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In this paper we present a theoretical analysis of the effect of magnetostriction on quantum oscillations of
elastic constants in metals under strong magnetic fields. It is shown that at low temperatures a significant
softening of some acoustic modes could occur near peaks of quantum oscillations of the electron density of
states at the Fermi surface. This effect is caused by the Condon magnetic instability, and it can give rise to a
lattice instability. We show that the most favorable conditions for this instability to be revealed occur in metals
whose Fermi surfaces include nearly cylindrical segments.
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Experimental data concerning quantum oscillations in
various observables in metals under strong magnetic fields
were repeatedly used in studies of their electron characteris-
tics. At low temperatures when the parameteru is small com-
pared to unitysu=2p2T/"V, T is the temperature expressed
in units of energy, and"V is the value of a cyclotron quan-
tumd these oscillations can exhibit a rich structure. The latter
could be analyzed even within a simple isotropic model. For
instance, it is known that the longitudinal magnetic suscep-
tibility of a metal can reveal divergencies at peaks of quan-
tum oscillations at low temperatures.1–3 These divergencies
crucially depend on interaction among conduction electrons,
and they indicate a possibility of a diamagnetic phase tran-
sition in a metal, producing Condon domain structure near
the oscillation peaks.4 Also, it was proposed in some earlier
works that the above features in the magnetic susceptibility
could give rise to a sensible reduction of elastic moduli in
metals.1,4–6Here, we demonstrate that the effect of softening
of phonon modes near the peaks of magnetic quantum oscil-
lations of the electron DOS could be significantly strength-
ened, and even the relevant structural phase transitions could
occur and be observed under feasible experimental condi-
tions in those metals whose Fermi surfaces insert nearly cy-
lindrical belts.

At first, we derive expressions for electron contributions
to the elastic constants. To simplify further calculations we
assume that the FS is axially symmetric, and the external
magnetic fieldB is directed along the symmetry axissz axis
of the chosen coordinate systemd. We analyze the elastic re-
sponse of a metal to an external deformation described with
the lattice displacement vectorusr d. The effect of conduction
electrons on the crystalline lattice arises due to a self-
consistent electric field which appears under deformation.
Also, the lattice deformation gives rise to an additional inho-
mogeneous magnetic fieldbsr d, and to deformation induced
corrections to the crystalline fields. Here, we omit the latter
in the first steps of our analysis to include them later. The
emergence of the electric and magnetic fields accompanying
the lattice deformation leads to a redistribution of the elec-
tron densityN. The local change in the electronic density
dNsr d equals

dNsr d = −
]N

]z
ewsr d +

]N

]B
bsr d ; − Nz

*Sewsr d +
]z

]B
bsr dD ,

s1d

wheree is the absolute value of the electron charge.
The magnetic fieldbsr d satisfies the equation

curlbsr d = 4pcurldM sr d

= 4pcurlS ]M

]z
ewsr d +

]M

]B
bsr dDdivbsr d = 0.

s2d

HereM is the magnetization vector,z is the chemical poten-
tial of charge carriers,wsr d is the potential of the electrical
field, arising due to the deformation. The quantityNz

* in-
cluded in Eq.s1d is closely related to the electron density of
statessDOSd on the Fermi surfaceNz. The diffference be-
tween the two originates from the correlations in the electron
system. Within the framework of the phenomenological
Fermi-liquid theory the renormalized DOSNz

* has the form
ssee Ref. 1d

Nz
* = − o

nn8
U fn − fn8

En − En8
nnn8

* s− qdnn8nsqdU
q→0

, s3d

where fn is the Fermi distribution function for quasiparticles
with energiesEn andnn8nsqd is the Fourier transform of the
operator of electron density in space variables. The renor-
malized operator of electron densitynnn8

* s−qd is related to the
“bare” operatornnn8s−qd as follows:

nnn8
* s− qd = nnn8s− qd + o

n1n2

fn1
− fn2

En1
− En2

Fnn8
n1n2nn1n2

* s− qd, s4d

whereFnn8
n1n2 are the matrix elements of the Fermi-liquid ker-

nel

Fnn8
n1n2 = waa8

a1a2dss8ds1s2
+ caa8

a1a2ssss8ss1s2
d. s5d

Here,a is the set of orbital quantum numbers,s is the spin
number, ands is the operator of the electron spin.

The relationss1d ands2d have to be complemented by the

PHYSICAL REVIEW B 71, 024109s2005d

1098-0121/2005/71s2d/024109s5d/$23.00 ©2005 The American Physical Society024109-1



condition of electrical neutrality of the system

dNsr d + eNdivusr d = 0. s6d

It follows from Eqs.s1d, s2d, ands6d that

curlhs1 − 4pxdbsr dj = − 4pcurlH ]M

]z

N

Nz
* divusr dJ . s7d

The set of simultaneous equationss1d, s2d, and s6d was
first presented in previous works.1,6 We use these equations
to excludebsr d and to express the potentialwsr d in terms of
the lattice displacement vector. As a result we arrive at the
expression for the electron forceFsr d acting upon the lattice
under its displacement by the vectorusr d:

Fsr d = l0b0hb0 ¹ f¹usr dgj + l„b0 3 h¹f¹usr dg 3 b0j….
s8d

Here,b0 is the unit vector directed alongB. This results8d
proves that the constantsl0, l1 represent electron contribu-
tions to the elastic constants corresponding to the deforma-
tion of the lattice along the external magnetic fieldsl0d and
across this fieldsld. Within the adopted geometry these con-
stants equal the electron terms in the compression elastic
moduli c33 andc11=c22 sin Voight notationd. On the basis of
Eqs.s1d, s2d, ands6d the expressions for these constants are
derived:1,6

l0 =
N2

Nz
* , s9d

l = l0S1 +
4pxz

1 − 4pxi
D . s10d

Here xi=]Mz/]B+s]Mz/]zds]z /]Bd is the longitudinal part
of the magnetic susceptibility;xz=s]Mz/]zds]z /]Bd.

As follows from Eq.s9d, the quantityl0 coincides with
the compression modulus of the electron liquid. The struc-
ture of the quantityl is more complicated. In addition to the
electron compression contribution,l also contains a contri-
bution of a different origin. This extra term appears due to
the inhomogeneous magnetic fieldbsr d caused with the lat-
tice deformation. This field arises due to the change in the
magnetization of electrons caused by the deformation. So,
the appearance of the second term in the expressions10d is a
manifestation of a magnetostriction effect.

When the differential magnetic susceptibility enhances in
the proximity of diamagnetic phase transition, the denomina-
tor of the second term in Eq.s10d can take on values close to
zero. Owing to this, the quantityl significantly grows in
magnitude. For negativel this enhancement brings a notice-
able decrease in the elastic constantc11 sthe latter is the sum
of the “bare” elastic modulusc11

0 and the electron contribu-
tion ld. In other words, the expressions10d reveals a possi-
bility for softening of a longitudinal acoustic mode propagat-
ing perpendicularly to the magnetic fieldB. This possible
softening arises due to magnetostriction, and it results from
magnetic instability.

When a strong magnetic field is applied to a metal, this
gives rise to quantum oscillations in the electron DOS. The

latter causes quantum oscillations in observables including
magnetic susceptibilityxi. At low temperaturessu!1d the
magnitude of quantum oscillations increases so much that
the oscillating term could predominate at peaks of oscilla-
tions. It was shown beforeswithin the simple model of iso-
tropic electron liquidd that under such conditions bothNz

* and
1−4pxi could go to zero near the oscillations peaks produc-
ing magnetic instability of the metal and softening of some
acoustic modes.1,5,6 This is illustrated in Fig. 1. Here, mag-
netic fieldsB18 andB28 label thresholds of the magnetic insta-
bility region, and the differential magnetic susceptibility di-
verges at these points. Singularity in the longitudinal
susceptibilityxi discussed in the earlier papers,1 appears sig-
nificantly closer to the fieldB0 indicating the position of the
oscillation peak. At the same time, the structural instability
thresholdsB1 andB2 are located farther fromB0 thanB18 and
B28, respectively, as shown in Fig. 1. However, these effects
could be revealed in experiments only at extremely low tem-
peraturessof the order of 10 mK or lowerd. The stringent
requirements for temperatures explain why the softening of
the phonon modes at peaks of quantum oscillations was not
observed so far.

It is known that under certain conditions local geometrical
features of the FS could significantly affect the electronic
response of the metal. This happens when a dominating con-
tribution to the response functions results from small “effec-
tive” segments of the FS, where “efficient” electrons are con-
centrated. When the effective segments of the FS are nearly
cylindrical or include locally flattened pieces, this gives a
significant enhancement in the number of effective electrons,
and can produce noticeable changes in the electronic re-
sponse of the metal. The influence of locally flattened and
neary cylindrical parts of the FS on the ultrasound attenua-
tion rate, as well as on the surface impedance of a metal has
been analyzed beforessee, e.g., Refs. 8–10d. Quantum oscil-
lations of the electron DOS in strong magnetic fields are
specified with contributions from effective cross sections of
the FS. Those are cross sections with minimum and maxi-
mum sectional areas. Therefore the local geometry of the FS

FIG. 1. Schematic plot of the magnetic field dependence of
4pxi sdashed lined andc11/c11

0 ssolid lined near a peak of quantum
oscillations atB=B0sT=0d. The range of magnetic fields corre-
sponding to structuralsB1,B,B2d and/or magneticsB18,B,B28d
instability is section lined.
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in the vicinities of these cross sections has to affect both
magnitude and shape of the oscillations.10 This can influence
anomalies of the elastic moduli under the present study and
create much more favorable conditions for their observations
in metals, as we show below.

We consider a metal whose FS is axially symmetric in the
vicinity of an extremal cross section atpz=p0 with the area
Aex. We assume the magnetic fieldB to go along the sym-
metry axis. The general expression for the FS curvature near
pz=p0 could be written in the form

Ksxd = −
1

2

d2A/dx2

pm
2 Aex

. s11d

Here,x=spz−p0d /pm; pm is the maximum value of the qua-
simomentum componentpz at the FS. Now, we adopt the
following approximation for the cross-sectional area around
the extremal cross section

Asxd = Aexs1 ± b2x2ld, s12d

whereb2 is the dimensionless constantsb2!1d and the pa-
rameterl takes on values greater than 1.

The very essence of the employed models12d is that it
describes an axially symmetric FS whose curvature turns
zero atpz=p0. The expression for the curvatures11d shows
that the approximations12d is necessarily applicable to each
nearly cylindrical strip on any such FS. Otherwise the strip
has a nonzero curvature. So we see that the models12d gives
the general expression for cross-sectional area of any nearly
cylindrical segment of an axially symmetric FS.

Assuminig that the cyclotron quantum"V is small com-
pared tozfg−1;s"V /zd1/2!1g and using the models12d we
arrive at the following expression for the contribution from
the nearly cylindrical cross section to the electron DOS os-
cillations:

D =
h

sgd1/l o
r=1

`
s− 1dr

r1/2l crsudcosSprg2 ±
p

4l
DcosSpr

V0

V
D .

s13d

Here, crsud=ru /sinhru, h=Gs1/2ld /2lsbÎpd1/l, Gsxd is the
gamma function, and"V0 is the spin splitting energy. Our
formula s13d agrees with the results obtained for a precisely
cylindrical FS/and a Fermi circle in a two-dimensional con-
ductor ssee, e.g., Refs. 11 and 12d. We arrive at the corre-
sponding results within the limitl →`. In general case we
can treat “l” as a phenomenological parameter included in
the models12d. Actual values of “l” could be discovered in
experiments where the FS local geometry is revealed. This is
the only trustworthy way to estimate the above parameter for
a particular metal. First-principle calculations are not accu-
rate enough to produce reliable results on fine geometrical
features of FSs although their shapes as a whole are well
known.

Within the isotropic model the cross sectional area is de-
scribed with the expressions12d where l =b2=1, p0=0, and
pm is the radius of the Fermi sphere in quasimomenta space.
In this particular case the oscillating functionD takes on a
well-known form

D =
1

g
o
r=1

`
s− 1dr

Îr
crsudcosSprg2 −

p

4
DcosSpr

V0

V
D . s14d

Oscillations described by Eqs.s13d and s14d differ in
phase as well as amplitude. The amplitude of usual oscilla-
tions given by Eq.s14d is of the order ofg−1u−1/2, while Eq.
s13d gives a magnitude of the order ofg−1/lus1−2ld/2l. There-
fore, the amplitude of oscillations related to the extremal
section of zero curvature is approximatelysg−1u1/2ds1−ld/l

times greater than that of the usual quantum oscillations. As
a result, the contribution due to an extremal section with zero
curvature can be considerablysmore that tenfoldd greater
than contributions due to other extremal sections, and the
functionD can reach values of the order of unity at peaks of
oscillations even atu,1. On these grounds we conclude that
the most favorable conditions for observation of softening of
elastic moduli at peaks of quantum oscillations occur in met-
als whose FSs include nearly cylindrical segments. We con-
sider such FSs in further analysis.

Assumingg!1 we replace matrix elements included in
the Fermi-liquid kernel with their semiclassical analogs
wsp ,p8d andcsp ,p8d which depend on quasimomenta of in-
teracting conduction electronsp andp8. For axially symmet-
ric FSs the Fermi-liquid functions take the form

wsp,p8d = w00 + pzpz8w01 + sp'p'8 dsw10 + pzpz8w11d, s15d

csp,p8d = c00 + pzpz8c01 + sp'p'8 dsc10 + pzpz8c11d. s16d

To make our analysis more thorough we include deforma-
tion terms in the forces8d exerted by the conduction elec-
trons on the lattice. We present the components of the defor-
mation potential, as

Labspd = Lab + GPabspd, s17d

whereLab is a tensor whose elements do not depend onp, G
is a dimensionless constant, andPab is the tensor of the
electron momentum flux density.

The adopted approximations lead to the following expres-
sions for the corrections to the elastic constants

c̃11 = c̃22 = −
N2

g

f1 + G/s1 + A2dg2D

1 + s1 + W− 4px0g4dD
, s18d

c̃12 = −
N2

g
S G

1 + A2
D2 D

1 + s1 + W− 4px0g4dD
, s19d

whereg is the electron DOS in the absence of the external
magnetic field,

c̃33 = −
N2

g

f1 + Gs1 + A2d2gD
1 + s1 + WdD

, s20d

x0 is related to the Landau diamagnetic susceptibilitysthe
latter equals −13x0d, and the constantW originates from the
Fermi-liquid interaction
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W=
B0

1 + B0
+

B2

1 + B2
+

A2

1 + A2
. s21d

Here, dimensionless coefficientsB0, B2, andA2 are related to
the Fermi-liquid parametersc00, c11, andw11 as follows:

B0 =
1

s2phd3 E c00Sspzddpz,

B2 =
1

s2phd3 E c11Sspzdpzdpz,

A2 =
1

s2phd3 E w11Sspzdpzdpz. s22d

It is noteworthy to mention that the shear modulusc12 is also
affected due to magnetostriction. This was not discovered in
the early analysis of Ref. 1, where the deformation contribu-
tions into the electron force were omitted. As for elastic con-
stantc33, it also can be reduced at the peaks of low tempera-
ture quantum oscillations but this effect is not related to
magnetic instability. The expression forc̃33 s20d does not
include the contribution arising due to magnetostriction. The
possible softening ofc33 is directly connected with the be-
havior of the electron DOS under strong magnetic fields at
low temperatures. Such instability was predicted before.7 We
have to remark here that the interaction among electrons sig-
nificantly influences all above effects. The value of the con-
stantW which accumulates effects of electron-electron inter-
actions within the framework of the Fermi-liquid theory,
could significantly influence the temperature range where
both magnetic and lattice instabilities occur.

The functionD describing quantum oscillations is given
by Eq. s13d and the amplitude of oscillations may become
comparable with unity at moderately low temperatures pro-
vided that the FS shape reveals a fair proximity to a cylinder
near the extremal cross section. For example, atl =3, hV /z
,10−3, and B,10 T, the conditiong−1/lus1−2ld/2l ,1 could
be satisfied at temperatures of the order of 1 K. In usual
metalsN,1021–1022 cm−3 and the term 4px0g4 in the de-
nominator of Eq.s18d can take on values of the order of 10 at
g2,103. Also, we introduce the quantityL2=N2f1+G/ s1
+A2dg2/gc0, wherec0 is the relevant “bare” elastic constant.
The ratio N2/gc0 in typical metals is rather smallsN2/gc0

,10−2–10−1d. However, the values taken on byL2 could be
noticeably greater than that due to the deformation constant
G. The latter mostly accepts values of the order of unity. So,
we have grounds to expect the values ofL2 to be of the order
of 10−1 rather than 10−2.

To proceed in the analysis of the experimental feasibility
of the effect, we numerically evaluate the decrease in the
elastic constantc11 using our results18d and the above esti-
mations of the parameters included there. The results are
shown in Fig. 2. We see that close enough proximity in the
shape of an effective strip on the FS to a cylinder gives rise
to the structural instability near peaks of oscillations atu
=1. Also, it is demonstrated that the effect is washed out due
to the further rise in temperature.

Electronic contributions to the velocity of ultrasound

waves propagating in metals are simply related to the elastic
constants. It follows from our results that the velocity of a
longitudinal sound could depend on the direction of its
propagation. In the vicinity of the Condon instability the ve-
locity of sound propagating perpendicularly to the magnetic
field B could be noticeably reduced compared to the velocity
of sound propagating alongB Again, we may expect this
effect to appear in metals whose FSs include nearly cylindri-
cal segments.

Finally, it is known that the effect of magnetostriction can
cause softening of some phonon modes in metals near the
Condon magnetic instability. This effect can appear even in
an isotropic metal.1,6 The point of the present work is that the
effects could be significantly strengthened when the immedi-
ate vicinities of some extremal cross sections of the FS are
nearly cylindrical in shape, so that the FS curvature turns
zero at these cross sections.13 Real metals mostly have non-
spherical and complicated in shape FSs. At present the main
geometric characteristics of the FSs, such as their connectiv-
ity, are well studied. On the contrary, local geometric fea-
tures of the FSs has not been investigated in detail so far.
However, there is an experimental evidence that “necks”
connecting quasispherical pieces of the FS of copper include
nearly cylindrical belts.11 When the magnetic field is directed
along the axis of a necksfor instance, along thef111g direc-
tion in the quasimomenta spaced, the extremal cross section
of the neck could be expected to run along the nearly cylin-
drical strip where the FS curvature turns zero. It is also likely
that the FS of gold possesses the same geometrical features
for it closely resembles that of copper. Another kind of ma-
terials where we can expect the low-temperature softening of
phonon modes to be manifested includes some layered struc-
tures with metallic-type conductivityfe.g., a−sBEDT
−TTFd2MHgsSCNd4 group of organic metalsg. Fermi sur-
faces of these materials are sets of rippled cylinders, isolated,
or connected by links.14 Based on the experiments on cyclo-
tron resonance in these organic metals,15 it was shown that
the cylinders could have nearly cylindrical strips.16 For all
above listed substances we can expect the effect to be re-
vealed at reasonably low temperaturess,1 Kd and reason-
ably strong magnetic fieldss1–10 Td.

The effect is expected to be very sensitive to the geometry
of an experiment for extremal cross sections of the FS run

FIG. 2. Magnetic feld dependencies of the elastic constantC11

near the diamagnetic phase transitions. The curves plotted foru
=1, the parameterl takes on values 8, 4, 2 from the left to the right
sleft paneld and l =4, u takes on values 1, 2, 3 from the left to the
right sright paneld. For all curvesN=1021 cm−3, g2=103, B0=10 T.
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along nearly cylindrical beltssif anyd only at certain direc-
tions of the magnetic field. When the magnetic field is tilted
away from such direction, the extremal cross section slips
from the nearly cylindrical piece of the FS. This does not
cancel possibilities of the effect, in principle, but makes re-
quirements for temperatures dramatically stringent, as was
discussed above. The present analysis was carried out within
the model of axially symmetric FS. The obtained results
could be applied to actual metals when the magnetic field is
directed in parallel with a high order axis of symmetry of the
crystalline lattice of a metal. Otherwise, it is very difficult to
separate out electron contributions to particular elastic con-

stants. In summary, the effect of softening of phonon modes
at peaks of quantum oscillations in metals could be expected
to be observed in experiments. The most favorable condi-
tions for the effect exist in metals whose FSs include nearly
cylindrical pieces. The efffect could be revealed in these
metals for some particular directions of the external mag-
netic field providing that an extremal cross section belongs to
a quasicylindrical strip on the FS.

I thank G. M. Zimbovsky for help with the manuscript.
This work was supported in part by the NSF Advance pro-
gram Grant No. SBE-0123654.

1V. N. Bagaev, V. I. Okulov, and E. A. Pamyatnykh, Pis’ma Zh.
Eksp. Teor. Fiz.27, 156 s1978d; fJETP Lett. 27, 144 s1978dg.

2Ya. M. Blanter, M. I. Kaganov, and D. B. Posvyanskii, Usp. Fiz.
Nauk 165, 213 s1995d; fPhys. Usp.165, 178 s1995dg.

3Similar results for two-dimensional systems are presented G.
Montambaux, M. Heriter, and P. Lederer, Phys. Rev. Lett.55,
2078 s1985d.

4For the most recent review on the theory of diamagnetic phase
transitions in metals see A. Gordon, I. D. Vagner, and P. Wyder,
Adv. Phys. 52, 385 s2003d.

5L. R. Testardi and J. H. Condon, Phys. Rev. B1, 3928s1970d.
6N. A. Zimbovskaya, V. I. Okulov, and E. A. Pamyatnykh, Fiz.

Met. Metalloved.54, 224 s1982d.
7B. T. Lazarev, E. A. Kaner, and L. V. Chebotarev, Fiz. Nizk.

Temp. 4, 808 s1978d fSov. J. Low Temp. Phys.3, 394 s1977dg;
E. A. Kaner, L. V. Chebotarev, and E. Uvimana,ibid. 4, 1218
s1978d fibid. 4, 789 s1978dg.

8V. M. Kontorovich, Usp. Fiz. Nauk27, 216 s1984d fSov. Phys.
Usp. 27, 134 s1984dg.

9M. I. Kaganov and Yu. V. Gribkova, Fiz. Nizk. Temp.17, 907
s1991d; fSov. J. Low Temp. Phys.17, 473 s1991dg.

10N. A. Zimbovskaya, Zh. Eksp. Teor. Fiz.107, 1672s1995d fJETP

80, 932s1995dg; N. A. Zimbovskaya and J. L. Birman, J. Phys.:
Condens. Matter12, 3337s2000d.

11D. Shoenberg,Magnetic Oscillations in MetalssCambridge Uni-
versity Press, New York, 1984d; see also; N. A. Zimbovskaya,
Local Geometry of the Fermi Surface and High-Frequency Phe-
nomena in MetalssSpringer-Verlag, New York, 2001d.

12D. Shoenberg, J. Low Temp. Phys.56, 417 s1984d.
13It should be emphasized that the present results are mostly ap-

plied to convenient metals. One hardly could expect a cylindri-
cal segment of a considerable size to be included in the FSs of
such metals. The local geometrical features of the FSs are cru-
cially important for the phonon modes softening to be revealed
there.

14J. Wosnitsa,Fermi Surface of Low-Dimensional Organic Metals
and SuperconductorssSpringer, Berlin, 1996d.

15S. V. Demishev, A. V. Semenov, N. E. Sluchanko, N. A. Samarin,
I. B. Voskoboinikov, V. V. Glushkov, J. Singleton, S. J. Blundell,
S. O. Hill, W. Hayes, M. V. Kartsovnik, A. E. Kovalev, V. Kur-
moo, P. Day, and N. D. Kushch, Phys. Rev. B53, 12794s1996d.

16N. A. Zimbovskaya, Zh. Eksp. Teor. Fiz.113, 1965 s1998d;
fJETP 86, 1220s1998dg.

QUANTUM OSCILLATIONS OF ELASTIC MODULI AND… PHYSICAL REVIEW B 71, 024109s2005d

024109-5


