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The zero-temperature phases of a generalized two-leg spin ladder with four-spin exchanges are discussed by
means of a low-energy field theory approach starting from an SUs4d quantum critical point. The latter fixed
point is shown to be a rich multicritical point that unifies different competing dimerized orders and a scalar
chirality phase that breaks spontaneously the time-reversal symmetry. The quantum phase transition between
these phases is dominated by spin-singlet fluctuations and belongs to the Luttinger universality class due to the
existence of a Us1d self-duality symmetry.
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Multispin exchange interactions have attracted much in-
terest over the years, both theoretical and experimental.1 Re-
cently, ring exchange interactions have been invoked for the
description of magnetic properties of the spin ladder com-
pound LaxCa14−xCu24O41 sRef. 2d and for their ability to in-
duce exotic phases in quantum magnetism.3 In this respect, a
scalar chirality phase,4 which breaks spontaneously the time-
reversal symmetry, has been found in the two-leg spin-1/2
ladder for a sufficiently strong four-spin cyclic exchange.5

Such an exotic ground state is, in fact, not specific to this
spin ladder, and exact ground states with scalar chirality
long-range order have been obtained for a wider class of
two-leg spin ladders with four-spin interactions.6 A central
question is the determination of all possible ground states
stabilized by four-spin exchanges and the elucidation of the
nature of the quantum phase transition between these phases.
In this Communication, we will study a general two-leg spin-
1/2 ladder with four-spin exchanges defined by6

Hgen= Jlo
n

o
p=1

2

sp,n ·sp,n+1 + J'o
n

s1,n ·s2,n

+ Jdo
n

ss1,n ·s2,n+1 + s1,n+1 ·s2,nd + Jrro
n

ss1,n ·s2,nd

3ss1,n+1 ·s2,n+1d + Jllo
n

ss1,n ·s1,n+1dss2,n ·s2,n+1d

+ Jddo
n

ss1,n ·s2,n+1dss1,n+1 ·s2,nd, s1d

where sp,n are spin-1/2 operators at the siten on the pth
chain sp=1,2d. The Hamiltonians1d is the most general
translation-invariant two-leg spin ladder, whichsid consists
of SUs2d-symmetric interactions involving two neighboring
rungs andsii d hasZ2 invariance under the permutation of the
two chainsP12. In the following, we study the phase struc-
ture of s1d around a point with the maximal symmetry in a
problem consisting of two spin-1/2 operators, i.e., an SUs4d
symmetry. The resulting SUs4d model displays a quantum
critical behavior which enables us to develop a low-energy

approach to investigate the differentT=0 gapped phases in-
duced by the SUs2d3Z2-invariant symmetry breaking terms
of Eq. s1d. As will be seen, the SUs4d symmetric point is a
rich multicritical point that unifies several emerging quantum
orders. The nature of the quantum phase transitions between
these ordered phases can then be determined within our ap-
proach and are shown to belong to the Tomonaga-Luttinger
sTLd universality class7 as a result of a nontrivial Us1d sym-
metry at the transition.6

The SU(4) quantum critical point. The starting point of
our approach is the existence of an SUs4d symmetric point in
Eq. s1d, which is obtained forJll =4Jl and J'=Jd=Jrr =Jdd
=0.8 The resulting model can be regarded as the SUs4d
Heisenberg spin chain when the four states on a rung are
identified with those of the fundamental representation4 of
SUs4d. The latter model is Bethe-ansatz solvable9 and is
known to possess an extended quantum criticality, character-
ized by an SUs4d1 conformal field theorysCFTd with central
chargec=3.10 A simple description of this fixed point is pro-
vided by the conformal embedding SUs4d1,SUs2d2

3SUs2d2 with two SUs2ds corresponding to independent ro-
tations for the two chains. Since a single SUs2d2 CFT is
described by a triplet of realsMajoranad fermions, we may
describe the critical properties of SUs4d1 fixed point by two
triplets of right- and left-moving Majorana fermionsjR,L

a and
xR,L

a sa=1,2,3d. This Majorana fermion description is ex-
tremely useful to understand the symmetry properties of
model s1d in the close vicinity of the SUs4d point as it has
been exploited for the SUs2d3SUs2d spin-orbital chain.11,12

Moreover, the lattice discrete symmetries of models1d, i.e.,
one-step translation symmetrysTa0

d, time-reversal symmetry
sTd, site-parity sPSd, and the permutationP12 of the two
chains, are linearly represented in terms of the Majorana fer-
mions. For instance, the translation symmetry is described by
jR

a →−jR
a, xR

a →−xR
a, whereasjL

a and xL
a are left unchanged

under Ta0
. These results lead us to write the most general

low-energy effective-field theory for the generalized two-leg
spin ladders1d, which is invariant under the SUs2d spin ro-
tational symmetry, and the discrete symmetriesTa0

3T
3PS3P12,
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H = H0 + sg1 + g2dfsjWR · jWLd2 + sxWR · xWLd2g + sg1 − g2d

3fsjWR · xWLd2 + sxWR · jWLd2g + 2sg3 + g4dsjWR · jWLdsxWR · xWLd

+ 2s− g3 + g4dsjWR · xWLdsxWR · jWLd −
g5

2
sjWR · xWRdsjWL · xWLd

− i
g6

2
sjWR · xWR + jWL · xWLd, s2d

whereH0 is the free Hamiltonian for the Majorana fermions:
H0=−ivsjR

a ·]xjR
a −jL

a ·]xjL
a+jR,L

a →xR,L
a d /2. Strongly relevant

mass terms likejWR·jWL andxWR·xWL are prohibited by the trans-
lational symmetryTa0

. The effective Hamiltonians2d de-
scribes the low-energy properties of models1d in the vicinity
of the SUs4d point mentioned above. In particular, using the
continuum expressions of the spin operatorss1,2,n at the
SUs4d1 fixed point found in Ref. 12, we have obtained the
following identifications:g1,2.sJl ±Jdd /2, g3,4.sJll ±Jddd /8,
g5.Jrr , andg6.J'.

Order parameters and duality symmetries. Before inves-
tigating the infraredsIRd phases of the low-energy effective-
field theorys2d, let us first discuss its symmetries and pos-
sible orders. The SUs4d1 fixed point Hamiltonian, i.e.,H0, is
invariant under chiral SOs2d rotationsRrsud, r =R,L on the
Majorana fermions

jr
a → jr

a cosu/2 − xr
a sinu/2,

xr
a → jr

a sinu/2 + xr
a cosu/2. s3d

This rotation defines a first Us1d symmetry Uu=RLsud
3RRsud which acts on the fields of the SUs4d1 CFT. Now
we introduce a first set of order parameters—the staggered
dimerization operatorOSD=s−1dnss1,n·s1,n+1−s2,n·s2,n+1d and
the scalar chirality order parameter.5,6 OSC=s−1dnfss1,n

+s2,ndss1,n+1∧s2,n+1d+sn↔n+1dg. They have a simple con-
tinuum description in terms of the Majorana fermions:OSD

, isjWR·jWL−xWR·xWLd andOSC, isjWR·xWL+xWR·jWLd. From Eq.s3d
we deduce that these order parameters transform as a doublet
underUu,

SOSD

OSC
D → Scosu − sinu

sinu cosu
DSOSD

OSC
D . s4d

In particular, for u=p /2, the two phases characterized by
OSD and OSC are interchanged underD=Up/2, which can
thus be viewed as aZ2 duality for a pair of order parameters.
Remarkably, the duality symmetryD and the Us1d transfor-
mation Uu have lattice expressionsUu

lat=expf−iuSnss1,n·s2,n

−1/4dg andD=Uu=p/2
lat , respectively, which have been discov-

ered previously6,13 and called the spin-chirality duality. On
top of them, we introduce two additional order parameters,
expressed again as bilinears of Majorana fermions:OD

, isjWR·jWL+xWR·xWLd andORD, isjWR·xWL−xWR·jWLd, which are left
invariant under the spin-chirality rotationUu and are thus
self-dual with respect toD. In fact, these order parameters
are the continuum representation of the columnar dimeriza-
tion operatorOD=s−1dnss1,n·s1,n+1+s2,n·s2,n+1d and the rung

dimerization operatorORD=s−1dns1,n·s2,n. The latter order
parameter characterizes a phase with alternation of rung sin-
glets and rung triplets, which has been found in some inte-
grable two-leg spin ladder.14 The second set of order param-
eters is closely related, in the continuum limit, to the

existence of a second Us1d symmetry:Ũu=RLsud3RRs−ud.
It leaves invariant theOSD and OSC order parameters,

whereasOD andORD transform now as a doublet underŨu as

in Eq. s4d. A secondZ2 duality, D̃=Ũp/2, can thus be consid-
ered as a transformation which interchangesOD and ORD
while keepingOSD and OSC intact. Finally, the Kramers-
Wannier dualitysxWR→−xWRd on the underlying Ising models,
corresponding to the Majorana fermionsxR,L

a , interchanges
OD srespectively,ORDd with OSD srespectively,OSCd. The
SUs4d1 fixed point is therefore a rich multicritical point that
unifies four different competing orderssdimerized
OD ,OSD,ORD, andT-breakingOSC; see Fig. 1d. The SUs4d
→SUs2d3Z2 symmetry-breaking perturbations will select
one of these quantum orders as we are going to see now.

Renormalization group (RG) analysis. The next step of
the approach is to perform a one-loop RG calculation to de-
termine the nature of the IR phases of the low-energy effec-
tive Hamiltonians2d. First of all, the SUs4d model in Eq.s1d,
perturbed by a standard rung interactionJ'Þ0, is Bethe-
ansatz integrable;15 for a small value ofJ', the gapless be-
havior of the SUs4d model extends up to a critical point
J'c=4Jl above which the standard gapped rung-singlet phase
of the two-leg spin ladder appears. In the close vicinity of the
SUs4d1 quantum critical point, whenugiu!1, we can thus
forget the perturbation with coupling constantg6 in Eq. s2d
and the resulting one-loop RG equations read as follows:

ġ1 = g1
2 + g2

2 + 5g3
2 + g4

2,

ġ2 = 2g1g2 + 6g3g4 + g4g5,

ġ3 = 6g1g3 + 2g2g4,

ġ4 = 2g1g4 + 6g2g3 + g2g5,

ġ5 = − 16sg1g3 − g2g4d. s5d

We are now going to investigate the different gapped phases
that emerge in the IR limit of the RG Eqs.s5d. First of all, it
is important to note that the interaction part of the Hamil-
tonian s2d with g5,6=0 can be recast as

Hint = − lSDOSD
2 − lSCOSC

2 − lDOD
2 − lRDORD

2 , s6d

where the couplingslSD, etc., are functions ofg1, . . . ,g4 and
Eq. s6d describes the competition between the four quantum
orders introduced previously. Then we apply an ansatz, pro-
posed by Linet al.16 in the context of the half-filled two-leg
Hubbard ladder, that the IR asymptotics of Eq.s5d is de-
scribed bygistd=r i / st0− td, where t is the RG time andt0
marks the crossover point where the weak-coupling pertur-
bation breaks down. The sets of coefficientsr i, which are
obtained as solutions of nonlinear equations, indicate the
symmetric rays that attract the RG flow in the IR limit and
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define the different strong-coupling phases of the problem.
Along the symmetric ray sr1,r2,r3,r4,r5d=s1/8,−1/8,
−1/8,1/8,0d, the low-energy physics is described by the
effective-field theory

Heff
sSCd = H0 + lSC

* sjWR · xWL + xWR · jWLd2,

=H0 − lSC
* OSC

2 , s7d

with lSC
* .0. After a transformationxWR↔jWR, the Hamil-

tonian s7d takes the form of the SOs6d Gross-NeveusGNd
model, which is an integrable field theory with a spectral
gap.17 As is suggested from the form of Eq.s7d, the strong-
coupling phase is characterized by the nonvanishing scalar
chirality kOSCl= ±D0Þ0. A staggered scalar chirality phase
is thus stabilized and breaks both the time-reversal- and the
translation symmetry spontaneously. Applying the dualityD
sg2↔g4d, we move to the second raysr1,r2,r3,r4,r5d
=s1/8,1/8,−1/8,−1/8,0d and the effective action then
reads

Heff
sSDd = H0 − lSD

* OSD
2 . s8d

A similar analysis concludeskOSDl= ±D0Þ0, i.e., the sys-
tem is in the staggered dimer phase as in the SUs2d
3SUs2d spin-orbital chain.11,12 Note that the above results
are directly obtained by applying the transformation
D=Uu=p/2 onto the Hamiltonians7d. All these are consistent
with the observations in Ref. 6. Actually, our approach pre-
dicts that there are two more SOs6d-symmetric rays
sr1,r2,r3,r4,r5d=s1/8, ±1/8,1/8, ±1/8,0d. Similar argu-
ments tell us that these rays correspond, respectively, to the
dimerizationsODd and the rung dimerizationsORDd which

are interchanged now under the second dualityD̃=Ũu=p/2. In
summary, the four phasessOSD, OSC, OD, andORDd, related

two by two through the duality symmetriesD, D̃, and the
Kramers-Wannier transformationssee Fig. 1d, are the four
different gapped phases which are characterized by the phys-
ics of the SOs6d GN model in the IR limit.

Quantum phase transition. In addition to these SOs6d-
symmetric rays, there are special manifolds where the RG
Eqs.s5d also display a larger symmetric behavior. On the two

manifoldsg2= ±g4, the SUs2d3Z2 symmetric models2d ac-
quires a larger continuous symmetry SUs2d3Us1d, being in-

variant under arbitrary rotationsUu andŨu, respectivelyssee
Fig. 1d. On these self-dual manifolds, the RG flow is at-
tracted in the IR limit toward two new asymptotes:
sr1,r2,r3,r4,r5d=s1/6,0,71/6,0, ±4/9d. Along the first
line sr3=−r1d, the interacting part of the low-energy self-dual
theory takes the form

Heff
int = − l*sOSD

2 + OSC
2 d −

4l*

3
sjWR · xWRdsjWL · xWLd, s9d

which describes the competition between the staggered
dimerization and scalar chirality orders, i.e., it governs the
nature of the quantum phase transition between these two
phases. Similarly, the second asymptote accounts for the
competition between the columnar dimerization and the rung
dimerization. The emerging effective-field theorys9d dis-
plays a larger symmetry than the Us1d3SUs2d symmetry of
the initial manifoldg2=g4. First, models9d turns out to be

invariant not only underUu but under a largerUu3 Ũu sym-

metry snote that at the lattice level,Ũu may be broken by
umklapp interactionsd. Second, it is also invariant under a
hidden SUs3d symmetry. A way to reveal the second symme-
try is to combine the six Majorana fermions into three Dirac
fermions:CaR,L=sjR,L

a + ixR,L
a d /Î2. Then the two rotations,Uu

and Ũu, are translated, respectively, to the chiral Us1d
scharged symmetries of the Dirac fermions:CaR,L
→eiu/2CaR,L andCaR,L→e±iu/2CaR,L. In addition, we can see
that the order parametersOSD and OSC also have a simple
interpretation as Cooper pairs by taking a combinationOSD

+ iOSC,CW R·CW L. The role of these pseudocharge degrees of
freedom, introduced by the spin-chirality Us1d symmetry, be-
comes manifest with the help of a bosonization of the Dirac
fermions. To this end, we define three right-left moving
bosonic fieldswaR,L such asCaR,L,expf±iÎ4pwaR,Lg, and
switch to a basis where the pseudocharge degrees of freedom
may be singled out as follows:wcR,L=sw1R,L+w2R,L

+w3R,Ld /Î3. The low-energy Hamiltonians9d then exhibits a
“spin”fSUs3dg-“charge”fUs1dg separationHeff=Hc+Hs, with
fHc,Hsg=0. The charge degrees of freedom are described by
the TL Hamiltonian

Hc =
v
2

fs]xwcd2 + s]xqcd2g, s10d

wherewc=wcR+wcL is the total charge bosonic field andqc
=wcL−wcR is its dual field. The HamiltonianHs for the re-
maining degrees of freedom can be recast in a fully SUs3d
symmetric form in terms of chiral SUs3d1 currentsJR,L

A ,

Hs =
pv
2 o

A=1

8

sJR
AJR

A + JL
AJL

Ad + 8l* o
A=1

8

JR
AJL

A. s11d

The latter model is the SUs3d GN model, which is a massive
sl* .0d integrable field theory.18 A spectral gap is thus
formed by the interactions in the “spin” sector and the low-
lying excitations are known, from the exact solution,18 to be
gapped SUs3d spinons and antispinons. The low-energy

FIG. 1. Relationship between four orders. On manifoldsg2

=g4 sg2=−g4d the system acquires a Us1d symmetry underUu sŨud
and order parameters form a doublet. The valuer1: r2: r3: r4 along
each ray is also shown.
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physics ofs9d is dominated by the gaplessspin-singletfluc-
tuationss10d of the “charge” degrees of freedom, which stem
from the remarkable Us1d symmetry of Eq.s9d. Therefore,
we may conclude that the quantum phase transition between
the staggered dimerized- and scalar chirality phases belongs
to thec=1 TL universality class. The physical properties at
the transition can also be determined within our approach. At
the transition, all order parameters have zero expectation val-
ues. The first doubletsOSD,OSCd has a fixed modulus and
correlation functions decaying asx−2/3, i.e., has long-range
coherence, whereas the second onesOD and ORDd is expo-
nentially decaying due to strong quantum fluctuations. Now
it is straightforward to discuss the effect of a small deviation
from the self-dual manifolds9d by switching on the pertur-
bation V=«sOSD

2 −OSC
2 d, u«u!1 which breaks in particular

the Uu symmetry of model s9d. This small symmetry-
breaking perturbation does not close the spin gap but intro-
duces to the charge Hamiltonians10d a “pinning” term Vc

.−« cossÎ16p /3wcd that locks the direction of the doublet
sOSD, OSCd. The interaction has scaling dimensionD=4/3
,2 so that the perturbation opens a charge gap; for«,0
srespectively, «.0d, the staggered dimerizationsrespec-
tively, scalar chiralityd order is stabilized by the small
symmetry-breaking term. The same argument applies to the
second raysr1=r3d as well after the replacementwc↔qc,
and describes now the competition betweenOD andORD. A
simple understanding of the quantum phase transition can be
obtained by noting thatSi

z=s1,i ·s2,i +1/4 plays the role ofSi
z

in the spin-1/2XYZ Heisenberg model. The spin-chirality

rotationUu is then the analog of the Us1d rotation generated
by oiSi

z. The XY-anisotropy term stabilizes two NéelZ2

gapped phasesskSi
xlÞ0 andkSi

ylÞ0, respectivelyd which are
related through a duality transformation, i.e., ap /2 rotation
sD=Uu=p/2d along thez-spin axis. The Us1d quantum phase
transition between the staggered and scalar chirality phases is
thus similar to the Gaussian criticality that occurs in the spin-
1/2 XYZHeisenberg chain.

In summary, we have shown, in the continuum approach,
that four different gapped phases around the SUs4d multi-
critical point are unified by the hiddenZ2 symmetriesD and

D̃. The spin-chirality Us1d symmetryUu plays an essential
role in the self-dual manifold, and as a consequence, a
second-order phase transition that separates the staggered
dimerized- and scalar chirality phases is characterized by the
c=1 TL universality class. On the basis of this fact, we ex-
plained how an exotic phase with a broken time-reversal
symmetry is stabilized. Finally, we have revealed another
hidden relationship between a dimerized phase and a rung-
dimer phase, together with a corresponding Us1d symmetry

Ũu. The resulting emerging Us1d quantum critical behavior of
the transition separating these two orders may be viewed as a
one-dimensional analog of the so-called deconfined quantum
criticality introduced by Senthilet al.19
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