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Hot fluid metals are represented using a tight-binding hard-sphere model. Various treatments of the electrical
conductivity of those disordered systems are presented and results are compared for equilibrium ionic con-
figurations near the liquid-vapor phase coexistence. The configurations are obtained from self-consistent Monte
Carlo simulations, with the cohesive energy being due to exact calculations of the valence electron delocal-
ization. The disorder in the electronic hopping elements arises from that of the ionic positions, since the
hopping is assumed to decay exponentially with distance. Calculated values of the electrical conductivity are
found to span several orders of magnitude along the liquid-vapor coexistence curve, from typical metallic
values in the low-temperature dense liquid metal, to a percolation-limited transition, to an insulator on the
vapor branch. We compare the results based on the Kubo-Greenwood treatment, formulated appropriately for
the model, with those of a “mesoscopic” approach based on the Green’s function method for the quantum-
coherent transport between two voltages leads, and examine results from two versions of the randomized phase
model, which assumes a rapid decay of the quantum coherence. The various conductivity results are also
compared with the experimental data for cesium.
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I. INTRODUCTION

Electrical conductivity in disordered systems is a subject
of interest in many different fields of condensed matter phys-
ics, microelectronics, and nanotechnology. Theoretical tech-
niques developed to study this problem range from the semi-
classical formalism based on the Boltzmann equation to the
nonequilibrium Green’s function method in the Keldysh for-
malism; they have been applied to empirical models for the
disorder, treated as a frozen framework on which the elec-
tronic properties are calculated. Fluid metals contrast with
solid-state devices in many respects; for example, simple es-
timates of the mean free path in such fluids give a coherence
length comparable to the nearest-neighbor distance,1 so the
effects of quantum interference should have much less rel-
evance in such materials than in the case of low-temperature
solid devices. Moreover, in fluids, the strong disorder pro-
duced by the ionic potentials acting on the electrons cannot
be modeled as a frozen random distribution, since the va-
lence electronic energy produces effective ion-ion interac-
tions and leads to strongly correlated ionic positions, which
have to be treated self-consistently with the electronic prop-
erties.

Simple lattice2 and off-lattice models3 were at first used to
explore the properties of monovalent fluids in which the
electronic delocalization produces a vapor-liquid phase tran-
sition similar to that observed in the alkali-atom fluids.4 The
tight-binding sTBd hard-spheresHSd model is the simplest
one which yields most of the qualitative aspects observed in
the phase diagram of the alkalis. Solid, liquid, and vapor
phases appear from the combined effects of the ionic-
packing entropy, represented using a system of hard spheres
of diameterdHS, and the cohesive free energy ofsnoninter-
actingd electrons appropriately delocalized over theshalf-
filledd band obtained by using a tight-binding orbital on each

ion. The hopping between orbitals associated with ions at
positionsr i and r j is taken, in this work, to decay exponen-
tially with the distancer ij = ur i −r ju, tij = t0 expf−asr ij −dHSdg.
The parametersdHS and t0 give scaling units for distance
sdensityd and energystemperatured in the system, so they
may be trivially varied to fit experimental data for the critical
point of different alkali-atom fluids. The reduced exponential
decay parameter of the hopping elementsa* = adHS is the
only nontrivial one determining the phase diagram. The
shape of the liquid-vapor coexistence curve, as a function of
that parameter, was explored in other work, using either a
combination of Monte CarlosMCd simulations and effective
glue-model interactions3 or directly, with the MC simulations
based on the exact evaluation of the electronic energies.5 The
choicea* =2, used in this paper, is the one for which the
phase diagram of the TB-HS model resembles those obtained
experimentally for cesium, rubidium, and potassium.4

In this paper, we center our attention on the calculation of
the electrical conductivityssd near the liquid-vapor coexist-
ence curve. Experimental results, cited in Refs. 6 and 7 and
obtained by Ref. 8, show that the alkali fluids remain metal-
lic on lowering the density until the upper part of the vapor
branch is reached, with a monotonic decay ofs. For cesium,
the conductivity is measured to have a value ofs=3.3
3103 S/cm swhere S=Siemens=V−1d in the dense liquid
metal, at a density ofr=1.2 g/cm3. On reaching the critical
densityrc=0.379 g/cm3, the conductivity has decreased by
more that a factor 10, and has again decreased by another
order of magnitude tos=3.13101 S/cm, atr=0.16 g/cm3,
well within the vapor branch but still at a fairly high tem-
perature. The eventual transition to an insulating molecular
gas, predicted in theoretical models of electrons in disor-
dered media,6,9 is hidden by the effects of other conduction
mechanisms, for instance, those associated with the forma-
tion of charged clusters; also, accurate experimental mea-
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surements of very low conductivities in a hot and reactive
alkali vapor are unavailable due to the experimental difficul-
ties. We shall present a quantitative comparison of conduc-
tivity results based on the TB-HS model with the above ex-
perimental data, beyond the qualitative one already
contained in previous work. Further, in this paper, we con-
sider a variety of theoretical treatments in order to improve
the understanding of the metal-insulator transition in disor-
dered model systems in which the characteristics of the dis-
order are self-consistently controlled by the electronic ener-
gies, rather than being determined by frozen empirical
distributions.

In previous work,3 we discussed effects on the electrical
conductivity due to clustering and inhomogeneities in struc-
ture arising, within the TB-HS model, from the electronically
induced positional correlations among ions. These effects al-
ready account for the metal-nonmetal transition, in the mod-
erately low density vapor phase, without demanding a domi-
nant role for electron-electron interactions; thus, such
considerations qualitatively change early predictions. We
showed that, even in the absence of any electron-electron
interaction, correlations among the ionic positions cause the
conductivity of the TB-HS model to decrease monotonically
with decreasing density until the vapor is extremely dilute
and the density is well below that at which data is available;
it is only then that electron-electron interactions become a
dominant effect. In contrast, early work ignored the correla-
tions among ionic positions, induced by the electronic en-
ergy, consequently it was compelled to require a sufficiently
strong effect of electron-electron interactions to avoid an in-
creasing electrical conductivity as the density decreases,
even in the moderately low density vapor. That unphysical
increase arose from the fact that such an uncorrelated struc-
tural assumption caused isolated atoms to become more
prevalent as density decreased and, even at moderate vapor
densities, their increasing prevalence dominated the conduc-
tivity through their rapidly increasing electronic density of
states at the Fermi energy.6

In the present study, we have found no qualitative differ-
ences in structural properties arising from basing the simula-
tions on the exact,5 rather than the glue-derived energies;3

thus, the previous discussion remains valid in that respect.
However, it seems useful to compare the results of various
theoretical approximations for determining the electrical
conductivity, in order to understand which features are the
most important ones in these systems. Thus, we consider the
Kubo-Greenwood description of conductivity,10 in more gen-
erality than the previously used random phase approximation
due to Hindley,11 and also obtain results using a “mesos-
copic” Kubo treatment. Section II presents the bases for
these theoretical methods. Then, in Sec. III, we undertake the
quantitative comparison among the results forssrd, along
the vapor-liquid coexistence curve of the TB-HS model, us-
ing various theoretical approaches, and also include a com-
parison to experimental data for cesiumsa typical and well
studied alkali-atom fluidd. A conclusions section closes the
paper.

II. ELECTRICAL CONDUCTIVITY TECHNIQUES

The linear electronic transport properties of a disordered
system should be described by the nonlocal conductivity

tensor12 ssr ,r 8d, which relates the electric fieldE at any
point to the induced current density at any other point

j sr d =E d3r 8ssr ,r 8d ·Esr 8d. s1d

The assumption of a uniform electric field over a macro-
scopic sor mesoscopicd sample leads to the definition of a
local conductivity to be used in Ohm’s lawj sr d=s̄sr d ·E,
with

s̄mnsr d =E d3r 8smnsr ,r 8d, s2d

and the indicessm ,nd running over the three Cartesian com-
ponents. The diagonal terms give the macroscopic conduc-
tance G=s̄mmA/L for homogeneous samples, of lengthL
along the directionm of the voltage difference and with a
transverse areaA.

The same assumption, a uniform electric field over the
sample, leads to the Kubo-Greenwood formula for the mean
tensor elements of the local conductivity, evaluated from the
current-current correlations between the atom pairssi , jd and
sk, ld, appropriate to a hopping model, in term of the eigenen-
ergies En and the participation of each atomfnsid to the
eigenfunction13

s̄mn
KG = −

2pe2

V" K o
mÞn

]f

]Em
Fo

i,j
fm

* sidfns jdsr i − r jd ·umtij

3 o
k,l

fmskdfn
*sldsr k − r ld ·untklGdsEm − EndL; s3d

the average over configurations is denoted byk¯l, um is the
unit vector in them direction, f is the Fermi-Dirac distribu-
tion function, andV=kNl /r is the volume of the system.

However, nonlocal quantum effects and the requirement
of charge conservationf¹ ·j sr d=0, for stationary statesg may
lead to long-ranged nonlocal dependences ofssr ,r 8d, frus-
trating the definition of the local conductivity tensor in Eq.
s2d and the Ohmic dependence of the conductance with the
sample size.12 Such an effect is already clear in Eq.s3d,
where the electronicshoppingd currents at distant bondssi , jd
and sk, ld can contribute tos̄KG and spoil the intrinsicssize
independentd character of the conductivity. It is well known
that such effects cause the conductance of ordered mesos-
copic systems at very low temperatures to be nonohmic,
since all the resistance appears at the contacts between the
sample and the voltage leads to macroscopic reservoirs. In
the “mesoscopic” version of the Kubo formula, the nonlocal
character ofssr ,r 8d is taken into account through a direct
evaluation of the total conductance of the system, comprising
the sample and the external contacts to macroscopic leads.
That total conductance is expressed in terms of the compo-
nents of the velocity operator and the Green’s function as12
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G = 2
e2

h
Trfsi"v̂mdIm ĜsEFdsi"v̂mdIm ĜsEFdg, s4d

where v̂m is the velocity operator and ImĜsEd is obtained
from the advancedsad and retardedsrd Green’s functions us-
ing

Im ĜsEFd =
1

2i
fĜrsEFd − ĜasEFdg = − pdsE − Ĥd. s5d

Finite temperature effects may be explicitly included using
an integral over the conductance contribution from states
with specified energy

G = −E dE
dfsEd

dE
GsEd. s6d

The results of this approach, within our TB description of the
electrons, are described below.

There are two different effects which may cancel quantum
nonlocal characteristics ofssr ,r 8d and recover the Ohmic
behaviorG=sA/L, with a well-defined intrinsic conductiv-
ity. First, the quantum decoherence of the electronic wave
functions, produced by the atomic movements, will introduce
random phases between the wave-function products
f* sidfs jd and f* skdfsld and cancel, in Eq.s3d, contribu-
tions from hopping between distant pairssk, ld andsi , jd. This
effect may be represented by a decoherence length,lD in
Chambers formula14

ksmn
Chsr ,r 8dl =

3

4p

sDsr − r 8dmsr − r 8dn

ur − r 8u4lD
expS−

ur − r 8u
lD

D ,

s7d

where sDsr ,r 8d should be a smooth function ofur −r 8u. In
our model for hot fluid metals, we might assume thatlD is
small compared with the HS diameterdHS, which leads di-
rectly to the randomized phase modelsRPMd of Hindley:11

s̄mm
RPM = −

2pe2

V" K o
mÞn

]f

]Em
o
i,j

ufmsidu2ufns jdu2

3fsr i − r jd ·umtijg2dsEm − EndL , s8d

so that only the contributions withsi , jd=sk, ld in Eq. s3d
survive. Then the remaining contribution from the sum over
pairs, where the pair distance is limited by the decaying hop-
ping element, gives a term proportional toN and to the sys-
tem volumeV in the denominator.

Even in absence of the above decoherence effect, there is
an alternative way to recover the Ohmic behavior based on
the strong disorder of the fluid configurations. The variety of
disordered equilibrium configurations in the fluid leads to
strong fluctuations of the wave-function amplitudes and can-
cels the averaged cross contributions from distant pairsur i
−r ku , ur j −r lu@dHS in Eq. s3d. This is the way, as discussed in
the next section, in which the Kubo-Greenwood formulation
s̄mm

KG, when averaged over equilibrium fluid configurations,
recovers the intrinsic character of a macroscopic conductiv-
ity, one which would be lost in a perfectly ordered crystal at

T=0. The same effect results in the “mesoscopic” application
of the Kubo formalism, with Green’s functions linking the
sample to the macroscopic reservoirs. When Eq.s4d is ap-
plied to a single fixed ionic configuration, the conductanceG
is determined by the area of the contacts to the metallic
leads, rather than by the sample geometry. But, on averaging
over typical fluid configurations, obtained in our MC simu-
lations, such a formulation also recovers the ohmic depen-
dence with sample size and produces a well defined mean
conductivity kslKG;LG/A, almost independent of the
sample geometry.15 We shall maintain the notation ofs̄ for
results based on the assumption of a local conductivitys2d
and useksl for those obtained from the conductance of the
full sample, the subindicesmm for the diagonal components
of the tensor are eliminated in our application to statistically
isotropic samples.

We expect that both disorder and decoherence are impor-
tant in determining the conductivity of hot fluid metals. Our
MC simulations for the TB-HS model provide a self-
consistent description of the disorder at any point of the
liquid-vapor phase diagram, and a comparison of results
from the full Kubo-Greenwood result and the RPM version
of Hindley gives a measure of the effects of quantum deco-
herence, fully neglected in Eq.s3d and assumed complete in
Eq. s8d. For dense fluids, the assumption of a uniform elec-
tric field over the sample should be appropriate. Hence, dif-
ferences between the “macroscopic” Kubo-Greenwood for-
mulation and its “mesoscopic” Green’s function version will
be small and are expected to be due to unrelated, more tech-
nical, causes as follows. Finite size effects in our MC
samples require a finite width to be applied the delta function
dsEm−End in Eq. s3d, to compensate for the discreteness of
the energy spectrum; such a procedure is equivalent to defin-
ing the dc conductivity as the average of ac conductivities
over a narrow range of small frequenciesv, t0/ sN"d. Simi-
larly, the evaluation of sample conductances through Eq.s4d
requires an explicit construction that attaches the simulated
sample to metallic leads.16 This requirement is implemented
through small imaginary parts, in the Green’s functions, that
allow the evaluation of the sample conductance. The depen-
dence ofs̄KG on the specific coarsening of frequencies in Eq.
s3d, and that ofkslKG on the modeled contacts, are treated on
an empirical basis which searches for the range of these pa-
rameters giving results which are fairly independent of the
particular parameter choices.

In contrast, at the much lower densities corresponding to
the vapor branch, results fors̄KG may become very different
from those extracted from the total conductance of the
samples, using the “mesoscopic” Green’s function treatment.
When the sample has the strong inhomogeneity typical of
fluids near the critical point, the electronic conduction is de-
termined by the “easy paths” formed along the hopping
bonds of clusters which percolate across the sample. Such a
percolative character is preserved in the “mesoscopic” ver-
sion of the Kubo formula, since the total conductance comes
from the Green’s functions linking the two leads through the
electronic hopping in the sample. However, the macroscopic
Kubo-Greenwood approachs3d neglects such percolative as-
pects of the conduction, given the assumption of uniform
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electric field. This neglect corresponds to treating a network
of classical resistors, with different resistorsRij , as equiva-

lent to a network in which all resistors are equal toR̄, such

that 1/R̄ is obtained from the mean value of the bond con-
ductancesGij . In contrast to such an approach, the consistent
solution of Kirchhoff’s equations, taking into account the
different voltage drops at different networks linkssi.e., the
nonuniform electric fieldd, leads to an effective averaging of
Gij for those links connected in parallel, while the relevant
average is done directly overRij for those connected in se-
ries.

Obviously, the above problem again appears ins̄RPM. The
approach used in our previous work, representing the con-
ductance of a samplesusing configurations obtained in our
MC simulationsd by that of a network of classical resistors
Rij between each atom pair, corresponds to an attempt to
recover the percolative character of the conduction within the
RPM scheme. Such an approach leads to results apparently
more appropriate to fluid metals than those of averaging the
perfect quantum coherence assumed in Eq.s4d. To imple-
ment such a recovery, maintaining a quantitative description,
we apply the Kubo-Greenwood generic argument to the mi-
croscopic conductance along thesi , jd bond between two
nearby atoms. Thus associatingssr i ,r jd with the direct local
diffusion rateDij ,kvi j

2l, using a representation of the veloc-
ity operator in terms of the hopping elements as ins8d, to
obtain

smmsr i,r jd < −
2pe2

V" K o
mÞn

]f

]Em
ufmsidu2ufns jdu2

3fsr i − r jd ·umtijg2dsEm − EndL . s9d

The assumption of strong decoherence, which cancels
current-current correlations between separated bonds and
hence allows Eq.s3d to be written as Eq.s8d, implies that
successive jumps along the hopping elements are incoherent,
so that the transport properties of a configuration corre-
sponds to that of a classical network of resistors, with values
1/Rij ,ssr i ,r jd between any pair of atoms with nonvanish-
ing hopping elements. The proportionality factors, which in
our previous work were hidden within a rescaling factorsthe
conductivity of the dense liquidd, may be found quantita-
tively in order to precisely recover the expressions8d for
s̄RPM, whenever the electric field is assumed to be homoge-
neous. That procedure yields

1

Rsr ijd
=

1

2
ji jftsr ijdg2, s10d

with ji j given by

ji j =
2pe2

" F o
mÞn

S−
]f

]Em
Dufmsidu2ufns jdu2dsEm − EndG .

s11d

For each ionic configuration, Kirchhoff’s laws are to be ap-
plied to the resistor network, with a potential difference be-
tween two opposing sides of a sample. The total conductance

G= I /DV is averaged over ionic configurations along our MC
simulations. Just as in the “mesoscopic” KG treatment,
Ohm’s law is then applied usingksl;sLz−2lcdG/A, in terms
of the transverse areaA and the effective length of the sys-
tem, excluding the voltage leads. We label the intrinsic con-
ductivity given by this method askslRPM, since it corre-
sponds to the macroscopic results of applying the RPM to
the microscopic nonlocal conductance, but keeping the per-
colative character of the conduction over the full sample.

Both kslKG and kslRPM lack a contribution from isolated
clusters, so samples without ionic structures which percolate
between the two leads will have zero conductivity. Thus,
there is a formal qualitative difference between conductivity
results which use the full exponential decaytij = t0
3expf−asr ij −dHSdg of the hopping elements and those
wheresfor simplicityd tij is truncated to zero beyond a cutoff
rcut. In the second case there is a true percolative transition at
which ksl becomes strictly zero, while for infinite-ranged
hopping there can be no true percolative transition, soksl
will never be strictly null. However, the previous studies,
with rcut=3.1dHS, show that such differences only appear
when ksl is many orders of magnitude smaller than the ex-
perimentally accessible range. Thus, the difficulty of analyz-
ing percolative transitions, with the small samples we used to
obtain the electronic properties of our TB-HS model, pre-
vents us from discussing that region. For all practical pur-
poses, the drop ofs by more than six orders of magnitude
with respect to its value in the dense liquid metal should be
interpreted as the transition to a non-metallic vapor in the
TB-HS model, the density at which this decrease has taken
place is roughly independent of the value of the cutoff, for
rcutù3.1dHS.

Thus we have four different approaches to the electrical
conductivity of our model system. All them estimates start-
ing from the current-current correlations in the Kubo for-
mula, with the exact wave functions of the TB Hamiltonian
for each ionic configuration and a variety of ionic configu-
rations representing statistical equilibrium. Two of the ap-
proaches,kslKG ands̄KG, assume perfect quantum coherence
over a configuration, although the strong disorder of the fluid
cancels the effects of such coherenceson averaging over
equilibrium configurationsd beyond microscopic distances
and recovers Ohmic behavior for our sample sizes of a few
hundred atoms.15 The other two,kslRPM and s̄RPM, assume
complete decoherence beyond a first-neighbor distance, so
that the Ohmic character of the conduction will result even in
perfectly ordered samples. On the other hand,s̄KG ands̄RPM

assume the existence of a local conductivity, associated with
the hypothesis of a uniform electric field, and calculate its
average over the samples. The other two,kslKG andkslRPM,
are obtained from averaging the full sample conductance,
which takes into account the percolative nature of the con-
duction process. For high system density we expects̄KG

<kslKG ands̄RPM<kslRPM, while for low densitykslKG and
kslRPM will reflect the existence of a percolation transition,
of quantum character in the former case and in terms of
classical resistors in the latter one.
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III. RESULTS FOR THE TB-HS MODEL

Conductivity calculations, using the four approaches,
have been carried out for thermal equilibrium configurations
of the TB-HS model witha* =2, in order to compare the
various theoretical approaches among themselves and with
experimental data for fluid cesium. To compare with experi-
mental conductivity data as a function of density, a choice of
our length unit is required: we usedHS=4.7 Å, a value which
gave a good description of the structural properties of the
experimental fluid near the normal melting point; the value
of t0 does not affect to the conductivity, as the choice of the
energy unit is irrelevant to this magnitude.

Experimental conductivity data for cesium is available for
“near-coexistence conditions”6–8 and the model phase dia-
grams we have obtained, based on the exact5 or
glue-derived3 energies, are quite similar, therefore conduc-
tivities were calculated for temperatures and densities “near”
the model’s phase coexistence, as described in what follows.
For the conductivity calculations we choose equilibrium con-
figurations obtained from NVT simulations usingN=256
and exact electronic energies for the TB-HS model, with
a* =2 andrcut=3.1dHS; however, temperatures and densities
were chosen to correspond to the coexistence conditions ob-
tained in our previous worksusing glue-model derived ener-
gies, N=1500, and NVT-slab simulationsd. The conductivi-
ties from the various theoretical approaches were obtained,
along thez direction, in a system with the geometry of a
parallelepiped:Lx=Ly=L and Lz=2L, with the dimensions
chosen to correspond toN and the density. Further, as the
sample sizes are small, the calculations were repeated for the
alternative geometry of a cubic sample, to check whether the
conductivity is Ohmicsindependent of geometryd; it was
found that the ohmic limit had indeed been achieved for
these system sizes, due to the strong disorder in the systems
as analyzed below. Although the results were obtained using
a cutoff in the hopping range atrcut=3.1dHS, it was deter-
mined that dispensing with the cutoff had little effect on the
results sexcept extremely close to the percolation limit, a
situation already discussed in previous work3d. For each tem-
perature and density, once the system was stabilized, MC
simulations were carried out with 23105 sor 43105d MC
steps. The conductivities were calculated for configurations
obtained each 100sor 200d steps, and each set of results
averaged over the 2000 configurations. To obtains̄KG and
s̄RPM we used periodic boundary conditions in the three di-
rections, the same procedure followed in evaluating the elec-
tronic energies for the MC simulations. However, for the
other two approaches, based on the total conductanceG of
the sample, periodic boundary conditions were applied only
for the transverse directionsXY; in the Z direction, the volt-
age contacts at the two ends of the sample were chosen as
any atom within slabs of widthlc<dHS, a size much smaller
than the total sample lengthLz but large enough to contain
8–10 ions. More precisely, we attached independent single-
channel metallic wires to any of the atoms belonging to the
contacts. The density of states of the leads roughly coincides
with the Fermi-level density of states of the isolated sample.

Figure 1 exhibits the electrical conductivity results, as
functions of density, in the unitssS/cmd of the experimental

data. Notice that, in following the coexistence curve, the
temperature changes nonmonotonically with density,3,5 from
kT/ t0=0.10, at the dense liquid metalsrdHS

3 <0.64d, to
kT/ t0=0.15, at the critical pointsrdHS

3 <0.15d, but then de-
creasing in the vapor branch as the density decreases. The
figure also contains experimental data for expanded fluid ce-
sium, cited elsewhere6,7 and obtained by Franz,8 ranging
over the full liquid branch and the high density part of the
vapor branch. Comparing the theoretical results among
themselves shows that in the dense liquid there is a fair
agreement betweens̄KG and kslKG, and also betweens̄RPM

and kslRPM, as expected when the high connectivity of the
hopping matrix makes essentially all paths percolative.
Moreover, the agreement betweens̄KG and kslKG supports
the technical details employed in our treatment of finite-size
effects fi.e., the coarsening of the delta function in Eq.s3d
and the inclusion of the imaginary self-energy in Eq.s4dg,
and gives witness to the fact that the disorder is strong
enough to achieve Ohmic behavior within our system sizes.
The use of the RPM assumptionsboth in s̄RPM and in
kslRPMd causes in a systematic increase in the electrical con-
ductivity, a multiplicative factor of approximately three over
the Kubo-Greenwood or the “mesoscopic” Green’s function
approach with full quantum coherence. Thus, the off-site
current-current correlations, neglected in the RPM, yield a
substantial partial cancellation of the diagonal contribution
si =k and j = ld in Eq. s3d. However, the disagreement, re-
flected in the approximately constant multiplicative factor,
betweens̄RPM and s̄KG is a minor effect, compared to the
strong variation of two orders of magnitude ins̄ along the
liquid branch of the coexistence curve. Note that the simplic-
ity of the TB-HS model could hardly be expected to give
conductivities in more than semiquantitative agreement with
experimental data. In this sense, we consider that the excel-
lent agreement between the global-RPM conductivitykslRPM

and the experimental data, over the full density range of
liquid cesium, is probably accidental. Any improvement of
the model, such as including a more realistic density of

FIG. 1. Electrical conductivitiessS/cmd along the coexistence
curve of our model, obtained by averaging over configurations as
described in the text. The diamonds represent experimental data for
fluid cesium, close to coexistence. Circles show our quantum co-
herent results and squares our noncoherent ones. “Mesoscopic” re-
sults sksld are shown as filled symbols joined by solid lines, and
macroscopic onesss̄d as empty symbols joined by dashed lines.
Lines are guides to the eye.
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states, might easily change all the theoretical predictions by a
factor similar to the ratio betweenkslRPM and kslKG.

In Fig. 2 we again present the electrical conductivity, but
now the results of each method are normalized to its result
ss0d at a common density in the dense liquid. This presenta-
tion allows a more robust comparison among the density
dependences obtained from the different theoretical ap-
proaches and with that of the experimental results. The pre-
dictions of the two local versionsss̄RPM and s̄KGd are very
similar over the full density range, while those from the glo-
bal versionsskslRPM andkslKGd only differ appreciably very
near to the percolation transitionssee the insetd. The experi-
mental data in the near-critical density region seem to “split
the difference,” smoothing the rapid decay ofkslRPM and
kslKG in the vapor phase. An enhanced experimental conduc-
tivity in this density range may be expected from effects of
charge transfer between clusters,7,17 which are not taken into
account in the HS-TB model. The percolation regimesrdHS

3

ø0.1, shown in the insetd is not really relevant for compari-
son with experiments, but it is of theoretical interest since it
allows a comparison between quantum versus classical per-
colation. As expected, quantum percolation yields a lower
conductivity that its classical counterpart, since it fully ac-
counts for wave function localization which is only partially
included in the RPM version. However, results forrdHS

3

ø0.05 are influenced by our use of the hopping cutoff, at
rcut=3.1dHS, and have an uncontrolled bias due to finite-size
effects in our samples.

We now shift the focus of the discussion to the intrinsi-
cally interesting theoretical problem of understanding the
origin of the approximately constant discrepancy between
s̄RPM ands̄KG. This discrepancy is also related to the way in
which disorder in the ionic positions produces intrinsic con-
ductivities from theoretical formulationss3d and s4d which
do not have an explicitly Ohmic behavior. To that end we
present, in Table I, details of different contributions to the
double sumsi , jd and sk, ld in Eq. s3d, leading tos̄KG. The
tabular results correspond to four different densities, from
the dense liquid to the percolation threshold. At each density,
we separate the contributions to Eq.s3d into five terms in
which the “bond currents” are correlated differently. Notice
that the contributions have the character of “directed bonds”
due to the dot products in Eq.s3d. A first term consists of
pairs with i =k and j = l; they give precisely the RPM result

s8d and correspond to the electric current self-correlation at
each bond, their contribution tos̄KG is, of course, always
positive. A second term contains antiparallel pairs, terms
with i = l and j =k in Eq. s3d, which contribute with a negative
sign, dominantly from the factorsr i −r jdmsr k−r ldm sas the
wave function contribution is not positive definited. This sec-
ond contribution contains the “exchanged” combination of
wave functionsfm

* sidfns jdfms jdfn
*sid instead of the “direct”

onefm
* sidfns jdfmsidfn

*s jd= ufmsidu2ufns jdu2; thus, they are ex-
cluded from the RPM approach. We find that this second
contribution is approximately 20% of the RPM result for the
rarefied vapor, but its relative weight is only about 2% for
the dense liquid. A third set of terms consists in contributions
from the terms withi =k but j Þ l sor equivalentlyj = l but i
Þkd, corresponding to the correlation between currents in
adjacent bonds, sharing a common site, and having “head-to
tail” orientation; the common site contributes with the “di-
rect” sbut not the “exchanged”d combination of the wave
functions. As seen in Table I, the averaged contribution, from
these third set of terms, seems to be always negative and can
be quite large, overwhelming the direct RPM contribution. In
contrast, the fourth set of terms has the exchanged wave-
function combination for adjacent bonds; it appears to be
always positive, but is too small to be of much importance.
Finally, a fifth set of terms is the averaged contributions to
s̄KG from those bond pairs withi Þk and j Þ l, i.e., the con-
tribution from the current correlations between distinct, non-
adjacent, bonds; their contribution to the global sum is posi-
tive. The entire collection of terms conspires to a global
result of an approximate ratio of 1/3 betweens̄RPM ands̄KG,
throughout the liquid range.

To seek a clearer explanation of the magnitudes and signs
of the various contributions discussed in Table I, which are
averaged over the disordered ionic positions, we explore the
dependence of the above correlations with distance between
the bonds. Also, such information is necessary to try to un-
derstand, in some detail, the source of the ohmic character of

FIG. 2. As in Fig. 1, but now all conductivities are normalized
to those obtainedsin each calculationd at rdHS

3 =0.654. Inset shows
an enlarged view of the low density region.

TABLE I. Contributions to the double sums in Eq.s3d leading to
s̄KG=s̄RPM+s̄X

RPM+s̄AD +s̄X
AD +s̄N-AD at four different coexistence

densities.s̄RPM is the summation of terms withi =k and j = l sRPM
contributiond, the electric current due to self correlation at each
bond. s̄X

RPM contains the terms withi = l and j =k, as in s̄RPM but
exchanging the combination of wave functions.s̄AD has terms with
i =k but j Þ l sor equivalentlyj = l but i Þkd, which correspond to the
correlation between currents in adjacent bonds sharing a common
site. s̄X

AD has the terms withi = l but j Þk sor equivalentlyj =k but
i Þ ld, as ins̄AD but exchanging the combination of wave functions.
s̄N-AD consists of terms withi Þk but j Þ l, the contribution from
the current correlations between nonadjacent bonds.

rdHS
3 =0.654 rdHS

3 =0.429 rdHS
3 =0.2 rdHS

3 =0.05

s̄KG 1660 788 200 9.7

s̄RPM 4964 2259 652 60.3

s̄X
RPM −98 −134 −108 −15.8

s̄AD −7444 −2997 −667 −42.5

s̄X
AD 105 127 59 1.2

s̄N-AD 4133 1533 264 6.5

TARAZONA et al. PHYSICAL REVIEW B 71, 024203s2005d

024203-6



the Kubo-Greenwood conductivity. To that effect, in Fig. 3,
we present the average contribution of the different terms in
s̄KG from ion pairs at distancer, normalized to 4pr2 as in the
usual representation of the pair-distribution functiongsrd for
a liquid; all distances are in terms ofdHS. A brief discussion
of the various terms follows.

Both the “direct” and the “exchanged” RPM contributions
are represented in terms of the only distancer ; r ij =rkl in
these contributions. They should decay with a functional de-
pendence of at leastfrtsrdg2, i.e., r2exps−2ard, which, being
short ranged, guarantees the Ohmic character of these con-
tributions to a local conductivity. Recall that in the case be-
ing considereda ·dHS=2. We have found that the structure of
the RPM contribution is indeed dominated by the pair-
distribution function and the squared hopping elements,
while ther dependence induced by the wave-function struc-
ture ufmsidu2ufns jdu2 produces only a smooth modulation of
the gsrdfrtsrdg2 factor. In contrast, the range of the “ex-
changed” RPM withr is decreased by the averaging of
fm

* sidfns jdfms jdfn
*sid; that is, the wave function contribution

takes positive and negative values in the averages over the
disordered ionic structures in our MC simulations, causing a
faster decay than that of the RPM contribution in the vapor,
and making the contribution nearly negligible at all distances
in the dense liquid.

The contributions tos̄KG from adjacent pairs are repre-
sented in terms of the distancer ; r ik between the extreme
ions in the triplet. These terms should decay with a func-
tional dependence of at least the self-convolution ofrtsrd,
i.e., r4exps−ard for large r. Moreover, the average over the
disordered ionic positions once againsas in the second termd
produces an extra decay factor, from the cancellation of posi-
tive and negative values offm

* sidufns jdu2fmskd. We have not

found a simple explanation for the systematically negative
values of these contributions, which arises from the combi-
nation of the ionic correlations, in the termsr i j ·ûdsr jk ·ûd,
and from the electronic structure, in the termfm

* sidfmskd,
near the Fermi level; none of the signs involved are prede-
terminable. The separation of such adjacent-pair contribu-
tions into “direct” and “exchanged” terms, as is done in
Table I is avoided in Fig. 3, where the sum is given, since the
exchanged contribution is always very small.

Finally, the contribution from nonadjacent pairs is repre-
sented in terms of the minimum distance between ion pairs
for which a hopping element does not appear,r
;minsr ik ,r jld. In this case there is no decaying factor such as
one proportional totsrd to guarantee that its contribution to
the conductivity is local and Ohmic. Nevertheless, the figure
shows that the averaging over the ionic disorder very effec-
tively cancels contributions beyond a second-neighbor shell
of these current-current correlations between distinct, i.e.,
non adjacent, bonds. In contrast, in a crystalline system at
T=0, this last term would have correlations which are main-
tained, without decay, for arbitrary bond separation. The sign
of this contribution is also not predeterminable.

In addition to the dependences shown in Fig. 3, there can
also be possible effect of quantum decoherence, induced by
the sclassicald movement of the ions; such an effect would
only be important if its decoherence length were shorter than
the disorder-induced decay of the contributions tos̄KG. The
full sample quantum coherence assumed in Eqs.s3d and s4d
might be regarded as an unrealistic assumption in a hot fluid
metal. However, the strong disorder, leading to the decays
observed in Fig. 3, give an effective decoherence length
lDa<1. Such a value may be closer to reality, for our ap-
plication, than the RPM assumptionlDa!1. A quantitative
calculation oflD is beyond the scope of our simple TB-HS
model, since it would require specifying the electron-ion
spseudod potentials, instead of using the simple parametrized
form for the hopping elementtij . To repeat, the factor of 3
discrepancy between the RPM and the KG results is a rela-
tively mild one for a property changing by several orders of
magnitude along the liquid-vapor coexistence curve. The dif-
ference between the locals̄ and globalksl versions is only
appreciable in the expanded liquid regimerdHS

3 ø0.28; how-
ever, it becomes a qualitative difference along the vapor
branch, with a difference of many orders of magnitude be-
tween the smooth decay of the local versionsss̄KG ands̄PRMd
and the rapid fall of the global onesskslKG and kslRPMd as
the system approaches the percolation threshold; the effect is
shown in Fig. 2.

IV. CONCLUSIONS

The most important conclusion we draw, from comparing
the experimental data for cesium and the present results, is
that the TB-HS model contains the most important aspects of
the electronic conduction in real hot fluid metals, despite its
simplicity. The model, with a simple TB band for noninter-
acting electrons producing the only cohesive energy and the
simplest HS repulsion between the ion cores, has been con-
sidered an oversimplification: it neglects the effects of

FIG. 3. Averaged radial distributionJsrd of various contribu-
tions to the double sums leading toss̄KGd, in terms of the distances.
Broad solid line:ss̄RPMd RPM contribution, pairs withi =k and j
= l in terms ofr ij . Thin solid line: ss̄X

RPMd exchanged bonds RPM
contribution, pairs withi = l and j =k in terms of r ij . Dotted line:
ss̄AD +s̄X

ADd both adjacent-bond terms, pairs withi =k but j Þ l sor
equivalently j = l but i Þkd, and exchanged adjacent-bond terms,
pairs with i = l but j Þk sor equivalentlyj =k but i Þ ld, in terms of
r jl sor r ikd. Dashed line:ss̄N-ADd nonadjacent-bond terms, pairs with
i Þk but j Þ l, in terms of rmin=minsr ik ,r jld. All distances are in
units of dHS.
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electron-electron interactions and hence of a possible Mott
transition to an insulating phase, it fails to treat the realistic
electron-ion pseudopotentialsi.e., the realistic density of
electronic statesd, and does not contain a realistic form of the
effective ion-ion interactionswhich produces the vapor-
liquid condensationd. However, the results presented here
show that goodssemiquantitatived agreement exists between
sexp and the TB-HS model results: from a good theoretical
treatment of the electrons in the disordered matrix of the TB
orbitals, and an adequate representation of the ionic correla-
tion structure leading to the appropriate distribution of hop-
ping elements. Oversimplifications in the theoretical treat-
ment of such features, ones intrinsic to the model, are much
more dangerous than the simplicity of the model itself. For
instance, the earliest calculations ofs in the TB-HS model
were the result6 of an extremely strong version of the RPM,
one which assumes perfect delocalization of the electrons
si.e., ufnsidu2=1/Nd, so that Eq.s8d is only a function of the
density of states at the Fermi level and the average of
kstij r i jd2l. That average was then estimated assuming hard-
sphere correlations among the ions. Such simplifications, of
the effect of ionic disorder on the electrons and on the nature
of the ionic correlations, result in a qualitative error for the
predictions ofssrd; in fact, leading to a conductivity in-
crease at modest but non-negligibler. In our previous work,3

we proved that such a qualitative failure may be corrected,
within the noninteracting scheme of the TB-HS model, with
the inclusion of the self-consistent ionic clustering and also
with the use of the true electronic wave functions for each
ionic configuration, unless the ionic density is extremely low
swhere conductivity measurements are experimentally inac-
cessibled. In our s̄RPM we include both of the above men-
tioned effects and obtain the decreasing conductivity at low
density, but we still have to introduce the percolative char-
acter of the electronic conduction to obtain its physically
correct behavior for the vapor branch of the coexistence
curve. As an aside, there is no doubt that the electron-
electron interaction does become important at extremely low
densities.

On the other hand, apparently extremely strong assump-
tions, on the quantum decoherence, imposed in the KG and
the RPM approaches, only lead to relatively mild differences
in the estimates fors, obtained using both the local and the
global approaches. A detailed analysis of the contributions to
s̄KG, in terms of separation between the current-correlated
bonds, gives a clear insight into the role of disorder, which
turns any quantum coherence beyond the second-neighbor
distance into an irrelevance; such a detailed insight is not
possible in the global resultkslKG. The subtle difference be-
tween the classicalsfully incoherentd percolation, given by
kslRPM, and the quantum percolationscoherence over the
entire sampled, in kslKG, seems to be a minor effect com-
pared with the respective local versionss̄RPM ands̄KG. Thus,
the correlation structure of the ionic matrix, creating easy
paths for the delocalization of the electrons, is the most im-
portant aspect of the disorder in the system; it cannot be
replaced by an empirical distributions of the hopping ele-
ments without resulting in qualitative changes in the electri-
cal conductivity. This is a warning for other studies of elec-

tronic systems with model distributions of disorder, the
choice of uncorrelated disordered elements in the electronic
Hamiltonian may introduce a strong unrealistic bias into the
results.

Given the extreme simplicity of the TB-HS model, the
exact solution of the electronic Hamiltonian, to drive the MC
simulations for the ions, requires a heavy but feasible com-
putational effort. The size of our samples, withN=256 elec-
trons and the same number of ions, seems to be close to the
minimum size required to make certain that the macroscopic
limit of an intrinsic electrical conductivity is obtained from
averaging over the variety of disordered equilibrium ionic
configurations. Also, that size seems to be large enough to
control the empirical coarsening of thed function in Eq.s3d
and to make conductance calculations roughly independent
of contact details, when using Eq.s4d. On the other hand, we
have shown that there is no easy short cut to the full solution
of the electronic Hamiltonian, for the aboveN, and to the
computer simulation of ionic configurations, since any ap-
proximation on these aspects may easily change the qualita-
tive behavior of the predicted conductivity. Any attempt to
generalize towards a more realistic description in terms of
electron-ion pseudopotentials, and an inclusion of electron-
electron interaction effects, would face an apparently unbear-
able computational effort, in order to run computer simula-
tions near the critical vapor-liquid region with the exact
solution of the electronic density for many millions of ionic
configurations.

Finally, we comment that the use of glue-model treat-
ments for thesnonpair additived effective interactions among
ions, induced by the electronic delocalization, may offer a
solution to the problems discussed in the previous paragraph.
We have explored a self-consistent glue-model treatment for
the TB-HS model elsewhere.3 On the basis of previous work
and the present paper, using our original approachs̄RPM

yields conductivity results which agree whether they are
based on using glue-derived configurationssprevious workd
or based on those from the exact energiessthis paperd. There
are, however, some discrepancies at the lowest vapor densi-
ties, where configurational differences seem to be most im-
portant. Another comparison of glue model based results and
exact-based ones has been carried out5 for thermodynamic
and structural results of the TB-HS model, the conclusions
are in agreement with those above. Therefore, it has been
verified that a suitable glue model, based on typical configu-
rations of the system to be studied, is able to give an ad-
equate description of the ionic structures for hot metallic
fluids, with an enormous reduction in the computational ef-
fort. Thus, it appears feasible to extend such glue-model
treatments to metallic fluids described with more realistic
electronic Hamiltonians. With such a treatment, it might be-
come possible to find the liquid-vapor coexistence of such
fluids and to evaluate the ionic correlations along that coex-
istence, using a large number of ions, with a computational
effort comparable to that for simple fluids.
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