectorsg e {0,
= -Qk

3 ‘ (Oa) —Keg = const +xk? + O(K). (33

‘ x In addition, there is also a symmetry under exchanging the

Y two kinds of slowly varying fieldsy, < ¢, ,. On the other
hand, as discussed in the previous section,therm (and
various similar higher order terméreak theXY symmetry

explicitly, and reduce the symmetry group to a discrete set of

(a) (b) . X )
transformations. It is easy to show that under a unit transla-
tion by the fields transform as

FIG. 8. (a) A direct triangular lattice, and a choice of primitive
vectors:al:i,a2:1>“<+§’§/. (b) Reciprocal lattice with primitive ¢1r—>eiQ?lﬁ1 . ¢2r—>e'iQ?¢2 e (34)
vectorsb1:27r(§<—§§/),b2:27r-(2/\53)§/. The shaded region repre- ' ' ' '
sents the first Brillouin zone. Emphasized corners of the BrillouinNote that this rotates the phases/gfand s, by 120 degrees
zone represent the wave vect@=(4w/3)X (three equivalent in opposite directions. Similarly, the symmetry transforma-
points). tion ¢y < i, of the quadratic part of the action must be
accompanied by lattice inversion— —r in order to keep the
whole action(28) invariant:

‘pl,r - 'ﬁz,—r: ‘/’2,r - wl,—r- (35)

The remaining lattice transformations do not give rise to fur-
ther reduction of the symmetry group. We may now write
down a Landau-Ginzburg effective field theory, symmetric
The quadratic part of this action can be diagonalized to obtinder transformation§34) and(35):

tain

K « _i 20
S=—— > (O, ™D, + H.c) + 1| +uld, |+ -
(')

— > (7P, +H.c)— -+ . (29)

S (~ Keg + 1|02 (29) S:f dk[(r + ck®) (| 12 + |12 D) + @+ DI (Y 2+«
q qls
q

where +H.c)] ‘f dr[ B oy + o i, + H.C) + (W,
=
ceoda T G+ 3y z)
fa= Cos<qx 3) " CO< 2 3 + ':bg,r +H.c)]+ f dr[ulspy o [* + [, %) + U’ [y o[22
+ co{LﬁY - 7§T> . (30) + U (o + HC) ([, P+ [0, D]+ -+ (36)

It is clear that at least for the couplimgsufficiently large and
It is straightforward to show that, is maximized at two positive a stable disordered phase will exist where Zhe
different wavevectorsq=0 and q=-Q, where Q is the  symmetry is unbroken. This then corresponds to the transla-
wavevector that describes the spatial variation of the externaion symmetric phase of the original lattice model.

XY field: Ordered phases are also possible in this theory. In order to
- o reveal their structure, we simply consider the static classical
Q= ?i e = gQr (31)  XYfield configurations that minimize the action of the effec-

tive XY model (25). Let us ignore the term&(K?,?), and

In order to aid understanding of this special wavevector, wdestrict our attention to configurations where the valag2
plot its location on the reciprocal lattice in Fig. 8. depends only on the sublattice to which the siteelongs.

In the following, we focus on the limiK>y. The fluc-  The energy per unit-cell of such configurations is

tuations at low energies will be dominated by the modes in 1 1
vicinity of the two different wavevectorsj=0 andq=-Q. E=- 3K[COS 277()(1 “ X2t é) +Cos 277()(2 “ X3t E)
Such fluctuations can be expressed by ,
— —1Qr
CDr - l;bl,r +e Q ‘/"2,ra (32) + Ccos ZT<X3_X1+ %)j| _ ,}/2 cos ZT(Xn _ XS]O)),
wherey, , and s, are fields that vary slowly on the scale of n=1
the lattice spacing. It is then useful to go to a continuum limit (37

which focuses on the long wavelength fluctuations of these . .
two fields. This continuum theory must be expressed in '[erm¥"here we have labeled the sublgtnces by 1’.2’ 3in S.UCh a
of 41, and ¢, only, and must be invariant under all sym- way that the background gauge field veoc{)?, circulates in
metry transformations of the lattice theo(28). First, we the direction }»2—3—1. Two kinds of states can be
note that the quadratic pai29) is invariant under globaky  found. For sufficiently largey, the XY field simply follows
rotations®, — €®,, as well as all lattice symmetry transfor- the “external” XY field: x,= XEO), and anXY “spin density
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wave” is established at the wavevec@Qr Naively, theXY A
rotation and lattice symmetries appear explicitly broken in
this state. However, the angular order parameterty,2 D
:217)(5(’) is invariant under the lattice translatio(6) (and
other lattice transformatiopsso that this state of the effec-
tive XY model corresponds to the disordered state of the
original spin model. On the other hand,jf0 the ordering
will be determined by the nearest-neighbor interacfoi\s

we have argued before, there are two ordering wavevegtors LRO
=0 andg=-Q) preferred by th& term, but neither of them
coincides with the wavevector that describes spatial varia-

tions of the externakKY field Xﬁo). Consequently, any small 7 DK
nonzeroy will introduce frustration, and deform the sponta-
neously orderecY “spin density wave” preferred by the FIG. 9. A schematic phase diagram of the effectk model

term. Even though the precise description of the ordering25). D corresponds to the disordered phase of the original kagome
pattern is complicated, it is at least apparent that Xe  spin model. LRO is a spontaneously long-range ordered and mag-
fields x, align with the external fielgt'® on one sublattice of ~netized phase.
the triangular lattice, while on the other two sublattices they
cant toward the external field, simultaneously trying to pre-under lattice translation&26) and global spin-flip(38), so
serve the preferred ordering wavevector. An arbitrary choicéhat it corresponds to the disordered phase of the original
of sublattice for the alignment gives rise to a three-fold de-spin model(4), realized forl'>t. The spontaneously long-
generacy, so that the term breaks the continuou§Y sym-  range ordered phase LRO is obtained in the opposite limit of
metry down to aZ; subgroup, associated with lattice trans- strong hexagon ring-exchangé<t. We argued that this
formations[as evident in the Eq:34)]. However, the choice phase has global Ising magnetization, while the translation
of the “parent” ordering wave vectaiq=0 or g=-Q) for  symmetry is broken in a threefold degenerate manner. This
sufficiently small y is also available, and we will briefly naturally suggests a microscopic description of the order pa-
discuss its physical origin. rameter given in Fig. 10. We would like to note that such a
One symmetry transformation that we have ignored so fastate exactly corresponds to the state with one-third of the
is the global spin-flip in the original spin model on the saturated magnetization on the kagome lattice that was found
kagome latticeS'— -§'. It is straightforward to trace back responsible for plateaus in the magnetization curves of some
how this transformation affects the quantities of thel)J kagome-based systertfsThe phase transition is most likely
gauge theory, and its dual theory on the triangular lattice. Fopf the second ordgiif we had considered a smatingitudi-
example, at the level of Eq18), which describes the dual nal field in the original kagome lattice spin model, the ulti-
theory on the triangular lattice with integer-valued gaugemate continuum limit would have been XY model with a
field A,,, and integer-valued(,—x(o), the global spin-flip  threefold XY anisotropy, which has a second order transi-

r
corresponds to tion).

0 0
o 02 A - A

Xr_>_Xr_X|('O)- (38) >< X X

Note that the actior1l8) is invariant under this transforma-
tion, and that the integer constraints are not affected. Only
the second part of this transformati@nvolving the y, field)
survives in the effectiveXY theory (25). If we now turn to

the continuum limit, we find frong31), (32) and(38) that the
global spin-flip is represented by

i — or Yor = Y, (39)
Since the fields/; , and ¢,, describe theXY “spin density

waves” at wavevectorg=0 andq=-Q, respectively, we see

that the spin-flip formally exchanges these two kinds of order g, 10. The most symmetric pattern of three-fold translational
in the effective theory. Apparently, this transformation is symmetry breaking on the kagome lattice. Roughly speaking, the
completely independent from lattice translations. Thereforesjx spins on the emphasized hexagons are alternating, and coher-
the choice of the “parent” ordering wave vect@=0 orq  ently resonating as a singlét] | 1| 1 [)+| T 11| 1)/v2, while
=-Q) in the spontaneously ordered phase must correspond e remaining spins are ferromagnetically aligned with each other
the choice of direction of the global magnetization. and break the global spin-flip symmetry. Note that in the Hamil-
We can finally sketch the phase diagram of the effectivaonian (4) the energy is reduced by(t) on every resonating
XY model(25), as shown in Fig. 9. The pha&eis invariant  hexagon.
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Ill. DISCUSSION theoretic description of quantum dimer models on nonbipar-
tite latticeg such a Higgs phase also possesses topological
The theory of the kagome lattice quantum Ising modelorder and associated “vison” excitations: for instance, there
that we have presented in this paper reveals that a disorderégia nontrivial ground state degeneracy on topologically non-
ground state is found for a weak transverse field. This disortrivial manifolds. In the problem discussed in this paper the
dered phase breaks no symmetries and is not topologicallfpatter field had gauge charge 1. The resulting Higgs phase,
ordered either. It is therefore expected to be smoothly conwhile translation invariant, is topologically trivial. This then
nected to the completely uncorrelated phase at a large trannds strong support to the conjecture in Ref. 30 that weak
verse field. The same conclusion has been strongly suggestd@nsverse fields on the kagome Ising magnet lead to a phase
by Monte Carlo simulation&3° where no phase transition that is smoothly connected to Fhe trivial paramagnet that is
was detected as the strength of transverse field was variedoPtained at strong transverse fields.

Such disordered phases seem to be exceptions rather thaﬂé&ﬁ?’at(\),gfloign'feigt'i\ﬂal'é’égi|th§rgﬁct?,\ée{,id i?\lr?iardi:‘et?]e
the rule for a large set of two-dimensional frustrated lattice” y 9 : g 9

quest for interesting quantum spin liquids, the frustrated

models with a similar structure. If the classical ground Stat%agnets had been looked upon with great hope. In particular
manifold is macroscopically degenerate in a system with disfhe systems with extremely large classical groLmd state de-,
crete degrees of freedom, a typical situation is that quanturieneracy have attracted considerable attention. The pyro-
fluctuations reduce the degeneracy down to the one assodpjore and kagome lattices are thought to be ideal candidates
ated with broken lattice symmetries, creating “order-by-for the spin liquid, because their comer-sharing structure
disorder.” Examples include the hard-core quantum dimepqyides such an extremely large degeneracy, which is then
and Ising models on most studied simple latti€&¥ The dramatically lifted even by weak quantum fluctuations. How-
analysis in this paper provides a route to understanding thgyer in the case of the kagome lattice transverse-field quan-
differences between these common situations with order-by, -, Ising model, the corner-sharing geometry seemingly

disorder and the kagome quantum Ising antiferromagnet. W,y es the lattice virtually disconnected. Even though there is
have demonstrated how the kagome lattice quantum ISing, |ong-range order in the ground state, the obtained disor-

model can be described by a compadalgauge theory gereq phase is not a topologically ordered spin liquid. One

with some fixed background charge at each lattice site. Such .,y then ask whether a frustrated, but somewhat more con-
a gauge theoretic description has been useful in studies ofcieq, Jattice would be a better platform to seek topologi-
similar Ising models on other frustrated lattices. The cruualca”y nontrivial spin liquids. Another question is if a more

distinction between the kagome and other common systeMg,rejated spin dynamics, such as the one found in aniso-
is in the fact that the U) gauge theory of the kagome sys- ;¢ easy-axis Heisenberg models, is more likely to yield
tem contains a dynamical matter field. Without a matter fieldg -, interesting spin liquids. These issues are left open for

these gauge theories of the frustrated magnets in tWog,iure work.

dimensions always ultimately live in a confined phase that

breaks the translation symmetry. The latter is caused by the This research was supported by the National Science
fixed background charge in the gauge theory. However, ifFoundation under Grant No. DMR-0308945. We would also
the presence of dynamical matter fields a translation invarilike to acknowledge funding from the NEC Corporation, the
ant(“Higgs”) phase is generally possible. In situations whereAlfred P. Sloan Foundatiofil.S) and financial support from
the matter field has gauge charg¢a® happens in the gauge The Research Corporati@ii.S.).

1P. W. Anderson, Sciencg35, 1196(1987. A 'S, Wills, A. Harrison, C. Ritter, and R. I. Smith, Phys. Rev. B
2S. Kivelson, D. S. Rokhsar, and J. Sethna, Phys. Re3583865 61, 6156(2000.

(1987. 12y J. Uemura, A. Keren, K. Kojima, L. P. Le, G. M. Luke, W. D.
3T. Senthil and M. P. A. Fisher, Phys. Rev. &, 7850(2000). Wau, Y. Ajiro, T. Asano, Y. Kuriyama, M. Mekata, H. Kikuchi,
4R. Coldea, D. A. Tennant, A. M. Tsvelik, and Z. Tylczynski, and K. Kakurai, Phys. Rev. LetZ3, 3306(1994).

Phys. Rev. Lett.86, 1335(200D. 13A. P. Ramirez, B. Hessen, and M. Winklemann, Phys. Rev. Lett.
5B. Bernu, P. Gianinetti, L. Candido, and D. M. Ceperley, Int. J. 84, 2957(2000.

Mod. Phys. B17, 4965(2003. 147, Hiroi, M. Hanawa, N. Kobayashi, M. Nohara, H. Takagi, Y.
6G. Misguich, C. Lhuillier, B. Bernu, and C. Waldtmann, Phys.  Kato, and M. Takigawa, J. Phys. Soc. Jgi, 3377(2001).

Rev. B 60, 1064(1999. 15 s. Hagemann, Q. Huang, X. P. A. Gao, A. P. Ramirez, and R. J.
’W. LiMing, G. Misguich, P. Sindzingre, and C. Lhuillier, Phys. Cava, Phys. Rev. Lett86, 894 (2001).

Rev. B 62, 6372(2000. 16C. Zeng and V. Elser, Phys. Rev. Bl, 8318(1995.
8A. Yu. Kitaev, Ann. Phys(Leipzig) 303 2 (2003. 17C. waldtmann, H. U. Everts, B. Bernu, C. Lhuillier, P. Sindzin-
°L. B. loffe, M. V. Feigelman, A. loselevich, D. Ivanov, M. gre, P. Lecheminant, and L. Pierre, Eur. J. Bioche.501

Troyer, and G. Blatter, Natur@.ondon) 415 503(2002. (1998.
0y, Elser, Phys. Rev. Lett62, 2405(1989. 18p, Sindzingre, G. Misguich, C. Lhuillier, B. Bernu, L. Pierre, Ch.

024401-10



THEORY OF THE KAGOME LATTICE ISING.. PHYSICAL REVIEW B 71, 024401(2005

Waldtmann, and H.-U. Everts, Phys. Rev. L&, 2953(2000. 31D, A. Huse and A. D. Rutenberg, Phys. Rev.4B, 7536(1992.
19C. Lhuillier and G. Misguich irHigh Magnetic Fieldsedited by ~ 32L. Balents, M. P. Fisher, and S. M. Girvin, Phys. Rev. @5,

C. Berthier, L. Levy, and G. Martine@Springer-Verlag, Berlin, 224412(2002.

2002, pp. 161-190. 330. I. Motrunich and T. Senthil, Phys. Rev. Let&9, 277004
20p, sindzingre, C. Lhuillier, and J. B. Foud¥roceedings of the (2002.

11th International Conference on Recent Progress in Many-Body*T. Senthil and O. I. Motrunich, Phys. Rev. 86, 205104(2002.

Theories (Manchester, 2001 pp. 90-98. 350. 1. Motrunich, Phys. Rev. B57, 115108(2003.

213, Sachdev, Phys. Rev. B5, 12377(1992. 36M. Hermele, M. P. A. Fisher, and L. Balents, cond-mat/0305401,

22\. Mambrini and F. Mila, Eur. J. Biocheml7, 651 (2000). 2003.

23M. B. Hastings, Phys. Rev. B3, 014413(2001). 37S. Sachdev and R. Jalabert, Mod. Phys. Lett4,R.043(1990.

24G. Misguich, D. Serban, and V. Pasquier, Phys. Rev. L8%.  38A. M. Polyakov,Gauge Fields and Stringddarwood Academic,
137202(2002. New York, 1987.

25G. Misguich, D. Serban, and V. Pasquier, cond-mat/0302152%°E. Fradkin, Field Theories of Condensed Matter Systems
2003. (Addison-Wesley, Redwood City, CA, 1991

26A. V. Syromyatnikov and S. V. Maleyev, Phys. Rev. B6,  4°S. Sachdev and M. \ojta, J. Phys. Soc. J@&®, Suppl. B, 1
132408(2002; J. Comput. Phys98, 538 (2003. (2000.

273, B. Marston and C. Zeng, J. Appl. Phy89, 5962(1991). 41W. Zheng and S. Sachdev, Phys. Rev4B 2704(1989.

28p, Nikolic and T. Senthil, Phys. Rev. B8, 214415(2003. 42N. Read and S. Sachdev, Phys. Rev4B 4568(1990.

29R. Moessner and S. L. Sondhi, Phys. Rev68 224401(2001). 43N. Read and S. Sachdev, Phys. Rev. LéR, 1694(1989.
30R. Moessner, S. L. Sondhi, and P. Chandra, Phys. Rev. Bdt.  4*A. Honecker, J. Schulenburg, and J. Richter, cond-mat/0309425,
4457 (2000. 2003.

024401-11



