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The zero-temperature phases of a generalized two-leg spin ladder with four-spin exchanges are discussed by
means of a low-energy field theory approach starting from atdBSguantum critical point. The latter fixed
point is shown to be a rich multicritical point that unifies different competing dimerized orders and a scalar
chirality phase that breaks spontaneously the time-reversal symmetry. The quantum phase transition between
these phases is dominated by spin-singlet fluctuations and belongs to the Luttinger universality class due to the
existence of a (1) self-duality symmetry.
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Multispin exchange interactions have attracted much inapproach to investigate the differeft0 gapped phases in-
terest over the years, both theoretical and experimémRa-  duced by the S(®) X Z,-invariant symmetry breaking terms
cently, ring exchange interactions have been invoked for thef Eq. (1). As will be seen, the Si4) symmetric point is a
description of magnetic properties of the spin ladder com+ich multicritical point that unifies several emerging quantum
pound LaCay,-Cly Oy, (Ref. 2 and for their ability to in-  orders. The nature of the quantum phase transitions between
duce exotic phases in quantum magnetismthis respect, a these ordered phases can then be determined within our ap-
scalar chirality phaséwhich breaks spontaneously the time- Proach and are shown to belong to the Tomonaga-Luttinger
reversal symmetry, has been found in the two-leg spin-1/4TL) universality clasSas a result of a nontrivial (1) sym-
ladder for a sufficiently strong four-spin cyclic exchafige. Metry at the transitiof. _ _ _

Such an exotic ground state is, in fact, not specific to this 1he SU(4) quantum critical poinfrhe starting point of
spin ladder, and exact ground states with scalar chirali%ur approach is the existence of an(@Usymmetric point in
long-range order have been obtained for a wider class _q.B(l), which is obtained fod =4, and J, =J4=Jy; =J4q

two-leg spin ladders with four-spin interactioh#\ central =0." The resulting model can be regarded as the(4sU

= L S . eisenberg spin chain when the four states on a rung are
question Is the dete_rmmatlon of all possible g_rou_nd State%entified with those of the fundamental representadaof
stabilized by four-spin exchanges and the elucidation of thPSU(4) The latter model is Bethe-ansatz solvabknd is

natur e of the qugntgm phase. transition between these ph.asﬁﬁ'own to possess an extended quantum criticality, character-
In this Commgmcaﬂon, we will study a general two-leg spin- ized by an SW), conformal field theorfCFT) with central
1/2 ladder with four-spin exchanges defined by chargec=3.19 A simple description of this fixed point is pro-

2 vided by the conformal embedding #;~SU(2),
Hoen=Jd1 > 2 Son-Somi+ I 2 Sin S X SU(2), with two SU(2)s corresponding to independent ro-
gen 4 p=1 Son S TS oo tations for the two chains. Since a single @) CFT is

described by a triplet of redMajorana fermions, we may

+ 32 (1 Spwa + Suwen Sp) + I 2 (St S20) describe the critical properties of $4), fixed point by two

n n . . . . .

triplets of right- and left-moving Majorana fermio#§, and

X (S Soned) ¥ 2 (St St (Son - Sope1) XL (@=1,2,3. This Majorana fermion description is ex-

n tremely useful to understand the symmetry properties of

model (1) in the close vicinity of the SUY}) point as it has

+ 3402 (S10° Spe1) (St * 2,0, D peen exploited for the S12) X SU(2) spin-orbital chairf1?

" Moreover, the lattice discrete symmetries of mogg)] i.e.,
wheres,, are spin-1/2 operators at the siteon the pth one-step trapslation symmet(y, ). time—.reversal symmetry
chain (p=1,2). The Hamiltonian(1) is the most general (7), site-parity (Pg), and the permutatiorP, of the two
translation-invariant two-leg spin ladder, whi¢h consists ~ chains, are linearly represented in terms of the Majorana fer-
of SU(2)-symmetric interactions involving two neighboring mions. For instance, the translation symmetry is described by
rungs andii) hasZ, invariance under the permutation of the &r— & Xr— ~Xr Whereasg and x{ are left unchanged
two chainsP;,. In the following, we study the phase struc- under7, . These results lead us to write the most general
ture of (1) around a point with the maximal symmetry in a low-energy effective-field theory for the generalized two-leg
problem consisting of two spin-1/2 operators, i.e., an(8U spin ladder(1), which is invariant under the S@) spin ro-
symmetry. The resulting S¥) model displays a quantum tational symmetry, and the discrete symmetrigg <7
critical behavior which enables us to develop a low-energyx PgX Ps,,
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H=Hy+ (gl+92)[(§R . gL)er (Xn- X021+ (91 - 0») dimerization operatoOrp=(-1)"s; ,-S,,. The latter order
parameter characterizes a phase with alternation of rung sin-
X[(&r- X2+ (r- €02+ 2(gs + 90 (ér - €)(Xr - X0) glets and rung triplets, which has been found in some inte-
grable two-leg spin laddéf. The second set of order param-
2oy i35 -vE .2 eters is closely related, in the continuum limit, to the
+2(=03+ 94 (&R XU (Xr - &) — (&R XRI(EL - XU y ’ = ’
2 existence of a second(l) symmetry:U,=R(6) X Rg(-0).
Os,- - - - It leaves invariant theOgp and Ogc order parameters,
N 'E@R XR* X, ) whereag?p, andOgp transform now as a doublet undéy as
. o . . _in Eq. (4). A secondZ, duality, D=U,,, can thus be consid-
v%hgr_eiH(oggs. (tgh;af_re;.?}mllégman fe? r)t/hze I\sﬂzjgr:ararzgc;?& ered as a transformation which interchang®s and Ogp
07 TIURSRTAXGR T ELTOXSLT SRL T XRL < gy while keepingOgp and Ogc intact. Finally, the Kramers-

mass terms likég-£ andxz-x, are prohibited by the trans- wannier duality(yr— —xg) on the underlying Ising models,
lational symmetryTaO. The effective Hamiltonian(2) de- corresponding to the Majorana fermiond, , interchanges
scribes the low-energy properties of mo@Blin the vicinity (O, (respectively,Orp) with Ogp (respectively,Oso). The
of the SU4) point mentioned above. In particular, using the SU(4), fixed point is therefore a rich multicritical point that
continuum expressions of the spin operate{s, at the  ynifies four different competing orders(dimerized
SU(4), fixed point found in Ref. 12, we have obtained the 0, 0y, Orp, andZ-breakingOsg see Fig. 1 The SU4)
following identifications.g; »= (J£Jy)/2, g3 4= I+ J4a)/8,  — SU(2) X Z, symmetry-breaking perturbations will select
O5=Jyy, andge=J,. _ _ ) one of these quantum orders as we are going to see now.
Order parameters and duality symmetriéefore inves- Renormalization group (RG) analysi$he next step of
tigating the infraredIR) phases of the low-energy effective- the approach is to perform a one-loop RG calculation to de-
field theory(2), let us first discuss its symmetries and pos-termine the nature of the IR phases of the low-energy effec-
sible orders. The S4), fixed point Hamiltonian, i.eHo, IS tive Hamiltonian(2). First of all, the SW4) model in Eq.(1),
invariant under chiral S@) rotationsR,(6), r=R,L on the  perturbed by a standard rung interactidn+ 0, is Bethe-
Majorana fermions ansatz integrabl® for a small value of] , the gapless be-
a havior of the SW4) model extends up to a critical point
& — & cost/2 = xi'sin 612, J, .=4], above which the standard gapped rung-singlet phase
of the two-leg spin ladder appears. In the close vicinity of the
Xr — & sin0/2 + x{ cos6/2. (3 SU(4); quantum critical point, wheng;|<1, we can thus
forget the perturbation with coupling constamtin Eq. (2)

Thi tati fi first t = . .
is rotation defines a first ) symmetry {/y,=7R.(0) and the resulting one-loop RG equations read as follows:

X Rr(#) which acts on the fields of the $4); CFT. Now

we introduce a first set of order parameters—the staggered 01 = gi + gg + 5g§ + gi,
dimerization operato©sp=(—1)"(S; *S; n+1~ S Sop+1) @and
the scalar chirality order paramebét. Ogc=(-1)"(s;, 2= 2010, + 60304 + 9a0s,

+%)(S1 4108 ne1) + (N> n+1)]. They have a simple con-
tinuum description in terms of the Majorana fermioi¥sp

e L N 03 = 60103 *+ 20,04,
~i(&r &L~ xr X)) and Osc~i(é&g-xL+xr*é). From Eq.(3)

we deduce that these order parameters transform as a doublet 84 = 20,04 + 60203 + GoTs,
underldy,
Osp (cosa —sin 0) Osp 05 =~ 16(0105 ~ 9204)- (5)
Osc “\sing  cose Osc/ @ We are now going to investigate the different gapped phases

. . that emerge in the IR limit of the RG Eq&). First of all, it
In particular, for 6=m/2, the two phases characterized by js important to note that the interaction part of the Hamil-

thus be viewed as %, duality for a pair of order parameters. 5 5 5 )
Remarkably, the duality symmet® and the W1) transfor- Hint =~ NspOsp~ AscOsc~ AMoOp ~ MroOrp,  (6)
. . L dat_ i ) , .
mation U, ha\ﬁ,{'ﬁmlce expre§3|od$'9 -_exp{ 02 (S1.n S2n  where the coupling&gp, etc., are functions af, ...,94 and
—1/4]andD=Uj_,,, respectively, which have been discov- ¢ (g) describes the competition between the four quantum

ered previousl§/1~°f and called the spin-chirality duality. On  gders introduced previously. Then we apply an ansatz, pro-
top of them, we introduce two additional order parametersyssed by Linet all® in the context of the half-filled two-leg

expressed again as bilinears of Majorana fermio@%  Hupbard ladder, that the IR asymptotics of EE) is de-
~i(&r- &+ xr-X1) andOrp~i(&r- XL~ Xr- &), Which are left  scribed byg;(t)=r;/(to,—t), wheret is the RG time and,
invariant under the spin-chirality rotatioti, and are thus marks the crossover point where the weak-coupling pertur-
self-dual with respect t@. In fact, these order parameters bation breaks down. The sets of coefficientswhich are

are the continuum representation of the columnar dimerizagbtained as solutions of nonlinear equations, indicate the
tion operatorOp=(-1)"(S; n*S1p+1+tS2nS2ne1) @Nd the rung  symmetric rays that attract the RG flow in the IR limit and
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Gauvssian manifoldsg,= +g,, the SU2) X Z, symmetric model2) ac-
SD | e——doubletmmy quires a larger continuous symmetry @WUx U(1), being in-

variant under arbitrary rotatiorig, andi{,, respectively(see
Fig. 1. On these self-dual manifolds, the RG flow is at-
SU«) tracted in the IR limit toward two new asymptotes:
Kramdrs-Wannier KramersWannier (rq,rp,r3,rs,r5)=(1/6,0,¥1/6,0,+4/9. Along the first
line (rz=-r,), the interacting part of the low-energy self-dual
theory takes the form

&28
H

1
(HEHIR SIS HES) .4
<—douAblet—’ =RBD

_ X R
Gaussian Hg‘f} ==\ (O%D-" O%C) - ?(fR : XR)(&L 'XL)y (9

FIG. 1. Relationship between four orders. On manifollls \\hich describes the competition between the staggered
=04 (92=-04) the system acquires a(l) symmetry undet/, (/)  dimerization and scalar chirality orders, i.e., it governs the
and order parameters form a doublet. The value,:rsirs along  patyre of the quantum phase transition between these two
each ray is also shown. phases. Similarly, the second asymptote accounts for the

competition between the columnar dimerization and the rung
define the different strong-coupling phases of the problemdimerization. The emerging effective-field theo(9) dis-
Along the symmetric ray(rq,rp,rs,rs,rs)=(1/8,-1/8, plays a larger symmetry than thg1) X SU(2) symmetry of
-1/8,1/8,0, the low-energy physics is described by thethe initial manifoldg,=g,. First, model(9) turns out to be
effective-field theory invariant not only undet/, but under a larget(, x U, sym-

(SO = 1 4 N (Eo- 71 + T E)2 metry (note that at the lattice Ieveajlg may be broken by
Heii” =Ho* Asclér XL+ Xr 67, umklapp interactions Second, it is also invariant under a

. hidden SU3) symmetry. A way to reveal the second symme-
=Ho~AscOsc @) try is to combine the six Majorana fermions into three Dirac

. . L= . fermions: W5, = +ix2,)/\2. Then the two rotation
with A\g.>0. After a transformationyg«— &, the Hamil- ons:Wary = (€ry +iXkL)/ ¥ By

tonian (7) takes the form of the S®) Gross-NeveuGN) and Uy, are translated, respectively, to the chira(1))
model, which is an integrable field theory with a spectral(Charge - symmetries of the Dirac fermions:Wag,
gap!” As is suggested from the form of EG), the strong- € VarL andWag —€"'"*Wag, . In addition, we can see
coupling phase is characterized by the nonvanishing scaldpat the order paramete@sp and Osc also have a simple
chirality (Osg=+A,# 0. A staggered scalar chirality phase Ntérpretation as Cooper pairs by taking a combinatidg,
is thus stabilized and breaks both the time-reversal- and theiOsc~Wr-¥ .. The role of these pseudocharge degrees of
translation symmetry spontaneously. Applying the duatity freedom, introduced by the spin-chirality1) symmetry, be-
(g,<>0s), We move to the second rayry,rp,rs,rs,rs)  comes manifest with the help of a bosonization of the Dirac
=(1/8,1/8,-1/8,-1/8,D and the effective action then fermions. To this end, we define three ’ﬂght-left moving
reads bosonic fieldse,r, such asW¥,g ~exd+iv4me,g ], and
. switch to a basis where the pseudocharge degrees of freedom

HG = Ho— AgpO3p- (8 may be singled out as follows:pcr =(p1r+@2rL
+@ar )/ V3. The low-energy Hamiltoniaf®) then exhibits a
“spin”’[SU(3)]-“chargeTU(1)] separatiorH ¢;="H.+H, With
[H¢, H]=0. The charge degrees of freedom are described by
the TL Hamiltonian

A similar analysis conclude&@gp)=+Ay#0, i.e., the sys-
tem is in the staggered dimer phase as in the(25U
X SU(2) spin-orbital chairtl1?2 Note that the above results
are directly obtained by applying the transformation
D=Ugy-.;» onto the Hamiltoniar(7). All these are consistent
with the observations in Ref. 6. Actually, our approach pre-
dicts that there are two more $&)»-symmetric rays ) o
(F1,02,r3,4,15)=(1/8,+1/8,1/8,+1/8,0 Similar argu- Wheree:=¢crt ¢ is the total charge bosonic field ang
ments tell us that these rays correspond, respectively, to tHe®cL ™ ¢cr IS its dual field. The Hamiltoniart for the re-

dimerization(Op) and the rung dimerizatiofOgp) which ~ Maining degrees of freedom can be recast in a fully3U
symmetric form in terms of chiral S@3); currentsz’L,

He= g[wx@az + (002, (10)

are interchanged now under the second dudhtyi/,- .. In . .

summary, the four phasé®gp, Osc, Op, andOgp), related - X

two by two through the duality symmetrig3, D, and the Hs= ?Azl (jéjé+jﬁjﬁ) + 8\ Azljéjﬁ' 1D

Kramers-Wannier transformatiofsee Fig. 1, are the four ” -

different gapped phases which are characterized by the phy$he latter model is the S(38) GN model, which is a massive

ics of the S@6) GN model in the IR limit. (\">0) integrable field theory® A spectral gap is thus
Quantum phase transitionin addition to these S@)- formed by the interactions in the “spin” sector and the low-

symmetric rays, there are special manifolds where the R®ing excitations are known, from the exact solutiérip be

Egs.(5) also display a larger symmetric behavior. On the twogapped SUB) spinons and antispinons. The low-energy
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physics of(9) is dominated by the gaplespin-singletfluc-  rotationi/, is then the analog of the () rotation generated

tuations(10) of the “charge” degrees of freedom, which stem by 3.§. The XY-anisotropy term stabilizes two Néél,

from the remarkable ) symmetry of Eq.(9). Therefore, gapped phas€gS") # 0 and(S) # 0, respectivelywhich are

we may conclude that the quantum phase transition betweeR a¢eq through a duality transformation, i.e.qr42 rotation

the staggered dimerized- and scalar chirality phases belon(@_u ) along thez-spin axis. The (1) quantum phase
—Ao=ml2 3 .

to thec=1 TL universality class. The physical properties at 0 - .
the transition can also be determined within our approach. Aransition between the staggered and scalar chirality phases is

the transition, all order parameters have zero expectation valllus similar to the Gaussian criticality that occurs in the spin-
ues. The first doubletOsp, Oso) has a fixed modulus and 1/2 XYZHeisenberg chain. . _

correlation functions decaying as?3, i.e., has long-range  In summary, we have shown, in the continuum approach,
coherence, whereas the second 6fg and Ogp) is expo-  that four different gapped phases around the(4Unulti-
nentially decaying due to strong quantum fluctuations. Nowgritical point are unified by the hiddefy, symmetriesD and

it is straightforward to discuss the effect of a small deviationD. The spin-chirality W1) symmetryl/, plays an essential
from the self-dual manifold9) by switching on the pertur- role in the self-dual manifold, and as a consequence, a
bation V=8(0%,~ 0350, |s|<1 which breaks in particular second-order phase transition that separates the staggered
the U, symmetry of model(9). This small symmetry- dimerized- and scalar chirality phases is characterized by the
breaking perturbation does not close the spin gap but introc=1 TL universality class. On the basis of this fact, we ex-
duces to the charge Hamiltonidt0) a “pinning” termV,  plained how an exotic phase with a broken time-reversal
=—g c0g\167/3¢) that locks the direction of the doublet symmetry is stabilized. Finally, we have revealed another
(Osp, Osc). The interaction has scaling dimensid=4/3  hiddenrelationship between a dimerized phase and a rung-
<2 so that the perturbation opens a charge gapefal0  dimer phase, together with a corresponding)Uusymmetry

(respectively, e >0), the staggered dimerizatiofrespec- 7 he resulting emerging (@) quantum critical behavior of
tively, scalar chirality order is stabilized by the small w6 yansition separating these two orders may be viewed as a
symmetry-breaking term. The same argument applies to thg,_yimensional analog of the so-called deconfined quantum
second ray(r;=r3) as well after the replacement, < J, criticality introduced by Senthiét al19

and describes now the competition betw&n and Ogp. A

simple understanding of the quantum phase transition can be The authors are grateful to E. Boulat for illuminating dis-
obtained by noting tha§{=s, ;-s,;+1/4 plays the role of§  cussions. They would also like to thank P. Azaria, A. Lauchli,
in the spin-1/2XYZ Heisenberg model. The spin-chirality T. Momoi, and E. Orignac for very useful discussions.
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