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Quantum oscillations of elastic moduli and softening of phonon modes in metals
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In this paper we present a theoretical analysis of the effect of magnetostriction on quantum oscillations of
elastic constants in metals under strong magnetic fields. It is shown that at low temperatures a significant
softening of some acoustic modes could occur near peaks of quantum oscillations of the electron density of
states at the Fermi surface. This effect is caused by the Condon magnetic instability, and it can give rise to a
lattice instability. We show that the most favorable conditions for this instability to be revealed occur in metals
whose Fermi surfaces include nearly cylindrical segments.
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Experimental data concerning quantum oscillations in oN oN . a
various observables in metals under strong magnetic fields 5N(r):—(9—ge<p(r) +a—Bb(r) =-N, e<p(r)+(?—Bb(r) ,
were repeatedly used in studies of their electron characteris-

tics. At low temperatures when the parametés small com- (1)
pared to unity(§=27°T/%Q, T is the temperature expressed wheree is the absolute value of the electron charge.
in units of energy, and(} is the value of a cyclotron quan- The magnetic field(r) satisfies the equation

tum) these oscillations can exhibit a rich structure. The latter
could be analyzed even within a simple isotropic model. For
instance, it is known that the longitudinal magnetic suscep- M M )

tibility of a metal can reveal divergencies at peaks of quan- = 4770“”(756"’(” * Eb(r))dwb(r) =0.

tum oscillations at low temperatur&s. These divergencies 5
crucially depend on interaction among conduction electrons, (2)

and they indicate a possibility of a diamagnetic phase tranHereM is the magnetization vectof,is the chemical poten-
sition in a metal, producing Condon domain structure neatial of charge carrierse(r) is the potential of the electrical
the oscillation peak$Also, it was proposed in some earlier field, arising due to the deformation. The quanmli/ in-
works that the above features in the magnetic susceptibilitgluded in Eq.(1) is closely related to the electron density of
could give rise to a sensible reduction of elastic moduli instates(DOS) on the Fermi surfacé,. The diffference be-
metalsl*~®Here, we demonstrate that the effect of softeningtween the two originates from the correlations in the electron
of phonon modes near the peaks of magnetic quantum oscigystem. Within the framework of the phenomenological
lations of the electron DOS could be significantly strength-Fermi-liquid theory the renormalized DO$, has the form
ened, and even the relevant structural phase transitions coufgee Ref. 1

curlb(r) = 4arcurloM (r)

occur and be observed under feasible experimental condi- f—f,
tions in those metals whose Fermi surfaces insert nearly cy- N, =~ 2 n,, (—an, (q) , (3)
lindrical belts. w EvT By G0

AL first, we derive expresy_ons_for electron Cont”.buuonswherefv is the Fermi distribution function for quasiparticles
to the elastic constants. To simplify further calculations we . . . .
. X . with energiesE, andn,,,(q) is the Fourier transform of the
assume that the FS is axially symmetric, and the externacl) erator of electron density in space variables. The renor-
magnetic fieldB is directed along the symmetry axisaxis P lized ol yd Pg ) is rel ' d1to th
of the chosen coordinate systerive analyze the elastic re- Ma!lzed operator of electron ensity, (-q) is related to the
sponse of a metal to an external deformation described witiPare” operatom,,,(-q) as follows:
the lattice displacement vectofr). The effect of conduction fo—f
electrons on the crystalline lattice arises due to a self- n' (-q)=n,,(-q) + > —2—2F""n
. . . . . v’ v E -E vy
consistent electric field which appears under deformation. vivy vy T By
Also, the lattice deformation gives rise to an additional inho-
mogeneous magnetic fiela(r), and to deformation induced
corrections to the crystalline fields. Here, we omit the latter"®!
in the first steps of our analysis to include them later. The Flavz= %5 5 4 yM1%%(s s ). (5)
emergence of the electric and magnetic fields accompanying " aal TOTTO102 - Taal OO
the lattice deformation leads to a redistribution of the elecHere, « is the set of orbital quantum numbetrs,s the spin
tron densityN. The local change in the electronic density number, ands is the operator of the electron spin.

SN(r) equals The relationg1) and(2) have to be complemented by the

*

(-a), (4

vz

whereF’?’? are the matrix elements of the Fermi-liquid ker-
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condition of electrical neutrality of the system %5
SN(r) +eNdivu(r) = 0. (6) S L
= '
It follows from Eqgs.(1), (2), and(6) that g ,' \‘
!
MN ! !
curf(1 - 4mx)b(r)} = = 4mcurl — — divu(r) 1. (7) 1 : N
74 Ng 14 {
The set of simultaneous equatioffs, (2), and (6) was /’ s
first presented in previous work$.We use these equations
to excludeb(r) and to express the potentialr) in terms of
the lattice displacement vector. As a result we arrive at the /
expression for the electron for€&r) acting upon the lattice 0
under its displacement by the veciafr): B:B; By, B,B:
F(r) = Nobo{bo V [VU(r) 1} + M(bo X {V[Vu(r)] X bg}). FIG. 1. Schematic plot of the magnetic field dependence of

(8) 4y, (dashed lingand 011/021 (solid line) near a peak of quantum
. . ) . oscillations atB=By(T=0). The range of magnetic fields corre-
Here, b, is the unit vector directed alon@. This result(8)  gponding to structuralB, < B<B,) and/or magneti¢B; <B<Bj})
proves that the constanks, A, represent electron contribu- jnstapility is section lined.

tions to the elastic constants corresponding to the deforma-

tion of the lattice along the external magnetic fi€hg) and latter causes quantum oscillations in observables including
across this field\). Within the adopted geometry these con- magnetic susceptibilityy,. At low temperature§6<1) the
stants equal the electron terms in the compression elastivagnitude of quantum oscillations increases so much that
moduli ¢33 andcy;=¢,, (in Voight notatior). On the basis of the oscillating term could predominate at peaks of oscilla-
Egs.(1), (2), and(6) the expressions for these constants ardions. It was shown beforéwithin the simple model of iso-
derived®6 tropic electron liquidl that under such conditions bolﬂi and
1-4my, could go to zero near the oscillations peaks produc-

2
No= N_ (9) ing magnetic instability of the metal and softening of some
N, acoustic modes>® This is illustrated in Fig. 1. Here, mag-
netic fieldsB; andB; label thresholds of the magnetic insta-
Ay bility region, and the differential magnetic susceptibility di-
- ¢ LT
A= 7‘0<1 + 1- 47TX||)' (10 verges at these points. Singularity in the longitudinal

susceptibilityy, discussed in the earlier papérappears sig-
Here x,=dM,/ B+ (M,/ 3()(d¢/ B) is the longitudinal part nificantly closer to the field, indicating the position of the
of the magnetic susceptibilityy,=(IM,/ 9¢)(9{/ IB). oscillation peak. At the same time, the structural instability
As follows from Eg.(9), the quantity\, coincides with  thresholdsB, andB, are located farther frorB, thanB; and
the compression modulus of the electron liquid. The strucB), respectively, as shown in Fig. 1. However, these effects
ture of the quantity\ is more complicated. In addition to the could be revealed in experiments only at extremely low tem-
electron compression contribution,also contains a contri- peratures(of the order of 10 mK or lower The stringent
bution of a different origin. This extra term appears due torequirements for temperatures explain why the softening of
the inhomogeneous magnetic fidddr) caused with the lat- the phonon modes at peaks of quantum oscillations was not
tice deformation. This field arises due to the change in th@bserved so far.
magnetization of electrons caused by the deformation. So, Itis known that under certain conditions local geometrical
the appearance of the second term in the expresdi@dris a  features of the FS could significantly affect the electronic
manifestation of a magnetostriction effect. response of the metal. This happens when a dominating con-
When the differential magnetic susceptibility enhances intribution to the response functions results from small “effec-
the proximity of diamagnetic phase transition, the denominative” segments of the FS, where “efficient” electrons are con-
tor of the second term in E410) can take on values close to centrated. When the effective segments of the FS are nearly
zero. Owing to this, the quantity significantly grows in  cylindrical or include locally flattened pieces, this gives a
magnitude. For negative this enhancement brings a notice- significant enhancement in the number of effective electrons,
able decrease in the elastic consteft(the latter is the sum and can produce noticeable changes in the electronic re-
of the “bare” elastic modulusj; and the electron contribu- sponse of the metal. The influence of locally flattened and
tion A). In other words, the expressidh0) reveals a possi- neary cylindrical parts of the FS on the ultrasound attenua-
bility for softening of a longitudinal acoustic mode propagat-tion rate, as well as on the surface impedance of a metal has
ing perpendicularly to the magnetic fieBl. This possible been analyzed beforsee, e.g., Refs. 8—1L.0Quantum oscil-
softening arises due to magnetostriction, and it results frontations of the electron DOS in strong magnetic fields are
magnetic instability. specified with contributions from effective cross sections of
When a strong magnetic field is applied to a metal, thishe FS. Those are cross sections with minimum and maxi-
gives rise to quantum oscillations in the electron DOS. Theanum sectional areas. Therefore the local geometry of the FS
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in the vicinities of these cross sections has to affect both 15 (-1 - )

magnitude and shape of the oscillatidAThis can influence A==, = z,//r(e)cos( D —)cos( wrﬁ). (14)

anomalies of the elastic moduli under the present study and Yr=1 NT 4

create much more favorable conditions for their observations giliations described by Eqg13) and (14) differ in

in metals, as we show below. . . . phase as well as amplitude. The amplitude of usual oscilla-
We consider a metal whose FS is axially symmetric in the;q o given by Eq(14) is of the order ofy™1672, while Eq.

vicinity of an extremal cross section pj=p, with the area (13) gives a magnitude of the order gf*/ 9(1—2()/2_ There-

Aex. We assume the magnetic fielilto go along the sym-  ¢510 “the amplitude of oscillations related to the extremal
metry axis. The general expression for the FS curvature ne@,qtion of zero curvature is approximatefy161/2) 1)/

P,=Po could be written in the form times greater than that of the usual quantum oscillations. As

1 d2A/dx2 a result, the contribution due to an extremal section with zero
K(X):_E - (11)  curvature can be considerabiynore that tenfold greater
Piex than contributions due to other extremal sections, and the

Here, x=(p,—Po)/ Pm: Pm iS the maximum value of the qua- functionA can reach values of the order of unity at peaks of

simomentum componer, at the FS. Now, we adopt the oscillations even afi~ 1. On these grounds we conclude that
following approximation for the cross-sectional area aroundhe most favorable conditions for observation of softening of

the extremal cross section elastic moduli at peaks of quantum oscillations occur in met-
5 ol als whose FSs include nearly cylindrical segments. We con-
AX) = Ag(1 £bX%7), (12 sider such FSs in further analysis.

whereb? is the dimensionless constafi®<1) and the pa- Assumingy<<1 we replace matrix elements included in

rameterl takes on values greater than 1. the Fermi-liquid kerne] with their semiclgssical anaI(_)gs
The very essence of the employed mode®) is that it~ ¢(P-P’) and(p,p’) which depend on quasimomenta of in-

describes an axially symmetric FS whose curvature turn&racting conduction electropsandp’. For axially symmet-

zero atp,=p,. The expression for the curvatut&l) shows ric FSs the Fermi-liquid functions take the form

that the approximatiofil2) is necessarily applicable to each , , ,

nearly cylindrical strip on any such FS. Otherwise the strip @(P,P) = @oo+ PP, P01+ (PLP' ) (P10t PP, p11), (15)

has a nonzero curvature. So we see that the md@ggives

the general expression for cross-sectional area of any nearly "= , / /

cylindrical segment of an axially symmetric FS. WAP.P") = Yoot PPzfor + (PuPL) (a0 * PoPzyn)- (16)
Assuminig that the cyclotron quantuff) is small com- To make our analysis more thorough we include deforma-

pared tof y 1= (2Q/)Y?<1] and using the modéll2) we  tion terms in the force&8) exerted by the conduction elec-

arrive at the following expression for the contribution from trons on the lattice. We present the components of the defor-

the nearly cylindrical cross section to the electron DOS osMmation potential, as

cillations:
Aafﬁ(p) = AaB + GHaﬁ(p)l (17)

=73 C 1)r¢(0)co<wryz+ E)co<wr&’) -
- ()M < gLz ¥ =4 Q) yvhere{\aﬁ is a tensor whose eIement; do not depeng,da
is a dimensionless constant, ail},; is the tensor of the
(13)  electron momentum flux density.

Here, y-(6) =1 6/sinhr 6, 7;=F(1/2I)/2I(b\f'7—r U T(x) is the The adopted approximations lead to the following expres-

gamma function, and (), is the spin splitting energy. Our sions for the corrections to the elastic constants
formula (13) agrees with the results obtained for a precisely

N2 [1+G/(1+Ay)TPA

cylindrical FS/and a Fermi circle in a two-dimensional con- T =Cp=— — o (18)
ductor (see, e.g., Refs. 11 and)12Ve arrive at the corre- g 1+(1+W-4mxyy)A

sponding results within the limit— . In general case we

can treat I” as a phenomenological parameter included in N2/ G \2 A

the model(12). Actual values of I” could be discovered in Cio=-— —( ) (19
experiments where the FS local geometry is revealed. This is g \1+A;) 1+(1+W=4mxy)A

the only trustworthy way to estimate the above parameter for

a particular metal. First-principle calculations are not accu-Whereg is the electron DOS in the absence of the external

rate enough to produce reliable results on fine geometricdl'@9netic field,

features of FSs although their shapes as a whole are well ) 5

known. 2= N[1+GA+A)TA (20)
Within the isotropic model the cross sectional area is de- 33 g 1+@Q+waA

scribed with the expressiofl2) wherel=b?=1, p,=0, and

pm is the radius of the Fermi sphere in quasimomenta spacey is related to the Landau diamagnetic susceptibi(ttye
In this particular case the oscillating functidntakes on a latter equals %Xo)- and the constantV originates from the
well-known form Fermi-liquid interaction
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B B A
W= —2—+—2 4 "2 (21) 0.9 0.9
1+ BO 1+ Bz 1 +A2
Here, dimensionless coefficierg, B,, andA, are related to ‘2\3: "(\f
the Fermi-liquid parametergy,, 41, and ¢q4 as follows: o 05 o 05
: f
Bo= thooS(P,)dPp;,
°"@mh3? ) " 0.1 0.1
-2 -1, -2 -1,
1 (B/B -1)x 10 (B/B -1)x 10
B,=—— dp,, 0 0
2 (th)gj P11S(p) pAR,

FIG. 2. Magnetic feld dependencies of the elastic congianpt
1 near the diamagnetic phase transitions. The curves plotted for
=—— | ¢1:9p,)p,Ap,. (22) =1, the parametdrtakes on values 8, 4, 2 from the left to the right
27 (2mh)? J 1 ‘ (left pane) and|=4, 6 takes on values 1, 2, 3 from the left to the

I I = 1 3 = =
It is noteworthy to mention that the shear modutysis also right (ight pane). For all curvesN=1G"! en™, ¥*=1%, Bo=10T.

affected due to magnetostriction. This was not discovered ifyaves propagating in metals are simply related to the elastic
the early analysis of Ref. 1, where the deformation contribuconstants. It follows from our results that the velocity of a
tions into the electron force were omitted. As for elastic conHongitudinal sound could depend on the direction of its
stantcss, it also can be reduced at the peaks of low temperapropagation. In the vicinity of the Condon instability the ve-
ture quantum oscillations but this effect is not related tolocity of sound propagating perpendicularly to the magnetic
magnetic instability. The expression fg; (20) does not field B could be noticeably reduced compared to the velocity
include the contribution arising due to magnetostriction. Theof sound propagating along Again, we may expect this
possible softening o€s; is directly connected with the be- effect to appear in metals whose FSs include nearly cylindri-
havior of the electron DOS under strong magnetic fields atal segments.
low temperatures. Such instability was predicted befoie Finally, it is known that the effect of magnetostriction can
have to remark here that the interaction among electrons sigause softening of some phonon modes in metals near the
nificantly influences all above effects. The value of the con-Condon magnetic instability. This effect can appear even in
stantW which accumulates effects of electron-electron inter-an isotropic metat.® The point of the present work is that the
actions within the framework of the Fermi-liquid theory, effects could be significantly strengthened when the immedi-
could significantly influence the temperature range wherate vicinities of some extremal cross sections of the FS are
both magnetic and lattice instabilities occur. nearly cylindrical in shape, so that the FS curvature turns

The functionA describing quantum oscillations is given zero at these cross sectioiisReal metals mostly have non-
by Eq. (13) and the amplitude of oscillations may become spherical and complicated in shape FSs. At present the main
comparable with unity at moderately low temperatures progeometric characteristics of the FSs, such as their connectiv-
vided that the FS shape reveals a fair proximity to a cylindeity, are well studied. On the contrary, local geometric fea-
near the extremal cross section. For examplé=a&, h(}/{  tures of the FSs has not been investigated in detail so far.
~1073, andB~10 T, the conditiony *'¢1=2/2'~1 could However, there is an experimental evidence that “necks”
be satisfied at temperatures of the order of 1 K. In usuatonnecting quasispherical pieces of the FS of copper include
metalsN~ 10°1-10??> cm ™3 and the term 4,7 in the de-  nearly cylindrical belt$! When the magnetic field is directed
nominator of Eq(18) can take on values of the order of 10 at along the axis of a neclfor instance, along thgl11] direc-
Y>~10%. Also, we introduce the quantity?=NZ1+G/(1 tion in the quasimomenta spacéhe extremal cross section
+A,)12/gc®, wherec? is the relevant “bare” elastic constant. of the neck could be expected to run along the nearly cylin-
The ratioN?/gc® in typical metals is rather smalN?/gc®  drical strip where the FS curvature turns zero. Itis also likely
~1072-10"). However, the values taken on hy could be  that the FS of gold possesses the same geometrical features
noticeably greater than that due to the deformation constarir it closely resembles that of copper. Another kind of ma-
G. The latter mostly accepts values of the order of unity. Soterials where we can expect the low-temperature softening of
we have grounds to expect the valued.dto be of the order Phonon modes to be manifested includes some layered struc-
of 107! rather than 1% tures with metallic-type conductivity[e.g., «—(BEDT

To proceed in the analysis of the experimental feasibility~ TTF);,MHg(SCN), group of organic metals Fermi sur-
of the effect, we numerically evaluate the decrease in théaces of these materials are sets of rippled cylinders, isolated,
elastic constant,; using our result18) and the above esti- or connected by link$! Based on the experiments on cyclo-
mations of the parameters included there. The results af&on resonance in these organic metalg, was shown that
shown in Fig. 2. We see that close enough proximity in thethe cylinders could have nearly cylindrical stri{¥sFor all
shape of an effective strip on the FS to a cylinder gives ris@bove listed substances we can expect the effect to be re-
to the structural instability near peaks of oscillationsgat vealed at reasonably low temperatufesl K) and reason-
=1. Also, it is demonstrated that the effect is washed out duably strong magnetic fieldel—10 T).
to the further rise in temperature. The effect is expected to be very sensitive to the geometry

Electronic contributions to the velocity of ultrasound of an experiment for extremal cross sections of the FS run
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along nearly cylindrical beltsif any) only at certain direc- stants. In summary, the effect of softening of phonon modes
tions of the magnetic field. When the magnetic field is tiltedat peaks of quantum oscillations in metals could be expected
away from such direction, the extremal cross section slipgso be observed in experiments. The most favorable condi-
from the nearly cylindrical piece of the FS. This does nottions for the effect exist in metals whose FSs include nearly
cancel possibilities of the effect, in principle, but makes re-cylindrical pieces. The efffect could be revealed in these
quirements for temperatures dramatically stringent, as Wagetals for some particular directions of the external mag-

discussed above. The present analysis was carried out withigetic field providing that an extremal cross section belongs to
the model of axially symmetric FS. The obtained resultsy quasicylindrical strip on the FS.

could be applied to actual metals when the magnetic field is

directed in parallel with a high order axis of symmetry of the | thank G. M. Zimbovsky for help with the manuscript.
crystalline lattice of a metal. Otherwise, it is very difficult to This work was supported in part by the NSF Advance pro-
separate out electron contributions to particular elastic congram Grant No. SBE-0123654.

1V. N. Bagaev, V. |. Okulov, and E. A. Pamyatnykh, Pis’'ma zZh. 80, 932(1995]; N. A. Zimbovskaya and J. L. Birman, J. Phys.:

Eksp. Teor. Fiz.27, 156 (1978; [JETP Lett.27, 144(1978]. Condens. Matterl2, 3337(2000.
2Ya. M. Blanter, M. |. Kaganov, and D. B. Posvyanskii, Usp. Fiz. 11p. ShoenbergMagnetic Oscillations in Metal¢Cambridge Uni-
Nauk 165 213(1995; [Phys. Usp.165 178(1995]. versity Press, New York, 1984see also; N. A. Zimbovskaya,

3Similar results for two-dimensional systems are presented G. | ;.q Geometry of the Fermi Surface and High-Frequency Phe-
Montambaux, M. Heriter, and P. Lederer, Phys. Rev. LBS. nomena in Metal¢Springer-Verlag, New York, 2001

2078(1985. 12
4For the most recent review on the theory of diamagnetic phas§3D' Shoenberg, J. LOVY Temp. PhyS6, 417 (1984,
transitions in metals see A. Gordon, I. D. Vagner, and P. Wyder, It should be emphasized that the present results are mostly ap-

Adv. Phys. 52, 385(2003. plied to convenient metals. One hardly could expect a cylindri-
5L. R. Testardi and J. H. Condon, Phys. Rev.1B3928(1970. cal segment of a considerable size to be included in the FSs of
6N. A. Zimbovskaya, V. |. Okulov, and E. A. Pamyatnykh, Fiz. such metals. The local geometrical features of the FSs are cru-

Met. Metalloved. 54, 224 (1982). cially important for the phonon modes softening to be revealed

7B. T. Lazarev, E. A. Kaner, and L. V. Chebotarev, Fiz. Nizk. there.
Temp. 4, 808(1978 [Sov. J. Low Temp. Phys3, 394(1977]; 143, WosnitsaFermi Surface of Low-Dimensional Organic Metals

E. A. Kaner, L. V. Chebotarev, and E. Uvimanhbid. 4, 1218 and Superconductor&Springer, Berlin, 1996

(1978 [ibid. 4, 789(1978]. 153, V. Demishev, A. V. Semenov, N. E. Sluchanko, N. A. Samarin,
8V. M. Kontorovich, Usp. Fiz. Nauk27, 216 (1984 [Sov. Phys. I. B. Voskoboinikov, V. V. Glushkov, J. Singleton, S. J. Blundell,

Usp. 27, 134(1984)]. S. O. Hill, W. Hayes, M. V. Kartsovnik, A. E. Kovalev, V. Kur-
M. I. Kaganov and Yu. V. Gribkova, Fiz. Nizk. Templ7, 907 moo, P. Day, and N. D. Kushch, Phys. Rev5B, 12794(1996.

(1991); [Sov. J. Low Temp. Phys17, 473(1999)]. 16N. A. Zimbovskaya, Zh. Eksp. Teor. Fiz113 1965 (1998;
10N, A. Zimbovskaya, Zh. Eksp. Teor. Fid07, 1672(1995 [JETP [JETP 86, 1220(1998].

024109-5



