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Equivalence of the analytic mean-field potential approach with free-volume theory
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The analytic mean-field potenti#AMFP) method proposed by Wanet al. (WAMFP) is verified to be
equivalent to the free-volume theory. A generalized analytic mean-field pot¢G#aMFP) is established in
terms of the free-volume theory and the nearest-neighbor pairwise interaction assumption. The GAMFP con-
tains an integral. By using numerical integrated formula to approximately evaluate the integral, the GAMFP is
transformed to the WAMFP or other forms of the AMFP, and the WAMFP can be seen as an approximate
analytic version of the GAMFP. The GAMFP is exact for nearest-neighbor Lennard-gdiekJ) model
solid. The numerical results for thermodynamic quantities of NN-LJ solid from the GAMFP is compared with
the WAMFP and other AMFP’s with slightly different forms. The comparison shows that the numerical results
from the WAMFP are almost completely in agreement with the GAMFP and are better than several other
approximate AMFP’s. The GAMFP and WAMFP with quantum modification have been applied to Vinet-type
solids. The numerical results show that the theoretical values of Gringisand Debye temperatuk@y for
three type solids are qualitatively in agreement with experiments, but the agreement is not satisfactory quan-
titatively. The predicted values of bulk thermal expansivity are too large for rare-gas solids, too small for alkali
halides, and for metallic solids the agreement is slightly better but also is not satisfactory. Especially the
predicted variations of bulk thermal expansivity and compressibility versus temperature are fairly bad; except
for copper, the prediction is fortunately acceptable. It is shown that the fundamental spirit of the GAMFP and
WAMFP to use all cold energy to evaluate thermal properties is in contradiction with embedded-atom model
(EAM). It is necessary to improve the GAMFP and WAMFP in terms of the EAM by the replacement of all
cold energy with only cold energy from interaction between metallic atoms.
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[. INTRODUCTION ab initio method< And for simplicity, in this paper, we focus
on the contributions of ions to thermodynamic properties.
Over the past decades, a large amount of progress hahe basic difficulty in the systematic theoretical calculation
been made upon the properties of a material at extremef the thermodynamic properties of a substance by means of
conditions! In the experimental direction, the most impor- statistical physics is how to correctly incorporate the struc-
tant sources of experimental information on the thermaturally complicated interatom interaction of the many-body
properties of a material at high pressures and temperaturggoblems’ Although some theoretical methods have been de-
are dynamic shock-wave experiments and static compressiof¢loped, substantial uncertainties or difficulties exist. For the
in the diamond anvil cell. X-ray diffraction with synchrotron most commonly used Debye-Griineis@®G) model? which
radiation and diamond-anvil cells has extended the range fdieparates the thermal contributions from the zero-
accurate lattice parameter determinations into the multifémperature equation of stat&OS, explicit anharmonic

ments of temperature in shock experiments are extremelffibutions have been shown being very important at high

difficult for nontransparent materials like iron. The results of er?rpr)]eratu”re. del i field _— he th
different groups on the Hugoniot temperature at a given pres- | "¢ ¢€ll model is a mean-field approximation to the ther-

sure differ by more than a thousand degrees. Theoretical carIT—‘al contribution of atoms to the Helmholtz free energy of

i 10-13
culations can help to resolve this issue, but up to nab, crystalline phases®13The model assumes that each atom

o : ; X . _is confined to the Weigner-SeitaVS) cell formed by its
initio thermodynamic studies, such as the density-function earest neighbors. Although interatomic correlations are ne-

theory, the aggmented-plane-waﬁAﬂDW) me_thod‘,‘ _and the glected, the cell model includes anharmonic terms which are
quantum-statistical modelQSM) only can give reliable de- oo rtant for high temperatures, but which are ignored in the
scription for cold pressure-volum®-V) relationship. As for  pG model and quasiharmonic lattice dynamics. Many au-
the theoretical calculation of the thermal physical propertiesihors have demonstrated that the cell model matches success-
it still remains a great challenge to %$. fully the thermodynamic properties of the fcc Lennard-Jones
The study of the temperature dependence of the propertigegystal'12 and sodium chlorid® calculated from Monte
of materials requires a proper account of nuclear motions anc@arlo simulations. Wasserman and Stixrude further applied
thermal excitation of electrons. For the contribution of elec-the cell model to a metallic solid irohThe calculated prop-
trons, it can be well considered by using the Fermi gaserties are in good agreement with available static and shock-
theory with the electronic density of states calculated fromwave experimental measurements.
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In terms of the cell modét® 7 the ionic part of Helmholtz  sence, the WAMFP is equivalent to the GAMFP, and in a
free energy of per ion can be written as mathematic aspect, it only is an approximate edition of the
) GAMFP based on the trapezoid integration formula. Al-
F(V,T) = Eo(R) ~ KTL(3/2)In(2mrpukT/h?) +Inug], - (1) though the approximation is roughest, the numerical results
for the nearest-neighbor Lennard-Jo&-LJ) model solid
'm ) show that the agreement of the WAMFP with the integrated
vf= 47Tf exp - g(r, V)/KT]redr, (20 GAMFP is fairly good. It has been shown by many authors
0 that the Vinet EOS has fairly good precision for many prac-
where E((R)=E.(V) is the 0-K total energy of per ion. It tical solids than many other EOS with more complicated
should be a function of volume, but also can be seen as a form?°-2*In many of the works of Wanet al, they also
function of the nearest distan&e V is the specific volume of have fitted theib initio cold energy dat&(R) by using the
per ion, r,, is the WS radiusV=R/ y,=4m13/3, v, is the Morse potentid or analytic expression from modified Vinet
structure constant as shown in EG80) and (22),  is the EOS (Ref. 19 and further applied the fitted expressions to

weight of the lattice iong(r,V) is the mean-field potentl evaluate thermal contribution. Thus we apply the GAMFP

(MFP), andr corresponds the distance of a single atom dis—and WAMFP to Vinet EOS to check the applicability of the

. o - : AMFP to practical solids.
placed fro'.“ Its equ.|l_|br_|um position, wh|l_e all the other at- In many works on practical EOS, only the classical cases
oms remain in equilibrium. The central issue of the meany, X

field th is h lcul h hi ave been considered for the complication of disposing
ield theory is how to calcu a’;e the MFE(r,V). In this 4 antum effects or used the Einstein or Debye models with
regard, the free-volume thedfy!? (FVT) was chosen to cal- constant characteristic temperaturé®: or ©p) and

culate the MFP by the average of the empirically derivedgriineisen parametefys) to approximately consider the
pairwise potentials, and this point substantially limited 'tsquantum modificatioR%2425However, such a disposition is
application to metallic materials while the tight-binding 5 rough approximation; it only is applicable to low-
total-energy(TBTE) classical cell model was chosen to cal- compression range or low-pressure conditions. In order to
culate the MFP by the tight-binding total-energy method forgytend the applicable range of Einstein and Debye models,
which the parameters were determined by the first-principlegarious semiempirical expressions have been developed for
linearized APW calculatioh Because the MFP calculation in O, Op, and ys (Refs. 26—28 In 1942, Pitzer and Gwinn
the TBTE model also is very time consuming and inconve-pg) proposed a semiempirical method to consider the quan-
nient, in a series of recent papers, YVaetgal. proposed &  ym modification of a classical systéfhAnd in recent years,
classical analytic MFRWAMFP).®7:14=19They think that for  the PG method has been applied to many molecular systems
a crystal with the inversion symmetry, one can imagine thalyit, anharmonic interactio# 3! Several years ago, Hardy,
the vibration of the lattice ion is symmetrical with respect to Lacks, and ShukIgHLS) firstly applied modified PGmPG
its equilibrium position; i.e., the MFP seen by the lattice ion athod to consider the quantum modification for Monte
should be invariant under the inversion operation. Based og 5| (MC) simulation of a classical solid system without
the physical consideration, they constructed the f°”°Wi“gmentioning Pitzer and Gwinn’s woR& However, after the
analytic WAMFP: work of Hardyet al,, works using the mPG method to solids
1 are scarce. The reason may be is that the mPG method is

g(r,V) = S[E«(R+1) + E((R-T1) - 2E(R)] firstly proposed for a classical molecular dynamic simula-
tion, yet it is difficult to obtain the quantum modifications in
the MD simulation. But an analytic EOS with some approxi-
mation is favorable in practice, such as the DG-type EOS,

and people have not noticed the strength of mPG method for
Wanget al. further demonstrated the reasonability of E8).  improving these analytic EOS.

by the fact that the three commonly used expressions for the |n one of our recent work®34we reformulated the PG
Grineisen parameteys—i.e., that due to Slate(\=-1),  method with explicit physical meanings. It is shown that the
that due to Dugdale and MacDoné&ld=0), and that for the  quantum effect is important at low temperature, and it can be
FVT (A=1)—can all be explicitly deduced if one takes the disposed under the harmonic framework. The anharmonic
second-order approximation to E®). In this work, we will  effect is important at high temperature and tends to zero at
consider two cases corresponding =0 and 1. The low temperature, and it can be disposed by using a classical
WAMFP model had been applied to 14 typical metaid, approximation. The alternative formulation is easier for vari-
Cu, Ta, Mo, W, Ce, Fe, MgO, Be, Pt, Au, W, Th, and ous applications and has been applied to a Debye-Grineisen
U),5714-19indicating that both the calculated Hugoniot statessolid with the generalized LJ intermolecular interaction. The
and 293-K isotherms fell well in the experimental uncertain-expressions for the Debye temperature and Griineisen param-
ties. eter as a function of volume are analytically derived. The
In terms of Wang’s works and the statement cited aboveanalytic equation of state is applied to predict the thermody-
we postulate that Wanet al. believe that their WAMFP is a namic properties of solid xenon at normal pressure with the
new physical model being different with and independent tonearest-neighbor Lennard-Jones interaction and is further ap-
the FVT and TBTE models. However, in this paper, we de-plied to predict the properties of solid xenon and krypton at
veloped a generalized AMFRGAMFP) in terms of the high pressure by using an all-neighbor LJ interaction. The
nearest-neighbor FVT. And we show that in physical estheoretical results are in agreement with the experiments. In
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this paper, we further apply the mPG metfatt combining 1 1 —
the GAMFP and WAMFP to Vinet EOS to consider the quan- E«(R) = 558(R) = 558(R. 0) (7
tum and anharmonic effects at same time.

The rest of this work is organized as follows. In Sec. Il weand
develop the GAMFP in terms of the nearest-neighbor FVT 1
and verify the equivalence of the WAMFP with the GAMFP. E(r,t) = E,(|R? + r? = 2Rrt|*?) = = 8s(|R? + r? - 2Rrt|*?),
In Sec. lll, the GAMFP and WAMFP are applied to NN-LJ 2
model solid. In Sec. IV, the GAMFP and WAMFP are ap- (8)
plied to practical solids combining the Vinet EOS and in-

cluding the quantum effects. In Sec. V, the numerical results ——— 1 * 5 o oo L [F
are presented and discussed. At last, conclusive remarks ar&<R.1) "2, Ec(|R?+r? = 2Rrt|)dt = = . E(r,t)dt.
given in Sec. VI.

9
Il. GENERALIZED ANALYTIC MEAN-FIELD POTENTIAL Substituting Eqs(7) and(9) into Eq. (4), we obtain the fol-

lowing GAMFP:
Suppose the pairwise potential functioneig). In terms 1
of the free-volume theory and only considering the contribu-  g(r v) = 2[E((R;r) - E((R)] = J EJ(r,H)dt— 2E(R).
tion of nearest neighbofs!3-34the MFP can be expressed as -1

g(r.\) = Fe(R 1) - o(RO)], @ 10
We know that Eq.(9) is accurate for the nearest-neighbor
whered is the number of nearest neighbors afiR,r) is the  model solids; however, its application to practical solids is
average potential over the solid angle: approximate. The range of interatom interaction of a solid is
shorter; the applicability of the approximation is better. And
1 (em(m Yoo for the solids containing long-range interatom interactions,
e(Rr)= ﬁf f e(|[R?+r2 = 2Rrcosg|"Ar?sinddéde  such as alkali halides, the applicability maybe worsens.
™ Jo Jo Considering that the integral contained in E9).is incon-

1(™ venient for practical applications, we may develop analytic
= Ef &(|R?+r2 - 2Rr cosf|?)sinAde. (5)  approximate expressions for MFP. And it is to be shown that
0 the WAMFP only is the roughest approximation of E).

For simplicity, we introduce following shortened notations:

Introducing new variablé=cosd, we havé*
E.r,1) =E.(R-r), EJr,-1)=E(R+r),

1
e(RI) = Ef_ls(le +r?=2Rrt[*)dt, (6) E(r,t) =E«R), ty=r/2R. (12)
If we approximate the functiorE(r,t) in Eq. (9) by the
and the cold energy of per ion is piecewise linear function
|
1
2 i (B0 + L= DI+ [Edrt) ~Eelr- D] (- 1=t<to),
Er)=)"", " (12
{[Ec(r1t0) - tOEc(r- 1)] - [Ec(ruto) - EC(I', 1)]t}- (tO st= 1)1
2(1 -1ty

we obtain an AMFP under the simplest trapezoid approxima- 1 r r
tion: g(r,V)zE 1+54 Ec(R+T1)+ 1-51 E(R-T)
-E(R). (14

By comparing Eq(14) with Eq. (3), it is obvious that Eq.
(13 (14) just is the WAMFP withA=1/2. In Wang'’s works and

ERT) = 3L+ tE(- 1) + (1=t E(r, )]+ SER),
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our following practical calculations, it is shown that the dif- model solid, for the solid the GAMFP given in EQLO) is
ference of numerical results for thermodynamic quantitiesaccurate. The LJ potential is as follows:

from the WAMFP with\=0, 1/2, 1, respectively, is very 1 6

little and the WAMFP can be seen as equivalent to the e(r) =e [(r_e) _2<r_e) } (19)
GAMFP. We would develop another AMFP in terms of the 0 r '

parabola approximation. Replacing the functiBgr,t) in

Eq. (10) by the quadratic function Introducing the reduced variables and notations
Eo(r,t) = ag+ at + at?, (15) V=RYy, V' =rdy, A =0, (20
btai
e obtain X=TIR, X =[3/(dmye) V3, (21)
1 r
g(r,V) = 5[(1 + E) EJ(R+T) where § and y, are structural constant33*
r 6=12 (fcc), 8 (bco),
+ (1——)EC(R—r) -2E(R) |. (16) — -
R Yo =2 (fcc), 3v3/4 (bco), (22)

The concrete derivation of EQ16) is given in Appendix A. e have

By comparing Eq(16) with Egs.(3) and(14), it is obvious

that the form of Eq(16) just is similar to the WAMFP with 1 e\ _[re\®| 1 .[(V\* (V)2
A=1, except the prefactor 1/3 in E(L6) is different from E(R) = 5580 rR/ 2 =5A -2 '
1/2 in Egs.(3) and(14).

From the above derivations, we can see that one can de- (23)
velop many AMFP’s with different extents of the approxima- 54 in terms of Eqs8), (10), (3), and(16), we obtain
tion. For clarity, we do not give more. And in following
sections, we will distinguish the integrated GAMFéXac}, . "\ 4 "\ 2
WAMFP with A=0 and 1(trapezoid approximation of the g(r,V) = gi(x,V) =A ['—i(x)<v> ‘2Mi(x)<v) }
GAMFP), and parabola approximation of the GAMFP, Eq.

(16), by using the subscriptis=1,2,3, respectively. The har- (24
monic approximation for the three AMFP can be derived a3y here the nondimensional auxiliary functions(x) and
follows: M;(x) for three cases with subscripis1,2,3 are given in
v (1/3)c(V)R %2, for i=1,3, Appendix A. Defining the nondimensional free volurme
i Xl =~ _ . H H .
gi(x,V) (1R, for i=2, and comparing with Eq(2), we obtain
) v = 4mriv: = 3Voy, (25)
=—[5+(-)]c(V)R??
58+ () ]ev) .
U= f exd - gi(x,V)/KT]x?dx
1 55 . 0
EE/.LwiI' , 1=1,2,3, (17
~ Xm A* V* 4 V* 2 5
where u is atomic weight,w; is the harmonic frequency of =, exm ~\ 1 Li(x) v/~ 2M;(x) v x“dx.
atom, and
(26)
2\
c(V) = {E'C'(R) + EEQ(R)}RZ, (188 In terms of thermodynamic relationships, we can easily
derive the analytic EOS and the expressions for other ther-
_ _ modynamic properties. The EOS is as follows:
A=1,fori=1,3, \=0,1, fori=2. (18b)
Equations(17) and(18) show that the WAMFP gives out an pP=- <f> =P,(V) + P (T,V), (27)
incorrect strength coefficient and thus different values of vi- N/t

brating characteristic temperature as compared with the . « .
GAMFP, but all three expressions can give the samé’vhere Po(V) is the cold pressureP(T,V) is the thermal

Griineisen coefficient. pressure,

(7EC A* V* 5 V* 3
Po=Pv)=-{ =) =52 ) -5 ) | @8
Ill. APPLICATION TO A NEAREST-NEIGHBOR N/t V \% Vv
LENNARD-JONES MODEL SOLID

In order to check the equivalence of the WAMFP with the P =P (T.V)= k_T{l + iva_ﬁf} (29)
GAMFP, we would apply the above formalism to the NN-LJ ’ v V|
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g 1 [ agi(x,V) 5

N kTJO V———— N exd - g;(x,V)/kT]x“dx,
(30)

GV _ [)4_ ([ﬂ

Vv N _4A{Li(x)(v M;(x) v) | (31)

The expressions for internal enerdyy and excess internal
energyUg are as follows:

oF 3 kT 3
U:F—T( ) = KT+ — T%——kT+UE, (32)
A" (P
Ue=— | g(xV)exd-gx,V)/KT]x?dx. (33
vt Jo

The thermal capacity with constant volume is as follows:

_(V) _3 AV (Ye\, 1
CV_(aT)V K* k(kT){ (A) +5fQ(T’V)]

(34)

Q(T,V) = f Xmgiz(x,V)exF{— gi(x, V)/kT]x?dx.  (35)
0

For simplicity, we further introduce the reduced variables

kT \Y; PV
Tr:Fa VrZV1 Pr: A* y (36)
F KT _ U C
Fr:AE:——*lnvf, Uf:A*E’ CV,:?V, (37)

whereFg the is excess Helmholtz free energy.

IV. APPLICATION TO THE VINET EQUATION OF STATE
INCLUDING QUANTUM MODIFICATION

In this section, we will apply the AMFP method to

the Vinet EOS (Refs. 20-23 including quantum

modification®334 In many of Wang’'s and other relevant
works, only the classical case was considered. In order to

PHYSICAL REVIEW B 71, 024107(2005

3 o
y=(RIRy) = (VIVg)'®, 7= E(BO -1, (40)
where the subscript “0” represents zero temperature and zero
pressureV is the volumeB is the bulk modulus, an8’ is
the derivative ofB with respect to pressure. In order to de-
rive the analytic expression of MFP, we should derive cold

energy for Vinet EOS

3ByV
E(R == (n=1-mexi{n(l-yl. (41
Introducing the new variable
s=RyIR+12=2Rrt"2=y|1 +x2-2x{*2, (42

the average cold energy can be evaluated as follows:

y(1+x)
E(Rr) = —J C(RoS)SdS— [f( )= f(s)],

2 4 2
(43
where
f(s) =[7’S+(B-n)(ns+Dlexdn(l-9s)], (49
S, =y(1+x), s =y(l-x. (45)

Thus the GAMFP for a Vinet solid can be evaluated:
9:1(x,V) =2AE(R1) — E¢(R)]. (46)
Correspondingly, the WAMFP can be expressed as

_[(1+X)EC(ROS+)+(1 X)Ec(Ros-) — 2E.(R)].

(47)

The derivatives of the AMFP with respect to the volume
needed for Eqs38) and(39) can be derived as

Go(x,V) =

obtain thermodynamic properties in whole temperature

ranges, one must consider the qguantum modifications at low
temperature condition. The EOS should be formulated as

P=PV) + P (T,V) + P,(T,V), (38)

where the equations fd?*(T,V) are the same as Eq&398)

and (39). Py(T,V) is the quantum modification; it can be

evaluated by using the mPG metld& and Debye-

Gruneisen approximation, and its expression will be given in
the following. As for the cold pressure, the Vinet EOS

giveg0-23

(1-

Pe(V) = P¢(R) =3B, eXF{n(l vl (39

Vagi(xvv) - X ﬁgi(X,V) ' (48)
N 3 oy
39,(x,V) — 1
17 =—4E(R1) + yTX[SEEc(Ro&) - SE(Res-)]
+ 6P (R)Voy?, (49
J vV 3
% == 5y (PR Vo + PR3Vl
+3P(R)\Vgy3. (50)

In terms of the DG approximation, the quantum modification
P4(T,V) can be expressed as

P(T.V) = %(E*D ~Epg), (51)

Epq = 3KT, (52

WhereED is the thermal energy under the quantum harmonic

approximation andEp,, is its classical limitation. In the
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original DG approximation, the calculation G% involves
integration. In Appendix B, we develop an analytic expres-

r
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PHYSICAL REVIEW B 71, 024107(2005

V=11 ggl}
!Egﬁ

FIG. 1. Variation of reduced excess free en-

0.25 05 0.75 1 ergy F, versus reduced temperaturefor a clas-
T, sical nearest-neighbor Lennard-Jones model solid

at four reduced volume¥,=1.5, 1.1, 0.7, 0.3.

Lines: exact expression Eq(10). Circles:

8 WAMFP with A=1. Squares: WAMFP with =0.

V=11
r

Crisscrosses: approximate expression, #6).

0.25

05 0.75 1
T

r

d
y—c(V) = = BoVoyl 7(n+ 6)y* = 7°y* — (45 + 6)y + 2]

sion andEg can be analytically evaluated by using EB8).

As for the Debye characteristic temperature, it can be deter-

mined by Eq.(17),

where, for simplicity, we only consider the case wik 1

4 Mo 2h

Opi=0g=—"—=_=

3 3k  9kR

for the WAMFP (asi=2), and

oV) = - 3;‘7y<y4pcvo> = 9BoVay[(n+ 3)y - 72— 2]

3.6

2.7

a- 1.8

0.9

12

xexg 7(1-y)],

Vr=1.5 8
3t *
+
0.25 05 0.75
T
r
Vr=0.7 4
0.25 0.5 0.75
T

6.4

4.8

3.2

24

18

12

VO[5 +(=)'le(V)/u,

xexg n(1-y)], (55

and the expressions of Griineisen coefficient for three cases
are the same and can be derived as

VO 1 1y aV)

6T "9, v 3 6c(V) ay

_Ln(n+4y* - 7y - 29y - 2]
6[(7+3)y -7y’ -2]

Supposing/=1, we obtain expressions fér, andyg at zero
(54) pressure:

(53

(56)

V=11

f +

+ * *
T+
-4
0.25 05 0.75 1
T .
r FIG. 2. As for Fig. 1, but for reduced pressure
P;.

V=03

r
0.25 05 0.75 1
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0.52
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0.13

1.4
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0.35
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0.25

3kR,
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Opgi = 182.67X {[5 + (=) IBoVorn/ et ¥oVom) 3 (K),

2.2

By -'GPa, Vg --cm®mol™?,

Yo = (356 -5)/6

0.88
0.66 V=141
0.44
0.22
0
0 0.25 05 0.75 1
T FIG. 3. As for Fig. 1, but for reduced excess
16 internal energyJ,.
12 V=03
0.8
0.4
0
0 0.25 05 0.75 1
TI’
V. NUMERICAL RESULTS AND DISCUSSION
(y=1), (579
In order to check the accuracy of three approximate ex-
pressions of the AMFP, we have made comparative calcula-
tions for the variation of,, P,, U, and C,, of the NN-LJ
model solid versug, by using the equations derived previ-
(57b) ously. The results are depicted in Figs. 1-4. For all calcula-

Mg molt, (57¢)

CVr

(y=12.

(58)

tions, we have considered four cases with reduced volumes
V,=1.5, 1.1, 0.7, and 0.3, respectively. In terms of the EAM
results, the potential deptfx,y/k) of pairwise potential for
most metals about ranges from 1000 to 2000 K, and the
10 000 K approximately corresponds to the rangelTpofs
(0.5-1. So our calculations have been made for the range of
T, within (0-1).

FIG. 4. As for Fig. 1, but for reduced capacity

3.04

3.01

2.98

2.95

at constant volume€,,.

2.92

0 0.25

0.75 1

024107-7



JIUXUN et al. PHYSICAL REVIEW B 71, 024107(2005

TABLE |. Comparison of experimental data with calculated results for the Griineisen parateje®ebye characteristic temperature
(®p), and bulk thermal expansivityrr) at a reference temperatuf€.) and zero pressure. Cal. 1: exact AMFP with quantum modification.
Cal. 2: WAMFP withA=1 and quantum modification. Cal. 3: quantum harmonic DG approximation. Cal. 4: classical WAMFR=wlith
The experimental data used in the table are taken from Ref. 25.

Y6 Op (K) ar(Trer) (L0° K™

Solid Exp. Cal. Exp. Cal. 1 Cal. 2 Tyt Exp. Cal. 1 Cal. 2 Cal. 3 Cal. 4
Ar 2.7 2.92 92 76.9 94.2 40 1068 1649 1622 1482 1832
Kr 2.8 2.82 71.9 56.5 69.1 60 904 1224 1206 1266 1276
Xe 2.8 3.07 64 51.7 63.3 60 600 835 826 869 868
NaCl 1.59 1.84 321 212 260 298 120 72.79 72.63 73.74 75.22
LiF 1.63 1.78 735 453 554 300 99.6 57.22 57.27 55.58 71.90
NaF 1.52 1.81 489 318 390 300 98.1 63.23 63.15 63.29 68.01
KCI 141 1.89 235 171 209 300 110.8 73.78 73.59 75.19 75.31
CsCl 2.03 2.09 151 114 140 300 141 74.96 74.72 77.18 75.60
Li 0.878 0.922 344 383 469 294 139.8 137.8 137.7 134.9 154.0
Na 1.24 1.23 159 168 206 294 213 203.7 202.8 208.2 208.1
K 1.24 1.27 90.7 100 123 297 236 224.3 223.2 234.7 225.9
Rb 1.26 1.24 56 62 75.9 295 270 226.0 2249 238.5 226.4
Cs 1.14 1.10 38.7 44.7 54.7 270 290 211.8 2111 220.9 212.1
Al 2.16 1.74 431 453 555 300 69.7 51.91 51.93 51.27 60.79
Fe 1.66 2.16 472 458 561 300 35.1 41.93 41.94 41.54 48.68
Cu 2.00 1.99 344 377 462 300 50.4 48.36 48.34 48.15 53.98
Zn 1.90 1.62 327 278 341 300 89.1 64.81 64.73 65.03 68.66
Ag 2.35 2.27 227 226 326 300 57.6 53.85 53.75 54.23 56.90
Cd 2.20 2.55 209 197 242 300 94.5 104.3 103.8 108.0 107.0
Pt 2.63 1.97 238 323 396 300 26.8 17.90 17.91 17.94 19.48
Au 2.99 242 162 255 312 300 42.5 34.06 34.02 34.28 35.87
Pb 2.60 2.02 105 137 168 300 86.7 64.76 64.60 66.10 65.70

Figure 1 shows that the agreement of the reduced freaken from Ref. 25. For+, we considered four cases. The
energy calculated from three approximate expressions is ifirst case is the exact AMFP, EGLO), with quantum modi-
good agreement with the exact one, but the approximate esication; the second case is the WAMFP wikk 1 and with
pression, Eq(16), is slightly better than the WAMFP. Fig- quantum modification; the third case is the quantum har-
ures 2—4 show that the cases for reduced pressure, excd§9nic DG approximation; and the fourth case is the classical
internal energy, and thermal capacity, the WAMFP with WAMFP with A=1. For ®p, we only considered first and
=1 gives the best agreement with the exact one. But on&€cond cases. The table shows that for 22 typical materials,
exception occurred for the WAMFP witk=0, which is for ~ the calculatedys only is qualitatively in agreement with the
the thermal capacity with low density,=1.5, the tendency experimental data. For rare-gas ano! alkall-hghde solids, the
as temperature tends to zero is incorrect. In other condition&9reement of calculated values@p with experimental data
the WAMFP withA=0 and 1 gives equivalently good resuilts or case 2 is better than case 1. But for metallic solids, case

; " 1 is better than case 2. Because case 1 belongs to a strict
g)r:p?gx{r?llgtephgz)crzlsgiginm;[si 4'?”?:0\?’;5%%?1cﬁzztutlsteﬂrzatnearest-neighbor GAMFP, case 2 is the WAMFP in B),
WAMFP with X=1/2 must give equivalently good results. for which the prefactor 1/2 in E@3) is different from 1/3 in

. ; . Eqg. (16), because the value 1/3 just corresponds to the har-
Thus one can conclude that the WAMFP indeed is equwale%%n(ic ;pproximation of GAMFPJand 1/2 cgm be seen as a

to the GAMFP, Eq.(10), and also is equivalent to free- compensate corresponding to non-nearest neighbors for the
volume theory with nearest-neighbor interactions. WAMFP. We can postulate from the results ®f, that the

In order to check the applicability of several AMFP ex- non-nearest interaction is more important for rare-gas and
pressions, we apply the formalism developed in Sec. IV taalkali-halide solids than metallic solids. Such a situation
three types of solids, including rare-gas, alkali-halide, andshows that the pairwise interaction between metallic atoms
metallic solids. In Table I, the calculated results for themust be short range and this is in agreement with the NN-
Gruneisen parametefyg), Debye characteristic temperature EAM potential for metallic solids developed by Baskegt
(®p), and volume thermal expansivityry) at the reference  Although the NN-EAM potential is fairly simple, it has been
temperaturgT,r) and zero pressure are compared with ex-used by many other authors, and it has been shown to ex-
perimental data. The experimental data listed in the table arglain many properties of metallic solid%:3°
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FIG. 5. Variation of compressibility coeffi-
cient B,(10"* cn? N™1) and bulk thermal expan-
sivity coefficientar (108K™1), at zero pressure
versus temperatur€ for gold. Line with circles:
Vinet's modification, line without symbol: this
60 i . i i work, crisscrosses: experiment. The experimental
R + data used are taken from Refs. 20, 24-26, and 40.
pryn J The results ofg3, from the Vinet EOS have not
been plotted, because Vinet's results almost are
- completely in agreement with experiment.

30 *

010%™

Line with circles: Vinet's modification
Line without symbol: This work
Crisscrosses: Experimental

0 I 1 I I
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Table | also shows that the difference of calculated However, the four figures also show that the theoretical re-
between four cases is small. The reason maybe is that tteults from Vinet's semiempirical modification are in good
reference temperatufg,; is high enough to make the clas- agreement with the experiment as the temperature being
sical approximation being applicable, and at these values dfigher than the®p. This is because Vinet's semiempirical
T.er, the anharmonic effects are not too obvious. But themodification has used more experiment information, includ-
agreement of calculated; with experimental data is fairly ing the experimental data ofs, ®p, and ay at some refer-
bad for rare-gas and alkali-halide solids. We believe that th€nce temperature.
reason also is the negligence of non-nearest interactions. Al- At last, we point out that the direct application of the
though for metals the agreement is slightly better, only foAMFP to metallic solids is in contradiction with the
few metallic solids is the agreement just acceptable. In FigsEAM.%>~31n terms of Eqs(3) and (10) the AMFP uses all
5-8, we plotted the variation of compressibility and thermalcold energyE.(R) to evaluateg(r,V), and this is equivalent
expansivity coefficients versus temperature for four typicalto evaluating thermal part of thermodynamic quantities by
materials—that is, gold, copper, sodium chloride, and xenonusing all cold energy. But numerous wotks®on the EAM
The experimental data used in these figures are taken froimave shown that in order to explain most physical properties
Refs. 20, 24-26, and 40. These figures show that the agreef metallic solids, one must dividé,(R) into two parts. One
ment of the AMFP with experiment is acceptable only for part is the contribution of free-electron gas; another part is
copper, the agreement is overall fairly bad for the other thre¢he contribution of pairwise interaction between metallic at-
materials. The situation just is in agreement with Table l.oms. This also means that the pairwise interaction between

1 T T T T
— 0.91 1
<€
o
5
= 0.82 -
o
&
0.73 1
0.64 L L L L
0 240 480 720 960 1200
TK
FIG. 6. As for Fig. 5, but for copper.
80 T T T T
60
-~
v, 40f
:J_ Line with circles: Vinet's modification
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20 Crisscrosses: Experimental h
c 1 1

L 1
0 240 480 720 960 1200
T(K)
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metallic atoms must eliminate free-electron gas contribution. VI. CONCLUSIONS

For some typical metals, analytic EAM potentials have been

established, and very recently, Song and Morris have used A GAMFP is established strictly in terms of the free-
these potentials combining the modified Weeks-Chandlervolume theory and the nearest-neighbor pairwise interaction
Anderson(mWCA) perturbation theory to research thermo- assumption. By using the numerical integrated formula to
dynamic properties of these metd¥sThe good agreement of evaluate the integral contained in the GAMFP, it is shown
theoretical results with experimental data shows that the¢hat the WAMFP is an approximate analytic version of the
EAM is reasonable. And correspondingly, direct applicationGAMFP. The GAMFP is exact for nearest-neighbor model
of the AMFP method to metallic solids is in doubt. Also the solids. The GAMFP, WAMFP, and other AMFP’s with
good results shown in Wang'’s works should be carefully apslightly different forms are applied to the classical NN-LJ
praised. However, it is obvious that the discrepancy betweemodel solid. The numerical results for four reduced thermo-
the EAM and AMFP mainly lies in separating the free- dynamic properties—free energy, pressure, excess internal
electron gas part from the total cold energy. One can easilgnergy, and thermal capacity—show that the numerical re-
combine the EAM into the AMFP method and develop ansults from the WAMFP are almost completely in agreement
improved model. The unique way needed to do this is towith the GAMFP and are slightly better than several other
replace the total cold enerdy.(R) in Egs.(3) and (10) by approximate AMFP’s.

Ecion(R), and E;jon(R) is the contribution of the pairwise In order to check the applicability of the GAMFP and

interaction between metallic ions to cold energy. WAMFP, we applied them to Vinet-type solids for the Vinet
120 T T T T
- o5 Xe i

TK)

FIG. 8. As for Fig. 5, but for xenon.
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equation of state has been shown having a fairly high preci- (1 3{0)
sion. The quantum modifications have been taken into ac-  Ec(R1) =~ 1+t
count by using a modified Pitzer-Gwinn method and DG 0
model. The derivation procedure shows that the WAMFP (1-3p)
gives a different expression of the Debye tempera@dut * (1-to) (.1
the same expression for the Griineisen coefficjgras com-
pared with the GAMFP. Thus the WAMFP is equivalent to
the GAMFP in the classical case, but not for the quantuny,
case for the difference dd,. However, our numerical cal-
culations show that the difference of thermodynamic quanti-
ties from @ is very little.

The numerical results for three types of solids show that  g(r,V) = —{
the theoretical values ofys and ®p are qualitatively in
agreement with experiments, but the agreement is not satis- (8R% - 6r2)
factory quantitatively. The predicted values of the bulk ther- - W «(R) | (A5)
mal expansivity are too large for rare-gas solids, too small
for alkali-halide solids, and for metallic solids the agreement
is better but also is not satisfactory. Especially the predicte
variations of bulk thermal expansivity and compressibility
versus temperature are fairly bad; except for copper, the pre-
diction is fortunately acceptable. It is shown that the funda-

B D+ SE

(A4)

(2R+3r) (2R- 3r)

@R+ R gy BR-D

q—’or simplicity, we take the following approximation:

— 2 _ arl
mental spirit of the AMFP to use all cold energy to evaluatem + L, (2R-31) ~1- L' M ~2,
thermal properties is in contradiction with the EAM. It is (2R+T) R (2R-r) R (4R°-r9)
necessary to improve the AMFP in terms of the EAM by the (AB)

replacement of all cold energy with cold energy from inter-
action between metallic atoms.
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APPENDIX A , _ o _
In our numerical calculations, it is shown that the difference

In this appendix, we firstly give the derivation of H46).  for thermodynamic quantities from the approximation in Eq.

By substituting Eq(15) into Eq. (9), we have (A6) is negligible.
1 Subsequently, we present the nondimensional auxiliary
EJ(R ) = ag+ §a2’ (A1) functions L;(x) and M;(x) for three cases with subscripts
=1,2,3:

where the coefficienta, anda, can be solved from the fol-
lowing equations:

1 1
Elrto) =8+ auto + a1, 7 2ok T 2ok P
Ecr,1)=ap+a; +ay,
EJr,-1)=ay—a; +ay, (A2) - 1 _ 1 _
e Ma(x) 8x(1-x)* 8x(1+x)* L (A8)
_ (-t 1 oty
2(1 tO) c( ) 1 _t%Ec(ratO) 2(1 to) c( )
(L+Xx) 1-xx 1
Lo(x) = + -,
1 __1 1 2V T a0+ 41 -x2 2
= 2(1_to) Ec(ral) l_t%Ec(ratO) 2(1 to) c( )
(A3)
Substituting Eq(A3) into Eq.(A1) and combining Eq(13), _@A+  (A-Ag 1
one obtains Ma(x) 4(1 +x)8 ¥ 41-x° 2’ (A9)
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Ls(x) = : S fXDl 1-eX)xd
=@t T e(1-xt 3 . n(1 -e™)xdx

_ 1 1 1 :fwln(l—e‘x)xzdx— fo In(1 - e™)x%dx
|\/|3(x)_6(1+)()&.,+6(1_X)5 3 (A10) 0 .

=7 E e‘”xxzdx
APPENDIX B n=1

Now we derive the analytic expression of thermal energy
in Eq. (51) under the Debye-Griineisen approximation. The
vibrational Helmholtz free energy under harmonic model is

Th E n4[n +2n%p + 2] (xp > 1).

as follows: (B6b)
1 Thus Eq.(B4) is changed to the following form:
* _ = _ o ho+kT
FD_ZJ hoD(w)dw + ka In(1-€ )D(w)dw, 0| 1 3(6p 1/0,)2
:—kOD+3kT In === +=|=
(B1) T) 3 8\ T/ 40\ T
where the first term is the zero-point energy @) is the _ i(%) } (T=0p) (B7a)
state density. Under Debye-Gruiieisen approximation, the 6720 ’
state density can be expressed as
3 310 2
W’ s =21 4kT( ) +9kT< ! ) 2—[n2<%)
9—dw, < wp, D 4
D(wdo={ wg = P (B2) 8 9o Op/ pan'l AT
0 (C)
0, ® = p. +2n<7D>+2}exp[—n<7D>} (T<®p). (B7h
Substituting Eq(B2) into Eq. (B1) and introducing the no-
tations Correspondingly, the internal energy for an atom is derived
as
ﬁ(,() th h(,!)D ®D
X=—, Op=——", Xp=——=—, (B3) 3/0 0 1 (0.\4
KT K KT T £ = 3T 1__(_D) L1 ( D) _<_D)
. 8\ T 20 1680\ T
Eqg. (B1) is changed to
.9 T \3[* (T=0p), (B8a)
Fp=—kOp + KT| — f In(1-eX)x%dx. (B4)
8 05/ Jg

.9 3, (T T\ 1] (00
The integration contained in E4B4) cannot be evaluated Ep = gk®@p+ o7 KT| (o] = 9kT{ o= > 2T
analytically and is inconvenient for practical applications. P D7 n=t
We would develop an analytic expression in terms of the 0p\? Op Op
+3n2<—) +6n< >+6}exp[—n< )]

following expansion: T
2
) X 52 20160 *=D- (T<Op). (B8h)
In(1-€7)= * And the heat capacity for an atom is
- Ze™ (x> 1).
=N Cy @D 3 [0p)*
—Y=3l1- s 2] | (T=0p),
(B5) k 20 1680\ T
(B9a)

By using Eq.(B5), we can analytically evaluate the integra-
tion contained in Eq(B4):

3 310 4 3
XD R L KR
f In(1 - e™)x%dx k Op Op/ foan T T
0
Q)
12!’12( TD> 24n(

o)

(B6a) (T<0p). (B9b)

—lx?’(lnx —l—gx ix —Lx> (Xp <1)
=370 Mo~ 37 g% T 4% 0 T 57200 D=0
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