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The nonequilibrium relaxational properties of a three-dimensional Coulomb glass model are investigated by
kinetic Monte Carlo simulations. Our results suggest a transition from stationary to nonstationary dynamics at
the equilibrium glass transition temperature of the system. Below the transition the dynamic correlation func-
tions lose time translation invariance and electron diffusion is anomalous. Two groups of carriers can be
identified at each time scale: electrons whose motion is diffusive within a selected time window and electrons
that during the same time interval remain confined in small regions in space. During the relaxation that follows
a temperature quench an exchange of electrons between these two groups takes place and the nonequilibrium
excess of diffusive electrons initially present decreases logarithmically with time as the system relaxes. This
bimodal dynamical heterogeneity persists at higher temperatures when time translation invariance is restored
and electron diffusion is normal. The occupancy of the two dynamical modes is then stationary and its
temperature dependence reflects a crossover between a low-temperature regime with a high concentration of
electrons forming fluctuating dipoles and a high-temperature regime in which the concentration of diffusive
electrons is high.
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I. INTRODUCTION

Recent experimental studies of hopping conductance in
Anderson insulators showed striking nonequilibrium effects
that persist for long times at low temperature.1–5 These re-
sults support early theoretical predictions of a low-
temperature glassy phase in interacting disordered electron
systems in the strongly localized limit.6,7 In this regime the
essential physics is well captured by the Coulomb glass
model that describes a system of interacting electrons hop-
ping between randomly distributed sites that correspond to
the localization centers of the single-electron wave
functions.6–11

Although Coulomb glass models have been extensively
studied during the last 30 years and their equilibrium prop-
erties are by now fairly well understood,6–12 much less is
known about the properties of Coulomb glasses out of
equilibrium.13–16

In Ref. 16 the off-equilibrium dynamics of the Coulomb
glass was investigated by studying the scaling properties of
the nonstationary correlation and response functions, a tool
often used in the study of other glassy systems such as struc-
tural and spin glasses.17–20

It has recently been realized that further insights into the
nature of the glassy phase can be gained from the analysis of
dynamical heterogeneities.21–23 This approach is particularly
appealing in the context of Coulomb glasses since the low-
temperature hopping conductance is dominated by the diffu-
sion of carriers on a set of conducting percolation paths.6,7

We expect interactions between the electrons to have strong
effects on this type of motion since hops of individual carri-

ers alter the effective random potential felt by the others and
thus modify the structure of the percolating network. Fluc-
tuation effects of this type were shown to lead to low-
frequency 1/f-like noise in the conductance of Coulomb
glasses.24,25

In this paper we investigate the dynamical properties of
the three-dimensional random-site Coulomb glass model by
kinetic Monte Carlo simulation using a realistic microscopic
dynamics that favors the emergence of local effective con-
straints in the kinetics. In our simulations the system is ini-
tially quenched from infinite temperature to a working tem-
peratureT and its evolution in time is characterized for
different values ofT through the time dependence of the
relevant correlation functions.

One of our main observations is the appearance of a dy-
namical crossover from equilibrium dynamics to slow non-
equilibrium dynamics at a temperatureTg,Tc, whereTc is
the equilibrium freezing transition temperature of the
model.11 This crossover takes place even for relatively small
system sizes and occurs at the temperature at which the
equilibration time of the finite sample becomes much longer
than the time scale of the simulation. In this regime the time-
dependent correlation functions exhibit slow relaxation and
have aging properties. We found that the dynamics of the
Coulomb glass is heterogeneous as observed in other glassy
systems.21,22 Heterogeneities can be characterized by exami-
nation of the evolution of diffusion fronts. A statistical analy-
sis of the electron trajectories over a fixed time window
shows that most carriers belong to one or the other of two
groups. The first group is that of those electrons that diffused
away from their initial position during the chosen time inter-
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val. The second group is that of the electrons that remained
confined in relatively small regions in space during that time.
An exchange of electrons between these two dynamical
modes takes place as the system relaxes after a temperature
quench. In the aging regime this exchange is very slow and
the nonequilibrium excess of electrons with metallic hopping
present in the system right after the quench decreases loga-
rithmically with time. In this temperature range the diffusion
is anomalous. We found that the mean squared displacement
kDx2stdl, th where the exponent ish,1 and depends on the
age of the system. In the equilibrium regime time translation
invariance is recovered and we observe normal diffusion.
However, the bimodal dynamical heterogeneity still persists.
The occupancy of the two dynamical modes is stationary and
its temperature dependence reflects a crossover from a low-
temperature regime with a high concentration of electrons
forming fluctuating dipoles to a high-temperature regime in
which the concentration of diffusive electrons is high.

The paper is organized as follows. Section II contains a
description of the model and of our numerical method. In
Sec. III we discuss the properties of the local-density auto-
correlation function in and out of equilibrium. Section IV is
devoted to the analysis of electron diffusion in the system. In
Sec. V we study the statistical properties of the diffusion
fronts and show that they provide evidence for the existence
of heterogeneous transport in the system. Finally, we sum-
marize the conclusions of our study in Sec. VI.

II. THE MODEL

The Hamiltonian of the classical three-dimensional Cou-
lomb glass is7

H = o
i

niwi +
e2

2k
o
iÞ j

sni − Kdsnj − Kd
uRi − R ju

, s1d

where Ri denotes the center of localization of a single-
particle localized electronic state,wi the energy of the state,
ande andk are the electron charge and the medium’s dielec-
tric constant, respectively. Strong on-site correlations limit
the occupancy of the electronic states toni =0,1. Charge
neutrality is assured by a uniform compensating positive
charge densityK=s1/Ndoini.

The positionsRi of the localized states and their energies
wi are both random variables. However, it is common prac-
tice to study two complementary simplified versions of the
model. These are referred to as the lattice model and the
random site model, respectively, in Ref. 15. In the lattice
model the sites are assumed to lie on a regular cubic lattice
and only the randomness in the energieswi is taken into
consideration. Conversely, in the random site model10,11only
the positional disorder is taken into account andwi =0. It is
standard practice to concentrate on the particle-hole symmet-
ric caseK=1/2 for which the analysis of the results is sim-
pler.

While it has been established that the three-dimensional
random-site model has an equilibrium glass transition at low
temperature11 it is not yet clear whether this is also the case
for the lattice model.12,26Therefore, we shall only discuss the

dynamics of the random-site model in this paper.
To model the dynamics of the system we let it evolve

through sequential single-electron hops from occupied sitesa
to empty sitesb. The transition rate, which mimics phonon
assisted processes, is

Ga→b = t0
−1e−2Rab/j minf1,e−DEab/Tg, s2d

wheret0 is a microscopic time,j is the spatial extension of
the localized wave functions, andRab;uRa−Rbu. DEab, the
total energy difference in the transition, is given by

DEab = eb − ea −
e2

kRab
,

ea =
e2

k
o
bÞa

dnb

Rab
, s3d

dni ;ni −K.
The first factor in Eq.s2d reflects the exponential decay of

the electron-phonon matrix element between two electronic
wave functions centered at positionsRa andRb. The second
factor is the thermal part of the transition probability. In
Monte Carlo simulations performed by other authors the
transition probability is taken independent of the distanceRab
fthe first exponential in the equivalent of Eq.s2d is
absentg.9,11 This type of nonlocal dynamics, convenient for
rapid equilibration, may not be appropriate for the study of
off-equilibrium relaxation. With the local dynamics of Eq.
s2d electron hops that decrease the energy are essentially re-
stricted to a region whose linear size is the localization
lengthj. This introduces dynamic constraints that contribute
to make the relaxation out of an excited configuration slower.

In our simulations we take the mean distance between
sites a0 as the unit of length, the Coulomb energyEC
=e2/ ska0d as the unit of energy, and we choose for conve-
niencej=a0.

We simulated systems ofN=L3 sites andM =N/2 elec-
trons for samples withL=6,8, and 10 in thetemperature
range 0.01øTø0.1. The localization centers are distributed
randomly and uniformly inside a computational cubic box of
sideL and we take periodic boundary conditions in all direc-
tions. To simulate a quench from high temperature we start
from a random electron configuration att=0 and let the sys-
tem freely evolve with the dynamicss2d at the working tem-
peratureT. The elementary Monte Carlo move consists of an
attempt to move an electron from a randomly chosen occu-
pied sitea to an empty siteb. Oncea is chosen, the destina-
tion siteb is chosen randomly using the probability distribu-
tion of the hoppings,PsRabd~exps−2Rabd. A cutoff at Rab

=L /2 is imposed by our use of periodic boundary conditions
and restricts us to a range of temperatures for which hops at
distancesRab,L can be neglected. The probability of accep-
tance of the move is the thermal factor in Eq.s2d. If the hop
is accepted, the vector displacement of the hopping electron
dr is defined as the vector going from sitea to the closest
periodic image of siteb. A Monte Carlo stepsMCSd consists
of N hopping attempts. Our runs were typically 23106 MCS
long. Physical quantities were monitored as a function of
time for each sample and the results were averaged over
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between 150 and 600 realizations of the disorder and initial
conditions, depending on the system size and temperature.

III. THE LOCAL DENSITY AUTOCORRELATION
FUNCTION

The two-time charge autocorrelation function is16

Cst + tw,twd =
2

Mo
i

kdnist + twddnistwdl, s4d

where the brackets denote the average over configurational
disorder, initial conditions, and thermal noise, and the wait-
ing time tw is the time elapsed since the quench from infinite
temperature.

The functionCst+ tw,twd is the overlap of the charge con-
figurations at timest+ tw andtw. If tw is larger than the equili-
bration timeteq the state of the system is time-translational
invariant and the correlation function depends only on the
time differencet. Otherwise,C depends on botht and tw.

We describe in the following results for a system of linear
size L=10. Figure 1 displaysCst+ tw,twd versust for three
waiting times,tw=103,104, and 105, and two representative
cases;T=0.07 fFig. 1sadg and T=0.03 fFig. 1sbdg. We ob-
serve that in the first caseCst+ tw,twd<Cstd, i.e., the system
is time-translational invariant. This means that equilibrium
was reached within a time shorter than the shortest of the
waiting times considered,teqsTd,103. Cstd is thus the equi-
librium relaxation function. In the second case, however,
time translation invariance is lost andCst+ tw,twd depends on

both time arguments, a phenomenon known as aging. The
system was thus unable to equilibrate within the time scale
of the simulation. Note that for each value oftw the relax-
ation is very slowsroughly logarithmicd and becomes slower
with increasingtw.

We found that nonequilibrium relaxation appears below a
dynamic crossover temperatureTg,0.05. The value ofTg is
remarkably close to the equilibrium transition temperature of
the random-site modelTc=0.043 determined in Ref. 11.

Further insights into the properties of the correlation func-
tions can be gained by performing a scaling analysis of the
data. We discuss separately the cases of high and low tem-
peratures.

A. T.Tg

In this temperature region the system reaches equilibrium
within the simulation time. In Fig. 2 we show the equilib-
rium correlation functionCstd obtained for several tempera-
tures in the range 0.05øTø0.1. As shown in the inset to
Fig. 2, the curves for the various temperatures collapse rather
well into a single master curve whenCstd is represented as a
function of the scaled variablet /teqsTd, where teqsTd
=expsT0/Td with T0,0.45. The equilibrium relaxation time
thus obeys an Arrhenius law above the dynamic crossover
temperature. Qualitatively similar results were obtained in
simulations of the two-dimensionals2Dd version of the
random-site model.10,16 In previous work on the three-
dimensionals3Dd model using the nonlocal dynamics de-
scribed above a power-law divergence of the relaxation time
was reported at the transition temperatureTc.

11 In our case
this temperatureTc is of the same order as the dynamic
crossover temperatureTg for which our samples stay out of
equilibrium during the entire simulation time. Therefore, we
have no access to the equilibrium critical dynamics of the
model.

B. T,Tg

This is the region in which nonequilibrium slow relax-
ation and aging are observed. Aging effects can be quantified

FIG. 1. Two-time charge autocorrelation functions forT=0.07
sad and T=0.03 sbd. Aging effectssloss of time translation invari-
anced become appreciable below the crossover temperatureTg

<0.05.

FIG. 2. The charge autocorrelation function at equilibrium for
T.Tg. The curves correspond toT=0.10, 0.095, 0.09, 0.085, 0.080,
0.075, 0.070, 0.065, 0.060, 0.055, and 0.050 from bottom to top.
The inset shows the same data but represented as a function of the
rescaled timet /teqsTd, with teqsTd=exps0.45/Td.
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by performing a nonstationary scaling analysis of the two
time-autocorrelation functions. Experimental data in glasses
are often analyzed in terms of the scaling form17,18

Cst + tw,twd < FShst + twd
hstwd

D , s5d

wherehsud is known as the time-reparametrization function.
A commonly used form ishsud=exp(u1−m / s1−md). Since
this form implies an effective time scale growing withtw as
,tw

m we shall analyze our data in terms of the simpler expres-
sion

Cst + tw,twd < Fst/tw
md. s6d

Figure 3sad illustrates the procedure forT=0.03. The inset
to the figure showsCst+ tw,twd as a function oft for three
waiting times; tw=103,104, and 105. The main figure pre-
sents the same data plotted as a function oft / tw

m with m
,0.7, the value for which the collapse of the data at large
times t is the best. Repeating this procedure for several dif-
ferent temperatures we obtained theT dependence of the
aging exponent shown in Fig. 3sbd. We find subaging behav-
ior at low temperaturessmø1d in the rangeT,Tg. When
T→Tg m decreases steeply to a value close to zero meaning
that aging effects become negligible forT.Tg,0.05. The
figure also shows the size dependence of the aging exponent.
It can also be seen that when the linear size of the system

increases fromL=6 to L=10 the decay ofm near Tg,Tc
becomes steeper. This makes it plausible thatm vanishes
sand aging stopsd right at the glass transition temperatureTc.
Confirmation of this hypothesis would require a more de-
tailed analysis of theL dependence of our results.

IV. ELECTRON DIFFUSION

The local charge correlation function discussed in the pre-
vious section does not provide direct information on the dy-
namics of current fluctuations in the medium. Information on
this essential aspect of the physics of the Coulomb glass may
be obtained from an analysis of carrier diffusion.

Let r istd=(xistd ,yistd ,zistd) denote the position vector of
an electron at timet, wherexi ,yi, andzistd are its coordinates
before they are folded back into the simulation cell. We then
have

r istd = r is0d + o
k=0

Nistd

dr iskd, s7d

wherer is0d is the electron’s initial position,Nistd is the total
number of hops that it performed up to timet, anddr iskd is
the displacement associated with thekth accepted move.

The mean-squared displacement between timestw and t
+ tw is defined as

Dst + tw,twd =
1

M
o
i=1

M

kDxi
2st + tw,twdl, s8d

where

Dxi
2st + tw,twd =

fr ist + twd − r istwdg2

3
, s9d

and the angular brackets denote as before an average over
realizations of the disorder, initial conditions, and the ther-
mal histories.

Figure 4 shows thet dependence ofDst+ tw,twd for three
values of the waiting time:tw=103,104, and 105. Data are
displayed for two temperatures:T=0.03,Tg fFig. 4sadg and
T=0.06.Tg fFig. 4sbdg.

It can be seen thatDst+ tw,twd is time-translational invari-
ant for the higher temperature but exhibits aging for the
lower one. Moreover, we observe that in the equilibrium re-
gime T.Tg the average motion is diffusive,Dst+ tw,twd
;Dstd~ t, while this is not the case in the aging regime
T,Tg.

We first discuss the case of high temperatures. In this case
we can define a diffusion constant throughDst+ tw,twd
=DsTdt. We attempted to fit our results using the stretched-
exponential expressionDsTd,expf−sT1/Tdbg. Using this
form, a plot ofTbln D−1 as a function ofT should result in a
horizontal line. The inset to Fig. 5sad shows that this is in-
deed obtained forb,1. The figure also shows the result of a
similar plot using the valueb=0.5 expected from the Efros-
Shklovski variable range hopping law. It is apparent that our
data cannot be described with this value ofb. Similar devia-
tions from the Efros-Shklovski law were also found in the

FIG. 3. Characterization of aging forT,Tg. sad Autocorrelation
functions Cst+ tw,twd vs the rescaled time variablet / tw

m at T
=0.030,Tg. The waiting times aretw=103 s+d, tw=104 sLd, and
tw=105 snd. The inset shows the same data represented as a func-
tion of time. sbd Temperature dependence of the aging exponentm
for different system sizesN=L3 with L=10 shd, L=8 snd, andL
=6 sLd.
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2D version of the model15,27 for which we foundb<3/4.27

We now turn to the analysis of the low-temperature re-
sults. In this case the time dependence ofD cannot be de-
scribed by a simple power law but we can still characterize
the diffusion in this regime by fitting thet dependence of
Dst+ tw,twd for our longest timessthe last decade int, for
exampled to an expression of the form

Dst + tw,twd , thstw,Td. s10d

Equations10d defines an effective diffusion exponenth
that depends on both the waiting time and the temperature.
The asymptotic fits forT=0.03 are represented by the dotted
lines in Fig. 4sad where the normal diffusion limith=1 is
also shown for comparison.

Figure 5 summarizes our results for the diffusion expo-
nent in the aging region. The temperature dependence ofh
for several values oftw is shown in Fig. 5sad. It can be seen
that in the equilibrium regime,T.Tg, h=1 for all tw andT.
Below Tg, however, the diffusion exponent decreases with
decreasing temperature for all values oftw, reflecting that

electron motion becomes increasingly sluggish.
The dependence ofh with tw at fixedT is shown in Fig.

5sbd for several temperatures. The exponenth increases with
tw, eventually reaching the diffusion limith=1 for long wait-
ing times. At low temperature this variation is slowsapproxi-
mately logarithmicd. This is yet another manifestation of the
slow relaxation that characterizes the glassy phase of the
Coulomb glass.

The characterization of diffusion through a diffusion ex-
ponent is familiar in the study of random walks in random
media where one generally finds subdiffusive behavior
sh,1d in those physical situations in which the distribution
of the time intervals between successive hops of the diffus-
ing particle has sufficiently long tails that the central limit
theorem no longer holds.28 It would be interesting to exam-
ine the distribution of these times in the aging regime of our
system.

V. HETEROGENEOUS DYNAMICS

To establish a relationship between the observed aging
effects and the microscopic motion of electrons we analyzed
the evolution of the diffusion front. This latter is defined
through the probability density of the squared displacements:

FIG. 4. Mean-squared displacementDst+ tw,twd as a function of
t for tw=103 s+d, tw=104 sLd, andtw=105 snd. The solid line is the
diffusion limit, D~ t: sad T=0.03,Tg. The dotted lines are fits of
the data to Eq.s10d over the last decade, 105, t,106: sbd T
=0.06.Tg.

FIG. 5. sad T dependence of the diffusion exponenth for tw
=100 s+d, tw=101 s* d, tw=102 sLd, tw=103 snd, tw=104 shd, and
tw=105 s3d from bottom to top. The dashed line indicates the cross-
over temperatureTg. sInsetd: T dependence of the diffusion constant
D in the equilibrium regime,T.Tg. We plot Tblog D−1 as a func-
tion of T for b=1 shd and b=0.5 sLd. sbd Waiting-time depen-
dence ofh for T=0.02s+d, T=0.03s* d, T=0.04sLd, T=0.05snd,
T=0.06 shd, andT=0.07 s3d.
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H1sDx2,t,twd =
1

Mo
i

kd„Dx2 − Dxi
2st + tw,td…l, s11d

wheredsxd is the usuald function. It is easy to show that for
a stationary and homogeneous diffusion process the above
distribution takes the form

H1
diffsDx2,td = FSDx2

Dt
− 1D , s12d

whereFsxd is approximately Gaussian.H1
diff thus exhibits a

single peak whose position increases linearly with time. To
computeH1 from our numerical data we must appropriately
coarse grain the variableDx2. Since we found that the distri-
bution of electron squared displacements is very broad we
chose a regular coarse graining in logsDx2d. In Fig. 6sad we
show the evolution of the computedH1sDx2,t ,twd as a func-
tion of logsDx2d for tw=106 andT=0.060.Tg. For this value

of the temperatureH1 is independent of the waiting time iftw
is large enough. This is consistent with the observed time
translation invariance of the charge autocorrelation functions
and the mean squared displacement at this temperature. The
histograms shown in the figure were scaled conveniently and
shifted vertically by an amount logstd to make their baselines
coincide with the time they correspond to.

Note that the diffusion front, located initially atDx2=0,
splits rapidly into two peaks. The position of the first peak is
almost time independent at long times. This peak corre-
sponds to squared displacements smaller than the average
impurity distancea0. The center of the second peak increases
linearly with time and its location coincides with the mean
squared displacements at long times. The interpretation of
these results is that the electron dynamics is heterogeneous
and characterized by the existence of two dynamical modes
that can be clearly distinguished:sad the diffusive mode—
electron motion is unbound and diffusive; it corresponds to
metallic hopping as found in Ref. 10 andsbd the confined
mode—electrons remain confined within small regions of
space during the observation time.

Examples of trajectories of electrons of these two types
are shown in Fig. 6sbd at the same temperature and for the
same waiting time as above. The displacements are repre-
sented as a function of the hop numberNi. We only show the
ten first hops after a waiting timetw=106.

Some of the trajectories correspond to electrons that hop
back and forth between two sites.Dx2 then oscillates be-
tween 0 andbi

2, the distance between the sites involved in the
motion. This fluctuating dipolar motion contributes to most
of the weight of the first peak in the histograms of Fig. 6sad.
It is important to note that, although this fluctuating motion
appears regular when plotted as a functionNi, it is in fact
extremely irregular when viewed as a function of time, since
the time intervals between successive jumps are very widely
distributed. The rest of the trajectories shown in Fig. 6sbd are
those of diffusive electrons that contribute to the metallic
peak in the histograms of Fig. 6sad.

We turn now to the analysis of the statistics of hopping
rates which is important to understand the source of sponta-
neous fluctuations in the system. To this end we consider the
joint distribution function

H2sDx2,nh;t,twd = o
i

kdsDxi
2st + tw,twd − Dx2d

3d„nist,twd − nh…l, s13d

whereni =Ni / N̄h is the number of hops of an electroni nor-

malized byN̄h=oi Ni /M, the average number of hops per
electron.

We use a regular coarse graining in logsDx2d and nh to
compute the corresponding histograms. These are displayed
in Figs. 7sad and 7sbd for T=0.070.Tg and T=0.040,Tg,
respectively. Both plots correspond tot= tw=106.

The two dynamical modes described above can be easily
identified in the equilibrium situationfFig. 7sadg. The single
peak at largeDx2 corresponds to the diffusive mode while
the two ridges at low values ofDx2 correspond to the dipolar
mode. Note that the hopping rates of electrons involved in

FIG. 6. sad Evolution of the diffusion frontH1sDx2d for tw
=106 andT=0.060. Histograms are scaled and shifted vertically by
an amount logstd so that their baselines coincide with the time they
correspond to. The symbolssLd represent the mean-squared dis-
placementDst+ tw,twd. The vertical lines are located at the positions
a0

2 andL2, wherea0 is the mean distance between sites andL=10
the linear size of the system.sbd Typical squared displacements of a
selected set of electrons as a function of hop number. The tempera-
ture isT=0.060. We show the first ten hops aftertw=106 steps. The
selected graphs illustrate typical dipolar and diffusive electron
trajectories.
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dipolar motion have a much wider distribution than those of
diffusive electrons.

Figure 7sbd shows that the two modes are still distinguish-
able at low temperatures, when the system is out of equilib-
rium. The structure of the modes is qualitatively different,
however. Not only the distribution of hopping rates is now
much broader but a small fraction of electrons with low hop-
ping rate lies inbetween the two modes. The presence of
these electrons, which cannot be clearly associated with any
of the modes, suggests that a very slow exchange of carriers
between them may take place in the course of the relaxation.
We shall further discuss this issue below.

To explore in more detail the properties of electrons con-
tributing to each of these modes we found it convenient to
define for each electron the variable

distwd =
1

t
o
t=1

t
Dxi

2st + tw,twd
t

. s14d

This quantity characterizes the mobility of the electron dur-
ing a time interval of lengtht after tw. For a carrier that
diffuses normally in this time span with a diffusion constant
D, di ,D. For an electron that remained confined in a region
of linear sizea during this time interval,di ,a2 lnstd / t. Fi-

nally, for a frozen electron, i.e., one that did not move at all
in the time interval under consideration,di =0.

We study the probability density ofd defined as

fsd,twd =
1

M
o
i=1

M

kdsdi − ddl. s15d

As discussed above we expectfsd,twd to exhibit two well
separated peaks: one atd=Dstwd, the average diffusion con-
stant of the diffusing electrons at time scaletw and the other
at d=astwd2 lnstd / t, where astwd is the typical size of the
regions of confined motion at the same time scale. The width
of the peaks gives the dispersion of these quantities.

We also introduce the cumulative distribution function

Fsd,twd =E
0

d

fsx,twddx. s16d

Results are displayed in Fig. 8 where we plotfsd,twd, and
its cumulative distribution function for three temperatures,
T=0.02,Tg, T=0.035,Tg, and T=0.060.Tg and waiting
times tw=10n with n=0,1,2,3,4,5, and 6. In allcases we
see the appearance of the two peaks referred to above. The
distributions are stationary forT.Tg for which the system
equilibrates rapidly but they show aging in the nonequilib-
rium regime.

A striking feature of the functionf in the aging regime
fcf. Figs. 8sad and 8scdg is that the positions of the peaks are
almost independent oftw. This means that the diffusion con-
stant of the “metallic” electrons is time independent. The
height of the peaks, however, does depend on time scale: as
time elapses from the quench, the proportion of diffusing
carriers diminishes while that of the confined ones increases.
This is a direct manifestation of the exchange mechanism
that we hinted at above. The fact that the location of the
peaks is only weakly dependent ontw indicates that the ef-
fective mobility of the diffusive electrons is not much af-
fected by the slow changes of the environment that result
from the aging process.

The plateaus that appear in the corresponding cumulative
distribution functions right after the peaksfcf. Figs. 8sbd,
8sdd, and 8sfdg can be used to measure the relative popula-
tions of the modes. We see a first plateau corresponding to
the area offsd,twd below the dipolar peak and a second
plateau corresponding to the additional area below the me-
tallic peak. It can be seen that the cumulative distribution
function does not saturate to unity at low temperaturesfcf.
Figs. 8sbd and 8sddg while it does at high temperaturesfcf.
Fig. 8sfdg. The difference is due to the fact that, at low tem-
perature, a fraction of the electrons remain frozen during the
observation time. These were not counted in the numerical
evaluation of the integral in Eq.s16d. Another manifestation
of the presence of frozen carriers is the pronounced asym-
metry of the two lower ridges in the lower panel of Fig. 7 in
the zero hopping-rate limit.

We can now use the height of the plateaus in Figs. 8sbd,
8sdd, and 8sfd to measure the populations of the different
modes. These are represented as a function of temperature
for tw=106 in Fig. 9sad. It is seen that the proportion of

FIG. 7. The joint probability distribution of squared displace-
mentDx2 and normalized hopping ratesH2sDx2,nhd for T=0.07sad
and T=0.04 sbd. The histograms are taken at timet=106 after a
waiting time tw=106.
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diffusive electrons increases with increasing temperature
while, at the same time, that of dipolar and frozen ones de-
creases. Note that a crossover between the regime dominated
by diffusive electrons and that dominated by confined ones is
located precisely atTg.

The waiting-time dependence of the populations is shown
in Fig. 9sbd for two temperatures:T=0.03,Tg sleft paneld
and T=0.06.Tg sright paneld. These populations are time
independent at the highest temperature but vary logarithmi-
cally with time in the aging regime.

It is quite tempting to try to relate these observations to
the relaxational properties of the conductivity. Assuming that
the Einstein relation holds in the nonequilibrium regime, the
conductivity at scalet is s~nedDfsD ,td, where n is the
electron density and the integral extends over the diffusive

peak. We saw earlier that the position of the peakD̄ is time

independent. This impliess,npDD̄, wherepD is the fraction
of diffusing carriers. Since the latter decreases logarithmi-
cally with time, this simple argument predicts logarithmic
relaxation of the conductivity which is one of the main ex-
perimental observations. Whether the assumptions leading to
this result are valid has to await direct computation of the
current in the aging regime, in the presence of an applied
electric field.27

VI. CONCLUSIONS

We have studied the relaxational properties of the three-
dimensional random-site Coulomb glass model after a
quench from high temperature. We found a crossover from
stationary to slow nonstationary dynamics at a temperature
Tg that is very close toTc, the equilibrium glass transition
temperature of the model. This crossover can be seen even in
relatively small samples because of the exponential increase
of the equilibration time with decreasing temperature.

We found that at low temperature the dynamics of local
charge fluctuations and that of current fluctuations show ag-
ing. In the former case, the relaxation obeys simple scaling
laws characterized by a temperature-dependent aging expo-
nent msTd. Analysis of the temperature and system-size de-
pendence ofmsTd suggests that in the thermodynamic limit
the observed crossover atTg,Tc becomes a real dynamic
transition that occurs precisely atTc.

FIG. 8. Probability densityfsdd sleft panelsd and the correspond-
ing distribution functionFsdd sright panelsd for three temperatures,
T=0.02 sad, sbd, T=0.035scd, sdd, andT=0.06 sed, sfd. In all cases
t=106 and the waiting times are tw=10n with n
=0,1,2,3,4,5,and 6. Thesolid line in sed indicates the location of
the diffusion constantDsTd calculated from the mean-squared dis-
placements of electrons atT=0.060.

FIG. 9. sad Density of diffusiveshd, confinedsnd, and frozen
electronssLd during time scalet=106 as a function of the tempera-
ture. Waiting time istw=105. The line indicates the location of the
crossover temperatureTg. sbd, scd Waiting-time dependence of the
same densities forT=0.03,Tg sbd andT=0.06.Tg scd. The mean-
ing of the symbols is the same as insad.

KOLTON, GREMPEL, AND DOMÍNGUEZ PHYSICAL REVIEW B71, 024206s2005d

024206-8



The analysis of the properties of diffusion fronts revealed
that the dynamics of carriers is heterogeneous as it was found
in other glassy systems.21 We found that for each time scale
two classes of electrons may be identified: those that have
diffusive motion during the observation time and those
whose motion in the same time interval remains confined.
Only electrons belonging to the former class contribute to the
dc conductivity while the others only contribute to the di-
electric screening.

In the region of low temperatures where aging is observed
electrons are slowly exchanged between these two modes
with the consequence that the population of metallic elec-
trons decreases logarithmically with time without appre-
ciable change of the their diffusion constant. This provides a
plausible explanation for the logarithmic relaxation of the
conductance after a quench that was observed experimen-
tally.

We believe that the local microscopic dynamics used here,
which is a realistic description of hopping processes in ex-

perimental systems, plays an important role in the phenom-
ena that we observed. This type of dynamics favors the ap-
pearance of local effective constraints that relate our model
to kinetically constrained models in which slow dynamics
arises from restrictions on the allowed transitions between
configurations.
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