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The analytic mean-field potentialsAMFPd method proposed by Wanget al. sWAMFPd is verified to be
equivalent to the free-volume theory. A generalized analytic mean-field potentialsGAMFPd is established in
terms of the free-volume theory and the nearest-neighbor pairwise interaction assumption. The GAMFP con-
tains an integral. By using numerical integrated formula to approximately evaluate the integral, the GAMFP is
transformed to the WAMFP or other forms of the AMFP, and the WAMFP can be seen as an approximate
analytic version of the GAMFP. The GAMFP is exact for nearest-neighbor Lennard-JonessNN-LJd model
solid. The numerical results for thermodynamic quantities of NN-LJ solid from the GAMFP is compared with
the WAMFP and other AMFP’s with slightly different forms. The comparison shows that the numerical results
from the WAMFP are almost completely in agreement with the GAMFP and are better than several other
approximate AMFP’s. The GAMFP and WAMFP with quantum modification have been applied to Vinet-type
solids. The numerical results show that the theoretical values of GrüneisengG and Debye temperatureQD for
three type solids are qualitatively in agreement with experiments, but the agreement is not satisfactory quan-
titatively. The predicted values of bulk thermal expansivity are too large for rare-gas solids, too small for alkali
halides, and for metallic solids the agreement is slightly better but also is not satisfactory. Especially the
predicted variations of bulk thermal expansivity and compressibility versus temperature are fairly bad; except
for copper, the prediction is fortunately acceptable. It is shown that the fundamental spirit of the GAMFP and
WAMFP to use all cold energy to evaluate thermal properties is in contradiction with embedded-atom model
sEAMd. It is necessary to improve the GAMFP and WAMFP in terms of the EAM by the replacement of all
cold energy with only cold energy from interaction between metallic atoms.
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I. INTRODUCTION

Over the past decades, a large amount of progress has
been made upon the properties of a material at extreme
conditions.1 In the experimental direction, the most impor-
tant sources of experimental information on the thermal
properties of a material at high pressures and temperatures
are dynamic shock-wave experiments and static compression
in the diamond anvil cell. X-ray diffraction with synchrotron
radiation and diamond-anvil cells has extended the range for
accurate lattice parameter determinations into the multi-
megabar region exceeding 300 GPa.2,3 However, measure-
ments of temperature in shock experiments are extremely
difficult for nontransparent materials like iron. The results of
different groups on the Hugoniot temperature at a given pres-
sure differ by more than a thousand degrees. Theoretical cal-
culations can help to resolve this issue, but up to now,ab
initio thermodynamic studies, such as the density-functional
theory, the augmented-plane-wavesAPWd method,4 and the
quantum-statistical model5 sQSMd only can give reliable de-
scription for cold pressure-volumesP-Vd relationship. As for
the theoretical calculation of the thermal physical properties,
it still remains a great challenge to us.6,7

The study of the temperature dependence of the properties
of materials requires a proper account of nuclear motions and
thermal excitation of electrons. For the contribution of elec-
trons, it can be well considered by using the Fermi gas
theory with the electronic density of states calculated from

ab initio methods.8 And for simplicity, in this paper, we focus
on the contributions of ions to thermodynamic properties.
The basic difficulty in the systematic theoretical calculation
of the thermodynamic properties of a substance by means of
statistical physics is how to correctly incorporate the struc-
turally complicated interatom interaction of the many-body
problems.7 Although some theoretical methods have been de-
veloped, substantial uncertainties or difficulties exist. For the
most commonly used Debye-GrüneisensDGd model,9 which
separates the thermal contributions from the zero-
temperature equation of statesEOSd, explicit anharmonic
contributions have been worked out, but the anharmonic con-
tributions have been shown being very important at high
temperature.

The cell model is a mean-field approximation to the ther-
mal contribution of atoms to the Helmholtz free energy of
crystalline phases.1,10–13The model assumes that each atom
is confined to the Weigner-SeitzsWSd cell formed by its
nearest neighbors. Although interatomic correlations are ne-
glected, the cell model includes anharmonic terms which are
important for high temperatures, but which are ignored in the
DG model and quasiharmonic lattice dynamics. Many au-
thors have demonstrated that the cell model matches success-
fully the thermodynamic properties of the fcc Lennard-Jones
crystal11,12 and sodium chloride13 calculated from Monte
Carlo simulations. Wasserman and Stixrude further applied
the cell model to a metallic solid iron.1 The calculated prop-
erties are in good agreement with available static and shock-
wave experimental measurements.
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In terms of the cell model,1,6,7 the ionic part of Helmholtz
free energy of per ion can be written as

FsV,Td = EcsRd − kTfs3/2dlns2pmkT/h2d + lnv fg, s1d

v f = 4pE
0

rm

expf− gsr,Vd/kTgr2dr, s2d

where EcsRd;EcsVd is the 0-K total energy of per ion. It
should be a function of volumeV, but also can be seen as a
function of the nearest distanceR. V is the specific volume of
per ion, rm is the WS radius,V=R3/g0=4prm

3 /3, g0 is the
structure constant as shown in Eqs.s20d and s22d, m is the
weight of the lattice ion,gsr ,Vd is the mean-field potential6,7

sMFPd, andr corresponds the distance of a single atom dis-
placed from its equilibrium position, while all the other at-
oms remain in equilibrium. The central issue of the mean-
field theory is how to calculate the MFPgsr ,Vd. In this
regard, the free-volume theory11,12 sFVTd was chosen to cal-
culate the MFP by the average of the empirically derived
pairwise potentials, and this point substantially limited its
application to metallic materials while the tight-binding
total-energysTBTEd classical cell model was chosen to cal-
culate the MFP by the tight-binding total-energy method for
which the parameters were determined by the first-principles
linearized APW calculation.1 Because the MFP calculation in
the TBTE model also is very time consuming and inconve-
nient, in a series of recent papers, Wanget al. proposed a
classical analytic MFPsWAMFPd.6,7,14–19They think that for
a crystal with the inversion symmetry, one can imagine that
the vibration of the lattice ion is symmetrical with respect to
its equilibrium position; i.e., the MFP seen by the lattice ion
should be invariant under the inversion operation. Based on
the physical consideration, they constructed the following
analytic WAMFP:

gsr,Vd =
1

2
fEcsR+ rd + EcsR− rd − 2EcsRdg

+
lr

2R
fEcsR+ rd − EcsR− rdg. s3d

Wanget al. further demonstrated the reasonability of Eq.s3d
by the fact that the three commonly used expressions for the
Grüneisen parametergG—i.e., that due to Slatersl=−1d,
that due to Dugdale and MacDonaldsl=0d, and that for the
FVT sl=1d—can all be explicitly deduced if one takes the
second-order approximation to Eq.s3d. In this work, we will
consider two cases corresponding tol=0 and 1. The
WAMFP model had been applied to 14 typical metalssAl,
Cu, Ta, Mo, W, Ce, Fe, MgO, Be, Pt, Au, W, Th, and
Ud,6,7,14–19indicating that both the calculated Hugoniot states
and 293-K isotherms fell well in the experimental uncertain-
ties.

In terms of Wang’s works and the statement cited above,
we postulate that Wanget al. believe that their WAMFP is a
new physical model being different with and independent to
the FVT and TBTE models. However, in this paper, we de-
veloped a generalized AMFPsGAMFPd in terms of the
nearest-neighbor FVT. And we show that in physical es-

sence, the WAMFP is equivalent to the GAMFP, and in a
mathematic aspect, it only is an approximate edition of the
GAMFP based on the trapezoid integration formula. Al-
though the approximation is roughest, the numerical results
for the nearest-neighbor Lennard-JonessNN-LJd model solid
show that the agreement of the WAMFP with the integrated
GAMFP is fairly good. It has been shown by many authors
that the Vinet EOS has fairly good precision for many prac-
tical solids than many other EOS with more complicated
form.20–23 In many of the works of Wanget al., they also
have fitted theirab initio cold energy dataEcsRd by using the
Morse potential6 or analytic expression from modified Vinet
EOS sRef. 19d and further applied the fitted expressions to
evaluate thermal contribution. Thus we apply the GAMFP
and WAMFP to Vinet EOS to check the applicability of the
AMFP to practical solids.

In many works on practical EOS, only the classical cases
have been considered for the complication of disposing
quantum effects or used the Einstein or Debye models with
constant characteristic temperaturesQE or QDd and
Grüneisen parametersgGd to approximately consider the
quantum modification.20,24,25However, such a disposition is
a rough approximation; it only is applicable to low-
compression range or low-pressure conditions. In order to
extend the applicable range of Einstein and Debye models,
various semiempirical expressions have been developed for
QE, QD, and gG sRefs. 26–28d. In 1942, Pitzer and Gwinn
sPGd proposed a semiempirical method to consider the quan-
tum modification of a classical system.29 And in recent years,
the PG method has been applied to many molecular systems
with anharmonic interaction.30,31 Several years ago, Hardy,
Lacks, and ShuklasHLSd firstly applied modified PGsmPGd
method to consider the quantum modification for Monte
Carlo sMCd simulation of a classical solid system without
mentioning Pitzer and Gwinn’s work.32 However, after the
work of Hardyet al., works using the mPG method to solids
are scarce. The reason may be is that the mPG method is
firstly proposed for a classical molecular dynamic simula-
tion, yet it is difficult to obtain the quantum modifications in
the MD simulation. But an analytic EOS with some approxi-
mation is favorable in practice, such as the DG-type EOS,
and people have not noticed the strength of mPG method for
improving these analytic EOS.

In one of our recent works,33,34 we reformulated the PG
method with explicit physical meanings. It is shown that the
quantum effect is important at low temperature, and it can be
disposed under the harmonic framework. The anharmonic
effect is important at high temperature and tends to zero at
low temperature, and it can be disposed by using a classical
approximation. The alternative formulation is easier for vari-
ous applications and has been applied to a Debye-Grüneisen
solid with the generalized LJ intermolecular interaction. The
expressions for the Debye temperature and Grüneisen param-
eter as a function of volume are analytically derived. The
analytic equation of state is applied to predict the thermody-
namic properties of solid xenon at normal pressure with the
nearest-neighbor Lennard-Jones interaction and is further ap-
plied to predict the properties of solid xenon and krypton at
high pressure by using an all-neighbor LJ interaction. The
theoretical results are in agreement with the experiments. In
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this paper, we further apply the mPG method33,34 combining
the GAMFP and WAMFP to Vinet EOS to consider the quan-
tum and anharmonic effects at same time.

The rest of this work is organized as follows. In Sec. II we
develop the GAMFP in terms of the nearest-neighbor FVT
and verify the equivalence of the WAMFP with the GAMFP.
In Sec. III, the GAMFP and WAMFP are applied to NN-LJ
model solid. In Sec. IV, the GAMFP and WAMFP are ap-
plied to practical solids combining the Vinet EOS and in-
cluding the quantum effects. In Sec. V, the numerical results
are presented and discussed. At last, conclusive remarks are
given in Sec. VI.

II. GENERALIZED ANALYTIC MEAN-FIELD POTENTIAL

Suppose the pairwise potential function is«srd. In terms
of the free-volume theory and only considering the contribu-
tion of nearest neighbors,8–13,34the MFP can be expressed as

gsr,Vd = df«sR,rd − «sR,0dg, s4d

whered is the number of nearest neighbors and«sR,rd is the
average potential over the solid angle:

«sR,rd =
1

4pr2E
0

2p E
0

p

«suR2 + r2 − 2Rr cosuu1/2dr2 sinududw

=
1

2
E

0

p

«suR2 + r2 − 2Rr cosuu1/2dsinudu. s5d

Introducing new variablet=cosu, we have34

«sR,rd =
1

2
E

−1

1

«suR2 + r2 − 2Rrtu1/2ddt, s6d

and the cold energy of per ion is

EcsRd =
1

2
d«sRd =

1

2
d«sR,0d s7d

and

Ecsr,td ; EcsuR2 + r2 − 2Rrtu1/2d =
1

2
d«suR2 + r2 − 2Rrtu1/2d,

s8d

EcsR,rd =
1

2
E

−1

1

EcsuR2 + r2 − 2Rrtu1/2ddt ;
1

2
E

−1

1

Ecsr,tddt.

s9d

Substituting Eqs.s7d and s9d into Eq. s4d, we obtain the fol-
lowing GAMFP:

gsr,Vd = 2fEcsR,rd − EcsRdg =E
−1

1

Ecsr,tddt − 2EcsRd.

s10d

We know that Eq.s9d is accurate for the nearest-neighbor
model solids; however, its application to practical solids is
approximate. The range of interatom interaction of a solid is
shorter; the applicability of the approximation is better. And
for the solids containing long-range interatom interactions,
such as alkali halides, the applicability maybe worsens.

Considering that the integral contained in Eq.s9d is incon-
venient for practical applications, we may develop analytic
approximate expressions for MFP. And it is to be shown that
the WAMFP only is the roughest approximation of Eq.s9d.
For simplicity, we introduce following shortened notations:

Ecsr,1d = EcsR− rd, Ecsr,− 1d = EcsR+ rd,

Ecsr,t0d = EcsRd, t0 = r/2R. s11d

If we approximate the functionEcsr ,td in Eq. s9d by the
piecewise linear function

Ecsr,td =5
1

2s1 + t0d
hfEcsr,t0d + t0Ecsr,− 1dg + fEcsr,t0d − Ecsr,− 1dgtj s− 1 ø t ø t0d,

1

2s1 − t0d
hfEcsr,t0d − t0Ecsr,1dg − fEcsr,t0d − Ecsr,1dgtj, st0 ø t ø 1d,

s12d

we obtain an AMFP under the simplest trapezoid approxima-
tion:

EcsR,rd <
1

4
fs1 + t0dEcsr,− 1d + s1 − t0dEcsr,1dg +

1

2
EcsRd,

s13d

gsr,Vd <
1

2
FS1 +

r

2R
DEcsR+ rd + S1 −

r

2R
DEcsR− rdG

− EcsRd. s14d

By comparing Eq.s14d with Eq. s3d, it is obvious that Eq.
s14d just is the WAMFP withl=1/2. In Wang’s works and
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our following practical calculations, it is shown that the dif-
ference of numerical results for thermodynamic quantities
from the WAMFP with l=0, 1/2, 1, respectively, is very
little and the WAMFP can be seen as equivalent to the
GAMFP. We would develop another AMFP in terms of the
parabola approximation. Replacing the functionEcsr ,td in
Eq. s10d by the quadratic function

Ecsr,td < a0 + a1t + a2t
2, s15d

we obtain

gsr,Vd <
1

3
FS1 +

r

R
DEcsR+ rd

+ S1 −
r

R
DEcsR− rd − 2EcsRdG . s16d

The concrete derivation of Eq.s16d is given in Appendix A.
By comparing Eq.s16d with Eqs.s3d and s14d, it is obvious
that the form of Eq.s16d just is similar to the WAMFP with
l=1, except the prefactor 1/3 in Eq.s16d is different from
1/2 in Eqs.s3d and s14d.

From the above derivations, we can see that one can de-
velop many AMFP’s with different extents of the approxima-
tion. For clarity, we do not give more. And in following
sections, we will distinguish the integrated GAMFPsexactd,
WAMFP with l=0 and 1strapezoid approximation of the
GAMFPd, and parabola approximation of the GAMFP, Eq.
s16d, by using the subscriptsi =1,2,3, respectively. The har-
monic approximation for the three AMFP can be derived as
follows:

gisx,Vd < Hs1/3dcsVdR−2r2, for i = 1,3,

s1/2dcsVdR−2r2, for i = 2,

=
1

12
f5 + s− digcsVdR−2r2

;
1

2
mvi

2r2, i = 1,2,3, s17d

wherem is atomic weight,vi is the harmonic frequency of
atom, and

csVd = FEc9sRd +
2l

R
Ec8sRdGR2, s18ad

l = 1, for i = 1,3, l = 0,1, for i = 2. s18bd

Equationss17d ands18d show that the WAMFP gives out an
incorrect strength coefficient and thus different values of vi-
brating characteristic temperature as compared with the
GAMFP, but all three expressions can give the same
Grüneisen coefficient.

III. APPLICATION TO A NEAREST-NEIGHBOR
LENNARD-JONES MODEL SOLID

In order to check the equivalence of the WAMFP with the
GAMFP, we would apply the above formalism to the NN-LJ

model solid, for the solid the GAMFP given in Eq.s10d is
accurate. The LJ potential is as follows:

«srd = «0FS re

r
D12

− 2S re

r
D6G . s19d

Introducing the reduced variables and notations

V = R3/g0, V* = re
3/g0, L* = d«0, s20d

x = r/R, xm = f3/s4pg0dg1/3, s21d

whered andg0 are structural constants,33,34

d = 12 sfccd, 8 sbccd,

g0 = Î2 sfccd, 3Î3/4 sbccd, s22d

we have

EcsRd =
1

2
d«0FS re

R
D12

− 2S re

R
D6G =

1

2
L*FSV*

V
D4

− 2SV*

V
D2G ,

s23d

and in terms of Eqs.s8d, s10d, s3d, ands16d, we obtain

gsr,Vd ; gisx,Vd = L*FLisxdSV*

V
D4

− 2MisxdSV*

V
D2G ,

s24d

where the nondimensional auxiliary functionsLisxd and
Misxd for three cases with subscriptsi =1,2,3 are given in
Appendix A. Defining the nondimensional free volumev f
and comparing with Eq.s2d, we obtain

v f ; 4prm
3 v f = 3Vv f , s25d

v f =E
0

xm

expf− gisx,Vd/kTgx2dx

=E
0

xm

expH− SL*

kT
DFLisxdSV*

V
D4

− 2MisxdSV*

V
D2GJx2dx.

s26d

In terms of thermodynamic relationships, we can easily
derive the analytic EOS and the expressions for other ther-
modynamic properties. The EOS is as follows:

P = − S ]F

]V
D

T

= PcsVd + P*sT,Vd, s27d

where PcsVd is the cold pressure,P*sT,Vd is the thermal
pressure,

Pc ; PcsVd = − S ]Ec

]V
D

T

=
L*

V* F2SV*

V
D5

− SV*

V
D3G , s28d

P* ; P*sT,Vd =
kT

V
F1 +

1

v f

V
]v f

]V
G , s29d
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V
]v f

]V
= −

1

kT
E

0

xm

V
]gisx,Vd

]V
expf− gisx,Vd/kTgx2dx,

s30d

V
]gisx,Vd

]V
= 4L*FLisxdSV*

V
D4

− MisxdSV*

V
D2G . s31d

The expressions for internal energyU and excess internal
energyUE are as follows:

U = F − TS ]F

]T
D

V

=
3

2
kT+

kT

v f

·T
]v f

]T
;

3

2
kT+ UE, s32d

UE =
L*

v f
E

0

xm

gisx,Vdexpf− gisx,Vd/kTgx2dx. s33d

The thermal capacity with constant volume is as follows:

CV = S ]U

]T
D

V

=
3

2
k + kSL*

kT
D2F− SUE

L* D2

+
1

v f

QsT,VdG ,

s34d

QsT,Vd =E
0

xm

gi
2sx,Vdexpf− gisx,Vd/kTgx2dx. s35d

For simplicity, we further introduce the reduced variables

Tr =
kT

L* , Vr =
V

V* , Pr =
P*V*

L* , s36d

Fr =
FE

L* = −
kT

L* lnv f, Ur =
UE

L* , CVr =
CV

k
, s37d

whereFE the is excess Helmholtz free energy.

IV. APPLICATION TO THE VINET EQUATION OF STATE
INCLUDING QUANTUM MODIFICATION

In this section, we will apply the AMFP method to
the Vinet EOS sRefs. 20–23d including quantum
modification.33,34 In many of Wang’s and other relevant
works, only the classical case was considered. In order to
obtain thermodynamic properties in whole temperature
ranges, one must consider the quantum modifications at low
temperature condition. The EOS should be formulated as

P = PcsVd + P*sT,Vd + PqsT,Vd, s38d

where the equations forP*sT,Vd are the same as Eqs.s38d
and s39d. PqsT,Vd is the quantum modification; it can be
evaluated by using the mPG method33,34 and Debye-
Grüneisen approximation, and its expression will be given in
the following. As for the cold pressure, the Vinet EOS
gives20–23

PcsVd ; PcsRd = 3B0
s1 − yd

y2 expfhs1 − ydg, s39d

y = sR/R0d = sV/V0d1/3, h =
3

2
sB08 − 1d, s40d

where the subscript “0” represents zero temperature and zero
pressure.V is the volume,B is the bulk modulus, andB8 is
the derivative ofB with respect to pressure. In order to de-
rive the analytic expression of MFP, we should derive cold
energy for Vinet EOS

EcsRd =
3B0V0

h2 sh − 1 −hydexpfhs1 − ydg. s41d

Introducing the new variable

s= R0
−1uR2 + r2 − 2Rrtu1/2 = yu1 + x2 − 2xtu1/2, s42d

the average cold energy can be evaluated as follows:

EcsR,rd =
1

2y2x
E

ys1−xd

ys1+xd

EcsR0sdsds=
3B0V0

2h4y2x
ffss+d − fss−dg,

s43d

where

fssd = fh2s2 + s3 − hdshs+ 1dgexpfhs1 − sdg, s44d

s+ = ys1 + xd, s− = ys1 − xd. s45d

Thus the GAMFP for a Vinet solid can be evaluated:

g1sx,Vd = 2bEcsR,rd − EcsRdc. s46d

Correspondingly, the WAMFP can be expressed as

g2sx,Vd =
1

2
fs1 + xdEcsR0s+d + s1 − xdEcsR0s−d − 2EcsRdg.

s47d

The derivatives of the AMFP with respect to the volume
needed for Eqs.s38d and s39d can be derived as

V
]gisx,Vd

]V
=

y

3

]gisx,Vd
]y

, s48d

y
]g1sx,Vd

]y
= − 4EcsR,rd +

1

y2x
fs+

2EcsR0s+d − s−
2EcsR0s−dg

+ 6PcsRdV0y
3, s49d

y
]g2sx,Vd

]y
= −

3

2y
fs+

4PcsR0s+dV0 + s−
4PcsR0s−dV0g

+ 3PcsRdV0y
3. s50d

In terms of the DG approximation, the quantum modification
PqsT,Vd can be expressed as

PqsT,Vd =
gG

V
sED

* − EDcl
* d, s51d

EDcl
* = 3kT, s52d

whereED
* is the thermal energy under the quantum harmonic

approximation andEDcl
* is its classical limitation. In the
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original DG approximation, the calculation ofED
* involves

integration. In Appendix B, we develop an analytic expres-
sion andED

* can be analytically evaluated by using Eq.sB8d.
As for the Debye characteristic temperature, it can be deter-
mined by Eq.s17d,

QDi =
4

3
QEi =

4"vi

3k
=

2"

9kR
Î6f5 + s− digcsVd/m, s53d

where, for simplicity, we only consider the case withl=1
for the WAMFPsas i =2d, and

csVd = − 3
]

]y
sy4PcV0d = 9B0V0yfsh + 3dy − hy2 − 2g

3expfhs1 − ydg, s54d

y
]

]y
csVd = − 9B0V0yfhsh + 6dy2 − h2y3 − s4h + 6dy + 2g

3expfhs1 − ydg, s55d

and the expressions of Grüneisen coefficient for three cases
are the same and can be derived as

gG = −
V

QD

]QD

]V
=

1

3
−

1

6

y

csVd
]csVd

]y

=
fhsh + 4dy2 − h2y3 − 2hy − 2g

6fsh + 3dy − hy2 − 2g
. s56d

Supposingy=1, we obtain expressions forQD andgG at zero
pressure:

FIG. 1. Variation of reduced excess free en-
ergyFr versus reduced temperatureTr for a clas-
sical nearest-neighbor Lennard-Jones model solid
at four reduced volumesVr =1.5, 1.1, 0.7, 0.3.
Lines: exact expression Eq.s10d. Circles:
WAMFP with l=1. Squares: WAMFP withl=0.
Crisscrosses: approximate expression, Eq.s16d.

FIG. 2. As for Fig. 1, but for reduced pressure
Pr.
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QD0i =
2"

3kR0

Î6f5 + s− digB0V0/m sy = 1d, s57ad

QD0i = 182.673 hf5 + s− digB0V0m/mmj1/2sg0V0md−1/3 sKd,

s57bd

B0¯GPa, V0m¯cm3 mol−1, mm¯g mol−1, s57cd

gG0 = s3B08 − 5d/6 sy = 1d. s58d

V. NUMERICAL RESULTS AND DISCUSSION

In order to check the accuracy of three approximate ex-
pressions of the AMFP, we have made comparative calcula-
tions for the variation ofFr, Pr, Ur, andCVr of the NN-LJ
model solid versusTr by using the equations derived previ-
ously. The results are depicted in Figs. 1–4. For all calcula-
tions, we have considered four cases with reduced volumes
Vr =1.5, 1.1, 0.7, and 0.3, respectively. In terms of the EAM
results, the potential depths«0/kd of pairwise potential for
most metals about ranges from 1000 to 2000 K, and the
10 000 K approximately corresponds to the range ofTr as
s0.5–1d. So our calculations have been made for the range of
Tr within s0–1d.

FIG. 3. As for Fig. 1, but for reduced excess
internal energyUr.

FIG. 4. As for Fig. 1, but for reduced capacity
at constant volumeCVr.
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Figure 1 shows that the agreement of the reduced free
energy calculated from three approximate expressions is in
good agreement with the exact one, but the approximate ex-
pression, Eq.s16d, is slightly better than the WAMFP. Fig-
ures 2–4 show that the cases for reduced pressure, excess
internal energy, and thermal capacity, the WAMFP withl
=1 gives the best agreement with the exact one. But one
exception occurred for the WAMFP withl=0, which is for
the thermal capacity with low densityVr =1.5, the tendency
as temperature tends to zero is incorrect. In other conditions,
the WAMFP withl=0 and 1 gives equivalently good results
for all four physical quantities. And we can postulate that
approximate expression, Eq.s14d, corresponding to the
WAMFP with l=1/2 must give equivalently good results.
Thus one can conclude that the WAMFP indeed is equivalent
to the GAMFP, Eq.s10d, and also is equivalent to free-
volume theory with nearest-neighbor interactions.

In order to check the applicability of several AMFP ex-
pressions, we apply the formalism developed in Sec. IV to
three types of solids, including rare-gas, alkali-halide, and
metallic solids. In Table I, the calculated results for the
Grüneisen parameterssgGd, Debye characteristic temperature
sQDd, and volume thermal expansivitysaTd at the reference
temperaturesTrefd and zero pressure are compared with ex-
perimental data. The experimental data listed in the table are

taken from Ref. 25. ForaT, we considered four cases. The
first case is the exact AMFP, Eq.s10d, with quantum modi-
fication; the second case is the WAMFP withl=1 and with
quantum modification; the third case is the quantum har-
monic DG approximation; and the fourth case is the classical
WAMFP with l=1. For QD, we only considered first and
second cases. The table shows that for 22 typical materials,
the calculatedgG only is qualitatively in agreement with the
experimental data. For rare-gas and alkali-halide solids, the
agreement of calculated values ofQD with experimental data
for case 2 is better than case 1. But for metallic solids, case
1 is better than case 2. Because case 1 belongs to a strict
nearest-neighbor GAMFP, case 2 is the WAMFP in Eq.s3d,
for which the prefactor 1/2 in Eq.s3d is different from 1/3 in
Eq. s16d, because the value 1/3 just corresponds to the har-
monic approximation of GAMFP and 1/2 can be seen as a
compensate corresponding to non-nearest neighbors for the
WAMFP. We can postulate from the results ofQD that the
non-nearest interaction is more important for rare-gas and
alkali-halide solids than metallic solids. Such a situation
shows that the pairwise interaction between metallic atoms
must be short range and this is in agreement with the NN-
EAM potential for metallic solids developed by Baskes.35,36

Although the NN-EAM potential is fairly simple, it has been
used by many other authors, and it has been shown to ex-
plain many properties of metallic solids.35–39

TABLE I. Comparison of experimental data with calculated results for the Grüneisen parameterssgGd, Debye characteristic temperature
sQDd, and bulk thermal expansivitysaTd at a reference temperaturesTrefd and zero pressure. Cal. 1: exact AMFP with quantum modification.
Cal. 2: WAMFP withl=1 and quantum modification. Cal. 3: quantum harmonic DG approximation. Cal. 4: classical WAMFP withl=1.
The experimental data used in the table are taken from Ref. 25.

gG QD sKd aTsTrefd s10−6 K−1d
Solid Exp. Cal. Exp. Cal. 1 Cal. 2 Tref Exp. Cal. 1 Cal. 2 Cal. 3 Cal. 4

Ar 2.7 2.92 92 76.9 94.2 40 1068 1649 1622 1482 1832

Kr 2.8 2.82 71.9 56.5 69.1 60 904 1224 1206 1266 1276

Xe 2.8 3.07 64 51.7 63.3 60 600 835 826 869 868

NaCl 1.59 1.84 321 212 260 298 120 72.79 72.63 73.74 75.22

LiF 1.63 1.78 735 453 554 300 99.6 57.22 57.27 55.58 71.90

NaF 1.52 1.81 489 318 390 300 98.1 63.23 63.15 63.29 68.01

KCl 1.41 1.89 235 171 209 300 110.8 73.78 73.59 75.19 75.31

CsCl 2.03 2.09 151 114 140 300 141 74.96 74.72 77.18 75.60

Li 0.878 0.922 344 383 469 294 139.8 137.8 137.7 134.9 154.0

Na 1.24 1.23 159 168 206 294 213 203.7 202.8 208.2 208.1

K 1.24 1.27 90.7 100 123 297 236 224.3 223.2 234.7 225.9

Rb 1.26 1.24 56 62 75.9 295 270 226.0 224.9 238.5 226.4

Cs 1.14 1.10 38.7 44.7 54.7 270 290 211.8 211.1 220.9 212.1

Al 2.16 1.74 431 453 555 300 69.7 51.91 51.93 51.27 60.79

Fe 1.66 2.16 472 458 561 300 35.1 41.93 41.94 41.54 48.68

Cu 2.00 1.99 344 377 462 300 50.4 48.36 48.34 48.15 53.98

Zn 1.90 1.62 327 278 341 300 89.1 64.81 64.73 65.03 68.66

Ag 2.35 2.27 227 226 326 300 57.6 53.85 53.75 54.23 56.90

Cd 2.20 2.55 209 197 242 300 94.5 104.3 103.8 108.0 107.0

Pt 2.63 1.97 238 323 396 300 26.8 17.90 17.91 17.94 19.48

Au 2.99 2.42 162 255 312 300 42.5 34.06 34.02 34.28 35.87

Pb 2.60 2.02 105 137 168 300 86.7 64.76 64.60 66.10 65.70
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Table I also shows that the difference of calculatedaT
between four cases is small. The reason maybe is that the
reference temperatureTref is high enough to make the clas-
sical approximation being applicable, and at these values of
Tref, the anharmonic effects are not too obvious. But the
agreement of calculatedaT with experimental data is fairly
bad for rare-gas and alkali-halide solids. We believe that the
reason also is the negligence of non-nearest interactions. Al-
though for metals the agreement is slightly better, only for
few metallic solids is the agreement just acceptable. In Figs.
5–8, we plotted the variation of compressibility and thermal
expansivity coefficients versus temperature for four typical
materials—that is, gold, copper, sodium chloride, and xenon.
The experimental data used in these figures are taken from
Refs. 20, 24–26, and 40. These figures show that the agree-
ment of the AMFP with experiment is acceptable only for
copper, the agreement is overall fairly bad for the other three
materials. The situation just is in agreement with Table I.

However, the four figures also show that the theoretical re-
sults from Vinet’s semiempirical modification are in good
agreement with the experiment as the temperature being
higher than theQD. This is because Vinet’s semiempirical
modification has used more experiment information, includ-
ing the experimental data ofgG, QD, andaT at some refer-
ence temperature.

At last, we point out that the direct application of the
AMFP to metallic solids is in contradiction with the
EAM.35–39 In terms of Eqs.s3d and s10d the AMFP uses all
cold energyEcsRd to evaluategsr ,Vd, and this is equivalent
to evaluating thermal part of thermodynamic quantities by
using all cold energy. But numerous works35–39on the EAM
have shown that in order to explain most physical properties
of metallic solids, one must divideEcsRd into two parts. One
part is the contribution of free-electron gas; another part is
the contribution of pairwise interaction between metallic at-
oms. This also means that the pairwise interaction between

FIG. 5. Variation of compressibility coeffi-
cient bps10−11 cm2 N−1d and bulk thermal expan-
sivity coefficientaT s10−6 K−1d, at zero pressure
versus temperatureT for gold. Line with circles:
Vinet’s modification, line without symbol: this
work, crisscrosses: experiment. The experimental
data used are taken from Refs. 20, 24–26, and 40.
The results ofbp from the Vinet EOS have not
been plotted, because Vinet’s results almost are
completely in agreement with experiment.

FIG. 6. As for Fig. 5, but for copper.
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metallic atoms must eliminate free-electron gas contribution.
For some typical metals, analytic EAM potentials have been
established, and very recently, Song and Morris have used
these potentials combining the modified Weeks-Chandler-
AndersonsmWCAd perturbation theory to research thermo-
dynamic properties of these metals.39 The good agreement of
theoretical results with experimental data shows that the
EAM is reasonable. And correspondingly, direct application
of the AMFP method to metallic solids is in doubt. Also the
good results shown in Wang’s works should be carefully ap-
praised. However, it is obvious that the discrepancy between
the EAM and AMFP mainly lies in separating the free-
electron gas part from the total cold energy. One can easily
combine the EAM into the AMFP method and develop an
improved model. The unique way needed to do this is to
replace the total cold energyEcsRd in Eqs. s3d and s10d by
Ec,ionsRd, and Ec,ionsRd is the contribution of the pairwise
interaction between metallic ions to cold energy.

VI. CONCLUSIONS

A GAMFP is established strictly in terms of the free-
volume theory and the nearest-neighbor pairwise interaction
assumption. By using the numerical integrated formula to
evaluate the integral contained in the GAMFP, it is shown
that the WAMFP is an approximate analytic version of the
GAMFP. The GAMFP is exact for nearest-neighbor model
solids. The GAMFP, WAMFP, and other AMFP’s with
slightly different forms are applied to the classical NN-LJ
model solid. The numerical results for four reduced thermo-
dynamic properties—free energy, pressure, excess internal
energy, and thermal capacity—show that the numerical re-
sults from the WAMFP are almost completely in agreement
with the GAMFP and are slightly better than several other
approximate AMFP’s.

In order to check the applicability of the GAMFP and
WAMFP, we applied them to Vinet-type solids for the Vinet

FIG. 7. As for Fig. 5, but for sodium
chloride.

FIG. 8. As for Fig. 5, but for xenon.
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equation of state has been shown having a fairly high preci-
sion. The quantum modifications have been taken into ac-
count by using a modified Pitzer-Gwinn method and DG
model. The derivation procedure shows that the WAMFP
gives a different expression of the Debye temperatureQD but
the same expression for the Grüneisen coefficientgG as com-
pared with the GAMFP. Thus the WAMFP is equivalent to
the GAMFP in the classical case, but not for the quantum
case for the difference ofQD. However, our numerical cal-
culations show that the difference of thermodynamic quanti-
ties fromQD is very little.

The numerical results for three types of solids show that
the theoretical values ofgG and QD are qualitatively in
agreement with experiments, but the agreement is not satis-
factory quantitatively. The predicted values of the bulk ther-
mal expansivity are too large for rare-gas solids, too small
for alkali-halide solids, and for metallic solids the agreement
is better but also is not satisfactory. Especially the predicted
variations of bulk thermal expansivity and compressibility
versus temperature are fairly bad; except for copper, the pre-
diction is fortunately acceptable. It is shown that the funda-
mental spirit of the AMFP to use all cold energy to evaluate
thermal properties is in contradiction with the EAM. It is
necessary to improve the AMFP in terms of the EAM by the
replacement of all cold energy with cold energy from inter-
action between metallic atoms.
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APPENDIX A

In this appendix, we firstly give the derivation of Eq.s16d.
By substituting Eq.s15d into Eq. s9d, we have

EcsR,rd < a0 +
1

3
a2, sA1d

where the coefficientsa0 anda2 can be solved from the fol-
lowing equations:

Ecsr,t0d = a0 + a1t0 + a2t0
2,

Ecsr,1d = a0 + a1 + a2,

Ecsr,− 1d = a0 − a1 + a2, sA2d

a0 =
s− t0d

2s1 − t0d
Ecsr,1d +

1

1 − t0
2Ecsr,t0d +

t0
2s1 + t0d

Ecsr,− 1d,

a2 =
1

2s1 − t0d
Ecsr,1d −

1

1 − t0
2Ecsr,t0d +

1

2s1 + t0d
Ecsr,− 1d.

sA3d

Substituting Eq.sA3d into Eq. sA1d and combining Eq.s13d,
one obtains

EcsR,rd <
1

6
F s1 + 3t0d

s1 + t0d
Ecsr,− 1d +

4

1 − t0
2Ecsr,t0d

+
s1 − 3t0d
s1 − t0d

Ecsr,1dG sA4d

or

gsr,Vd =
1

3
F s2R+ 3rd

s2R+ rd
EcsR+ rd +

s2R− 3rd
s2R− rd

EcsR− rd

−
s8R2 − 6r2d
s4R2 − r2d

EcsRdG . sA5d

For simplicity, we take the following approximation:

s2R+ 3rd
s2R+ rd

< 1 +
r

R
,

s2R− 3rd
s2R− rd

< 1 −
r

R
,

s8R2 − 6r2d
s4R2 − r2d

< 2,

sA6d

gsr,Vd <
1

3
FS1 +

r

R
DEcsR+ rd + S1 −

r

R
DEcsR− rd

− 2EcsRdG . sA7d

In our numerical calculations, it is shown that the difference
for thermodynamic quantities from the approximation in Eq.
sA6d is negligible.

Subsequently, we present the nondimensional auxiliary
functions Lisxd and Misxd for three cases with subscriptsi
=1,2,3:

L1sxd =
1

20xs1 − xd10 −
1

20xs1 + xd10 − 1,

M1sxd =
1

8xs1 − xd4 −
1

8xs1 + xd4 − 1, sA8d

L2sxd =
s1 + lxd

4s1 + xd12 +
s1 − lxd

4s1 − xd12 −
1

2
,

M2sxd =
s1 + lxd
4s1 + xd6 +

s1 − lxd
4s1 − xd6 −

1

2
, sA9d
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L3sxd =
1

6s1 + xd11 +
1

6s1 − xd11 −
1

3
,

M3sxd =
1

6s1 + xd5 +
1

6s1 − xd5 −
1

3
. sA10d

APPENDIX B

Now we derive the analytic expression of thermal energy
in Eq. s51d under the Debye-Grüneisen approximation. The
vibrational Helmholtz free energy under harmonic model is
as follows:

FD
* =

1

2
E "vDsvddv + kTE lns1 − e−"v+kTdDsvddv,

sB1d

where the first term is the zero-point energy andDsvd is the
state density. Under Debye-Gruüeisen approximation, the
state density can be expressed as

Dsvddv = 59
v2

vD
3 dv, v ø vD,

0, v . vD.

sB2d

Substituting Eq.sB2d into Eq. sB1d and introducing the no-
tations

x =
"v

kT
, QD =

"vD

k
, xD =

"vD

kT
=

QD

T
, sB3d

Eq. sB1d is changed to

FD
* =

9

8
kQD + 9kTS T

QD
D3E

0

xD

lns1 − e−xdx2dx. sB4d

The integration contained in Eq.sB4d cannot be evaluated
analytically and is inconvenient for practical applications.
We would develop an analytic expression in terms of the
following expansion:

lns1 − e−xd =5lnx −
1

2
x +

1

24
x2 −

7

20160
x4 sx ø 1d,

− o
n=1

`
1

n
e−nx sx . 1d.

sB5d

By using Eq.sB5d, we can analytically evaluate the integra-
tion contained in Eq.sB4d:

E
0

xD

lns1 − e−xdx2dx

=
1

3
xD

3SlnxD −
1

3
−

3

8
xD +

1

40
xD

2 −
1

6720
xD

4D sxD ø 1d,

sB6ad

E
0

xD

lns1 − e−xdx2dx

=E
0

`

lns1 − e−xdx2dx−E
xD

`

lns1 − e−xdx2dx

= −
p4

45
+ o

n=1

`
1

n
E

xD

`

e−nxx2dx

< −
p4

45
+ o

n=1

10
1

n4fn2xD
2 + 2nxD + 2ge−nxD sxD . 1d.

sB6bd

Thus Eq.sB4d is changed to the following form:

FD
* =

9

8
kQD + 3kTFlnSQD

T
D −

1

3
−

3

8
SQD

T
D +

1

40
SQD

T
D2

−
1

6720
SQD

T
D4G sT ù QDd, sB7ad

FD
* =

9

8
kQD −

1

5
p4kTS T

QD
D3

+ 9kTS T

QD
D3

o
n=1

10
1

n4Fn2SQD

T
D2

+ 2nSQD

T
D + 2GexpF− nSQD

T
DG sT , QDd. sB7bd

Correspondingly, the internal energy for an atom is derived
as

ED
* = 3kTF1 −

3

8
SQD

T
D +

1

20
SQD

T
D2

−
1

1680
SQD

T
D4G

sT ù QDd, sB8ad

ED
* =

9

8
kQD +

3

5
p4kTS T

QD
D3

− 9kTS T

QD
D3

o
n=1

10
1

n4Fn3SQD

T
D3

+ 3n2SQD

T
D2

+ 6nSQD

T
D + 6GexpF− nSQD

T
DG

sT , QDd. sB8bd

And the heat capacity for an atom is

CV

k
= 3F1 −

1

20
SQD

T
D2

+
3

1680
SQD

T
D4G sT ù QDd,

sB9ad

CV

k
=

12

5
p4S T

QD
D3

− 9S T

QD
D3

o
n=1

10
1

n4Fn4SQD

T
D4

+ 4n3SQD

T
D3

+ 12n2SQD

T
D2

+ 24nSQD

T
D + 24GexpF− nSQD

T
DG

sT , QDd. sB9bd
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