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Heterogeneous dynamics of the three-dimensional Coulomb glass out of equilibrium
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The nonequilibrium relaxational properties of a three-dimensional Coulomb glass model are investigated by
kinetic Monte Carlo simulations. Our results suggest a transition from stationary to nonstationary dynamics at
the equilibrium glass transition temperature of the system. Below the transition the dynamic correlation func-
tions lose time translation invariance and electron diffusion is anomalous. Two groups of carriers can be
identified at each time scale: electrons whose motion is diffusive within a selected time window and electrons
that during the same time interval remain confined in small regions in space. During the relaxation that follows
a temperature quench an exchange of electrons between these two groups takes place and the nonequilibrium
excess of diffusive electrons initially present decreases logarithmically with time as the system relaxes. This
bimodal dynamical heterogeneity persists at higher temperatures when time translation invariance is restored
and electron diffusion is normal. The occupancy of the two dynamical modes is then stationary and its
temperature dependence reflects a crossover between a low-temperature regime with a high concentration of
electrons forming fluctuating dipoles and a high-temperature regime in which the concentration of diffusive
electrons is high.
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I. INTRODUCTION ers alter the effective random potential felt by the others and

Recent experimental studies of hopping conductance ithus modify the structure of the percolating network. Fluc-

Anderson insulators showed striking nonequilibrium effectguation effects of this type were shown to lead to low-

that persist for long times at low temperattre These re- frequeg%slt-like noise in the conductance of Coulomb
sults support early theoretical predictions of a low-9asses”

temperature glassy phase in interacting disordered electrotpI Ir:hthls (rj)_aper we lr?vest(ljgate Te gyn;e\mlgallpropertlgsl ct’)f
systems in the strongly localized linfit. In this regime the € three-dimensionaj random-site .oulomb glass modei by

. ST inetic Monte Carlo simulation using a realistic microscopic
essential physics is well captured by the Coulomb glas%ynamics that favors the emergence of local effective con-

model that describes a system of interacting electrons hops—

. S . traints in the kinetics. In our simulations the system is ini-
ping between randomly distributed sites that correspond tq,y qenched from infinite temperature to a working tem-
the localization centers of the single-electron wave

peratureT and its evolution in time is characterized for

i 6-11 . .
functions: _different values ofT through the time dependence of the
Although Coulomb glass models have been extensivelyg|evant correlation functions.

studied during the last 30 years and their equilibrium prop- one of our main observations is the appearance of a dy-
erties are by now fairly well understoéd;? much less is npamical crossover from equilibrium dynamics to slow non-
known about the properties of Coulomb glasses out okquilibrium dynamics at a temperatufg~T,, whereT, is
equilibrium13-16 the equilibrium freezing transition temperature of the
In Ref. 16 the off-equilibrium dynamics of the Coulomb model!! This crossover takes place even for relatively small
glass was investigated by studying the scaling properties afystem sizes and occurs at the temperature at which the
the nonstationary correlation and response functions, a to@quilibration time of the finite sample becomes much longer
often used in the study of other glassy systems such as strutttan the time scale of the simulation. In this regime the time-
tural and spin glasséé:2° dependent correlation functions exhibit slow relaxation and
It has recently been realized that further insights into thehave aging properties. We found that the dynamics of the
nature of the glassy phase can be gained from the analysis Goulomb glass is heterogeneous as observed in other glassy
dynamical heterogeneiti@s:2% This approach is particularly systems122 Heterogeneities can be characterized by exami-
appealing in the context of Coulomb glasses since the lownation of the evolution of diffusion fronts. A statistical analy-
temperature hopping conductance is dominated by the diffusis of the electron trajectories over a fixed time window
sion of carriers on a set of conducting percolation p&ths. shows that most carriers belong to one or the other of two
We expect interactions between the electrons to have strorgyoups. The first group is that of those electrons that diffused
effects on this type of motion since hops of individual carri- away from their initial position during the chosen time inter-
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val. The second group is that of the electrons that remainedynamics of the random-site model in this paper.

confined in relatively small regions in space during that time. To model the dynamics of the system we let it evolve
An exchange of electrons between these two dynamicahrough sequential single-electron hops from occupied aites
modes takes place as the system relaxes after a temperattioeempty sitesh. The transition rate, which mimics phonon
guench. In the aging regime this exchange is very slow andssisted processes, is

the nonequilibrium excess of electrons with metallic hopping 1 ) _

present i?] the system right after the quench decreases loga- T p= 7€ et/ min[1,e7Ea0'T], (2)
rithmically with time. In this temperature range the diffusion \where ,, is a microscopic time¢ is the spatial extension of
is anomalous. We found that the mean squared displacemefie |ocalized wave functions, arl,=|R,~Ry|. AEa, the
(AX*(t)) ~t” where the exponent ig<<1 and depends on the total energy difference in the transition, is given by

age of the system. In the equilibrium regime time translation

invariance is recovered and we observe normal diffusion. AE,,= €, — €5— &

However, the bimodal dynamical heterogeneity still persists. & % KRy’
The occupancy of the two dynamical modes is stationary and

its temperature dependence reflects a crossover from a low- e?
temperature regime with a high concentration of electrons €a="~
forming fluctuating dipoles to a high-temperature regime in

which the concentration of diffusive electrons is high. on=n—K.

The paper is organized as follows. Section Il contains a The first factor in Eq(2) reflects the exponential decay of
description of the model and of our numerical method. Inthe electron-phonon matrix element between two electronic
Sec. Il we discuss the properties of the local-density autowave functions centered at positioRg andR,. The second
correlation function in and out of equilibrium. Section IV is factor is the thermal part of the transition probability. In
devoted to the analysis of electron diffusion in the system. IrMonte Carlo simulations performed by other authors the
Sec. V we study the statistical properties of the diffusiontransition probability is taken independent of the distaRge
fronts and show that they provide evidence for the existencfthe first exponential in the equivalent of Ed2) is
of heterogeneous transport in the system. Finally, we sumabsent®!! This type of nonlocal dynamics, convenient for
marize the conclusions of our study in Sec. VI. rapid equilibration, may not be appropriate for the study of

off-equilibrium relaxation. With the local dynamics of Eq.
(2) electron hops that decrease the energy are essentially re-
Il. THE MODEL stricted to a region whose linear size is the localization

The Hamiltonian of the classical three-dimensional Cou_length & This introduces dynamic constraints that contribute

3 My

K braRab

3

; to make the relaxation out of an excited configuration slower.
lomb glass i$ ; . :
In our simulations we take the mean distance between
a e (n; = K)(ni = K) sites ap as the unit of length, the Coulomb enerdie
H ‘Ei Migi 25 § Ri-R| (1) =€?/(xa,) as the unit of energy, and we choose for conve-
. : nienceé=ay,.

where R; denotes the center of localization of a single- We simulated systems di=L2 sites andM=N/2 elec-
particle localized electronic state; the energy of the state, trons for samples with.=6,8, and 10 in theéemperature
ande andk are the electron charge and the medium’s dielecrange 0.0k T=<0.1. The localization centers are distributed
tric constant, respectively. Strong on-site correlations limitrandomly and uniformly inside a computational cubic box of
the occupancy of the electronic statesrig=0,1. Charge sideL and we take periodic boundary conditions in all direc-
neutrality is assured by a uniform compensating positivetions. To simulate a quench from high temperature we start
charge densit)K=(1/N)Zin;. from a random electron configurationtatO and let the sys-
The positionsR; of the localized states and their energiestem freely evolve with the dynamid¢®) at the working tem-
¢; are both random variables. However, it is common pracperaturel. The elementary Monte Carlo move consists of an
tice to study two complementary simplified versions of theattempt to move an electron from a randomly chosen occu-
model. These are referred to as the lattice model and thgied sitea to an empty sitd. Oncea is chosen, the destina-
random site model, respectively, in Ref. 15. In the latticetion siteb is chosen randomly using the probability distribu-
model the sites are assumed to lie on a regular cubic latticeon of the hoppingsP(Rgyp) <exp(—2R,p). A cutoff at Ry,
and only the randomness in the energigsis taken into =L/2 is imposed by our use of periodic boundary conditions
consideration. Conversely, in the random site mdélonly  and restricts us to a range of temperatures for which hops at
the positional disorder is taken into account ane0. Itis  distanceR,,~ L can be neglected. The probability of accep-
standard practice to concentrate on the particle-hole symmetance of the move is the thermal factor in E8). If the hop
ric caseK=1/2 for which the analysis of the results is sim- is accepted, the vector displacement of the hopping electron
pler. or is defined as the vector going from s#eto the closest
While it has been established that the three-dimensiongleriodic image of sitd. A Monte Carlo stegMCS) consists
random-site model has an equilibrium glass transition at lovof N hopping attempts. Our runs were typicallix2®® MCS
temperatur¥ it is not yet clear whether this is also the caselong. Physical quantities were monitored as a function of
for the lattice modet?26Therefore, we shall only discuss the time for each sample and the results were averaged over
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02l ] both time arguments, a phenomenon known as aging. The
b ] system was thus unable to equilibrate within the time scale
0.0 ®) ‘ . . , , ] of the simulation. Note that for each value ffthe relax-
100 101 102 10%® 10¢ 105 106 ation is very slow(roughly logarithmi¢ and becomes slower
t with increasingt,,.

We found that nonequilibrium relaxation appears below a
dynamic crossover temperatufg~ 0.05. The value oT is
remarkably close to the equilibrium transition temperature of
the random-site modél,=0.043 determined in Ref. 11.

Further insights into the properties of the correlation func-
tions can be gained by performing a scaling analysis of the

between 150 and 600 realizations of the disorder and initialata We discuss separately the cases of high and low tem-
conditions, depending on the system size and temperatureperatures_

FIG. 1. Two-time charge autocorrelation functions fior0.07
(8 and T=0.03 (b). Aging effects(loss of time translation invari-
ancg become appreciable below the crossover temperaliyre
~0.05.

Il. THE LOCAL DENSITY AUTOCORRELATION A T>T,
FUNCTION In this temperature region the system reaches equilibrium
The two-time charge autocorrelation functiof®is within the simulation time. In Fig. 2 we show the equilib-
rium correlation functiorC(t) obtained for several tempera-
2 ; - ; ;
Clt+tyty) = — > (oni(t +t,) oni(t,) (4)  tures in the range 0.65T=<0.1. As shown in the inset to

i Fig. 2, the curves for the various temperatures collapse rather

_ . well into a single master curve wheg(t) is represented as a
where the brackets denote the average over conﬁguranonﬂnction of the scaled variabld/.{T), where 7.{T)

disorder, initial conditions, and thermal noise, and the Wa't':exp(TO/T) with Ty~ 0.45. The equilibrium relaxation time

thus obeys an Arrhenius law above the dynamic crossover
) . temperature. Qualitatively similar results were obtained in
f. Th(:‘. funCtLOtr]C(t;t%N’tW)c;f thI? toyerllap of:{:e cthharge c$n- simulations of the two-dimensional2D) version of the
b'gutfa |otr_lsa 'Tﬁ tWtan fV\{h W'St arg_ert_ ant eelqltj.' - Irandom—site modeé1® In previous work on the three-
ration timer,q the state of the system 1S ime-transiationa dimensional(3D) model using the nonlocal dynamics de-

ana”(‘j‘.?ft and (attheofﬁrrelgtlog ;unctu?jn depl;antcti]s oglty on theseribed above a power-law divergence of the relaxation time
Ime difierencet. erwise,t depends on bothanat,. was reported at the transition temperat@igg? In our case

. Wf_dlegcgt')e |ntgedfolltlnwg:g(trftsultts)forasy?tfemtcr)]f IInearthis temperaturel, is of the same order as the dynamic
size k=Y. |gur_e ¢ '8? ayd GW’ Wd Versust Tor thre€ = ¢ ossover temperaturg, for which our samples stay out of
waiting times,t,=10",10%, and 10, and two representative o, ijiprium during the entire simulation time. Therefore, we

cases;T=0.07 [Fig. X@)] and T=0.03[Fig. 1(b)]. We ob- 36 g access to the equilibrium critical dynamics of the
serve that in the first cagg(t+t,,t,) = C(1), i.e., the system model.

is time-translational invariant. This means that equilibrium
was reached within a time shorter than the shortest of the
waiting times considered—eq(T)<1O3. C(t) is thus the equi-
librium relaxation function. In the second case, however, This is the region in which nonequilibrium slow relax-
time translation invariance is lost a@{t+t,,,t,) depends on ation and aging are observed. Aging effects can be quantified

ing timet,, is the time elapsed since the quench from infinite
temperature.

B. T<T,
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1.0 Frms—R increases fromL=6 to L=10 the decay ofu near Ty~T,
I becomes steeper. This makes it plausible thatanishes
0.8 (and aging stopgight at the glass transition temperatdre
3 [ Confirmation of this hypothesis would require a more de-
Eoel tailed analysis of thé. dependence of our results.
+
5

0.4] IV. ELECTRON DIFFUSION

I : The local charge correlation function discussed in the pre-
0.2 : : : vious section does not provide direct information on the dy-

@ 107 lgjw 10 1ot namics of current fluctuations in the medium. Information on
this essential aspect of the physics of the Coulomb glass may
1.0T ' . ) be obtained from an analysis of carrier diffusion.
X 1 Let r;(t)=(x(t),yi(t),z(t)) denote the position vector of
0.89 ] an electron at time, wherex;,y;, andz(t) are its coordinates
[ + T Te ] before they are folded back into the simulation cell. We then
0.6 %’ é ] have
i} & ]
0.4 L é ] Nj(t)
i o é ] r =ri0) + X ari(k), (7)
0.2F in ] k=0
$ & $ 1ol wherer;(0) is the electron’s initial position\;(t) is the total

number of hops that it performed up to tiheand &r;(k) is
the displacement associated with #th accepted move.

FIG. 3. Characterization of aging far<Tj. (a) Autocorrelation The mean-squared displacement between titpesnd t
functions C(t+t,,t,) vs the rescaled time variable/ty at T +t,, is defined as
=0.030<T,. The waiting times are,=10° (+), t,=10* (¢), and

0.0l ‘
(b) o0.02 0.04 0.06 0.08 0.10

t,=10 (A). The inset shows the same data represented as a func- M 5
tion of time. (b) Temperature dependence of the aging expopent Alt+tyty) = Mz (AX(t+ ), (8)
for different system sizebl=L2 with L=10 (0J), L=8 (A), andL =1
=6 (0). where

2
by performing a nonstationary scaling analysis of the two AX(t + tyty) = Lrit+t,) = ri(tw)] , (9)
time-autocorrelation functions. Experimental data in glasses 3

are often analyzed in terms of the scaling fofrt and the angular brackets denote as before an average over

h(t +t,) realizations of the disorder, initial conditions, and the ther-
hit) ) (5  mal histories.
W Figure 4 shows thé¢ dependence aA(t+t,,t,) for three
whereh(u) is known as the time-reparametrization function. values of the waiting timet,,=10°,10% and 16. Data are
A commonly used form ish(u)=expu*™/(1-w)). Since displayed for two temperature$=0.03<T, [Fig. 4@] and
this form implies an effective time scale growing withas ~ T=0.06> T, [Fig. 4b)].
~t# we shall analyze our data in terms of the simpler expres- It can be seen thak(t+t,,t,) is time-translational invari-
sion ant for the higher temperature but exhibits aging for the
u lower one. Moreover, we observe that in the equilibrium re-
Clt+tw, t) = FUL,). © gime T>T, the average motion is diffusive(t+t,,t,)
Figure 3a) illustrates the procedure fd=0.03. The inset =A(t)t, while this is not the case in the aging regime
to the figure show<(t+t,,t,) as a function oft for three ~ T<Ty.
waiting times;t,,=10%,10%, and 18. The main figure pre- We first discuss the case of high temperatures. In this case
sents the same data plotted as a functiont/af with x  We can define a diffusion constant througt(t+t,,t,)
~0.7, the value for which the collapse of the data at large=D(T)t. We attempted to fit our results using the stretched-
timest is the best. Repeating this procedure for several difexponential expressiom(T) ~exd—(T,/T)#]. Using this
ferent temperatures we obtained tfiedependence of the form, a plot of TAIn D™ as a function off should result in a
aging exponent shown in Fig(I3. We find subaging behav- horizontal line. The inset to Fig.(8 shows that this is in-
ior at low temperature$u<1) in the rangeT<T,. When  deed obtained fog~ 1. The figure also shows the result of a
T— Ty n decreases steeply to a value close to zero meaningjmilar plot using the valug=0.5 expected from the Efros-
that aging effects become negligible for>T,~0.05. The Shklovski variable range hopping law. It is apparent that our
figure also shows the size dependence of the aging exponemtata cannot be described with this valuggofSimilar devia-
It can also be seen that when the linear size of the systeitions from the Efros-Shklovski law were also found in the

Clt+t,,t,) =~ F(
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D in the equilibrium regimeT > Tg. We plot TAlog D™ as a func-
t tion of T for g=1 (OJ) and 8=0.5 (< ). (b) Waiting-time depen-
dence ofy for T=0.02(+), T=0.03(*), T=0.04(< ), T=0.05(A),

FIG. 4. Mean-squared displacemexit+t,,,t,) as a function of T=0.06(CJ), andT=0.07 ().

t for t,,=10° (+), t,=10* (), andt,, =1 (A). The solid line is the
diffusion limit, A«t: (8) T=0.03<Ty. The dotted lines are fits of
the data to Eq.10) over the last decade, 9@t<1Cf: (b) T
=0.06> T,

electron motion becomes increasingly sluggish.

The dependence af with t,, at fixed T is shown in Fig.
5(b) for several temperatures. The exponeritcreases with
tw, eventually reaching the diffusion limij=1 for long wait-

We now turn to the analysis of the low-temperature re-"d fimes. At low temperature this variation is sléapproxi-
sults. In this case the time dependencetogannot be de- mately logarithmig¢. This is yet another manifestation of the

scribed by a simple power law but we can still characterize>OW relaxation that characterizes the glassy phase of the

the diffusion in this regime by fitting the dependence of Coulomb glass. L e
A(t+t,,t,) for our longest timegthe last decade i, for The characterization of diffusion through a diffusion ex-

: ponent is familiar in the study of random walks in random
examplg to an expression of the form media where one generally finds subdiffusive behavior
(10) (7<1) in those physical situations in which the distribution
) ] . o of the time intervals between successive hops of the diffus-

Equation(10) defines an effective diffusion exponent  ing particle has sufficiently long tails that the central limit
that depends on both the waiting time and the temperaturgheorem no longer hold&.1t would be interesting to exam-

The asymptotic fits fol=0.03 are represented by the dottedjne the distribution of these times in the aging regime of our
lines in Fig. 4a) where the normal diffusion limity=1is  gystem.

also shown for comparison.

Figure 5 summarizes our results for the diffusion expo-
nent in the aging region. The temperature dependencg of
for several values df, is shown in Fig. 53). It can be seen To establish a relationship between the observed aging
that in the equilibrium regimer>T,, »=1 for all t,, andT. effects and the microscopic motion of electrons we analyzed
Below Tg, however, the diffusion exponent decreases withthe evolution of the diffusion front. This latter is defined
decreasing temperature for all valuestgf reflecting that through the probability density of the squared displacements:

2D version of the modé&t27 for which we foundg=~3/427

A(t+ty,ty) ~ 7wl

V. HETEROGENEOUS DYNAMICS

024206-5



KOLTON, GREMPEL, AND DOMINGUEZ PHYSICAL REVIEW B71, 024206(2009

of the temperaturél, is independent of the waiting timetif,

is large enough. This is consistent with the observed time
translation invariance of the charge autocorrelation functions
and the mean squared displacement at this temperature. The
histograms shown in the figure were scaled conveniently and
shifted vertically by an amount Igg to make their baselines
coincide with the time they correspond to.

Note that the diffusion front, located initially atx?>=0,
splits rapidly into two peaks. The position of the first peak is
almost time independent at long times. This peak corre-
: sponds to squared displacements smaller than the average

iy Sy . r— impurity distancea,. The center of the second peak increases
-2 Y 2 4 linearly with time and its location coincides with the mean
(@) log(ax%) squared displacements at long times. The interpretation of
these results is that the electron dynamics is heterogeneous
and characterized by the existence of two dynamical modes
that can be clearly distinguisheth) the diffusive mode—
electron motion is unbound and diffusive; it corresponds to
] metallic hopping as found in Ref. 10 arid) the confined
< mode—electrons remain confined within small regions of
] space during the observation time.

Examples of trajectories of electrons of these two types
are shown in Fig. @) at the same temperature and for the
same waiting time as above. The displacements are repre-
sented as a function of the hop numbgrWe only show the
ten first hops after a waiting timig,=1CF.

Some of the trajectories correspond to electrons that hop
o) 10 back and forth between two sitedx? then oscillates be-

tween 0 and?, the distance between the sites involved in the

FIG. 6. (a) Evolution of the diffusion frontHy(Ax?) for t, ~ Motion. This fluctuating dipolar motion contributes to most
=10F and T=0.060. Histograms are scaled and shifted vertically byOf the weight of the first peak in the histograms of Fi¢a)6
an amount logf) so that their baselines coincide with the time they It is important to note that, although this fluctuating motion
correspond to. The symbols>) represent the mean-squared dis- appears regular when plotted as a functinit is in fact
placementA(t+t,,t,). The vertical lines are located at the positions extremely irregular when viewed as a function of time, since
a3 andL?, wherea, is the mean distance between sites amdl0  the time intervals between successive jumps are very widely
the linear size of the systerth) Typical squared displacements of a distributed. The rest of the trajectories shown in Figp) Gre
selected set of electrons as a function of hop number. The temper¢hose of diffusive electrons that contribute to the metallic
ture isT=0.060. We show the first ten hops aftge 10° steps. The peak in the histograms of Fig(&.
selected graphs illustrate typical dipolar and diffusive electron e turn now to the analysis of the statistics of hopping
trajectories. rates which is important to understand the source of sponta-
neous fluctuations in the system. To this end we consider the
joint distribution function

Hy(Ax?)

100.0F
10.00F

1.000}

Ax? + 0.001

0.100:

Hi(AX% tt,) = ﬁg (A - At +1,0)),  (11)

i Ha( A%, it ) = 25 (SAX(E+ Ly t) = AXP)

whered(x) is the usuals function. It is easy to show that for
a stationary and homogeneous diffusion process the above X a(mi(t,ty) = Np)), (13

distribution takes the form — . )
wheren;=N;/Ny, is the number of hops of an electromor-

malized byN,=%; N;/M, the average number of hops per
electron.

_ . o o We use a regular coarse graining in (4g? and ny to
where®(x) is approximately Gaussiahi{" thus exhibits a compute the corresponding histograms. These are displayed
single peak whose position increases linearly with time. Tdn Figs. 7a) and 7b) for T=0.070> T, and T=0.040<T,,
computeH; from our numerical data we must appropriately respectively. Both plots correspond ttot,,=1C°.

coarse grain the variablex?. Since we found that the distri- The two dynamical modes described above can be easily
bution of electron squared displacements is very broad wejentified in the equilibrium situatiofFig. 7(a)]. The single
chose a regular coarse graining in (4g?). In Fig. 6@ we  peak at largeAx? corresponds to the diffusive mode while
show the evolution of the computét(Ax?,t,t,) as a func-  the two ridges at low values @x? correspond to the dipolar
tion of log(Ax?) for t,,=10° andT=0.060> T,. For this value mode. Note that the hopping rates of electrons involved in

) AX?
HIM (A t) = (D<Fxt - 1) , (12)
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nally, for a frozen electron, i.e., one that did not move at all

in the time interval under consideratio

HETEROGENEOUS DYNAMICS OF THE THREE-
Metallic hopping
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a(t,)? In(t)/t, whereal(t,) is the typical size of the
regions of confined motion at the same time scale. The width

of the peaks gives the dispersion of these quantities.
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We also introduce the cumulative distribution function
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f(x,t,)dx.
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Results are displayed in Fig. 8 where we diat,t,), and

its cumulative distribution function for three temperatures,
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0,1,2,3,4,5, and 6. In altases we

see the appearance of the two peaks referred to above. The

distributions are stationary fof> Ty for which the system

T=0.02<T,, T=0.035<T,, and T

timest,=10" with n
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equilibrates rapidly but they show aging in the nonequilib-
rium regime.
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A striking feature of the functiorf in the aging regime
[cf. Figs. 8a) and &c)] is that the positions of the peaks are
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almost independent df,. This means that the diffusion con-
stant of the “metallic” electrons is time independent. The
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height of the peaks, however, does depend on time scale: as

FIG. 7. The joint probability distribution of squared displace-

mentAx? and normalized hopping ratés,(Ax2,ny,) for T

0.07(a)

the proportion of diffusing

carriers diminishes while that of the confined ones increases.
This is a direct manifestation of the exchange mechanism

that we hinted at above. The fact that the location of the
fpeaks is only weakly dependent gpindicates that the ef-

time elapses from the quench

0.04 (b). The histograms are taken at tinhe1(P after a

waiting timet,,=1CP.

and T

dipolar motion have a much wider distribution than those o

diffusive electrons.

fective mobility of the diffusive electrons is not much af-

Figure 1b) shows that the two modes are still distinguish-
able at low temperatures, when the system is out of equilib

fected by the slow changes of the environment that result

from the aging process.

rium. The structure of the modes is qualitatively different,
however. Not only the distribution of hopping rates is now j
much broader but a small fraction of electrons with low hop

The plateaus that appear in the corresponding cumulative

stribution functions right after the peaksf. Figs. 8b),
-8(d), and &f)] can be used to measure the relative popula-

ping rate lies inbetween the two modes. The presence gf

ons of the modes. We see a first plateau corresponding to

these electrons, which cannot be clearly associated with anye area off(d

of the modes, suggests that a very slow exchange of carrie

,t,) below the dipolar peak and a second

Blateau corresponding to the additional area below the me-

Rallic peak. It can be seen that the cumulative distribution
function does not saturate to unity at low temperatyods
Figs. 8b) and &d)] while it does at high temperaturésf.

OFig. 8(f)]. The difference is due to the fact that

between them may take place in the course of the relaxatio

We shall further discuss this issue below.

To explore in more detail the properties of electrons con
tributing to each of these modes we found it convenient t

define for each electron the variable

at low tem-

perature, a fraction of the electrons remain frozen during the

observation time. These were not counted in the numerical
evaluation of the integral in Eq16). Another manifestation

1i AXA(T+ 1ty ty)

di(ty) = ;

(14)

We can now use the height of the plateaus in Figb),8

of the presence of frozen carriers is the pronounced asym-
diffuses normally in this time span with a diffusion constant8(d), and &f) to measure the populations of the different

metry of the two lower ridges in the lower panel of Fig. 7 in

This quantity characterizes the mobility of the electron dur-the zero hopping-rate limit.
for t,=1C° in Fig. 9a). It is seen that the proportion of

T

=1
D, d;,~D. For an electron that remained confined in a regionmodes. These are represented as a function of temperature

ing a time interval of lengtht after t,. For a carrier that
of linear sizea during this time intervalgd, ~a? In(t)/t. Fi-
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0.08 G Lo g 0.8
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3
0.6}
T 0.04} ) g 0'4}&%
[~ 9] 0.4} g
) & O-ZMW
0021 | 0.21 ] 0.0 T R R VN, N, N, . N
100 102 104 102 10¢ 106
0008 0.0l (b) v @O
-20 -15 -10 -5 -20 -15 -10 -5
(© log(d) (d) log(d) FIG. 9. (a) Density of diffusive(), confined(A), and frozen
electrong ¢) during time scalé=1C° as a function of the tempera-
0.20 1.0 ture. Waiting time ist,,=1C%. The line indicates the location of the
0.8l 1 crossover temperaturg,. (b), (c) Waiting-time dependence of the
0.15} 1 same densities foF=0.03< Ty (b) andT=0.06> T, (c). The mean-
_ 0.6} ] ing of the symbols is the same as(&).
T o.10f 2
=1 = J—
04 peak. We saw earlier that the position of the p&als time
0.051 ] 0.2l ] independent. This implies~ nppD, wherepy, is the fraction
of diffusing carriers. Since the latter decreases logarithmi-
0.00 : 0.0 ' ' : cally with time, this simple argument predicts logarithmic
-20 -15 -10 -5 —20 -15 -10 -5 relaxation of the conductivity which is one of the main ex-
(e) log(d) ) log(d) perimental observations. Whether the assumptions leading to

this result are valid has to await direct computation of the
current in the aging regime, in the presence of an applied
electric field?’

FIG. 8. Probability density(d) (left panel$ and the correspond-
ing distribution functionF(d) (right panel$ for three temperatures,
T=0.02(a), (b), T=0.035(c), (d), andT=0.06(e), (f). In all cases
t=10F and the waiting times aret,=10" with n
=0,1,2,3,4,5,and 6. Thsolid line in(e) indicates the location of
the diffusion constanD(T) calculated from the mean-squared dis-
placements of electrons @t0.060.

VI. CONCLUSIONS

We have studied the relaxational properties of the three-

diffusive electrons increases with increasing temperaturéimensional random-site Coulomb glass model after a
while, at the same time, that of dipolar and frozen ones deduench from high temperature. We found a crossover from

creases. Note that a crossover between the regime dominatgi@tionary to slow nonstationary dynamics at a temperature
by diffusive electrons and that dominated by confined ones idg that is very close tdl, the equilibrium glass transition
located precisely aty,. temperature of the model. This crossover can be seen even in
The waiting-time dependence of the populations is showrielatively small samples because of the exponential increase
in Fig. 9b) for two temperaturesT=0.03<Tj (left pane)  of the equilibration time with decreasing temperature.
and T=0.06>T, (right pane]. These populations are time We found that at low temperature the dynamics of local
independent at the highest temperature but vary logarithmicharge fluctuations and that of current fluctuations show ag-
cally with time in the aging regime. ing. In the former case, the relaxation obeys simple scaling
It is quite tempting to try to relate these observations tdaws characterized by a temperature-dependent aging expo-
the relaxational properties of the conductivity. Assuming thatent x(T). Analysis of the temperature and system-size de-
the Einstein relation holds in the nonequilibrium regime, thependence ofu(T) suggests that in the thermodynamic limit
conductivity at scalet is o=ndDf(D,t), wheren is the the observed crossover &~T. becomes a real dynamic
electron density and the integral extends over the diffusivdransition that occurs precisely &j.
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The analysis of the properties of diffusion fronts revealedperimental systems, plays an important role in the phenom-
that the dynamics of carriers is heterogeneous as it was fourgha that we observed. This type of dynamics favors the ap-
in other glassy systentd.We found that for each time scale pearance of local effective constraints that relate our model
two classes of electrons may be identified: those that havg, kinetically constrained models in which slow dynamics

diffusive motion during the observation time and those, ises from restrictions on the allowed transitions between
whose motion in the same time interval remains c;onfmedConfigurations

Only electrons belonging to the former class contribute to the
dc conductivity while the others only contribute to the di-
electric screening.
In the region of low temperatures where aging is observed ACKNOWLEDGMENTS
electrons are slowly exchanged between these two modes
with the consequence that the population of metallic elec- We thank Z. Ovadyahu, L. F. Cugliandolo, J. Kurchan,
trons decreases logarithmically with time without appre-and T. Giamarchi for valuable discussions. We also acknowl-
ciable change of the their diffusion constant. This provides a&dge financial support from the Argentina-Francia coopera-
plausible explanation for the logarithmic relaxation of thetion SECYT-ECOS, Project No. AO1EO1. A.B.K. and D.D.
conductance after a quench that was observed experimeaeknowledge support from Conicet, CNEA, ANPC(Grant
tally. No. PICT99-03-06348 and Fundacion AntorchasProy.
We believe that the local microscopic dynamics used herel4116-147. A.B.K. also acknowledges support of a grant
which is a realistic description of hopping processes in exfrom the Swiss National Science Foundation.

IM. Ben-Chorin, Z. Ovadyahu, and M. Pollak, Phys. Rev4B, ~ 16D. R. Grempel, Europhys. Let66, 854 (2004.
15 025(1993; Z. Ovadyahu and M. Pollak, Phys. Rev. LeT, 171, C. E. Struik, Physical Aging in Amorphous Polymers and

459 (1997. Other Materials(Elsevier, Amsterdam, 1978
2@G. Martinez-Arizala, C. Christiansen, D. E. Grupp, N. Markovic, 18E . Vincentet al, in Complex Behavior of Glassy Systeradited
A. M. Mack, and A. M. Goldman, Phys. Rev. B7, R670 by M. Rubi and C. Perez-Vicent&pringer, Berlin, 1997
(1998. 193, P. Bouchaud, L. F. Cugliandolo, and J. Kurchan,Spin
3A. Vaknin, Z. Ovadyahu, and M. Pollak, Phys. Rev. Le84, Glasses and Random Fieldsdited by A. P. YoundgWorld Sci-
3402(2000; Phys. Rev. B65, 134208(2002. entific, Singapore, 1997L. F. Cugliandolo, inSlow Relaxation
4A. Vaknin, Z. Ovadyahu, and M. Pollak, Phys. Rev. Leifl, 669 and Nonequilibrium Dynamics in Condensed Mattdres
(1998. Houches Session 77, 200@npublisheg J. L. Barrat, J. Dali-
5V. Orlyanchik and Z. Ovadyahu, Phys. Rev. Lefi2, 066801 bard, J. Kurchan, M. V. Feigel'man, cond-mat/02103a&pub-
(2004. lished.
6B. 1. Schklovskii and A. L. EfrosElectronic Properties of Doped 2°L. F. Cugliandolo and J. Kurchan, Phys. Rev. Leftl, 173
Semiconductor§Springer, Berlin, 1984 (1993; J. Phys. A27, 5749(1994).
"Electron-Electron Interactions in Disorder Systerasited by A. 213, P. Garrahan and D. Chandler, Phys. Rev. L88, 035704
L. Efros and M. PollakNorth-Holland, Amsterdam, 1985 (2002; L. Berthier and J. P. Garrahan, Phys. Rew6& 041201
8M. Pollak, Philos. Mag. B50, 265(1984; M. Griinewaldet al., (2003; S. Whitelam, L. Berthier, and J. P. Garrahan, Phys. Rev.
J. Phys. C15, L1153 (1982. Lett. 92, 185705(2004).
9J. H. Davies, P. A. Lee, and T. M. Rice, Phys. Rev. Ld8, 758 22H. E. Castillo, C. Chamon, L. F. Cugliandolo, J. L. Iguain, and M.
(1982; Phys. Rev. B29, 4260(1984). P. Kennett, Phys. Rev. B8, 134442(2003.
10w, Xue and P. A. Lee, Phys. Rev. B8, 9093(1988. 23F, Ritort and P. Sollich, Adv. Phys52, 219(2003.

1E. R. Grannan and Clare C. Yu, Phys. Rev. L&tt, 3335(1993. 24B. |. Shklovskii, Phys. Rev. B57, 045201(2003.
2For recent developments see M. Mueller and L. B. loffe, cond-?°K. Shtengel and C. C. Yu, Phys. Rev. &, 165106(2003.
mat/0406324(unpublishedt S. Pankov and V. Dobrosavljevic, 2°T. Vojta and M. Schreiber, Phys. Rev. Leift3, 2933(1994; E.

cond-mat/0406406unpublishegl R. Grannan and C. C. Yubid. 73, 2934 (1994; A. Diaz-

137, Pérez-Garrido, M. Ortufio, A. Diaz-Sanchez, and E. Cuevas, Sanchez, M. O. Ortufio, A. Pérez-Garrido, and E. Cuevas, Phys.
Phys. Rev. B59, 5328(1999. Status Solidi B218 11 (2000.

14C. C. Yu, Phys. Rev. Lett82, 4074(1999. 27A. B. Kolton, D. Grempel, and D. Dominguéanpublishedl

15D, N. Tsigankovet al, Phys. Rev. B68, 184205(2003. 28]. P. Bouchaud and A. Georges, Phys. R&p5, 127 (1990.

024206-9



