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Resonant x-ray emission spectrum from the core exciton state is theoretically investigated for a model of
one-dimensional covalent crystals. A theoretical prescription for the calculation of core level sepctra is pro-
posed in the model, where both the effects of the electronic itinerancy and the electron-phonon coupling in the
core excited state have been quantum mechanically treated. The dynamical changeover from a weak- to a
strong-coupling regime as the phonon relaxation proceeds is well reflected in the resonant x-ray emission
spectrum.
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I. INTRODUCTION

Resonant x-ray emission spectroscopy is a powerful tool
for revealing the relaxation dynamics in the core-excited
states. Since the lifetime of the core hole is very short
s,fsd due to the ultrafast Auger decay, it has long been pre-
sumed that only the electronic processes take part in the re-
laxation dynamics in the core-excited state. The finding of
the existence of large lattice relaxation in the core exciton
state in some materials is, therefore, a remarkable progress in
recent years.1–3

A decade ago, Ma and his coworkers showed in their
pioneering work that the resonant x-ray recombination emis-
sion spectrum in diamond has a long, low energy tail,1 which
indicates that a strong lattice deformation is taking place in
the core-excited state. Quite recently, Haradaet al. suc-
ceeded in precisely measuring the resonant x-ray emission
spectra in graphite including their polarization dependence.2

The experimental data have decisively shown that a large
atomic displacement is induced in thes* -core exciton state
of graphite. In addition, the observed strong polarization de-
pendence of the x-ray emission line shape indicates that the
local symmetry around the core-excited atom is broken by
the vibronic coupling with the asymmetric phonon mode.
The evidence of strong lattice relaxation has also been re-
ported for N 1s recombination emission spectrum of LiNO3
crystals.3 Also in free molecules, e.g., BF3, CF4, etc., the
energy splittings of the core excited states due to the vibronic
Jahn-Teller couplings have been observed in the x-ray abso-
prtion, resonant Auger emission, and resonant x-ray emission
spectra.4–9 It may well be conjectured that such a large
atomic displacement effect is a universal characteristic for
light element materials in which the 1s core hole has a rela-
tively long lifetime s,10 fsecd and the phonon frequency is
relatively high.

The present authors theoretically analyzed the experimen-
tal data by the vibronic cluster model,2,10 in which the quan-
tum effect of the coupled phonon mode is fully taken into
account. It proved that the essential features of the x-ray
emission line shape are well reproduced by the small cluster
model strongly coupled with localized phonon modes. The

localized nature of the core-exciton state allows us to treat
the dynamical processes by a molecular-like picture in the
first order approximation; however, there still remains a
problem if one examines the whole optical processes of the
x-ray absorption and the x-ray emission. In the experimental
data of the x-ray absorption spectra of diamond1,11,12 and
graphite,13–16 the core exciton has a relatively sharp peak
structure below the conduction band edge. This indicates that
the effective electron-phonon coupling is weak in the final
state of the x-ray absorption, in contradiction with the strong
coupling model. This apparent discrepancy can be resolved
by taking into account the dynamical aspect of the lattice
relaxation correlated with the electron itinerancy. Just after
the x-ray absorption, the wave function of the core exciton is
relatively diffused, so that the effective electron-phonon cou-
pling is weak. But as the lattice deformation goes on, the
wave function shrinks, and the effective coupling constant
increases cooperatively. The changeover from shallow to
deep level of the core exciton state has been treated in our
previous paper by a simplified model.17

In the present work, we extend our study on the dynami-
cal aspect of lattice relaxation of core excitons. In contrast to
the previous work, the more or less realistic nature of the
core exciton state in semiconductors is taken into account
here. It is important to notice that theG-point of the conduc-
tion band of diamond ors* -band of graphite has as-like
symmetry composed of antibonding states ofsp hybridized
orbitals. Therefore, the optical transition from the 1s core
state to thes-like bound state is dipole forbidden, and the
coupling with the asymmetric local phonon mode becomes
important. As a first step, we show in the present work a
formulation and the numerical results of the line shape analy-
sis of the x-ray absorption and the resonant x-ray emission
spectra for a one-dimensional model of core excitons in
semiconductors. It is shown that as long as the localized core
exciton is coupled with the local phonon mode, the effect of
the electron itinerancy is easily incorporated into the vi-
bronic model, in which the quasi Jahn-Teller effect is quan-
tum mechanically treated. It follows that the wave function
of the core exciton state eventually shrinks after the relax-
ation, which is well reflected in the resonant x-ray emission
spectrum.
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II. MODEL

We consider a resonant x-ray emission process of the co-
valent semiconductors, like graphite and diamond. For sim-
plicity we consider a one-dimensional, covalent crystal. In
the process the 1s core electron is excited to the conduction
band characterized by thesp hybridized, antibonding, unoc-
cupied state. The x-ray emission takes place through the re-
combination radiative deexcitation of the excited electron to
the 1s core level. The model Hamiltonian for the initial and
final states of the transition is given bys "=1 hereafterd

Ĥg = ecac
†ac + s1/2dsP̂2 + v2Q̂2d, s1d

whereac is the annihilation operator for the 1s core electron
with energyec. The coordinate and the momentum operators
of the local phonon mode with frequencyv, which is

coupled with the core exciton state, are denoted byQ̂ andP̂,
respectively. The spin degrees of freedom are neglected.

In the intermediate state, the core electron is excited to the
antibonding states, labeled by 1 and 2, around the excited
atom sFig. 1d. The excited electron itinerates between the
antibonding orbitals by the transfert, and the core hole exerts
the attractive Coulomb potentialv on the excited electron,
which is assumed to be a local interaction. In addition, the
excited electron is coupled with the local antisymmetric vi-

bration Q̂. Therefore the Hamiltonian for the intermediate
state reads

Ĥe = Ĥ0 + V̂ s2ad

Ĥ0 = − to
ki,jl

ai
†aj +

1

2
sP̂2 + v2Q̂2d s2bd

=o
k

ekak
†ak +

1

2
sP̂2 + v2Q̂2d s2cd

V̂ = − vsa1
†a1 + a2

†a2d − Î2vaQ̂sa1
†a1 − a2

†a2d, s2dd

whereai denotes the annihilation operator of the antibonding
state i, and a is the coupling constant of the antibonding

states 1 and 2 with the local phonon modeQ̂. In Appendix A
we show how the tight binding Hamiltonian of a one-
dimensional semiconductor can be reduced to the one-band

model described by Eq.s2bd. In Eq. s2cd, ak is the electron
annihilator in thek-representation andek represents the en-
ergy dispersion

ek = − 2t coskd, s3d

whered is the lattice constant. The effect of the energy dis-
sipation of the local phonon mode is neglected here. This is
justified for the case of the core excited state because the
lifetime of the excited state is very short.

Note that the suffixi in the Hamiltonians2bd represents
not thesite of the atom but the antibondingorbital between
two atoms, which is composed of thesp-hybridized atomic
orbitals. The conduction band is formed by the intra-atomic
electron transfer. This is a simplified one-band, tight-binding
model of the conduction band of covalent crystals. The vi-
bronic interaction in Eq.s2dd then represents the modulation
of the energies of the antibonding orbitals around the core-
excited atom due to the antisymmetric translational mode.

The 1s core electron makes a transition by the x-ray irra-
diation to the unoccupiedp-orbital. Since thep-component
of the hybridized orbital is proportional to the difference of
the statesu1l and u2l, the transition operator is given by

M̂ = sa1
† − a2

†dac + h.c., s4d

aside from irrelevant factors.
We calculate the probabilityIsV1,V2d that a photon with

energyV1 is absorbed and a photon with energyV2 is emit-
ted at a low temperature well below"v /kB. The probability
is given by

IsV1,V2d = o
f
Uo

m

kf uM̂umlkmuM̂uil
Ei + V1 − Em − ig

U2

3dsEi + V1 − Ef − V2d, s5d

where uil is the ground state ofHg with energyEi, ufl is an
eigenstate ofHg with energyEf, uml is an eigenstate ofHe
with energyEm, andg is the decay constant of the core hole.
Any state of the electron-phonon system can be expanded in
terms of the direct product basis set:uj ;nl;ujl ^ und, where
ujl;aj

†uvl, in which uvl is the vacuum of the electron andj
runs overc score stated and k sconduction bandd. und is the
phonon number statesn=0,1,2 ,̄ d. The initial state is writ-
ten as uil= uc;0l with energy ec, and the final states are
uc;nl sn=0,1,2 ,̄ d, with energyec+nv. Here and hereaf-
ter, we neglect the zero point energy.

Substituting Eq.s4d into Eq. s5d, we then have

IsV1,V2d = o
n
U o

i,j=1

2

Gn
i,jsV1 + ec − igdU2

dsV1 − V2 − nvd,

s6d

whereGn
i,jszd with z;V1+ec− ig is a phonon Green’s func-

tion for the electronic statesuil and u jl defined by

Gn
i,jszd ; ki,nuf1/sz− Ĥedgu j ,0l. s7d

The Green’s functionGn
i,jszd represents the electron transition

from the j-th to i-th site with simultaneousn-phonon excita-
tion.

FIG. 1. One dimensional chain of the antibonding conduction
states. A core electronc is excited to the antibonding orbitals 1 and
2 around the excited atom.
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Because of the symmetry, Eq.s6d is reduced to

IsV1,V2d = 4o
n

uGn
1,1szd − Gn

2,1szdu2dsV1 − V2 − nvd. s8d

Therefore, the x-ray emission spectrum reflects the probabil-
ity of the scattering of the excited electron back to the ex-
cited atomic site accompanied with the simultaneous multi-
phonon excitations. As shown below,Gn

1,1 andGn
2,1 are easily

obtained because of the localized nature of the electron-
phonon interaction.

Applying the Dyson equation toĤe in Eq. s2ad,

1

z− Ĥe

=
1

z− Ĥ0

+
1

z− Ĥ0

V̂
1

z− Ĥe

, s9d

we derive a recurrence formula for the phonon Green’s func-
tion Eq. s7d. The explicit expression of the equations are
shown in the Appendix B. In the actual calculation, we trun-
cate the successive hierarchy of the equationsfEq. sB5dg at a
large phonon number state, confirming that the calculated
results are not being influenced by the truncation. The simul-
taneous equations forGn

i,jszd are then numerically solved by a
conjugate gradient method.18

The x-ray absorptionIasVd is obtained by using the solu-
tion of Eq.sB5d, because the absorption is expressed in terms
of Green’s function:

IasVd = o
m

ukmuM̂uilu2
g/p

sEi + V − Em + gd2 s10ad

=
1

p
Im o

i,j=1

2

G0
i,jsec + V − igd. s10bd

Note that all of the information of the electronic band
structure is included in the lattice Green’s function

gszd ;
1

z− Ĥ0

, s11d

whereĤ0 is given in Eq.s2bd. For the one-dimensional, tight
binding model treated here, the lattice Green’s function is
obtained as follows:

gi,isxd = f1/sBÎx2 − 1dg ; g0szd, s12ad

gi,i+1sxd = fs− x + Îx2 − 1d/sBÎx2 − 1dg ; g1szd, s12bd

wherex;z/B. These two lattice Green’s functions are used
in Eqs.sB3d–sB5d.

III. NUMERICAL RESULTS

First we show the calculated results of the localized
model in which the excited electronic states are essentially
composed ofu1l and u2l around the excited atomic site. The
adiabatic potential curve alongQ is shown in Fig. 2, where
the origin of the energy is taken −ec. The energy unit of the
vertical axis is taken to be the unperturbed frequency of the
local phonon modev, and the unit of length of the horizontal

axis is 1/Îv. In the calculation, we used the parameters
a=5 and B=0.1v. The strong electron-phonon interaction
gives a large relaxation energyS=a2v=25v. If we evaluate
v by a typical value of the light element materials, which is
about 0.1 eV2,6–8,10, this relaxation energyS amounts to
,2 eV, which is also in the range of the realistic values for
these materials. Because of the finiteB, the adiabatic poten-
tials for the statesu1l and u2l show an avoided crossing
aroundQ=0, as shown in Fig. 2sbd. At Q=0, we have two
symmetrically different electronic eigenstates with respect to
the inversion for the excited atomic site: the symmetric
usl=1/2su1l+ u2ld state and the antisymmetricupl=1/2su1l
− u2ld state. To the lower and upper branches aroundQ=0 in
Fig. 2sbd correspond theusl and upl states, respectively.

We show the calculated x-ray absorption spectrum for
the localized model in Fig. 3sad. The spectrum shows a sym-
metric Gaussian line shape with a large width of about
2av=10v, which is a typical spectral feature of the strong
electron-phonon coupling system. The quasi-Jahn-Teller cou-
pling which is due to the electronic transfer between theu1l
and u2l states has an invisibly small effect on the absorption
spectrum.

We show the calculated x-ray emission spectra of the lo-
calized model with the same parameter values in Figs. 3sbd
to 3sdd, where the horizontal axis is the Stokes shift from the
excitation energies, which are marked by the arrows in Fig.
3sad. The emission spectrumscd for the excitation to the ab-
sorption peak shows a typical line shape of the second order
optical process of a localized center with a short lifetime.19 It
is composed of a strong Rayleigh line followed by a succes-
sion of higher order Raman lines. The gross structure of the
line shape is, however, understood more naturally as a hot

FIG. 2. Adiabatic potential curves alongQ for the localized
model: sad overall feature andsbd expanded feature. The origin of
the energy is taken −ec. The energy unit of the vertical axis is taken
to be the unperturbed frequency of the local phonon modev, and
the unit of length of the horizontal axis is 1/Îv.
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luminescence that originates from the Franck-Condon transi-
tion from the phonon wave packet that slides down the adia-
batic potential curve.20 The intensity decreases rapidly to-
ward the lower energy side because the wave packet
accelerates and because the population in the excited states
decreases due to the Auger decay. The hump in the lowest
energy part corresponds to the hot luminescence from the
classical turning point of the lattice oscillation. The overall
features of the line shape are essentially the same for excita-
tions belowfFig. 3sbdg and abovefFig. 3sddg the absorption
peak, although the Rayleigh line becomes slightly prominent.

Now we consider the situation when the excited electron
can quantum mechanically itinerate over the entire crystal
with a largeB. In the one-dimensional system treated here, at
least a one bound state, i.e., core exciton state, appears below
the conduction band atQ=0. The number of the bound states
at Q=0 critically depends on the ratio of the strength of the
core hole potentialv to electronic transferB; there appear a
single bound state forv,B and two bound states forv.B.
A symmetric bound stateusl always emerges below the con-
duction band, but the asymmetric bound state can appear
only for v /B.1.

We show the adiabatic potential curves alongQ for
the parametersB=30v ,v=1.0v ,a=7 in Fig. 4 where a
shaded area represents the conduction band continuum. At

Q=0, there appears a single bound state below the conduc-
tion band with a small binding energy evaluated by
EBuQ=0=2vBṽ2/ s1+2ṽd.0.06v, where ṽ;v /B. The
present parameters give the same lattice relaxation energy as
in the localized model. We have two equivalent potential
minima both on the positive and negative side ofQ, corre-
sponding to the localization of the excited electron on the
stateu1l andu2l, respectively. The feature aroundQ=0, how-
ever, is quite different from those seen in the localized
model. When we take a closer look aroundQ=0, we can find
that the bound core exciton state is locally stable againstQ
fFig. 4sbdg. Indeed we can prove that forv /B,1 the single
core exciton state becomes locally stable as long as the con-
dition

S/B ; va2/B ø hs1 + 2ṽ2d/f16ṽs1 + ṽdgj s13d

is satisfied.
We show in Fig. 5sad the calculated absorption spectrum

due to the transition around the bottom of the conduction
band. In Fig. 5sad, the origin of the x-ray energies are taken
−ec−B, i.e.,V=0 corresponds to the transition to the bottom
of the conduction band. The sharp absorption peak is attrib-
uted to the transition to the bound core exciton state, which
is followed by the continuous absorption band corresponding
to the transition to the conduction band.

Since the transition to thes-like single bound state is di-
pole forbidden as mentioned in Sec. 1, the transition to this
state becomes allowed due to the quasi-Jahn-Teller coupling
with the conduction band state through the antisymmetric
vibration Q. It should be noted that the absorption peak is
rather sharp in spite of the large electron phonon interaction
which gives the same phonon relaxation energyS,25v as

FIG. 3. Calculated results of x-ray absorptionsad and resonant
x-ray emission spectrasbd,sdd of the localized model. Insad the
horizontal axis is x-ray energy for which the energy origin is taken
as V+ec, consistent with Fig. 2. Insbd to sdd, the horizontal axis
represents the energy loss denoted byV1−V2, and the excitation
energies are marked by the arrows insad.

FIG. 4. Adiabatic potential curves alongQ for B=30: sad overall
feature andsbd expanded feature. The origin of the energy is taken
−ec−B, the bottom of the conduction band. The energy and the
length units are the same as in Fig. 2.
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in Fig. 3sad. This indicates that the large itinerancy of the
excited electron suppresses the electron-phonon interaction
so much that the system behaves as a weak coupling system
right after the core excitation.

The resonant x-ray emission spectra for the various exci-
tation energies are shown in Figs. 5sbd–5sdd, where the exci-
tation energies are indicated by the arrows. Just at the reso-
nant excitation to the core exciton statescd, the long, low
energy tail appears as seen in the localized model where the
electron is strongly coupled with the antisymmetric local
phonon modeQ. The spectral shape for the lower energy
excitationsbd is essentially the same, though the elastic Ray-
leigh line is slightly more prominent. The fact that the ab-
sorption spectrum shows a feature of the weak coupling sys-
tem on one hand, and the emission spectral feature is
characteristic of a strong coupling system on the other,
clearly reveals that the changeover from the weak to the
strong cooling takes place in a very short time scale of the
order of 10 fsec.

Moreover, the low energy tail in Fig. 5sbd is more promi-
nent than that in the localized modelfFig. 3sbdg, even though
the lattice relaxation energiesSand the population decay rate
g of the core excited state are the same for both cases. This
is also a consequence of the changeover from the weak to
strong coupling regime: The radiative transition decay rate
increases with the relaxation because the wave function of

the excited electron becomes more localized as the relaxation
proceeds.

It should be noted that the situation is quite different in
the case of the higher energy excitation in Fig. 5, which
should be compared to the higher energy excitation of the
localized modelfFig. 3sddg. Here, the x-ray emission spec-
trum has only the light scattering components of the Ray-
leigh and of the lower order Raman lines. This is because the
excited electron is diffused away instantaneously all over the
crystal, so that the lattice system cannot fully respond to the
excitation. The characteristic time scale of the electron mi-
gration is of the order of 1/B, which is much faster than the
timescale of the lattice deformation 1/v. The experimental
results obtained by Haradaet al.2 are consistent with the
present calculation.

IV. SUMMARY

We have proposed a model of core excitons with a strong
quasi-Jahn-Teller electron phonon coupling system. The the-
oretical treatment to calculate the resonant x-ray emission as
well as x-ray absorption spectrum have been presented. The
effect of the quantum electron diffusion is fully incorporated
into the model in terms of the lattice Green’s function, which
makes it possible to quantum mechanically treat the phonon
degrees of freedom. This is essentially important when the
nonadiabatic transition between the core excited states oc-
curs.

The changeover from the weak to the strong coupling
regime during the relaxation is well reflected in the spectral
feature: A long energy tail appears in the x-ray emission
spectrum at the resonant excitation to the core exciton state,
while we have a sharp absorption line for the state. The
electronic itinerant effect becomes significant when we go to
the higher energy excitation.

In the x-ray absorption experiments with graphite, no dis-
tinct peak has been observed below the main peak due to the
core exciton state.2 In the localized model, however, we
would have a structure of phonon-assisted transition line be-
low the main peak corresponding to the symmetric core ex-
citon state. The present calculation suggests that the quantum
diffusion of the excited electron is decisive to determine the
absorption spectral feature.

Here we have shown only the result forT=0. However,
there is no difficulty to take into acccount the effect of a
finite temperature through the Boltzmann distribution of the
initial state. Even in this case, the spectral features would not
be expected to be more changed than they would be in the
localized model because the energy fluctuation in the core
excited state is largely reduced by the electronic itinerancy as
seen in Fig. 4.

The extension of the present method to a more realistic,
higher dimensional system like graphite or diamond is
straightforward. In this case we expect a strong polarization
dependence in the spectra which is a direct signature of the
symmetry breaking of the core excited states due to the vi-
bronic coupling with asymmetric vibrations.2 The result will
be shown in the forthcoming paper.

FIG. 5. Calculated results of x-ray absorptionsad and resonant
x-ray emission spectrasbd,sdd for the B=30 case. Insad the hori-
zontal axis is x-ray energy for which the energy origin is taken as
V+ec, consistent with Fig. 4. Insbd to sdd, the horizontal axis rep-
resents the energy loss denoted byV1−V2, and the excitation en-
ergies are marked by the arrows insad.
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APPENDIX A: ONE-BAND MODEL OF
SEMICONDUCTORS

We start from the tight binding model of a one-
dimensional semiconductor composed of atoms with ans
state and apx state, where thex axis is in the direction of the
chain with lattice constantd. The Hamiltonian is given by

H = − vo
j

saj ,R
† aj ,L + aj ,L

† aj ,Rd − Vo
j

saj ,R
† aj+1,L + aj ,L+1

† aj ,Rd,

sA1d

whereaj ,R and aj ,L are the annihilation operators for thesp
hybridized state atj th atom given by

aj ,R = s1/Î2dsaj ,s + aj ,pd, sA2d

aj ,L = s1/Î2dsaj ,s − aj ,pd, sA3d

in terms of the annihilation operators for thes stateaj ,s and
the px stateaj ,p, respectively. The intra-atomic transfer inte-
gral v is related with the energy differenceeps between thepx
state ands state throughv=eps/2. The second term of Eq.
sA1d represents the covalent bonding with the interatomic
transfer integralVs.vd. The magnitude ofV may be evalu-
ated through the formulaV=sVpp,s+2Vsp,s−Vss,sd /2 and the
table of Harrison,21 for example.

The eigenvalue problem for the above Hamiltonian can be
easily solved by the usual procedure. The energy band splits
into two, the conduction band and the valence band, the
eigenenergies of which are given by

Ek
s±d = ± Îv2 + V2 + 2vV coskd sA4d

for the wave numberk, 0økø2p. If we write the eigen-
states as

uCk
s±dl = o

j

expsikdjdsCk
s±daj ,L

† u0l + Dk
s±daj ,R

† u0ld, sA5d

with u0l being the vacuum of the electron, the coefficients are
given by

Ck
s±d = 7 S 1

Î2
Dv + V exps− ikdd

Ek
s+d sA6d

Dk
s±d =

1
Î2

. sA7d

In the case V@v, we can approximately set
Ck

s±d. 7 s1/Î2de−ikd and Ek
s±d. ± sV+v coskdd. Therefore,

the conduction band has a width 2v, and the band gap with

magnitude 2sV−vd is located atk=p /d. The wave function
of the conduction band is given by

uCk
s+dl = o

j

eikdjaj
†u0l, sA8d

where

aj
† ; saj ,R

† − aj+1,L
† d/Î2 sA9d

is the creation operator for the antibonding orbital between
the atomj and j +1. If we change the phase asaj → s−1d jaj in
order to shift the origin of the wave numberk and set
t;v /2 we obtain the effective Hamiltonian given in Eq.
s2bd. It can easily be shown that the bottom of the conduc-
tion band is made of a linear combination of pures state.

APPENDIX B: EXPLICIT EXPRESSION OF THE
HIERARCHY OF THE EQUATION OF MOTION OF

GREEN FUNCTION

We shall derive here a recurrence formula for the phonon
Green’s function for the relevant electronic components
which are necessary to calculate the XAS and RXES spectra.

What we need in the calculation of the spectra are the
following components of the resolventfsee Eqs.s6d and
s10bdg,

F0;nszd ; Gn
1,1szd = k1;nuf1/sz− Ĥedgu1;0l, sB1ad

F1;nszd ; Gn
2,1szd = k2;nuf1/sz− Ĥedgu1;0l. sB1bd

For the resolvent in Eq.sB1d we apply the Dyson equation

1

z− Ĥe

=
1

z− Ĥ0

+
1

z− Ĥ0

V̂
1

z− Ĥe

, sB2d

and use the explicit form for the local perturbationV defined
in Eq. s2dd. We then have the following the recurrence for-
mula: Forn=0,

F0;n=0szd = g0szd − vsg0szdF0;0szd + g1szdF0;1szdd

− avsg0szdF0;0szd − g1szdF0;1szdd, sB3ad

F1;n=0szd = g1szd − vsg1szdF0;0szd + g0szdF0;1szdd

− avsg1szdF0;0szd − g0szdF0;1szdd, sB3bd

and forn=1,2,¯`,

F0;nszd = − vsg0sz− nvdF0;nszd + g1sz− nvdF1;nszdd

− avsg0sz− nvdfÎn + 1F0;n+1szd + ÎnF0;n−1szdg

− g1szdfÎn + 1F1;n+1szd + ÎnF0;n−1szdgd, sB4ad

F1;nszd = − vsg1sz− nvdF0;nszd + g0sz− nvdF1;nszdd

− avsg0sz− nvdfÎn + 1F0;n+1szd + ÎnF0;n−1szdg

− g0szdfÎn + 1F1;n+1szd + ÎnF1;n−1szdgd, sB4bd

where g0szd and g1szd are the components of the lattice
Green’s functions.
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Eqs.sB3d and sB4d may be expressed in a compact way,

Fnszd = dn,0Fg0szd
g1szd G − vFg0sz− nvd g1sz− nvd

g1sz− nvd g0sz− nvd G Fnszd

− avFg0sz− nvd g1sz− nvd
g1sz− nvd g0sz− nvd G hÎnFn−1szd

+ În + 1Fn+1szdj, sB5d

where the components of the vector Fnszd are given in Eq.
sB3d,

Fnszd ; FF0,nszd
F1,nszd G . sB6d

Note that the first term in the curly bracket in Eq.sB4bd
should be dropped forn=0.

The infinite series of Eq.sB5d can be truncated at a large
value ofn, for which the spectral function is converged well.
The closed equation forF is numerically solved by the con-
jugate gradient method.
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